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2 Universitat Politècnica de Catalunya (UPC)
3 Intel Corporation

{francesc.guim,sujoy.sen}@intel.com

Abstract. Massive exploitation of next-generation sequencing technolo-
gies requires dealing with both: huge amounts of data and complex
bioinformatics pipelines. Computing architectures have evolved to deal
with these problems, enabling approaches that were unfeasible years ago:
accelerators and Non-Volatile Memories (NVM) are becoming widely
used to enhance the most demanding workloads. However, bioinformat-
ics workloads are usually part of bigger pipelines with different and dy-
namic needs in terms of resources. The introduction of Software Defined
Infrastructures (SDI) for data centers provides roots to dramatically in-
crease the efficiency in the management of infrastructures. SDI enables
new ways to structure hardware resources through disaggregation, and
provides new hardware composability and sharing mechanisms to deploy
workloads in more flexible ways. In this paper we study a state-of-the-
art genomics application, SMUFIN, aiming to address the challenges of
future HPC facilities.
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1 Introduction

The genetic basis of disease is increasingly becoming more accessible thanks to
the emergence of Next Generation Sequencing platforms, which have extremely
reduced the costs and increased the throughput of genomic sequencing. For the
first time in history, personalized medicine is close to becoming a reality through
the analysis of each patient’s genome. Genomic variations, between patients or
among cells of the same patient, have been identified to be the direct cause, or
a predisposition to genetic diseases: from single nucleotide variants to structural
variants, which can correspond to deletions, insertions, inversions, translocations
and copy number variations, ranging from a few nucleotides to large genomic re-
gions. The exploitation of genomic sequencing should involve the accurate identi-
fication of all kinds of variants, in order to derive a correct diagnosis and to select
the best therapy. For clinical purposes, it is important that this computational
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process be carried out within an effective timeframe. But a simple sequencing
experiment typically yields thousands of millions of reads per genome, which
have to be stored and processed. As a consequence, the analysis of genomes with
diagnostic and therapeutic purposes is still a great challenge, both in the design
of efficient algorithms and at the level of computing performance.

The field of computational genomics is quickly evolving in a continuous seek
for more accurate results, but also looking for improvements in terms of perfor-
mance and cost-efficiency. In parallel, computing architectures have also evolved,
enabling approaches that were unfeasible only years ago. The use of Non-Volatile
Memories (NVM) and accelerators has been widely adopted for all kinds of work-
loads with the introduction of NVMe cards, GPUs, and FPGAs for some of the
most demanding computing challenges. Genomics workloads today have a larger
variety of requirements related to the compute platforms they run in. Workloads
are tuned to work optimally on specific configurations of compute, memory, and
storage. On top of that, current genomics workloads and pipelines tend to be
composed of multiple phases with different behaviors and resource requirements.

One such example in the context of variant calling is SMUFIN [15], a state-of-
the-art method that performs a direct comparison of normal and tumor genomic
samples from the same patient without the need of a reference genome, leading
to more comprehensive results. In its original implementation, published in Na-
ture [15] in 2014, this novel approach required significant amounts of resources
in a supercomputing facility. Since then, it has been optimized and adapted to
scale up and make the most of Non-Volatile Memory [1].

Beyond Non-Volatile Memories and accelerators, new technological advances
currently under development, such as Software Defined Infrastructures, are dra-
matically changing the data center landscape. One of the key features of Software
Defined Infrastructures is disaggregation, which allows dynamically attaching
and detaching resources from physical nodes with just a software operation, re-
moving the constraints of getting hardware components statically confined to
servers. This paper takes a modern genomics workload, SMUFIN, evaluates dis-
aggregation mechanisms when running it, and describes how characterization
can be used to guide the orchestration of a genomics pipeline.

The rest of the paper is structured as follows. Section 2 provides an overview
of the foundations of SMUFIN, the variant-calling method studied in this pa-
per. Section 3 introduces resource disaggregation and the technology used to
implement it. Next, Section 4 characterizes disaggregation mechanisms using
SMUFIN. Section 5 shows how characterization can be used to guide orchestra-
tion. And finally, Section 6 discussed related work and Section 7 concludes.

2 SMUFIN: A Throughput-oriented Genomics Workload

Most currently available methods for detecting genomic variations rely on an
initial step that involves aligning sequence reads to a reference genome generally
using Burrows-Wheeler transform [12], which has an impact not only on per-
formance, but also on the accuracy of results. First, tumoral reads that carry



variation may be harder or impossible to align against a reference genome. Sec-
ond, the use of references also leads to interference with millions of inherited
(germline) variants that affect the actual identification of somatic changes, con-
sequently decreasing the final reliability and applicability of the results. The
initial alignment also has an impact on subsequent analysis since most methods
are tuned to identify only a particular kind or size of mutation [14].

Alternative methods that don’t rely on the initial alignment of sequenced
reads against a reference genome have been developed. In particular, the ap-
plication used in this work is based on SMUFIN [15], a reference-free approach
based on a direct comparison between normal and tumoral samples from the
same patient. The basic idea behind SMUFIN can be summarized in the follow-
ing steps: (i) input two sets of nucleic acid reads, normal and tumoral; (ii) build
frequency counters of substrings in the input reads; and (iii) compare branches
to find imbalances, which are then extracted as candidate positions for variation.

Internally, SMUFIN consists of a set of checkpointable stages that are com-
bined to build fully fledged workloads (Figure 1). These stages can be shaped
on computing platforms depending on different criteria, such as availability or
cost-effectiveness, allowing executions to be adapted to its environment. Data
can be split into one or more partitions, and each one of these partitions can then
be placed and distributed as needed: sequentially in a single machine, in parallel
in multiple nodes, or even in different hardware depending on the characteristics
of the stage.

Data partitioning can be effectively used to adapt executions to a particular
level of resources made available to SMUFIN, because it imposes a trade-off
between computation and IO. This data partitioning can be achieved by going
multiple times through the input data set that corresponds to each stage: Prune,
Count, and Filter. In practice, systems with high-end capabilities will not require
a high level of partitioning and hence IO, what ends up with scale-up solutions;
on the opposite side of the spectrum, lower-end platforms are able to run the
algorithm by partitioning data and duplicating IO, leading to scale-out solutions.
The goal of each one of the stages is as follows:

– Prune: Discards sequences from the input by generating a bloom filter of k-
mers that have been observed in the input more than once. Allows lowering
memory requirements at the expense of additional computation and IO.

– Count : Builds a frequency table of normal and tumoral k-mers in the input
sequences. More specifically, k-mer counters are used to detect imbalances
when comparing two samples.

– Filter : Selects k-mers with imbalanced frequencies, which are candidates for
variation, while also building indexes of sequences with such k-mers.

– Merge: Reads and combines multiple filter indexes from different partitions
into single, unified indexes. Merging indexes only involves simple operations
such as concatenation, OR on bitmaps, and appending.

– Group: Matches candidate sequences that belong to the same region. First,
selecting reads that meet certain criteria, and then retrieving related reads
by looking up those that contain the same imbalanced k-mers.
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Fig. 1: SMUFIN’s variant calling architecture: overview of stages and its data flow

One of the main characteristics of the current version of SMUFIN [1] is its
ability to use NVM as memory extension. This can be exploited in two different
ways. First, using an NVM optimized Key-Value Store such as RocksDB, and
second, using a custom optimized swapping mechanism to flush memory directly
to the device. When such memory extensions are available, a maximum size for
the data structures is set; once such size is reached, data is flushed to the memory
extension while a new empty structure becomes available Generally speaking,
bigger sizes are recommended: they help avoid duplicate data, and also lead to
higher performance, as writing big chunks to a Non-Volatile Memory allows to
exploit internal parallelism typical of flash drives [2].

SMUFIN’s performance greatly benefits from NVM, as shown in Figure 2,
which compares an execution in 16 machines in a supercomputing facility (left)
and a scale-up execution in a single node with NVM enabled (right). The latter
leads to faster executions and lower power consumption. NVM can be leveraged
in some way in most SMUFIN stages, and the experiments performed in this
paper are focused on Merge using the RocksDB-based implementation, which is
one of the most IO intensive of the pipeline. However, other stages have similar
characteristics and the same techniques can be used elsewhere.
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Fig. 2: Aggregate CPU time of a SMUFIN execution running in 16 MareNostrum nodes and in 1
Xeon-based node with NVM. Power consumption per execution (one patient) shown for reference.

3 Resource Disaggregation

Traditional data centers usually contain homogeneous and heterogeneous com-
pute platforms (also referred to as computing nodes or servers). These platforms



are statically composed by computing, memory, storage, fabric, and/or acceler-
ator components, and they are usually stored in racks. However, in the last few
years there has been a trend towards new technologies that allow disaggregating
resources over the network, increasing flexibility and easying the management
of such data centers.

This paper analyzes the use of one of those new technologies: NVMe Over
Fabrics (NVMeOF). First off, NVMe [17] is an interface specification for access-
ing direct-attached NVM via a regular PCI Express bus. On the other hand
NVMeOF [4] is an emerging network protocol used to communicate nodes with
NVMe devices over a networking fabric. The architecture of NVMeOF allows
scaling to large numbers of devices, and supports a range of different network
fabrics, usually through Remote Direct Memory Access (RDMA) so as to elim-
inate middle software layers and provide very low latency.

Disaggregating NVMe over the network with NVMeOF allows new mecha-
nisms to scale-up and improve efficiency of genomics workloads:

Resource Sharing. As workloads perceive remote NVMe as physically at-
tached to their compute nodes, those can be partitioned, and each one of
these partitions can then be exposed to the computational nodes as an exclu-
sive resource. This translates into workload-unaware resource sharing, which
in turn can lead to improved resource efficiency by maximizing usage.

Resource Composition. Certain resources can be aggregated and exposed as
a single, physically attached resource. Instead of accessing individual units,
accessing combined resources enables increased capacities that can lead to
improved performance. For instance, two SSD disks with a bandwidth of
2GB/s each can be composed and exposed as a single one with twice as
much capacity and bandwidth, providing a total of 4GB/s.

4 Characterizing Resource Disaggregation on SMUFIN

In a continuous need to deal with increasingly larger amounts of data, genomics
workloads are quickly adapting, and NVM technologies have become widely used
as a key component in the memory-storage hierarchy. This Section explores how
disaggregating NVM might have an impact on genomics workloads, and in par-
ticular SMUFIN. As part of the evaluation, resource sharing and composition are
analyzed using NVMeOF in an attempt to scale-up and shape the performance
of the workload.

4.1 Experimental Environment

The experiments are conducted in an environment as depicted in figure 3. The
NVMe drives are used by SMUFIN as a memory extension over fabric to store
temporary data structures required to accelerate the computation. As the drives
are dual-controller, two NVMe devices – of half its physical size – are exposed by
the system for each physical device. In order to expose a single NVMe consisting
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Fig. 3: Experiments environment

of its two controllers, or to unify several NVMe devices, Intel Rapid Storage
Technology [9] (RST) is used. RST composes a RAID0 of the controllers which
becomes exposed over fabric as a single NVMe card. Mellanox OFED 4.0-2.0.0.1
drivers were used for the InfiniBand HCA adapters. The drivers included modules
for NVMe over fabrics as well, both the target and the client. Kernel 4.8.0-39
was used under Ubuntu server 16.10 operating system in all nodes.

We use SMUFIN on its merge stage, as explained in section 2. In the following
evaluations each SMUFIN instance reads and processes a sample DNA input
(+300GB) from a NFS shared storage, while the shared NVMe devices are used
as memory extension for temporary data and final output. SMUFIN has been
implemented to maximize sequential writes to the devices, and this behavior has
been verified by analyzing its access pattern. A block trace sample of requested
blocks to the device was generated using Linux’s blktrace, and the trace was then
fed to the algorithm provided by [3] to calculate the percentage of sequential
write accesses. This method identified 88% of sequential writes after adapting
the algorithm to consider accesses in which the final address matched the initial
address of many immediately following requests, thus accounting for file appends.

4.2 Direct-Attached Storage vs NVMe over Fabrics

The performance of NVMeOF has been studied in the literature [7], and found
not to show any significant degradation when compared to local directly-attached
storage (DAS). Additionally, in this section we perform our own experiments
running up to 3 instances of SMUFIN in the same node: against a directly-
attached NVMe device and against NVMeOF. Each instance processes the same
dataset, generating ≈150GB, with an average use of bandwidth of 477MB/s per
SMUFIN instance. The NVMe device is capable of handling 2GB/s bandwidth
under sequential write pattern, as is the SMUFIN scenario. Figure 4 shows av-
erage execution time and deviation after repeating the executions six times. As
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it can be observed, when running one and two instances on local storage ( 4a)
there is no performance degradation when disaggregating NVMe over fabrics
( 4b). However, when running three concurrent instances there is a significant
degradation of 6% when using NVMeOF.

On the other hand there is a certain performance degradation scaling up to
three instances in both scenarios. Analyzing this behavior, up to two instances,
the host’s memory can handle all the intermediate data generated by SMUFIN
and the NVMe becomes only used to output final data. However, with three
instances the memory becomes a bottleneck and intermediate data not fitting
in memory gets flushed to the NVMe device more frequently. Is in this scenario
when degradation is observed and performance comparison against NVMeOF is
worse. Figure 5 depicts memory usage on the three scenarios (1, 2 and 3 SMUFIN
on the same node, directly-attached) over a period of 1500 seconds, evidencing
the memory bottleneck.

4.3 Resource Sharing And Composability

When multiple workloads share resources and hence compete for its usage, their
execution time compared to a dedicated execution in isolation degrades when a
threshold is reached, as shown in previous section. In this section we explore if
degradation still occurs when running up to six concurrent instances, all of them
using partitions from the same set of NVMe devices and running on separate
nodes to avoid the aforementioned interferences.

Figure 6a represents the box plot of individual execution times under dif-
ferent configurations, along with its quartiles, median, and standard deviation.
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In (a) only one NVMe SSD is used. It can be observed running three instances
separately against a single device do not degrade as significantly as running un-
der the same node. However, performance degradation is still experienced when
certain resource sharing threshold is reached.

When disaggregating NVMe over fabrics we can benefit of composing several
NVMe devices and expose them as a single one. Under composition, profiling
data shows that the Intel driver balances the bandwidth evenly through all com-
posed devices. It is also observed that provided bandwidth scales linearly with
the number of devices, hence under 2 and 3-compositions 4GB/s and 6GB/s of
sequential write speed can be reached respectively (each individual drive pro-
vides 2GB/s). Through composition, performance degradation can be mitigated.
Compositions of two and three NVMe SSD exposed as a single target to clients
increases the bare-performance, as a composition multiplies the total available
bandwidth. The evolution of execution time respect composition level is pre-
sented in Figures 6b and 6c. In the 2-composition scenario, up to 3 sharing
workloads obtain the same performance as if running alone in a single NVMe.
The level of concurrency can be increased without introducing significant degra-
dation using a composition of 3 NVMe, being able to have six sharing workloads
with a similar performance as when running alone in a single device. Thus,
workloads indeed benefit of resource composition. However, in all scenarios per-
formance degradation still occurs on reaching a certain threshold, larger as more
devices are used. Under 2-NVMe compositions it is at four workloads, whereas
on the 3-composition the tendency is observed at six instances threshold.

4.4 Bandwidth

We observed performance degradation when a certain sharing ratio of resources
is reached. Despite composition increases this threshold, degradation still occurs
regardless of composition. As the memory bottleneck was removed and cannot
be found on the network bandwidth, we analyze the target NVMe bandwidth.

Figures 7a and 7b show the NVMe bandwidth over time for experiments
running up to four concurrent SMUFIN instances in the single-resource and
the 2-composed resource configuration. The solid horizontal lines indicate the
maximum bandwidth for sequential write that the resources can provide (2GB/s
in single-resource configuration, 4GB/s for the composed scenario).
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Fig. 7: Bandwidth measured from the NVMe pool server for 1x, 2x, 3x and 4x instances of SMUFIN

From the figures it can be appreciated, on one hand, that resource com-
position scales linearly, doubling the maximum available bandwidth of a single
resource. In both scenarios, two important characteristics can be noticed as more
concurrent instances are included in the experiment: (1) the bandwidth observed
from the NVMe perspective is steadier; (2) the bandwidth that the NVMe device
is capable of delivering is reduced as more concurrent instances are added. Run-
ning a single instance, the full bandwidth of the combined NVMe can be used
with bursts at the maximum 4 GB/s. However as more concurrent executions are
added these bursts make use of less bandwidth until reaching saturation levels,
decreasing significantly.

5 Towards Efficient Orchestration of Shared and
Composed Resources

Previous sections have shown how NVMe disaggregation provides new ways to
use resources through resource sharing and composition. However, its behavior
is not obvious a priori: heavy resource sharing may have a negative impact
on performance, whereas composition may help increase sharing ratios without
degradation. Therefore, deciding whether to compose a resource or to share
it among many workloads is not trivial decision. With the help of workload
characterization, platform orchestrator will be able to make more informed and
smarter decisions.

In Figure 8 we present different orchestration policies that could be managed
with our data. The figure shows our cluster running five concurrent instances
of SMUFIN, and three different resource allocation strategies for the instances:
a) sharing a single device, b) sharing two NVMe devices, and c) one instance-
dedicated device and the remaining four instances on a shared NVM device.
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This example was run under the same setup as in section 4. When the SMUFIN
instances use two composed devices (b) it leads to faster executions times than
using a single device (a). However, when using a dedicated device to run a single
instance and a shared device to run the remaining four (c), the dedicated-device
does not grant that instance an improved performance compared to a fully shared
scenario using both devices (b). Intuitively it might be believed that just sharing
all the resources under composition is the obvious winning strategy. However this
approach does not consider arriving workloads might have a time requirement
for completion, and upon arrival of those workloads, if the resources are fully
occupied serving others the orchestrator will be unable to meet the requirement.
Other concerns might be power consumption or total cost of ownership (as more
resources, more expensive it becomes to run). Therefore, the strategy to follow
must consider the trade-off between execution time and requirements of current
and incoming workloads to maximize the granted quality of service, which in
the case of genomics might be critical. The work on those policies is out of the
scope of this paper and left as future work.

6 Related work

Genomics workloads and pipelines in general are a good fit for disaggregation,
but prior to this paper applications haven’t explored its large-scale explotation.
A number of different approaches to parallelize whole genome analysis in HPC
systems have been proposed in the literature [16], [10], and [13], but these tend
simply adapt existing algorithms without considering or taking complete advan-
tage of next generation computing platforms.

Resource disaggregation is being increasingly studied in the literature. In [6],
the authors examine the network requirements for disaggregating resources at
rack- and data-center levels. Minimum requirements are measured in terms of
network bandwidth and latency. Those requirements must be such so that a
given set of applications doesn’t experiment any performance degradation when
disaggregation memory or other resources over the fabric. [11] implements NVMe
disaggregation, but unlike the work presented in this paper, the authors focus
on a custom software layer to expose devices instead of using the NVMeOF
standard. On the other hand, [18] evaluates the impact of FPGA disaggregation.



In terms of Software-Defined Infrastructures, Intel Rack Scale [8] is a prototype
system that allows dynamic composition of nodes. It fully disaggregates resources
in pools, such as CPU, storage, memory, FPGA, GPU, etc. Facebook has engaged
with Intel developing its own prototype, the Facebook Disaggregated Rack [5].

7 Conclusions

This paper evaluates resource sharing and composition benefits for NVM-centric
workloads in the context of disaggregated datacenters. This work takes SMUFIN,
a real production workload in the field of Computational Genomics, leveraging
remote NVMe devices as memory extension. This paper presents a comprehen-
sive characterization of SMUFIN’s resource consumption patterns. It is shown
NVMe is utilized in a sequential write pattern. A performance comparison be-
tween directly-attached NVMe and NVMeOF is then presented and shown that
as long the system’s memory is capable of handling SMUFIN instances there
is no degradation. To increase concurrency disaggregating over fabrics allows
to share the same resource across multiple nodes running instances, as well as
the possibility of composition. Thus, through disaggregation we are able to han-
dle more concurrent SMUFIN instances without individual degradation. On the
other hand, reaching the resources’ sharing ratio limit significantly degrades per-
formance as the utilization of the available bandwidth diminishes, never reaching
its maximum. Thus the NVMe becomes the bottleneck. Finally the paper briefly
explains how the results of this characterization could be used to implement
data-center scheduling policies in order to maximize the efficiency in terms of
Quality of Service. Quality of Service could be understood in terms of execu-
tion time, so all workloads should be completing its executions within a certain
requested time-frame. The work on those policies is left as future work.
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