9 research outputs found

    FlexTDOA : Robust and Scalable Time-Difference of Arrival Localization Using Ultra-Wideband Devices

    Get PDF
    In this paper, we propose FlexTDOA, an indoor localization method using ultra-wideband (UWB) radios, and we demonstrate its performance in a functional system. Our method uses time-difference of arrival (TDOA) localization so that the user device remains passive and is able to compute its location simply by listening to the communication between the fixed anchors, ensuring the scalability of the system. The anchors communicate using a custom and flexible time-division multiple-access (TDMA) scheme in which time is divided in slots. In each time slot, one anchor interrogates one or more anchors which respond in the same slot. The anchors do not need to have their clocks synchronized. We implemented FlexTDOA on in-house designed hardware using a commercial UWB module. We evaluate the localization accuracy of FlexTDOA with different system parameters such as the number of responses, the order of responses, and the number of anchors. We simulate and evaluate the effect of the physical speed of the tag on the choice of optimum system parameters. We also compare FlexTDOA against the classic TDOA approach and range-based localization in a deployment of ten anchors and one tag, both with and without obstructions. Results show that FlexTDOA achieves the highest localization accuracy in most of the scenarios, with up to 38% reduction in the localization error compared to the classic approach.Peer reviewe

    Robust, Energy-Efficient, and Scalable Indoor Localization with Ultra-Wideband Technology

    Get PDF
    Ultra-wideband (UWB) technology has been rediscovered in recent years for its potential to provide centimeter-level accuracy in GNSS-denied environments. The large-scale adoption of UWB chipsets in smartphones brings demanding needs on the energy-efficiency, robustness, scalability, and crossdevice compatibility of UWB localization systems. This thesis investigates, characterizes, and proposes several solutions for these pressing concerns. First, we investigate the impact of different UWB device architectures on the energy efficiency, accuracy, and cross-platform compatibility of UWB localization systems. The thesis provides the first comprehensive comparison between the two types of physical interfaces (PHYs) defined in the IEEE 802.15.4 standard: with low and high pulse repetition frequency (LRP and HRP, respectively). In the comparison, we focus not only on the ranging/localization accuracy but also on the energy efficiency of the PHYs. We found that the LRP PHY consumes between 6.4–100 times less energy than the HRP PHY in the evaluated devices. On the other hand, distance measurements acquired with the HRP devices had 1.23–2 times lower standard deviation than those acquired with the LRP devices. Therefore, the HRP PHY might be more suitable for applications with high-accuracy constraints than the LRP PHY. The impact of different UWB PHYs also extends to the application layer. We found that ranging or localization error-mitigation techniques are frequently trained and tested on only one device and would likely not generalize to different platforms. To this end, we identified four challenges in developing platform-independent error-mitigation techniques in UWB localization, which can guide future research in this direction. Besides the cross-platform compatibility, localization error-mitigation techniques raise another concern: most of them rely on extensive data sets for training and testing. Such data sets are difficult and expensive to collect and often representative only of the precise environment they were collected in. We propose a method to detect and mitigate non-line-of-sight (NLOS) measurements that does not require any manually-collected data sets. Instead, the proposed method automatically labels incoming distance measurements based on their distance residuals during the localization process. The proposed detection and mitigation method reduces, on average, the mean and standard deviation of localization errors by 2.2 and 5.8 times, respectively. UWB and Bluetooth Low Energy (BLE) are frequently integrated in localization solutions since they can provide complementary functionalities: BLE is more energy-efficient than UWB but it can provide location estimates with only meter-level accuracy. On the other hand, UWB can localize targets with centimeter-level accuracy albeit with higher energy consumption than BLE. In this thesis, we provide a comprehensive study of the sources of instabilities in received signal strength (RSS) measurements acquired with BLE devices. The study can be used as a starting point for future research into BLE-based ranging techniques, as well as a benchmark for hybrid UWB–BLE localization systems. Finally, we propose a flexible scheduling scheme for time-difference of arrival (TDOA) localization with UWB devices. Unlike in previous approaches, the reference anchor and the order of the responding anchors changes every time slot. The flexible anchor allocation makes the system more robust to NLOS propagation than traditional approaches. In the proposed setup, the user device is a passive listener which localizes itself using messages received from the anchors. Therefore, the system can scale with an unlimited number of devices and can preserve the location privacy of the user. The proposed method is implemented on custom hardware using a commercial UWB chipset. We evaluated the proposed method against the standard TDOA algorithm and range-based localization. In line of sight (LOS), the proposed TDOA method has a localization accuracy similar to the standard TDOA algorithm, down to a 95% localization error of 15.9 cm. In NLOS, the proposed TDOA method outperforms the classic TDOA method in all scenarios, with a reduction of up to 16.4 cm in the localization error.Cotutelle -yhteisvĂ€itöskirj

    A two phase framework for visible light-based positioning in an indoor environment: performance, latency, and illumination

    Full text link
    Recently with the advancement of solid state lighting and the application thereof to Visible Light Communications (VLC), the concept of Visible Light Positioning (VLP) has been targeted as a very attractive indoor positioning system (IPS) due to its ubiquity, directionality, spatial reuse, and relatively high modulation bandwidth. IPSs, in general, have 4 major components (1) a modulation, (2) a multiple access scheme, (3) a channel measurement, and (4) a positioning algorithm. A number of VLP approaches have been proposed in the literature and primarily focus on a fixed combination of these elements and moreover evaluate the quality of the contribution often by accuracy or precision alone. In this dissertation, we provide a novel two-phase indoor positioning algorithmic framework that is able to increase robustness when subject to insufficient anchor luminaries and also incorporate any combination of the four major IPS components. The first phase provides robust and timely albeit less accurate positioning proximity estimates without requiring more than a single luminary anchor using time division access to On Off Keying (OOK) modulated signals while the second phase provides a more accurate, conventional, positioning estimate approach using a novel geometric constrained triangulation algorithm based on angle of arrival (AoA) measurements. However, this approach is still an application of a specific combination of IPS components. To achieve a broader impact, the framework is employed on a collection of IPS component combinations ranging from (1) pulsed modulations to multicarrier modulations, (2) time, frequency, and code division multiple access, (3) received signal strength (RSS), time of flight (ToF), and AoA, as well as (4) trilateration and triangulation positioning algorithms. Results illustrate full room positioning coverage ranging with median accuracies ranging from 3.09 cm to 12.07 cm at 50% duty cycle illumination levels. The framework further allows for duty cycle variation to include dimming modulations and results range from 3.62 cm to 13.15 cm at 20% duty cycle while 2.06 cm to 8.44 cm at a 78% duty cycle. Testbed results reinforce this frameworks applicability. Lastly, a novel latency constrained optimization algorithm can be overlaid on the two phase framework to decide when to simply use the coarse estimate or when to expend more computational resources on a potentially more accurate fine estimate. The creation of the two phase framework enables robust, illumination, latency sensitive positioning with the ability to be applied within a vast array of system deployment constraints

    Direct communication radio Iinterface for new radio multicasting and cooperative positioning

    Get PDF
    Cotutela: Universidad de defensa UNIVERSITA’ MEDITERRANEA DI REGGIO CALABRIARecently, the popularity of Millimeter Wave (mmWave) wireless networks has increased due to their capability to cope with the escalation of mobile data demands caused by the unprecedented proliferation of smart devices in the fifth-generation (5G). Extremely high frequency or mmWave band is a fundamental pillar in the provision of the expected gigabit data rates. Hence, according to both academic and industrial communities, mmWave technology, e.g., 5G New Radio (NR) and WiGig (60 GHz), is considered as one of the main components of 5G and beyond networks. Particularly, the 3rd Generation Partnership Project (3GPP) provides for the use of licensed mmWave sub-bands for the 5G mmWave cellular networks, whereas IEEE actively explores the unlicensed band at 60 GHz for the next-generation wireless local area networks. In this regard, mmWave has been envisaged as a new technology layout for real-time heavy-traffic and wearable applications. This very work is devoted to solving the problem of mmWave band communication system while enhancing its advantages through utilizing the direct communication radio interface for NR multicasting, cooperative positioning, and mission-critical applications. The main contributions presented in this work include: (i) a set of mathematical frameworks and simulation tools to characterize multicast traffic delivery in mmWave directional systems; (ii) sidelink relaying concept exploitation to deal with the channel condition deterioration of dynamic multicast systems and to ensure mission-critical and ultra-reliable low-latency communications; (iii) cooperative positioning techniques analysis for enhancing cellular positioning accuracy for 5G+ emerging applications that require not only improved communication characteristics but also precise localization. Our study indicates the need for additional mechanisms/research that can be utilized: (i) to further improve multicasting performance in 5G/6G systems; (ii) to investigate sideline aspects, including, but not limited to, standardization perspective and the next relay selection strategies; and (iii) to design cooperative positioning systems based on Device-to-Device (D2D) technology

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Occupancy-driven intelligent control of HVAC based on thermal comfort

    Get PDF
    Nowadays, the building sector is a substantial consumer of world’s energy. The dominant energy share of Heating, Ventilation and Air-Conditioning (HVAC) systems, makes it the focus of research for saving energy. Current air conditioning systems often rely on maximum occupancy assumptions and fixed schedules to maintain sufficient comfort level. Having information regarding occupancy situation may lead to significant energy-savings. On the other hand, focusing on the reduction of energy only, may lead to sacrificing the thermal comfort of the occupants in a building. Moreover, due to the difference of preference of thermal comfort of individuals, particularly in a shared space, a fixed set point for HVAC systems, can cause discomfort. Therefore, a comprehensive technique is required to save energy while maintaining thermal comfort. The present research proposes an occupancy-driven HVAC control system based on thermal comfort analysis. A ZigBee-based indoor localization system is developed to monitor the location of occupants inside the buildings. Algorithms are used to improve the accuracy of positioning system, which include Near Neighbour Area (NNA), Principle Component Analysis (PCA) and Exponential Moving Average algorithms (EMA). Computational Fluid Dynamics (CFD) is used to simulate the thermal comfort through modelling the indoor air distribution and flows. Wind velocity and temperature are simulated in several scenarios and the Predicted Mean Vote (PMV) and the Predicted Percentage Dissatisfied (PPD) are computed. The simulation results are verified through a survey asking for occupants’ real feelings and consequently thermal comfort zones are identified with associated occupants, which are used for possible energy saving while providing satisfied level to all the occupants. To investigate different satisfaction feeling of occupants, a personalized thermal profile is created for individuals inside the test bed area. A fuzzy based approach is used to develop a fuzzy map of each occupant and as a result, a personal thermal preference profile is created. Based on the present occupants in the room, the minimum and maximum preferred temperatures are estimated and used for controlling the HVAC system. The Semi-hidden Markov chain method is used to create the occupants’ behavioural pattern which can reduce the frequencies of turning ON or OFF the HVAC systems. The real-time locations of the persons, estimated based on the NNA and MA localization method, are combined with their behavioural patterns and thermal preference profiles and their comfort zones to control the corresponding HVACs. The proposed method has been implemented to a shared office occupied by nine users and equipped with two individual air conditioners. The comparison of different control strategies show that the proposed intelligent control has a significant potential of saving energy and at the same time maintaining occupants in a reasonable thermal comfort range
    corecore