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Abstract
The deployment of small-size, low-cost and efficient internet-of-things (IoT) sensors has been growing

rapidly to serve several applications like health monitoring, autonomous cars, spectrum sensing, environ-

ment monitoring, etc. As a result, there is a persistent need for efficient signal processing tools to efficiently

make use of sensory data. As well as, the demands on low-energy and ultra high data rate telecommunica-

tion are obviously increasing, which considerably has led to increase the pressure on the existing backhaul

links. Thus, adequate spectral and energy efficient communication technologies and network paradigms

are required for current and future communications. Therefore, in this thesis, two emerging technologies

in the areas of signal processing and wireless communications are explored, namely; sensing services and

intelligent reflecting surfaces (IRSs) as a prominent technology for wireless backhauling.

Several aspects of wireless sensor networks (WSNs) and IoT are explored including target localization

using radio frequency identification (RFID) network, decision fusion of multiple sensors, and integrated

sensing and communication system (ISAC). Decision fusion rules and localization methods using a net-

work of sensors and RFID tags are proposed, investigated and analyzed. The obtained results show the

effectiveness of these proposed fusion rules and location estimators. Moreover, for ISAC system, a uni-

fied performance evaluation is introduced based on Kullback-Leibler divergence theorem, or so called the

relative information theorem, where results clearly confirm that the relative information can efficiently

characterize ISAC systems holistically.

Furthermore, the performance of IRS based communications is evaluated and their use in multi-hop

wireless backhauling is explored. Multi-hop terrestrial backhauling is introduced first, where a small

base-station communicating with a macro base-station through a number of small base-stations. The

line-of-sight path between the small base-stations is dropped and communication takes place through IRS

panels which provide virtual line-of-sight and thus the link is modeled using Rician channel. The bit error

rate and outage probability are derived for the introduced system model and random number of hops

is also considered. As well as, a multi-layer unmanned aerial vehicles (UAV) network is considered, in

which an IRS panel is attached to a high altitude platform and provide line-of-sight paths to low altitude

UAVs. Imperfect channel estimation and phase compensation at IRS are considered, and the bit error

rate, outage probability and ergodic capacity are derived. Simulation and theoretical results are provided

for the introduced system models and the performance limits are presented and investigated. Obtained

results depicts a perfect match between the analysis and simulation when the number of reflectors is

considerable, we well as the performance improvement gained by deploying IRS is shown.
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Chapter 1

Introduction and Background

The increasing demands on modern telecommunication services such as high data rate and low latency

services have created new challenges for network operators. Moreover, the network operators are expected

to handle a tremendous number of connected Internet-of-Things (IoT) devices which typically have limited

computational capabilities and operate with low energy consumption. Therefore, the deployment of

energy and spectrally efficient wireless network solutions is indispensable. The work presented in this

thesis represents my contributions to the Marie Sklodowska-Curie Innovative Training Networks (ITNs)

on energy-autonomous portable access points for infrastructure-less networks (PAINLESS).

1.1 PAINLESS Project

The new advances in renewable sources of energy like solar, wind, and thermal sources, in addition to radio

frequency (RF) energy harvesting, have created the potential for researchers to think about self-powered

telecommunication networks [1,2]. PAINLESS was launched in 2018 by Horizon-2020-Marie Sk lodowska-

Curie actions (H2020-MSCA). The project aims to establish a platform for research and training for these

kinds of networks in order to satisfy future demands with low dependency on the existing infrastructure.

The main features of the nodes in PAINLESS network are their being pioneer green nodes, self-subsistent

and limitlessly-scalable [3]. Fig. 1.1 shows a block diagram for the PAINLESS project. The PAINLESS

project targets different practical indoor and outdoor scenarios including

1. Outdoor broadband access which is concerned in capacity and range extension in urban, sub-urban

and rural areas, in addition to special and emergency events such as sports arenas, concerts, traffic

jams, train accidents, etc.

2. Indoor broadband access such as public indoor access and large indoor areas such as special events,

subways, malls, etc.

3. Outdoor massive IoT and large scale wireless sensor networks (WSNs).

4. Indoor ultra reliable low latency communication (URLLC) such as factory floors and indoor logistics.
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Figure 1.1: A block diagram for PAINLESS project.

Moreover, the objectives of PAINLESS project can be summarized in

1. The development and integration of energy and spectral efficient solutions into the wireless trans-

mission (access/backhauling) and resource allocation of telecommunications networks.

2. The establishment of theoretical performance benchmarks for the combined power-and-information

distribution in communication networks.

3. The development of innovative optimization and signal processing algorithms for the wide range of

unmanned aerial vehicles (UAV) oriented networks, and introducing new communication paradigms

and wireless solutions which guarantee efficient deployment for UAV networks.

4. The design of joint power-and-information management technologies.

5. The performance evaluation and design of efficient IoT and sensing networks paradigms and pro-

viding powerful signal processing algorithms.

6. The proof-of-concept demonstration of self-powered access points.

As can be noticed from Fig. 1.1 and the discussion above, several networking aspects are under

the consideration of this project. For example, the project considers energy efficient backhauling, cells

planning, energy neutrality, solar energy harvesting, and UAVs positioning and coordination. There are

16 early stage researchers (ESRs) who have been working on the project from different academic and

industrial institutions around Europe, where each group of ESRs collaborated to contribute in certain

parts of the project. The main interest of this thesis can be summarized as

1. The design and performance evaluation of reliable algorithms applicable for cooperative spectrum

sensing in cognitive radio networks (CRNs) as CRNs are effective for utilizing the available band-

width.
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2. The design and analysis of efficient localization algorithms applicable for indoor radio frequency

identification (RFID) networks.

3. The design and analysis of decision fusion rule for outdoor IoT-WSNs.

4. The development of unified theoretical performance framework for integrated sensing and commu-

nication (ISAC) systems.

5. The employment of new wireless solutions for wireless backhauling including the intelligent reflecting

surfaces (IRSs) and the deployment of UAVs.

6. Performance evaluation for the performance of multi-hop networks including IRSs and UAV-IRS

through providing derivations for the error rate, outage probability, and achievable capacity.

1.2 Background and Brief Review

My work in the PAINLESS project encompassed a number of topics as listed below. My contribution on

these topics was concerned in introducing signal processing algorithms for WSNs applications, evaluating

the performance of the introduced algorithms, and providing performance analysis for different system

configurations in the presence of practical impairments. In the following, a brief background will be

provided on each of these topics.

The request on sensing applications has been growing in the last few decades. Nowadays, sensing

devices are widely implemented as an integral part in many today’s applications including military and

civilian applications. Examples for civilian applications in which sensors play a significant role include

smart farms, smart cities, factories, medical applications, environment monitoring, spectrum sensing, etc.

For more efficient utilization of sensors, WSNs, which mainly consist of large number of sensors deployed

in the area of interest, have been adopted in many fields to add more mobility and flexibility to the

considered application. Moreover, with the new advances in the development of IoT infrastructure, the

functionality of WSNs has been expanded as sensory data can be processed globally over the internet

cloud. With IoT-WSNs, a massive number of low-cost and low-power devices, such as sensors, actuators,

smart meters, etc, can be easily accessed, monitored and controlled remotely. More recent studies have

adopted the integration between sensing and data communication services, and thus it is expected that

network operators will start providing both services in the future. Consequently, this PhD thesis explores

a few sensing services such as cooperative spectrum sensing, target localization, decision fusion and ISAC.

The problem of target detection and localization using WSNs has been of interest for few decades.

More recent works considered the localization problem using a network of RFID tags which has received

a great deal of attention in the literature. For instance, a system to localize a mobile robot equipped

with RFID reader sensors using a set of tags attached on the ceiling has been proposed in [9]. In [10],
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the received signal strength indicator (RSSI) measurements obtained by a set of passive RFID tags have

been exploited for localization and tracking of an RFID reader to enhance the accuracy of localization.

Directional antennas based localization method has been introduced in [11], where a novel particle swarm

optimization (PSO) was applied. In addition, recursive Kalman filter has been considered in [12] to design

a new localization and tracking algorithm aiming at minimizing the error in least squares sense, and a

Bayesian filter has been employed in [13] with constant transmission power in order to localize RFID tags.

Generally speaking, WSN typically consists of large number of sensors distributed over a region and

collects observations about the same phenomenon or a number of phenomena. Therefore, data obtained

by different sensors are required to be jointly processed in order to obtain a final, or global, decision about

the phenomena under interest. The process of combining and processing decisions taken from different

sensors is called decision fusion. Several fusion rules (FRs) have been introduced in the literature for

conventional WSNs, which can be also applicable for IoT infrastructure. For instance, the likelihood ratio

test (LRT) under the Neyman-Pearson sense has been introduced in [14–16] to establish an optimum FR.

However, the optimum rule suffers from considerable computational complexity which makes it imprac-

tical for applications in which network resources are limited. Therefore, researchers have dedicated their

efforts to derive suboptimal FRs which have less computation complexity at the expense of performance.

For example, as shown in [14] and [15], the Chair-Varshney suboptimal rule has been introduced and it

has been shown that the probability of error performance asymptotically approaches the optimum fusion

at high signal-to-noise ratios (SNRs). Moreover, other low-complexity FRs such as AND, OR, k out of

N and majority voting rules, can be derived from the Chair-Varhsney rule by assuming identical sen-

sors [17–19]. Although these rules have relatively low-complexity and do not depend on the local sensors’

performance, their performance is worse than the Chair-Varshney rule, particularly when dissimilar sen-

sors are used. Furthermore, the MaxLog rule has been proposed in [16] which generally provide better

detection capabilities than the Chair-Varhsney rule, yet, it does not guarantee reliable performance for

all system and channel conditions. Other rules based on diversity combining, such as the maximum ratio

combining and equal gain combining, have been introduced and investigated in the literature as extremely

low-complexity FRs; however, the required detection capability is not guaranteed [20].

More recently, the literature has proposed to promote the functionality of multiple-input-multiple-

output (MIMO) base-stations for introducing sensing services in addition to the communication duties

by exploiting the new development of multi-beam antenna arrays and/or by allocating some of the base-

station resources for sensing services [21–24]. Two possible scenarios have been explored in the literature.

The first one is referred to separated deployment, where the base-station antennas are distributed among

each of the two sub-systems. On the other hand, all antennas are exploited for both sub-systems for the

other scenario which is known as the shared deployment. Several designs for the signal waveforms and

beampatterns can be found in [21–24] which aim at satisfying the requirements of communication users’
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rates and detection capability of the radar sub-system. A comprehensive survey for the employed signal

processing tools in ISAC systems can be found in [25] for three possible scenarios, namely, radar-centric,

communication-centric and joint design.

On the other hand, wireless backhauling is an integral technology of current and future generations

of communication networks such as 6G and beyond. The main advantages of wireless backhauling over

traditional wired backhauling include the ease, speed and low-cost of deployment and maintenance. There-

fore, it has attracted researchers from both the business and academic sectors to propose solutions for

efficient backhauling. For instance, Telecom Infra Project (TIP), which consists of more than 500 member

organizations, has launched to accelerate the development of new solutions for future networks infrastruc-

tures [26]- [33].

Wireless backhauling can be achieved with several network topologies such as ring, tree and mesh;

though the later is the most attractive because it provides backhauling with low-cost, flexible configu-

ration, maintainable, and long distance coverage [34]- [37]. In general, wireless backhauling suffers from

some limitations compared to optical fibres, such as, low capacity and disruptive interference. Therefore,

several solutions haven been proposed to overcome these limitations such as millimeter-wave (mmWave)

and free-space optical (FSO) signalling, as well as interference management protocols [38]- [40]. Some

work has considered mixed radio RF-FSO links to combine the advantages of both communication tech-

nologies [41], [42]. Other technologies introduced in the literature to enhance wireless telecommunications

in general include massive MIMO (mMIMO), visible light communications (VLCs), and network densifica-

tion [43]- [60]. It is worthy to mention that the European Telecommunications Standards Institute (ETSI)

and TIP backhaul group recommend the mmWave communications as a core technology [26], [27], [31].

Realistic experiments have been conducted for 1 giga bits per second (Gbps) average peak user throughput

for a maximum range of 250 m [27]. In addition, the TIP backhaul team has proposed different methods

for assessing the performance of mmWave, and provided a guidance for the installation process [32], [33].

A multihop wireless network is promising for wireless backhauling scheme, where it can provide reliable

and flexible solution. In addition, advanced physical (PHY) layer technologies such as power control,

resources allocation, rate control, and beamforming schemes can be emerged to satisfy the quality-of-

service (QoS), and scalability [61]- [66]. In [61], a novel pricing-based rate allocation scheme is proposed

for optical-wireless hybrid networks aiming at serving users with certain satisfaction levels and pricing

affordability. The maximization of energy efficiency by user association, power and backhaul flow control

is considered in [62]. The downlink of millimeter wave scenario is considered for backhaul heterogeneous

networks, and the optimization problem is formulated using mixed-integer non-linear programing. In [63],

resources allocation and power control are jointly optimized in cooperative small cell networks with

constrained backhaul capacity by using sequential optimization algorithm. The problem of minimizing
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the energy consumption is formulated in [64] through concurrent transmission scheduling and power

control. In this work, a mixed integer nonlinear program (MINLP) is applied, and then, an energy-efficient

and practical mmWave backhauling scheme is developed. In [65], a heterogeneous network topology is

presented, where the backhaul links are supported by mMIMO systems with full-duplex modes. Moreover,

several routing protocols are proposed in the literature for multihop backhauling aiming at improving the

connectivity and provide reliable backhaul access [67], [68]. In [67], the benefits of applying the software-

define-radio is exploited for multihop wireless networks. A routing protocol for joint path selection and

rate allocation is proposed in [68]. Reinforcement learning techniques are used in this work, and the

successive convex approximation is used to convert the optimization problem to convex one.

Recent literature has considered UAVs to assist base-stations (BSs) and improve the quality of wireless

backhauling due to their mobility and flexibility [69]- [74]. Spectrum allocation for a backhaul assisted by

UAV is studied, and the achievable rate is optimized in [69]. In [70], UAVs are deployed as aerial relays

to allow dynamic routing for mmWave signals while mitigating the impact of occlusions on the terrestrial

links. The use of UAV as a BS with delay-sensitive and delay-tolerant users is investigated in [71]. The

bandwidth, link rate and power are jointly optimized to guarantee the QoS requirements for the users.

The optimal position of the UAV and resources allocation algorithms are proposed in [72]. In [73], the

fixed-wing UAV is considered for providing wireless services to ground users, where dynamic allocation

algorithm for the available resources is proposed. The authors in [74] have studied the improvement of

the achievable end-to-end data rate of ground users assisted by UAVs and tethered balloons. The authors

in [75] address the optimization of backhaul framework is considered, where multiple UAVs are deployed

to configure the backhaul links for terrestrial BSs. The downlink throughput in mixed RF/FSO backhaul

networks is maximized by optimizing resources and positions of the UAVs. Fig. 1.2 shows a typical

example for wireless multihop backhauling with hybrid links and different kinds of BSs [76].

More recently, IRSs, sometimes called metasurfaces, have been introduced recently with the aim of

controlling the propagation medium to enhance the QoS by boosting the energy and spectral efficiencies

of the network. The IRS technology is expected to play a significant role in the future, where smartness,

energy efficiency and spectral efficiency are the main requirements for the forthcoming wireless networks.

IRS applies a large number of passive antenna elements which introduce a phase-shift to the received

signals and reflect them back to the destination. For efficient transmission, multiple reflectors are used

for a certain destination, and the introduced phase shifts are optimized by ensuring that the reflected

signals are going to be added coherently in the channel. As a result, SNR is considerably increased,

and consequently, the spectral efficiency is boosted [77]- [88]. In [77] and [78], a detailed overview about

IRS and state-of-art solutions in addition to theoretical performance limits are provided. Energy-efficient

approaches for the transmit power allocation and the phase shifts of the IRS elements is introduced

in [79], and an accurate model for the power consumption of IRS-based systems is presented. A realistic

30



Figure 1.2: A typical wireless backhauling with different kinds of BSs.

implementation in outdoor environment has shown that the methods proposed in [79] for power allocation

in IRS based systems could provide up to 300% higher energy efficiency when compared to multi-antenna

amplify-and-forward systems. Joint active and passive beamforming is considered in [80] where some

recommendations are provided for optimal deployment. Other research efforts are dedicated to study

the performance of IRS with other existing signalling and communication technologies such as index

modulation (IM) [81], space-shift-keying (SSK) [82], and non-orthogonal multiple access (NOMA) [88].

In [83], MIMO wireless communications assisted by IRS is investigated, where efficient algorithms for

the phase shifts at the IRS and precoding at the transmitter are proposed with the aim of minimizing

SER. Since the optimum values for the phase shift depends on the instantaneous channel side information

(CSI), channel modeling and estimation are considered in [84]- [86]. In [89], the far-field pathloss model

is derived for IRS based links using some optical physics techniques, and it has been shown that each

reflecting element acts as a diffuse scatterer. A practical implementation for real IRS is introduced in [90],

where a high-gain and low-cost IRS with 256 reflecting elements is designed in which positive intrinsic

negative (PIN) diodes are used to design 2-bit phase shifters, and it was shown that a gain of 19.1 dBi

can be achieved with the mmWave.

With all of IRS benefits and advantages mentioned above, we consider the deployment of IRS panels

to assist wireless multi-hop backhauling. Terrestrial and aerial networks scenarios are studied. For the

terrestrial network, multiple IRS panels are deployed to assist multi-hop wireless backhauling, where the

error rate and outage probability are derived. Additionally, random number of hops with wired first

protocol is considered. On the other hand, for the aerial networks, an IRS panel attached to high altitude
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UAV is considered to reflect the base-station beams to unreachable low altitude UAVs. Multi layer UAV

network is taken into account, where the error rate, outage probability and achievable ergodic capacity

are derived.

1.3 Motivation

The requirements for the deployment of small-size and low-cost WSNs, which are the fundamental part

of IoT, have been growing rapidly in the past period due to the wide area of useful applications they can

serve. Such applications include military applications, health monitoring, autonomous cars, intelligent

transportation systems, spectrum sensing, environment monitoring, smart cities, etc. By connecting

WSNs to the internet cloud through IoT infrastructure, the opportunity for connecting the physical

world to the computing world has become a reality and it has made it possible for humans to access,

control and monitor their remote devices easily and effectively.

Likewise, the increasing demands for high QoS and high data rate real-time services will undoubtedly

increase the amount of backhaul traffic between BSs. In addition, the integration of IoT will result in

a massive number of low-cost and low-power devices, such as sensors, actuators, smart meters, etc, will

further increase the pressure on the backhaul network. Consequently, the design of spectrum and energy

efficient backhauling to satisfy these demands is a fundamental requirement for future generations of

wireless networks. Moreover, the authors of [77] and [78] provide recommendations to rethink the current

mathematical models for wireless communication and propose new appropriate models for the emerging

IRS technology.

Motivated by the above mentioned, this thesis investigates mainly two enabling technologies for future

wireless communications; namely, sensing services and IRS based wireless backhauling. Several aspects

about sensing services and IoT have been thoroughly discussed and explored including spectrum sensing,

target localization using RFID network, decision fusion for IoT-WSNs, and ISAC systems. Decision fusion

algorithms based on statistical signal processing theorems have been proposed to assist the functionality

of these networks. As well as, localization methods based on the maximum likelihood estimation have

been explored and analyzed. In addition, performance evaluation for the introduced system models has

been carried out using simulation, experiments and theoretical derivations, and the trade-off between

computational complexity and achievable performance is discussed. Moreover, ISAC systems have been

investigated and a unified performance evaluation is proposed based on Kullback-Leiber divergence the-

orem, or so called the relative information theorem.

Furthermore, the deployment of IRS panels to assist multiple hops wireless backhauling is investigated

in this thesis. Two types of wireless backhauling are considered including including multi-hop terrestrial

backhauling and multi-tier UAV networks. For the first scenario, a small BS intends to send data traffic

to a remote macro BS with the assist of multiple small BSs, where the link between each pair of small BSs
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is assisted by an IRS panel due to lack of line-of-sight between small BSs. The bit error rate and outage

probability are derived for the introduced system model and random number of hops is also considered.

For UAV-IRS scenario, a multi-layer UAV network is considered, in which a high altitude UAV with an

IRS panel attached is used to reflect signal from the BS to low altitude UAVs. The density function

of the received SNR, bit error rate, outage probability and ergodic capacity are derived for the system

model under imperfect channel estimation and compensation at IRS. Simulation and theoretical results

are provided for the introduced system models and the performance limits are presented and investigated.

1.4 Thesis Organization

The rest of the thesis is organized as follows. The thesis consists of a total of nine chapters, where the

first and tenth chapters provide an introduction and summery for the thesis, while the remaining seven

chapters make up the core of the work. The core work (e.g. Chapters 2 through 8) is summarized below,

where each of these chapters is a distinct journal publication as explained below. In addition, a footnote

written on the first page of each chapter to relate the chapter with the corresponding publication.

In Chapter 2, RFID reader localization using hard decisions with error concealment is studied. An

error concealment algorithm is proposed to enhance the accuracy of the estimated location by correcting

the decisions of multiple deployed tags. The final location estimates are obtained a maximum likelihood

estimator that takes into account imperfections in the sensing and transmission processes. Chapter

3 discusses the joint estimation of location and orientation in wireless sensor networks using directional

antennas. The directivity of the employed antenna is used to estimate the location and the facing direction

of the receiver. The MR may use multiple directive antennas, or a single antenna whose beam can be

steered electronically or mechanically. Moreover, majority voting and connected graph algorithms are

employed to enhance the localization accuracy. As well as, Chapter 4 investigates decision fusion for

IoT-based wireless sensor networks. Multiple sensors transmit their decisions about a certain phenomenon

to a remote fusion center (FC) over a wide area network are deployed and a novel decision fusion algorithm

at FC is introduced. The proposed algorithm manage to reduce the decision fusion error probability

performance while maintaining the low computational complexity. In Chapter 5, a unified performance

framework for integrated sensing-communications (ISAC) based is proposed based on Kullback-Leibler

divergence. The system model assumes a MIMO-BS providing ISAC services to multiple communication

user equipments (CUEs) and a number of targets.

Furthermore, Chapter 6 presents the performance analysis in terms of the error rate and outage prob-

ability of a multiple hop terrestrial network assisted by a number of IRS panels. In addition, Chapter 7

introduces the performance evaluation for a multi-tier UAV network assisted by IRS with imperfect phase

estimation and compensation where the error rate and outage probability are considered as performance

measures. Chapter 8 investigates the achievable ergodic capacity for UAV network assisted by IRS with
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imperfect phase estimation and compensation. Finally, Chapter 9 summarizes the work and provides a

future work plan.

1.5 List of Journal Publications

During my PhD at the University of Manchester, several research articles based on the PhD study have

been published in top ranked journals/conferences, or accepted with revisions. These publications are

listed below, where each of them is written as a distinct chapter in this thesis and they are ordered

according to the sequence of Chapters 2 through 8. It should be noted that although these publications

have multiple co-authors, the bulk of the work accomplished in [1-7] is my contribution. More specifically,

the performance analysis, simulations, and the technical writing for the first draft of each of these papers

have been accomplished by myself, whereas the contribution of the other co-authors is restricted to

advisory role, consultation, revisions, and brainstorming.

1. M. A. Al-Jarrah, A. Al-Dweik, E. Alsusa and E. Damiani, “RFID reader localization using hard

decisions with error concealment,” IEEE Sensors. J., vol. 19, no. 17, pp. 7534-7542, Sep. 2019,

doi: 10.1109/JSEN.2019.2914914.

2. M. A. Al-Jarrah, A. Al-Dweik, N. T. Ali and E. Alsusa, “Joint estimation of location and orien-

tation in wireless sensor networks using directional antennas,” IEEE Sensors. J., vol. 20, no. 23,

pp. 14347-14359, Dec. 2020, doi: 10.1109/JSEN.2020.3008393.

3. M. A. Al-Jarrah, M. A. Yaseen, A. Al-Dweik, O. A. Dobre and E. Alsusa, “Decision fusion for

IoT-based wireless sensor networks,” IEEE IoT. J., vol. 7, no. 2, pp. 1313-1326, Feb. 2020, doi:

10.1109/JIOT.2019.2954720.

4. M. A. Al-Jarrah, E. Alsusa and C. Masouros, “A unified performance framework for integrated

sensing-communications based on KL-divergence,” Submitted to IEEE Trans. Wireless Commun.,

Sep. 2022.

5. M. A. Al-Jarrah, E. Alsusa, A. Al-Dweik and M.-S. Alouini, “Performance analysis of wireless

mesh backhauling using intelligent reflecting surfaces,” IEEE Trans. Wireless Commun., vol. 20,

no. 6, pp. 3597-3610, Jun. 2021, doi: 10.1109/TWC.2021.3052370.

6. M. A. Al-Jarrah, A. Al-Dweik, E. Alsusa, Y. Iraqi, and M.-S. Alouini, “On the performance of

IRS-assisted multi-layer UAV communications with imperfect phase compensation,” IEEE Trans.

Commun., vol. 69, no. 12, pp. 8551-8568, Dec. 2021, doi: 10.1109/TCOMM.2021.3113008.

7. M. A. Al-Jarrah, E. Alsusa, A. Al-Dweik, and D. K. C. So,“Capacity analysis of IRS-based UAV

communications with imperfect phase compensation,” IEEE Wireless Commun. Lett., vol. 10, no.

7, pp. 1479-1483, Jul. 2021, doi: 10.1109/LWC.2021.3071059.
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Furthermore, it is worth mentioning that in addition to the list of articles presented above, which

form the core part of my submitted thesis, I have contributed in a few more published literature during

my PhD which are listed below in [A] through [L]. Although I am the leading author of [A-D], these

articles have not been included in this thesis due to the limitation on the number of pages. However,

these articles are conference versions of the journal publications which have been included in the thesis,

and thus the thesis covers the main contributions, ideas, models and findings. On the other hand, I

had minor or reasonable contribution in the published material in [E-L], in which I performed partial

system simulations and analysis, as well as, technical writing, revisions and editing. Those ones have not

been included in the PhD thesis because I am not the main contributor, and might have, or might be,

submitted for another degree by other students.

A. M. Al-Jarrah, E. Alsusa and C. Masouros, “Kullback-Leibler divergence analysis for integrated

radar and communications (RadCom),” 2023 IEEE Wireless Commun. Netw. Conf. (WCNC),

Glasgow, UK, Mar. 2023.

B. M. Al-Jarrah, A. Aldweik and E. Alsusa, “On the performance of downlink NOMA systems over

hyper-Rayleigh fading channels,” 2020 Int. Conf. Commun., Signal Processing, and their Appl.

(ICCSPA), Sharjah, United Arab Emirates, 2021, pp. 1-6, doi: 10.1109/ICCSPA49915.2021.9385763.

C. M. Al-Jarrah, E. Alsusa and A. Al-Dweik, “Decision fusion for power-constrained wireless body

sensor networks with amplify-and-forward relays,” 2020 IEEE Int. Conf. Commun. Workshops

(ICC Workshops), Dublin, Ireland, 2020, pp. 1-6, doi: 10.1109/ICCWorkshops49005.2020.9145150.

D. M. Al-Jarrah, A. Al-Dweik, S. S. Ikki and E. Alsusa, “Spectrum-occupancy aware cooperative

spectrum sensing using adaptive detection,” IEEE Syst. J., vol. 14, no. 2, pp. 2225-2236, Jun.

2020, doi: 10.1109/JSYST.2019.2922773.

E. A. Alqahtani, E. Alsusa, A. Al-Dweik and M. Al-Jarrah, “Performance analysis for downlink

NOMA Over α − µ generalized fading channels,” IEEE Trans. Veh. Technol., vol. 70, no. 7, pp.

6814-6825, Jul. 2021, doi: 10.1109/TVT.2021.3082917.

F. A. Al-Dweik, Y. Iraqi, K.-H. Park, M. Al-Jarrah, E. Alsusa and M.-S. Alouini, “Efficient NOMA

design without channel phase information using amplitude-coherent detection,” IEEE Trans. Com-

mun., vol. 70, no. 1, pp. 245-263, Jan. 2022, doi: 10.1109/TCOMM.2021.3119368.

G. N. Babu Babu, M. Virgili, M. Al-jarrah et al., “Energy-efficient trajectory design of a multi-IRS

assisted portable access point,” IEEE Trans. Veh. Technol., vol. 72, no. 1, pp. 611-622, Jan. 2023,

doi: 10.1109/TVT.2022.3202953.

H. M. AlaaEldin, E. Alsusa, K. G. Seddik and M. Al-Jarrah, “Optimizing IRS-assisted uplink NOMA

system for power constrained IoT networks,” 2022 IEEE 96th Veh. Technol. Conf. (VTC2022-Fall),
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London, United Kingdom, 2022, pp. 1-6, doi: 10.1109/VTC2022-Fall57202.2022.10012881.

I. Shuaishuai Han, M. Al-Jarrah, and E. Alsusa, “Efficient localization algorithms using a uniform

rectangular array with model imperfections,” 2023 IEEE Wireless Commun. Netw. Conf. (WCNC),

Glasgow, UK, Mar. 2023.

J. Shuaishuai Han, M. Al-Jarrah, and E. Alsusa, “Joint DOA and Doppler frequency estimation for

MIMO radars in the presence of array model imperfections,” 2023 IEEE Wireless Commun. Netw.

Conf. (WCNC), Glasgow, UK, Mar. 2023.
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Chapter 2

RFID Reader Localization Using Hard

Decisions with Error Concealment1

Abstract

This paper presents an efficient reader localization algorithm in radio frequency identification (RFID)

networks. In the proposed algorithm, it is assumed that no channel state information is available at the

reader and the backscatters of all RFID tags are converted to hard decisions using an energy detector.

The accuracy of the estimated location is improved using an error concealment algorithm that utilizes

the fact that adjacent tags are expected to produce similar decisions. The final location estimates are

obtained using Particle Swarm Optimization of a maximum likelihood estimator that takes into account

imperfections in the sensing and transmission processes. The performance of the proposed algorithm

is evaluated in terms of the root mean square error using Monte Carlo simulation, and compared to

other well-established localization algorithms. Moreover, Cramer-Rao lower bound is derived to assess

the efficiency of the new estimator. The obtained results show that the proposed algorithm estimation

accuracy is up to 26.5% more than the other benchmark estimators.

Index Terms

RFID, localization, positioning, location estimation, received signal strength.

2.1 Introduction

Radio frequency identification (RFID) technology plays a key role in a wide-range of industrial, commer-

cial, medical, transportation and environmental applications. Indoor localization using RFID networks is
1M. A. Al-Jarrah, A. Al-Dweik, E. Alsusa and E. Damiani, “RFID reader localization using hard decisions with error

concealment,” IEEE Sensors. J., vol. 19, no. 17, pp. 7534-7542, Sep. 2019, doi: 10.1109/JSEN.2019.2914914.
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a critical emerging application which has received extensive attention in the literature [1]- [12]. Generally

speaking, the localization techniques reported in the literature aim at localizing the reader or one of the

tags. In both cases, the required RFID infrastructure should include a reader and a grid of tags pre-

deployed in the region of interest (RoI) [13]- [17]. For example, DiGiampaolo and Martinelli [5] proposed

a system to localize a mobile robot equipped with RFID reader and odometry sensors with the tags fixed

to the ceiling. The localization is based on measuring the phase of the signals transmitted by the tags with

the aid of a multi-hypothesis Kalman filter. In [6], the influence of the tag interaction on the localization

algorithm is studied. A two-dimensional localization system for passive ultra-high frequency (UHF) RFID

tags based evaluating the backscattered transponder signals is proposed in [7], where the phase and am-

plitude of signals are jointly used to provide accurate localization. The authors of [8] developed methods

for the purpose of pattern matching to mitigate the effect of measurements’ errors by clustering the tags

and considering only a few at a time, denoted as the neighbors tags, in the localization process. In [9],

localization and tracking of an RFID reader is proposed to achieve accurate localization using received

signal strength indicator (RSSI) measurements obtained from multiple distributed passive tags. A new

deployment optimization approach for readers with directional antennas is proposed in [12], where a novel

particle swarm optimization (PSO) is applied. A probabilistic model based on the recursive Kalman filter

is considered in [10] to reduce errors in the least squares sense, while a Bayesian filter is applied in [14]

using a fixed RF transmission power model to localize RFID tags. Moreover, hybrid RSSI and time of

arrival (TOA) localization is considered in [16] to localize multiple targets, where an approximate solution

for the positions is derived based on the weighted least squares criterion.

Although the aforementioned techniques offer high accuracy, their computational complexity and

overhead are generally high. For example, the algorithms reported in [4]- [8], [12] employ TOA, time

difference of arrival (TDOA), angle of arrival (AOA), or phase of arrival (POA). Such techniques require

perfect time synchronization between all the transmitters and receivers, and accurate calculation for

the entire cycle phase. Therefore, localization using RSSI can be considered as an efficient solution

to reduce complexity, but it usually comes at the expense of reduced accuracy due to the impact of

channel effects [6], [9], [18]. A fault-tolerant RFID reader localization approach, that can handle regional

permanent faults is given in [2]. Although the proposed algorithm may provide reliable location estimates

in certain scenarios, it is limited to dense distributions of passive tags, and its complexity is O(n3), where

n is the number of tags. To overcome the fading effects, localization based on hard decision (HD) RSSI

is considered in [11] where a local voting algorithm (LVA) is used to correct the hard decisions of certain

tags before estimating the reader’s location. However, the estimator is designed under the assumption of

error-free link between the tags and the reader, and the distances between the reader and neighbor tags

are equal. Therefore, the LVA accuracy deteriorates significantly at low signal-to-noise ratios (SNRs).

A simplified version of [11] is reported in [20], but without local voting, and hence, its performance is
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worse than LVA at high SNRs. In addition, a soft range limited K-nearest neighbors (KNNs) localization

fingerprinting algorithm is proposed in [21], where a scale factor related to the physical distance between

the user’s previous position and reference location is considered.

To the best of the authors’ knowledge, there is no work in the literature that tackled the RFID

reader localization problem while considering imperfect transmission and error concealment. Therefore,

we propose an efficient reader localization algorithm for RFID networks where it is assumed that some of

the tags do not receive the reader’s signal, and hence do not respond to the reader interrogation signal

(RIS). Moreover, the algorithm is designed while considering the impact of channel fading and the fact

that adjacent tags are not necessarily at equal distance from the reader. The localization process is based

on the maximum likelihood (ML) principle combined with a low complexity error concealment process

to provide accurate location estimates. The system performance is evaluated in terms of the root mean

square error (RMSE) for which the Cramer-Rao lower bound (CRLB) is derived.

The rest of the paper is organized as follows. In Section II, the system model is presented, followed by

the proposed localization algorithm in Section III. In Section IV, the CRLB of the proposed localization

algorithm is derived. Section V presents the analytical and simulation results. Finally, conclusions are

provided in Section VI.

2.2 System Model and Problem Formulation

Consider an RFID network that consists of one reader and K tags distributed in the RoI with known

positions. The reader sends its radio frequency (RF) interrogation signals at a particular frequency,

and then listens to the return signals transmitted by the tags. A tag that detects the RIS responds by

transmitting a confirmation signal back to the reader, otherwise it remains silent. As such, the reader

and tags have two operating modes, the transmission and listening modes. To increase the probability of

detecting its interrogation signals by the tags, the reader may send a sequence of L signals to enable the

tag to combine these signals before it decides to respond back to the reader. In the listening mode, the

reader receives only U ≤ K signals, where U is the number of tags that have successfully detected the

RIS. The K − U tags do not respond because they are outside the coverage range of the reader, or due

to channel fading and/or system noise. The reader’s objective is to determine its location based on the

received U signals.

2.2.1 Received signal model at the tag

The baseband representation of the received signal at the kth tag during the lth signaling period can be

written as

Sk[l] = υk

√
PRαkℏk[l] + nk[l], k = [1, 2, ...,K] , l = [1, 2, ..., L] (2.1)
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where PR is the reader transmit power, υk ∈ [0, 1] is an attenuation factor that captures the effect of the

reader’s antenna radiation pattern irregularity, ℏk ∼ CN (0, σ2
ℏ) is a complex Gaussian distributed channel

gain, nk ∼ N (0, N0/2) is the additive white Gaussian noise (AWGN) and αk is the free space path loss,

αk =
(

λ

4πdk

)2
. (2.2)

The wavelength of the RIS in (2.2) is denoted as λ and the distance between the kth tag and the reader

is denoted as dk, which can be computed as

dk =
√

(xGk
− xR)2 + (yGk

− yR)2 (2.3)

where (xR, yR) and (xGk
, yGk

) are the Cartesian coordinates of the reader and kth tag, respectively.

To mitigate the impact of channel fading and noise, the participant tags may take repeated votes

before deciding to respond to the RIS. Under power and delay constraints, the polling frequency L may be

adaptable to minimize the probability of error [22]. However, such optimization could be computationally

prohibitive in RFID scenarios due to computational power constraints, and thus, this work considers a

fixed L for all tags. Given that the reader sends a sequence of L polling signals during its transmission

mode that last for TR seconds, combining the L RISs can be performed using various techniques, however

equal gain combining is adopted in this context due to its simple implementation. Therefore, the combined

L RISs can be written as

Sk = 1
L

L∑
l=1

υk

√
PRαkρk[l] + nk[l]

= υkAk + wk (2.4)

where Ak = 1
L

√
PRαk

∑L
l=1 ρk[l], wk ∼ N (0, σ2

w), and σ2
w = N0/2L. For large values of L, the ensemble

average can be approximated by the statistical average, and thus Ak ≈
√
PRαkE {ρk[l]}, where E {·}

represents the expectation process. Finally, the signal Sk is applied to the detector, which makes a binary

decision (hard decision) whether to respond to the RIS or not. The decision at the tag can be described

by

uk =

 0, Sk < τk

1, Sk ≥ τk

. (2.5)

The detection threshold τk that can be selected to control the tags’ sensitivity to the received signals.

More specifically, τk can be adjusted to limit the number of tags that may receive and respond to the

RIS. By noting that Ak ≈
√
PRαkE {ρk[l]} and using (2.2), τk can be expressed as

τk =
√
PR

4πd0
υkλE {ρk[l]} (2.6)
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where d0 is the radius of the reader coverage area. It is worth noting that the effect of the free space path

loss in (2.6) is based on the assumption that the radiation pattern of the reader is circular. Although it

might be infeasible to design perfectly circular radiation patterns in practice, there are several antennas

designed for RFID applications that has near-ideal omnidirectional antennas [23]- [25]. Consequently, the

reader radiation pattern can be closely approximated by a circular pattern, and the free space path loss

for all tags at a distance d0 from the reader can be considered equivalent.

Based on (2.4) and (2.5), the probability that a tag successfully detects the RIS is given by

Pr (uk = 1) = Q

(
τk − υkAk

σw

)
(2.7)

where Q (·) is the Q-function. After the detection process, each tag with uk = 1 will respond back to the

reader by sending a continuous signal with average transmit power PG and duration of TG seconds.

2.2.2 Received signal model at the reader

In this work, it is assumed that the RFID system employs an anti-collision protocol, and hence there is

no interference between the signals transmitted by the U active tags [4], [6]. In such protocols, the reader

may interrogate the tags sequentially as in the case of tree-based splitting techniques [26]. Although

the process is performed sequentially, off-the-shelf readers can read hundreds of tags in a fraction of a

second [27]. Therefore, the received signal from the kth tag can be written as

yk = υk

√
PGℏk[l]√αk uk + φk (2.8)

where υkℏk[l]√αk ≜ hk ∼ CN (0, υ2
kσ

2
ℏαk) is the overall channel coefficient that captures the small and

large scale fading effects, and φk ∼ CN (0, σ2
φ) is the AWGN. Thus, yk can be written as

yk =
√
PGhk uk + φk. (2.9)

To estimate its location, defined by θ ≜ [xR, yR], the reader initially detects the responses collected

from the K tags. To avoid the channel estimation overheads for K signals, the reader may use blind

detection schemes such as energy detection [18], where the received signal energy can be expressed as

rk = |yk|2 = |
√
PGhkuk + φk|2. (2.10)

Generally speaking, the reader does not usually have the exact knowledge of its radiation pattern or its

orientation with respect to the tags’ grid. Therefore, the value of υk should be considered unknown by

the reader, and hence the radiation pattern is considered to be circular where υk = 1 ∀k, which may cause

some performance degradation. Based on (2.10), the ML estimator (MLE) using r = [r1, r2, . . . , rK ] is
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given by

θ̂ = arg max
θ

K∑
k=1

ln f (rk|θ)

= arg max
θ

K∑
k=1

ln
( 1∑

uk=0
f (rk|uk) Pr (uk|θ)

)
(2.11)

where

Pr (uk|θ) = 1 − uk + (−1)uk+1Q

(
τk −Ak

σw

)
. (2.12)

It is worth noting that θ in (2.12) is implicitly included in Ak. Since yk ∼ CN (0, PGu
2
kσ

2
h + σ2

φ), then rk

is exponentially distributed with mean βuk
= PGu

2
kσ

2
h + σ2

φ, where σ2
h = σ2

ℏαk. Consequently, the MLE

can be written as

θ̂SDE = arg max
θ

K∑
k=1

ln
( 1∑

uk=0

1
βuk

exp
(

−rk

βuk

)
Pr (uk|θ)

)
. (2.13)

Because the MLE in (2.13) is based on the unquantized values, i.e. soft values, of rk, it is denoted as soft

decision estimator (SDE) [18]. As can be noted from (2.13), it is infeasible to compute θ̂ analytically, and

thus, exhaustive search methods should be used.

An alternative approach to estimate the location of the reader is to use rk to generate hard decisions

(binary decisions), for each tag individually, and then the likelihood function is derived based on the hard

decisions, and hence it is denoted as the HD estimator (HDE) [20]. In other words, the reader tries to

estimate uk ∀k, and use the estimated values, denoted as û = [û1, û2, ..., ûK ] to estimate its location. The

optimum HD detector can be formulated as,

ûk = arg max
uk∈{0,1}

f (rk|uk) , k = {1, 2, ..., K}

= arg min
uk∈{0,1}

rk

βuk

+ ln βuk
. (2.14)

After some manipulations, (2.14) can be written as

ûk =

 0, γ0 ≤ rk ≤ γ1

1, γ1 ≤ rk ≤ γ2

(2.15)

where γ0 = 0, γ2 = ∞ and

γ1 = ln β1 − ln β0

β1 − β0
β1β0. (2.16)

Thereafter, the MLE based on û can be formulated as

θ̂HDE = arg max
θ

K∑
k=1

ln

 ∑
uk∈{0,1}

Pr (ûk|uk) Pr (uk|θ)

 . (2.17)
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The pairwise probability Pr (ûk|uk) can be derived from (2.15) and (2.16),

Pr (ûk = n|m) = e− γn
βm − e− γn+1

βm (2.18)

where {n,m} ∈ {0, 1}.

In high signal to noise ratio (SNR) scenarios, the channel can be considered error free and Pr (uk|θ) is

equal for nearby tags. Consequently, the decisions made by a particular tag can be corrected at the reader

based on the decisions of the nearest M tags [11], and hence, this approach is denoted as the local voting

algorithm (LVA). Given that the set of all tags in the RoI is denoted as A, and the set of M neighboring

tags is denoted as B, where B ⊆ A, the decision correction process for each signal in B can be described

as

ũk =

 1, W (uB) ≥ ϵ0

0, W (uB)< ϵ0

(2.19)

where uB = [u1, u2, ..., uM ], W (·) is the Hamming weight, ũk is the corrected decision and ϵ0 ≜ ⌈M/2⌉,

where ⌈·⌉ is the ceiling function. Therefore, the corrected decisions have the following probabilities,

Pr (ũk = 1|θ) =
M∑

i=⌈ϵ0⌉

(
M

i

)
(Pr (uk = 1|θ))i × (1 − Pr (uk = 1|θ))M−i (2.20)

and Pr (ũk = 0|θ) = 1 − Pr (ũk = 1|θ). Therefore, the MLE based on the LVA algorithm is

θ̂LVA = arg max
θ

K∑
k=1

ln (Pr (ũk|θ)) . (2.21)

Generally speaking, the signal transmitted/received by the tag depends on the tag model and frequency

band used. In this work, we consider that all RFID tags are omnidirectional in both horizontal and

vertical dimensions. Therefore, the transmitted/received signal models of the tags are independent of the

tag orientation. The design of such tags at 925 MHz frequency is reported in [28].

2.3 The Proposed Localization Algorithm

To maintain low complexity of the MLE with hard decisions, the proposed algorithm is based on binary

energy detection as the first stage to produce the vector û as described in (2.15). In the second stage, error

concealment is applied to correct the erroneous decisions and produce a new set of decisions denoted as ũ.

Finally, the MLE is applied to estimate the location of the reader. The proposed localization algorithm

with error concealment (LEC) and the MLE are derived in the following two subsections.
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Algorithm 1: Error Concealment Process
Input: ûk, k = {1, 2, ..., K}, ϵ

1. Form the matrix Û : uk ← Ûa,b, a =
⌈

k√
K

⌉
, b = k

mod
(√

K + 1
)

2. for m = 2 :
√

K − 1
3. for n = 2 :

√
K − 1

4. compute W
(
Û(m− 1 : m + 1, n− 1 : n + 1)

)
5. set ũk =

{
1, W ≥ ϵ
0, otherwise

6. end for
7. end for
8. return: ũk, k = {1, 2, ..., K}

2.3.1 The error concealment process

Due to channel impairments, it is highly likely that ûB ̸= uB, and hence the performance of the MLE

may deteriorate. In practical scenarios, tags in the vicinity of each other are expected to produce similar

decisions, i.e., u1 = u2 = · · · = uM . Therefore, the LEC is designed to exploit such correlation to correct

the errors before the location estimation process. An example for the LEC using M = 9 is given in

Algorithm 1.

The correction threshold ϵ should be dynamically adjusted to consider the variable number of tags

in B that detected the RIS as well as the imbalanced probability induced by the hard decision detector.

By noting that ϵ is typically set to ϵ0 in error free transmissions [11], it can be dynamically changed by

considering the channel effects on the signals sent from the tags to the reader. Thus,

ϵ = E [W (ûB) |W (uB) = ϵ0 ]

=
M∑

i=0
E [ûi |W (uB) = ϵ0 ]

=
M∑

i=0

∑
ûi={0,1}

ûi Pr (ûi |W (uB) = ϵ0 ) . (2.22)

By noting that ûi Pr (ûi|ϵ0) = 0 when ûi = 0, then (2.22) can be simplified to

ϵ =
M∑

i=0
Pr (ûi = 1 |W (uB) = ϵ0 ) . (2.23)

Using the law of total probability, the summand in (2.23) can be written as

Pr (ûk = 1 |W (uB) = ϵ0 ) = Pr (uk = 1 |W (uB) = ϵ0 ) Pr (ûk = 1 |uk = 1)

+ Pr (uk = 0 |W (uB) = ϵ0 ) Pr (ûk = 1 |uk = 0) . (2.24)
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Figure 2.1: Example of the error concealment process for M = 9.

Given that W (uB) = ϵ0, then Pr (uk = 1 |W (uB) = ϵ0 ) = ϵ0
M , and thus

Pr (ûk = 1 |W (uB) = ϵ0 ) = ϵ0
M

Pr (ûk = 1 |uk = 1) +
(

1 − ϵ0
M

)
Pr (ûk = 1 |uk = 0) (2.25)

where Pr (ûk = 1 |uk = 1) and Pr (ûk = 1 |uk = 0) are given in (2.18).

In the special case that the average SNRs of the received signals from the tags in B are equal, then the

probability of error for all tags in B is equal, which is mostly the case since all tags in B have approximately

the same path loss. Moreover, by noting that for ⌈M/2⌉ ≈ M/2 for M ≫ 1, then ϵ0/M ≈ 0.5. By

substituting ϵ0/M = 0.5 in (2.25), and substituting (2.25) in (2.23), then ϵ can be computed as

ϵ = M

2

(
e

−
(

γ1
β1

)
+ e

−
(

γ1
β0

))
. (2.26)

Fig. 2.1 shows an example selected from one of the simulation results for the error concealment process

for an 11 × 11 grid. The sliding window started from the top-left corner where M = 9 and ϵ = 5. As

can be noted from the figure, the concealment process inverted 22 values, 18 tags were excluded (1 → 0)

and 4 were included (0 → 1). In this scenario, about 4 of the excluded tags are close to the reader and

should have been considered. Nevertheless, the number of eliminated outliers is much larger than the

number of legitimate tags that were erroneously excluded, which implies that the localization accuracy

will eventually improve.
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Figure 2.2: Block Diagram of the proposed LEC.

2.3.1.1 LEC based maximum likelihood estimator

The MLE is formulated based on the corrected decisions obtained from the LEC, and thus

θ̂LEC = arg max
θ

K∑
k=1

ln (Pr (ũk|θ)) . (2.27)

By noting that ũk ∈ {0, 1}, the summand in (2.27)
∑K

k=1 ln (Pr (ũk|θ)) ≜ ΛLEC (θ) can be expressed as

ΛLEC (θ) =
K∑

k=1
ũk ln (Pr (ũk = 1|θ)) + (1 − ũk) ln (Pr (ũk = 0|θ)) . (2.28)

Since W (ûB) is a sum of M independent Bernoulli random variables with different probability of success,

then ũk is a Poisson-binomial distributed random variable with a cumulative distribution function (CDF)

given by [29]

Pr (ũk = 0|θ) = Pr (W (ûB) < ϵ|θ)

= ϵ

M + 1 + 1
M + 1

M∑
i=1

(
1 − e− j2πiϵ

M+1

1 − e− j2πi
M+1

×
M∏

l=1

(
ple

j2πi
M+1 + 1 − pl

))
(2.29)

where pl is given by

pl = Pr (ûl = 1|θ)

=
∑

ul∈{0,1}

Pr (ûl = 1|ul) Pr (ul|θ) . (2.30)

Finally, (2.29) is substituted in (2.28), and PSO is applied to compute θ̂ = (x̂R, ŷR) which maximizes

ΛLEC (θ) .

To summarize the proposed system, Fig. 2.2 and Algorithm 2 are presented, where the figure shows

the system level block diagram while Algorithm 2 describes the system in a step-by-step manner.
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Algorithm 2: Proposed LEC
Input: yk, k = {1, 2, ..., K}
1. for k = 1 : K
2. Compute rk using (2.10)
3. Compute ûk using (2.15)
4. end for
5. Compute ũ = [ũ1, ũ2, ..., uK ] using Algorithm 1
6. for k = 1 : K
7. Compute pl using (2.30)
8. Compute Pr (ũk = 0|θ) using (2.29)
9. end for
10. Compute ΛLEC (θ) using (2.28)
11. Compute θ̂ in (2.27) using PSO
12. return θ̂ = [x̂R, ŷR]

Generally speaking, all HD based estimators [18]- [20] have comparable computational complexity,

which is mostly determined by the maximization of the likelihood function. However, the proposed

LEC and LVA [11] have some additional complexity over [20] caused by the error correction process.

Nevertheless, the correction process is based on a low complexity majority voting operation within a

small size sliding window, and hence, the computational complexity of the proposed LEC and [18]- [20]

can be considered equivalent.

2.4 CRLB of the Proposed Estimator

The variance of an unbiased estimator is bounded by F−1, where F is the Fisher information matrix [26],

E
[(
θ̂ − θ

)(
θ̂ − θ

)H
]

≥ F−1 (2.31)

where (·)H is the Hermitian operator. The Fisher information matrix of θ̂ = maxθ ΛLEC (θ) is given by

F = E
[
−∇θ (∇θ)t (ΛLEC (θ))

]
= −E

 ∂2ΛLEC(θ)
∂x2

R

∂2ΛLEC(θ)
∂xR∂yR

∂2ΛLEC(θ)
∂xR∂yR

∂2ΛLEC(θ)
∂y2

R

 (2.32)

where ∇θ and (·)t are the gradient and transpose operators, respectively. The elements of F are

F1,1 =
K∑

k=1

∑
ũk

1
Pr (ũk|θ)

(
∂

∂xR
Pr (ũk|θ)

)2
(2.33)

F2,2 =
K∑

k=1

∑
ũk

1
Pr (ũk|θ)

(
∂

∂yR
Pr (ũk|θ)

)2
(2.34)

F1,2 =
K∑

k=1

∑
ũk

1
Pr (ũk|θ)

∂

∂xR
Pr (ũk|θ) ∂

∂yR
Pr (ũk|θ) (2.35)
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Figure 2.3: The log-likelihood function where K = 256, L = 50, SNR = 50 dB and (xR, yR) = (0, 0).

F2,1 = F1,2 (2.36)

and the derivative ∂
∂xR

Pr (ũk|θ) is given by

∂

∂xR
Pr (ũk = 1|θ) = −1

M + 1

M∑
i=1

(
1 − e− j2πiϵ

M+1

1 − e− j2πi
M+1

×
M∏

l=1

(
ple

j2πi
M+1 + 1 − pl

)
×

M∑
l=1

∂pl

∂xR

(
e

j2πi
M+1 − 1

)
ple

j2πi
M+1 + 1 − pl


(2.37)

where j ≜
√

−1, and

∂pl

∂xR
= −υl

√
PRE {ρk[l]}λd−3

l

4πσl

√
2π

e
− (τl−υlAl)2

2σ2
l (xR − xGk

)×[Pr (ûl = 1|ul = 1) − Pr (ûl = 1|ul = 0)] . (2.38)

It can be noted that ∂
∂xR

Pr (ũk = 0|θ) = − ∂
∂xR

Pr (ũk = 1|θ) and ∂
∂yR

Pr (ũk = 0|θ) = − ∂
∂yR

Pr (ũk = 1|θ)

since Pr (ũk = 0|θ) = 1 − Pr (ũk = 1|θ). Moreover, (xR − xGk
) in (2.37) and (2.38) can be replaced by

(yR − yGk
) to find ∂

∂yR
Pr (ũk|θ).

2.5 Numeric Results

This section presents the simulation results for the proposed localization algorithm and compares them to

those of the algorithms reported in [18]- [20]. The Monte Carlo simulation is configured to perform 500 runs

for each simulation point, where a PSO with 12 particles and 10 generations is applied to find the global

maximum of the log-likelihood function. The RFID tags with known positions are uniformly distributed

over a grid with an area of (200 m × 200 m). The obtained results are generated for various operating

scenarios such as the reader location, SNR and number of tags. The system and channel parameters for

the downlink (reader→tag) are: E {ρk[l]} = 1 ∀k, N0 = 10−10 W/Hz, PR = 0 dBW, PG = −10 dBW,

σ2
h = 1, λ = 0.3 m, and d0 = 30 m. The RMSE is defined as

√
E
[
(xR − x̂R)2 + (yR − ŷR)2

]
.

Fig. 2.3 depicts the log-likelihood function in three dimensional representation, where 256 tags are
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Figure 2.4: RMSE of the estimated position using the proposed LEC, LVA [11], SDE [20], HDE [18], and KNN [21]
using SNR = 8 dB.

distributed over the RoI to localize an RFID reader located at (xR = 0, yR = 0) position. The SNR ≜

PG/σ
2
φ is set to 50 dB and the number of RISs L = 50. As can be noted from the figure, the log-likelihood

function has a global maximum that corresponds to the Cartesian coordinates of the reader estimated

location.

Fig. 2.4 shows the RMSE of the proposed estimator for different values of K using SNR = 8 dB,

(xR = 5, yR = 22) and L = 10. The figure also presents the RMSE of the LVA [11], SDE [18], HDE [20],

KNN [21], and the CRLB. The results in the figure show that the proposed LEC outperforms all the other

considered estimators for the entire range of K. However, the improvement depends on the values of K.

The average relative improvement over the considered range of K with respect to the LVA, SDE, HDE

and KNN is about 26.5%, 46.1%, 74.3%, and 26.9%, respectively. Moreover, it can be noted that the LVA

performs poorly at low values of K since the correction window may include readings from distant tags.

The KNN algorithm outperforms the HDE and SDE for the entire range of K, and the LVA for K < 144.

The KNN and LEC demonstrate equivalent RMSE at K = 64.

Fig. 2.5 is generated using the same parameters used for Fig. 2.4 except that SNR = 15 dB. As can

be seen from the figure, all the considered algorithms exhibit significant RMSE reduction, particularly

the LVA one since the assumption that the tag→reader channel is error free becomes plausible at such

high SNRs. The average relative improvement of the proposed LEC algorithm over the LVA, SDE, HDE,

and KNN algorithms is about 4.5%, 55.1%, 67.5%, and 84%, respectively. The figure also shows that

the KNN RMSE improves by increasing the SNR, though at a slower rate in comparison to the other

considered techniques. Moreover, the results in Figs. 2.4 and 2.5 show that the RMSE of the proposed

estimator approaches the CRLB when there is a large number of tags and high SNRs.
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Figure 2.5: RMSE of the estimated position using the proposed LEC, LVA [11], SDE [20], HDE [18], and KNN [21]
using SNR = 15 dB.
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Figure 2.6: The RMSE of the estimated position using the proposed LEC, LVA [11], SDE [20], HDE [18], and
KNN [21] versus SNR, K = 100.
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Figure 2.7: The impact of the antenna pattern on the LEC localization algorithm.

Fig. 2.6 shows the RMSE of the considered estimators versus SNR using L = 10, K = 100, and

the reader is located at (xR = 10, yR = 27). The results in the figure show that the proposed LEC

noticeably outperforms the SDE and HDE for the considered range of SNRs, and the LVA at low SNRs.

For SNR ≳ 12 dB, the RMSE of the LEC and LVA converge since the tag→reader link becomes nearly

error free. The KNN outperforms the proposed LEC at SNRs≲ 4.7 dB, which is due to the fact the error

concealment process fails to improve the performance at very low SNRs. The average improvement with

respect to the LVA, SDE, HDE and KNN is about 12.2%, 31.5%, 53.5%, and 24.5%, respectively.

Fig. 2.7 illustrates the performance of the proposed localization algorithm using a practical antenna

pattern, where the power radiation is non-uniform. More specifically, we consider the radiation pattern

of the HyperLink HG908U-PRO from L-Com [31], which is ideally considered as an omnidirectional, but

practically it may exhibit up to 37% (2 dB) irregularity in certain directions. As can be noted form the

figure, the irregularity of the radiation pattern causes some performance degradation that depends on the

grid size and SNR. At low SNRs, the degradation for all the considered cases is less than 1 dB because

the performance is mostly determined by the AWGN at low SNRs. At moderate SNRs, the degradation

increases to about 2 dB because the impact of the nonuniform radiation pattern become more apparent

when the impact of the AWGN is not significant. At high SNRs, the RMSE of the practical and ideal

patterns converge because in high power scenarios, all tags in the vicinity of the reader will received

sufficient power to respond back to the reader.
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2.6 Conclusion and Future Work

In this paper, the problem of RFID reader localization using distributed tags was considered. To mitigate

the impact of channel impairments, a novel maximum likelihood estimator was proposed based on the

signals received from the tags. By considering that the reader performs hard decisions on the signals

received from the tags, a simple error concealment process is applied to improve the estimator’s accuracy.

The system was simulated for different cases of interest and the RMSE results were compared to four

benchmark estimators. The obtained results showed that the proposed estimator considerably outper-

forms the other considered localization techniques. Moreover, the CRLB for the RMSE of the proposed

algorithm was derived to asses its efficiency.

To capture the impact of various practical imperfections, evaluating the performance of the proposed

algorithm experimentally is indispensable. Therefore, our future work includes developing a testbed to

collect a large set of results in different channel conditions and compare the experimental results with the

simulation and analytical results obtained in this work.
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Chapter 3

Joint Estimation of Location and

Orientation in Wireless Sensor Networks

using Directional Antennas1

Abstract

This paper presents a joint location and orientation estimation algorithm for a mobile robot (MR)

equipped with directional antennas in wireless sensor networks (WSNs). The proposed algorithm utilizes

the antennas’ directivity and signals received from a set of distributed sensors to estimate the location

and the facing direction of the receiver. The MR may use multiple directive antennas, or a single antenna

whose beam can be steered electronically or mechanically. The received signals from each antenna, or

antenna direction, are applied to a simple linear regression algorithm that decides the direction of the

object for that particular beam scan. The process is repeated for different angles, and the results obtained

are used to estimate the location and orientation of the MR. Moreover, error concealment techniques are

used to improve the estimation accuracy by applying the local majority voting and connected graph algo-

rithms. The obtained experimental and simulation results show that the proposed approach can estimate

the location and orientation with high accuracy, especially at high signal-to-noise-ratio (SNR).

Index Terms

Target localization, location estimation, orientation estimation, Rician fading, majority voting algorithm,

connected graph, linear regression.
1M. A. Al-Jarrah, A. Al-Dweik, N. T. Ali and E. Alsusa, “Joint estimation of location and orientation in wireless

sensor networks using directional antennas,” IEEE Sensors. J., vol. 20, no. 23, pp. 14347-14359, Dec. 2020, doi:
10.1109/JSEN.2020.3008393.
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3.1 Introduction

Indoor localization of humans and assets is challenging because of the lack of line of sight (LoS) signals,

and severe multipath and shadow fading problems, making it difficult to accurately locate objects. Using

wireless sensor networks has attracted many researchers because of the increased accuracy of location

estimation and the high number of possible applications. Various technologies have been proposed in

the literature used for indoor positioning including, wireless local area networks (WLANs), infrared,

radio frequency identification (RFID), ultra-sound, radio, Bluetooth, etc. [4, 6, 12, 14, 15, 19]. Generally,

localization techniques use basic measurements to extract features such as received signal strength (RSS)

[7, 16], time of arrival (ToA), time difference of arrival (TDoA) [11, 13, 22] and angle of arrival (AoA)

[12]. Both, ToA and TDoA, require precise time synchronization to produce accurate results, which

is difficult to realize using current buildings’ infrastructure, while the computational complexity of the

AoA is prohibitively high. RSS, however, is simple to implement but not sufficiently accurate for most

localization applications.

Although the RSS approach suffers from low positioning accuracy, it is considered a good candidate

for wireless sensor networks (WSNs) due to the ease of implementation, as well as the fact that many

low energy sensors can perform the detection without additional requirements. Several algorithms were

proposed to improve the RSS based target location estimation such as the maximum likelihood (ML), least

square (LS), and semidefinite programming (SDP). For instance, in [16], a location estimator is proposed

based on SDP [14, 58], for either unknown or inaccurate transmit powers and path losses. The authors

in [34] used an error correction technique to enhance the accuracy of target location estimation when

the exact sensor locations are included. The presented results show that their method outperforms the

LS [22], and the computationally expensive ML estimator (MLE) [35]. Moreover, using machine learning

techniques demonstrated some promising results in certain scenarios, but such techniques are unsuitable

for low power WSN applications [17,18].

Because most WSNs are based on battery-powered sensors, reducing the transmission and processing

energy consumption is paramount. Towards this goal, the authors in [33] applied the Cramer-Rao lower

bound (CRLB) criterion to design a quantized-data based MLE, which is optimized using a sensor selection

approach. Channel information is also considered to increase the localization accuracy with a manageable

increase in power consumption. Another location estimator based on ML with a low complexity error

concealment for RFID networks is proposed in [12], where a target, such as a mobile robot (MR), can

talk only to selected sensors that are within its antenna detection range. The algorithm considers the

multipath effects and radio frequency (RF) tags with unequal separation distances.

Location estimation algorithms can be also designed using directional antennas, because they have

several desirable features such as high gain, reduced interference and less reflections from the surroundings

[20–30]. However, using a particular directional antenna may influence the system performance in terms
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of size, hardware compatibility, power consumption and production cost. Therefore, optimizing the

directional antenna design is critical for efficient system realization.

In the literature, the antenna design for various localization algorithms has received extensive atten-

tion. For example, the antenna design for RSS-based location and orientation estimation is considered

in [20,23,24,31,32] for objects in the antenna near-field while the far-field is considered in [25–29]. Passive

planar directional antennas, such as planar array, amplitude monopulse antenna array, frequency steered

leaky wave antennas (LWAs), etc., are popular choices because they can be produced with low cost using

microstrip technology, and their performance and operation are reliable and well understood. For exam-

ple, in [23], [26], [29], electronically steered amplitude monopulse antennas are deployed to improve the

estimation of localization and DoA of mobile devices using RSS fingerprinting. The authors in [24], [27],

demonstrated the benefits of adopting directional LWAs for powering sensors in a WSN using frequency

hopping to steer the antenna beam. LWAs are also used with low energy Bluetooth sensors to construct

an inexpensive WSN [28]. The battery life of the Bluetooth sensors is extended by allowing the mobile

device to process the RSSI information.

Robot localization has attracted significant attention because of the extensive indoor and outdoor

applications such as industrial automation, search and rescue missions, autonomous vehicles tracking and

surveillance [34, 39]. In [39], robot navigation is achieved by using colored line sensors to enhance the

accuracy of the RFID technology in following paths designated using Petri nets approach. In another

work [34], robot localization and steering accuracy were enhanced by feeding data from multiple sensors,

gyroscope, magnetometer, and a direction sensor, into a specifically developed orientation algorithm. The

algorithm is based on Kalman filter and a gross error recognizer. Nevertheless, location knowledge could

be insufficient in certain scenarios such as autonomous robots, or when the human controlling the robot

does not have a clear view of the robot orientation [35,36].

As can be noted from the aforementioned discussion, developing an efficient algorithm for joint lo-

calization and orientation estimation in the context of low energy WSN is indispensable. Consequently,

we propose a simple and computationally efficient mathematical procedure for localizing an MR using

distributed sensors with known locations. The proposed scheme exploits the antenna directivity to jointly

estimate the location and orientation of the MR using linear regression. Moreover, error concealment

algorithms such as the majority voting algorithm (MVA) and connected graph (CG) theory are applied

to increase the accuracy of the location and orientation estimation. The obtained results show that the

proposed scheme provides accurate estimation for the location and orientation at considerable values of

signal-to-noise-ratio (SNR).

The rest of the paper is organized as follows. In Section II, the system model and problem formulation

are provided. Section III shows the proposed joint direction-location estimation procedure. Sections IV

and V present the numerical results and conclusion, respectively.
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3.2 System Model and Problem Formulation

Generally, a WSN consists of a massive number of sensors deployed in a geographical area to collect data

from the environment and forward it to a central device through wireless transmissions. The central

device aggregates the data of all sensors in the network and applies certain operations to this data such

as fusion and storage, and may perform certain actions such as sending commands to various actuators

or generating alerts. In several applications, an MR, possibly an unmanned aerial vehicle (UAV), is used

to collect the data from the sensors. Hence, the estimation of location and orientation of the aggregating

device is necessary to follow a certain planned trajectory. In this work, we consider joint estimation of the

location and orientation of an MR in the context of WSNs. The WSN is assumed to have N ×N sensors

that are distributed according to a two-dimensional (2D) grid topology, and the network covers a certain

area, which has a range 0 → xU in the x-direction and 0 → yU in the y-direction. The sensors’ coordinates

are assumed to be known by the MR, which can be achieved through the network initial deployment and

configuration, where the coordinates and sensor identification (ID) information are provided to the MR.

Due to its power efficiency and low complexity, the sensors use amplitude shift keying (ASK) modulation

to communicate with the MR.

Without loss of generality, the considered MR is assumed to be located at (x0, y0), and it is equipped

with a directional antenna for transmission and reception. The antenna beam is assumed to be with

rotation angle θo from the positive x-axis, and has a beam-width of ϕo. The MR transmits an interrogation

signal to the sensors located within its antenna coverage area, and in turn the sensors respond by sending

any collected information. This information may include temperature, humidity, etc. As a result, the

sensors inside the coverage area will respond to the MR by sending the information they collected to

the MR. In this work, we assume that the sensors respond to the MR through using interference-free

multiple access (MAC) protocol, such as time division multiple access (TDMA). Therefore, each sensor

transmits according to a certain timing schedule. This enables the MR to identify the sensor ID through

the allocated time slot.

Although a contention-free MAC protocol is considered in this work, contention-based protocols can

be also adopted [37,38]. In most contention-based protocols, severe interference is produced when two or

more sensors attempt to access the channel simultaneously, i.e., when a collision occurs. In such protocols,

to inform the sensor that the data was delivered correctly, the MR sends a short packet to acknowledge

correctly received packets. Otherwise, after waiting for a certain time period, the sensor retransmits

the same packet again. Although adopting such protocols is attractive due to their low complexity, their

throughput is less than contention-free protocols. In the context of MR localization, the MR speed should

be sufficiently low to allow the MR to complete the transaction with the sensor. If the MR moves or

rotates during a transaction, some packets might be lost due to the lack of proper flow control between the

MR and sensor. Moreover, missing positive acknowledgements from the MR makes the sensor retransmit
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Figure 3.1: Illustrative diagram for the proposed algorithm.

the packet several times, which causes energy efficiency problems. In contention-based protocols, each

sensor has to transmit its identity to enable the MR to link it with the sensor location.

3.2.1 Channel Model

In WSNs with MR, there is a high probability that the MR and each of the sensors will have an LoS

component, in addition to a number of multipath reflections. Therefore, the MR-sensor link, denoted as

h, can be modeled as a non-zero mean complex Gaussian random variable, h ∼ CN (mh, 2σ2
h). Moreover,

the transmission rate in WSNs is generally low, which makes the delay spread of the channel much smaller

than the symbol rate. Consequently, the channel does not introduce inter-symbol interference (ISI), i.e.,

the channel is flat for at least one symbol period. By noting that the sensors spacing is much larger than

the transmitted signals’ wavelength, then the channels between the MR and all sensors are independent

and identically distributed (i.i.d.). The marginal probability density function (PDF) of the channel fading

amplitude α ≜ |h|, is given by [76],

f (α) = 2(1 +K)
Ω α e−K e− (1+K)

Ω α2
I0

(
2α
√
K(1 +K)

Ω

)
(3.1)

where Ω = µ2
h + 2σ2

h, K = µ2
h

2σ2
h

, µh = |mh|, and I0 (·) is the modified Bessel function of the first kind with

0 order. On the other hand, the PDF of the channel phase, i.e., θ ≜ arg {h}, is given by,

f(θ) = 1
2π e−K +

√
K

π
cos (θ + ϕ) × exp

(
−K sin2 (θ + ϕ)

)
Q
(

−
√

2K cos (θ + ϕ)
)

(3.2)

where ϕ = tan−1
(

µh,Q

µh,I

)
, µh,I ≜ ℜ {mh}, µh,Q = ℑ {mh}, and Q (·) is the Q-function. Unlike the

independent channels scenario, deriving the PDF of the amplitude and phase when the channels between
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the sensors and MR are correlated is intractable when the number of sensors is greater than two [40].

3.2.2 Signal Detection Model

Given that an interference-free MAC is adopted, the MR receives the signals transmitted from a random

number of sensors that are mostly within the antenna beams, as shown in Fig. 3.1. Assuming that the

sensors that receive the interrogation signal from the MR respond with a short frame with a non-zero

header value. The complex baseband representation of the received signal from the kth sensor can be

represented as

rk =
√
Psskhk + φk, 0 ≤ k ≤ N2 (3.3)

where the headers’ symbols sk ∈ {0, 1}, Ps is the average transmission power for each sensor, hk ∼

CN (mh, 2σ2
h) is a complex channel gain, and φk ∼ CN (0, 2σ2

φ) is the additive white Gaussian noise

(AWGN). Because the MR power is significantly higher than the sensors, it is assumed that all sensors

within the coverage of the antenna beams receive the interrogation signal.

The received signal can be detected by applying coherent, amplitude-coherent, or noncoherent de-

tection (NCD) [41, 42, 76]. To keep the receiver design structure simple, NCD is adopted at the MR,

which does not require knowledge of the instantaneous channel state information (CSI). By noting that

rk ∼ CN (
√
Psmhsk, 2Pss

2
kσ

2
h + 2σ2

φ), the NCD can be formulated as,

ŝk = arg max
sk∈{0,1}

f (rk) (3.4)

where

f (rk) = 1√
2π
(
Psσ2

hs
2
k + σ2

φ

) exp
(

−
∣∣rk −

√
Psskmh

∣∣2
2Pss2

kσ
2
h + 2σ2

φ

)
. (3.5)

By taking the natural logarithm of f (rk) and dropping the constant terms, the NCD can be reduced to,

ŝk = arg min
sk∈{0,1}

ln
(
Pss

2
kσ

2
h + σ2

φ

)
+
∣∣rk −

√
Psskmh

∣∣2
2Pss2

kσ
2
h + 2σ2

φ

(3.6)

which can be further simplified to

ŝk = arg min
sk∈{0,1}

ln
(
Pss

2
kσ

2
h + σ2

φ

)
+ |rk|2 − 2

√
Psskℜ (rkm

∗
h) + Pss

2
kµ

2
h

2Pss2
kσ

2
h + 2σ2

φ

. (3.7)

Because sk ∈ {0, 1}, the NCD can be written as

γ1 |rk|2 + 2
√
Psℜ (rkm

∗
h)

ŝk=1
⋛

ŝk=0

ln (1 + γ1)
γ2

+ Psµ
2
h (3.8)

where Psσ2
h

σ2
φ

≜ γ1 and 1
σ2

φ(γ1+1) ≜ γ2. By noting that 2
√
Psℜ (rkm

∗
h) ≪ γ1 |rk|2 at high SNR values, the
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second term can be dropped without a noticeable impact on the detector error probability. Consequently,

the resultant detector can be expressed as

|rk|2
ŝk=1
⋛

ŝk=0
τ0 (3.9)

where

τ0 = 1
γ1

[
ln (1 + γ1)

γ2
+ Psµ

2
h

]
= ln (1 + γ1)

γ1γ2
+ 2Kσ2

φ. (3.10)

Therefore, the suboptimal NCD requires the knowledge of the channel statistical information, which are

K, σ2
φ, and σ2

h. For high SNRs, we may consider that γ1 + 1 ≈ γ1, and hence, the threshold τ0 can be

written as,

τ0 ≈ [ln (γ1) + 2K]σ2
φ. (3.11)

As can be noted from (3.9) and (3.11), the suboptimal NCD can be expressed as an energy detector,

and the detector threshold τ0 does not require the knowledge of any instantaneous CSI. Moreover, the

computational complexity of the suboptimal NCD is substantially less than the optimal NCD (3.8).

Although the NCD complexity is less than the coherent detector, it suffers from a BER degradation

of about 6 dB [41]. Nevertheless, as demonstrated in Sec. 3.5, the location estimates accuracy is mostly

determined by the sensor spacing for moderate and high SNRs. Therefore, unless accurate estimates at

low SNRs are required, using the NCD would be preferable due to its low complexity.

3.2.3 Probability of Error Analysis

Although it is considered that all sensors receive the MR interrogation signal and respond accordingly,

the sensors’ power is usually very limited, and hence, the MR might miss some of the sensors’ signals,

or might erroneously decide that a particular sensor has responded to the interrogation message. The

probability of error for the suboptimal NCD given in (3.9) can be derived by noting that the decision

variable |rk|2 can be expressed as

|rk|2 =
(
rI

k

)2 +
(
rQ

k

)2
(3.12)

where rI
k = ℜ (rk) ∼ N (

√
Psµh,Isk, Pss

2
kσ

2
h +σ2

φ) and rQ
k = ℑ (rk) ∼ N (

√
Psµh,Qsk, Pss

2
kσ

2
h +σ2

φ). Conse-

quently, |rk|2 ≜ yk has a non-central Chi-square distribution with two degrees of freedom and uncertainty

parameter Pss
2
kµ

2
h, where the PDF and cumulative distribution function (CDF) are respectively given

by [70],

fyk
(yk|sk) = 1

2σ2
y

e
−

λ2
k

+yk

2σ2
y I0

(
λk

σ2
y

√
yk

)
, yk > 0 (3.13)
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Fyk
(yk|sk) = 1 −Q1

(
λk

σy
,

√
yk

σy

)
, yk > 0 (3.14)

where λk =
√
Psskµh, σ2

y = Pss
2
kσ

2
h + σ2

φ and Q1 (·, ·) is the first order Marcum Q-function. Therefore,

the pairwise error probabilities (PEPs) are given by

Pr (ŝk = 1|sk = 0) =
∫ ∞

τ0

fyk
(yk|sk = 0) dyk

= 1 − Fyk
(yk = τ0|sk = 0)

= Q1

(
0,

√
τ0

σφ

)
(3.15)

and

Pr (ŝk = 0|sk = 1) =
∫ τ0

0
fyk

(yk|sk = 1) dyk

= Fyk
(yk = τ0|sk = 1)

= 1 −Q1

(√
Psµ2

h

γ1σ2
φ

,

√
τ0

γ1σ2
φ

)
. (3.16)

3.3 Location and Orientation Estimation

In WSNs with data harvesting, the MR transmits an interrogation signal, and then listens to the responses

from the sensors. The sensors that receive the interrogation signal respond by sending the information

symbols sk, k ∈ {0, 1, . . . ,N1}. When directional antennas are used, the sensors that are expected to

respond are the ones within the coverage area of the antenna, Fig. 3.1 shows an example of an antenna

with two main lobes. However, in practical operating conditions, channel fading, noise, interference,

antenna sidelobes, and radiation pattern imperfections may trigger out of range sensors to respond, or

some in-range sensors to be ignored. Therefore, the interrogation and response activities between the

sensors and the MR can be classified into four types. Type 1 corresponds to the sensors that did not

receive the interrogation signal, did not respond, and the MR correctly decided that they did not respond.

Type 2, the sensors received the interrogation signal, responded, and the MR correctly decided that they

responded. Type 3, the sensors are within the antenna coverage area and received the interrogation signal,

but the MR missed the response; and finally Type 4 when sensors are outside the antenna coverage region,

yet the MR erroneously decided that they have responded. The probabilities associated with the four

types are as follows:

• Pr (Type 1) = Pr (ŝk = 0|sk = 0)

• Pr (Type 2) = Pr (ŝk = 1|sk = 1)

• Pr (Type 3) = Pr (ŝk = 0|sk = 1) = 1 − Pr (Type 2)
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• Pr (Type 4) = Pr (ŝk = 1|sk = 0) = 1 − Pr (Type 1)

The probabilities Pr (sk) ∀k depend on the location of the sensor, the direction of the antenna, the

channel between the MR and the sensor, and the distance between the MR and the sensor. Therefore,

it is generally difficult to measure or estimate Pr (sk) accurately. The probability of each type can be

computed using (3.15) and (3.16).

After the interrogation-listening phase, the MR should create a virtual map similar to the one in Fig.

3.1 with clusters of responding sensors. However, the number of clusters may vary depending on the

number of antenna beams used. In such maps, the resulting clusters may give clear indications about

the location of the MR as well as its orientation. Although there are several approaches to identify the

clusters and use them to estimate the location and orientation of the MR, in this work, the axial symmetry

of the transmitting horn antenna main beam in the azimuth plane is exploited [44–46]. By identifying

the symmetry axis of at least two antennas or antenna orientations, it would be possible to compute the

location and orientation of the MR. Towards this goal, and to keep the complexity low, linear regression

is used to estimate the beams symmetry axes. Among several linear regression techniques, the major axis

regression (MAR) was able to provide the most accurate results, and hence, has been adopted in this

work.

According to this algorithm, the sum of perpendicular distances between each point and the regression

line is minimized. According to Fig. 3.1, two different directions for the antenna are considered, and the

corresponding straight lines are plotted based on the received hard decisions from the sensors. In general,

the estimated straight line that represents the symmetry axis of the antenna main beam radiation pattern

can be expressed as

li = aiti + bi. (3.17)

At least two lines are required to estimate the location of the MR, which is their intersection point. If

three or more lines are used, however, the location of the MR is estimated by computing the average of

all intersection points. For a pair of lines li and lj , i ̸= j, the intersection point can be written as

x̂i,j = bj − bi

ai − aj
(3.18)

ŷi,j = aix̂i,j + bi (3.19)

For the case of using more than two lines

x̂ = 1
L

L∑
i=1

L∑
j>i

x̂i,j , L > 2 (3.20)
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Figure 3.2: Orientation calculation example using two beams.

and

ŷ = 1
L

L∑
i=1

L∑
j>i

ŷi,j , L > 2 (3.21)

where L is the total number of lines used. It should be noted that the estimated location must be inside

the grid boundaries, i.e., x̂0 ∈ {0, xU } in the x-direction and ŷ0 ∈ {0, yU }, otherwise, the point (x̂0, ŷ0)

must be ignored and other beams should be considered. Moreover, if the MR is close to and facing the grid

boundaries, the number of responding sensors might be very small, leading to unreliable results. In such

scenarios, the MR should steer the antenna beams towards the center of the grid to increase the number

of responding sensors. In this work we use a threshold τ2 to indicate if the MR should collect data from

other directions or not. While increasing τ2 improves the estimates accuracy, it also increases the delay.

Therefore, the value of τ2 should be selected such that adequate accuracy is achieved with minimum delay.

As reported in [47], using a sample size of five is sufficient to provide a plausible straight-line regression,

and hence, we set τ2 = 5.

The orientation of the MR can be generally obtained using a single beam where the rotation angle of

the ith beam can be computed as θ̂i = arctan (ai). For multiple lines, the average can be computed as

θ̂ = ∆θ1

2 + 1
L

L∑
i=2

[
θ̂1 +

(
θ̂i − ∆θi

)]
(3.22)

where ∆θi is the angle difference between the first beam and the ith beam when i > 1. Fig. 3.2 shows

the orientation estimation example using L = 2.

As can be noted from the aforementioned discussion for the case when more than two beams are used,

it is suggested to average the multiple obtained positions to produce a single position and orientation
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estimates. However, by noting that not all lines have the same reliability, then combining different

estimates should take the reliability of each point into consideration. For example, a line generated using a

small number of sensors is less reliable than a line generated with a large number of symbols. Consequently,

a weighted average based on the reliability of each estimated point can be adopted. However, computing

an accurate reliability factor is not straightforward. More sophisticated methods such as the one reported

in [48] can be adopted as well. Nevertheless, deriving the joint PDF for the case of WSNs with hard

detection and regression operations is prohibitively complex. Based on the results in Sec. 3.5, it can be

noted that simple averaging can produce sufficiently accurate results, hence, it is adopted in this work.

3.3.1 The Local Majority Voting Algorithm (MVA)

The MVA algorithm can mitigate the errors caused by non-ideal transmission and reception, and thus, can

improve the localization and orientation estimation accuracy [6], [49]. In the MVA, each of the detected

decisions is corrected based on the decisions of its neighbors. Without loss of generality, let us assume

that the set of all sensors in the grid is defined as A, and the set of the M neighboring sensors is B, i.e.,

B ⊆ A. Consequently, each decision in B is corrected based on the following metric

d̂k ≈

 1, N ≥ M/2

0, N < M/2
(3.23)

where d̂k is the corrected decision for all k ∈ B, and N is the total number of detected ones in B.

3.3.2 The Connected Graph (CG)

Another error concealment algorithm can be applied is the CG, which is one of the basic concepts in

the graph theory [50]. According to this theorem, in an undirected graph G, two vertices u and v are

considered to be connected if G contains a path from u to v, otherwise, they are called disconnected. Due

to non-ideal reception, the extracted decisions could have more than one group of connected graphs; and

thus, the biggest group of decisions equal to 1 is chosen because it is expected to be the most accurate

cluster of sensors inside the coverage area of the beam. In addition, sensors with decision 0 inside this

cluster are corrected to 1, while other connected clusters are set to 0 because they are expected to be

erroneous decisions.

3.3.3 Correlated Fading

Generally speaking, increasing the sensors’ density may improve the location estimation accuracy of the

proposed algorithm. Nevertheless, if the density is increased such that the distance between adjacent

sensors is equal or less than the transmitted signal wavelength, then the channels between adjacent

sensors and the MR become spatially correlated. In such scenarios, the improvement gained by increasing
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Figure 3.3: Radiation pattern of the horn antenna LB-430-10-A at 2 GHz in the azimuth plane.

the network density may vanish, or even degrade for power-constrained WSNs. Mitigating the channels’

correlation typically requires sophisticated designs, and the improvement gained is generally limited [51].

Therefore, the network design should avoid unnecessary network densification and prohibitively complex

receiver designs.

3.4 Measurements Setup and Results

In this work, the location data were collected by conducting time domain channel measurements in a very

large room, 29.4 m×19.6 m. An open area in the room of 16 m ×15 m was divided into a uniform grid with

a 1 m spacing. The sensor spacing is selected to be much larger than the wavelength to guarantee that the

channels between various sensors and the MR are mutually independent. The time domain measurements

of the wireless channel were carried out using the DSOS204A High-Definition Digital Storage Oscilloscope,

and the E4421B Analog RF Signal Generator, both from Keysight Technologies. The measurement system

also included low loss RF cables, an LB-430-10-A standard gain horn antenna type from Ainfo corp. [44],

at the transmitter, while the receiver was equipped with an omni-directional antenna. Fig. 3.3 shows

the radiation pattern of the vertically polarized horn antenna with an azimuth half power beam width

(HPBW) of about 24o and a peak gain of 16 dBi. The transmitter and receiver heights were fixed at 1.5

m. During the measurements, the transmitting horn antenna was fixed in one location and a particular

direction, while the receiver was moved across the whole 271 grid points, 17×16 points less the transmitter

point. A snapshot of the measurement setup showing the transmitter and receiver is shown in Fig. 3.4.

At each grid point, the channel was measured with a signal frequency 2 GHz, a wavelength λo = 15
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Figure 3.4: A snapshot of the measurement process showing the transmitter and receiver.

Figure 3.5: The signal captured by the Oscilloscope at one of the grid locations.

cm, a time period 5 ns, i.e., 10 periods. It is worth noting that the 2 GHz frequency was selected because

it was the upper limit of the oscilloscope. Nevertheless, operating at the ISM 2.4-2.5 GHz band should

not affect the outcome of this work. The power is then calculated for the 10 cycles. Each measurement

sweep contained 800 time samples for high resolution. The measurements were then repeated for another

orientation for the transmitting antenna but in the same location. Fig. 3.5 shows the measure signal

captured by the Oscilloscope during the measurements process.

Fig. 3.6 shows how the proposed location estimation works using the experimental setup described

earlier. In this example, the MR gathers data from the 16 × 16 grid of sensors while located at Cartesian

coordinates (5, 3) with orientation θ = 45o. In order to estimate the location and actual orientation θ, two

data sets were collected by rotating the MR antenna in the positive x-axis and positive y-axis directions.

The number of antenna rotations is pre known to the MR, and the direction of rotations are calculated

by the robot based on the responding sensors. The number of responding sensors, within the antenna

coverage area, is determined according to the sensors’ minimum RSS threshold (or power threshold).

From Fig. 3.3, the back lobes are at least 27 dB lower than the main lobe, and hence, by carefully setting

the sensor threshold, the effect of the sidelobes can be reduced. The MVA was then applied on both

sets separately to enhance the accuracy of the estimated location, and then the corresponding major

symmetry axis for each set was obtained as explained earlier. The two obtained lines are
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Figure 3.6: Location estimation for the MR based on experimental results.

Table 3.1: The estimated locations and orientations for different scenarios.

Case 1 Case 2 Case 3 Case 4
(x0, y0) (5, 3) (2.5, 10) (13, 10) (13, 5)
θ 45o 135o 225o 315o

l1 0.086535t1 + 2.37 −0.15t1 + 3.96 0.16t1 + 11.24 −0.156t1 + 13.58
l2 −56.955t2 + 286.76 297.45t2 − 3003 −297.5t2 + 3019 297.5t2 − 1442
(x̂0, ŷ0) (5, 2.9) (2.4, 10.1) (12.83, 10.1) (13.1, 4.89)
θ̂ 47.97o 139.5o 229.5o 319o

RMSEl 0.1 m 0.14 m 0.20 m 0.148 m
RMSEθ 0.05 rad 0.078 rad 0.078 rad 0.069 rad

l1 = 0.086535t1 + 2.37 (3.24)

l2 = −56.955t2 + 286.76. (3.25)

Based on these two lines, the intersection point can be obtained as (5, 2.9), and the orientation is θ̂ =

47.97o.

Figs. 3.7 and 3.8 show the power map of the received signals in the vertical and horizontal orientations,

respectively. The figures are obtained using the same experimental setup used with Fig. 3.6. The power

profile is very similar to a typical horn antenna radiation pattern given in Fig. 3.3. The major axis of the

radiation pattern passes through the location of the MR, and the intersection of the major axes of both

patterns is the estimated MR location.

The experiment was repeated using three additional locations and orientations, which are [(2.5, 10) , 135o],

[(13, 10) , 225o] and [(13, 5) , 315o]. As shown in Table 3.1, the two symmetry lines l1 and l2 are obtained
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Figure 3.7: Power map for the received power when the MR has vertical orientation.

Figure 3.8: Power map for the received power when the MR has horizontal orientation.
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for each case, and then the estimated location (x̂0, ŷ0) and orientation θ̂ are computed accordingly. The

root mean square error (RMSE) of the location and orientation is defined as

RMSEl ≜
√

(x0 − x̂0)2 + (y0 − ŷ0)2 (3.26)

RMSEθ ≜
∣∣∣θ − θ̂

∣∣∣ . (3.27)

The table shows that the proposed algorithm provides fairly accurate approximation for the location and

orientation, where RMSEl ≤ 0.2 m and RMSEθ ≤ 0.078 rad.

As compared to other alternative approaches [23–29], the method described in this work intends to

estimate the location of a device moving within a fairly dense sensor network where the sensors act as

omni-directional beacons, and are only required to transmit their identity. The moving device must either

rotate or use a multi-beam antenna, preferably with no overlapping, then the location and orientation are

obtained as the spatial intersection of the two beams, as shown in Figs. 3.1 and 3.2. The method in [26]

aims to determine an accurate DoA for signals from a moving device as seen from several fixed stations

that use a split beam or monopulse method with only a small spacing between overlapping beams. The

demonstration devices use two planar antennas with a small azimuthal deviation between them to generate

the overlapping beams. Therefore, both the proposed technique and [26] are amplitude-only methods.

Moreover, it can be noted that neither method depends crucially on the technology of the directional

antenna nor the azimuthal beam shape, provided that the beams are symmetric and have reasonably well-

formed main lobe. In the proposed method, the beamwidth is a compromise between angular resolution

and the number of sensors required to overcome propagation effects. For proof of concept, the horn

antenna used in this work appears to give quite satisfactory results. A similar mechanically rotatable

antenna is also used in [52]. The two inexpensive planar antennas used here and in [52] are similar to

those in [26,29], but with a greater relative angle.

Other papers have described LWAs with beam frequency scanning applied to both power transfer [27]

and localization [28, 29]. Steering by frequency hopping between channels adds a slight complexity, but

these antennas remain inexpensive, compact and lightweight, which makes them a good substitute to the

horn antenna. Active antenna structures are also suitable when used by the central node, or MR in this

case [53–56]. Multiple beams can be generated using adaptive antenna array, smart antenna array, or

electronically steerable parasitic array radiator to enable simultaneous angular scanning of different sets of

sensors located in different directions. Such approach offers a fast method for processing the information

and estimate the position and/or direction of the target.

Mechanically rotated horn antennas can be used to provide a steerable beam, however, such systems

are prone to mechanical failures, and consume high power. In addition, rotating the horn antenna

is time consuming and should be performed while the MR is stationary to avoid unnecessary channel
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Table 3.2: The system simulation parameters .

Ps f0 c K Ω τ2 N
1 1 GHz 3 × 108 m/s 10 1 5 16
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Figure 3.9: The BER of the optimal and suboptimal NCD over Rician fading channel with different K.

disturbance, which can make the MR motion discretized and slow. Unlike the mechanically steered

antennas, the aforementioned passive and active directive antenna structures do not produce perfectly

consistent patterns when the beam is steered in different directions [26, 29, 30]. In such scenarios, an

elaborate calibration process is required to compensate for the beam width and power level variation.

A comprehensive overview of mechanical, electronic and multi-beam antennas can be found in [57–59],

respectively.

3.5 Simulation Results

In this section, the performance of the proposed localization algorithm is presented, and compared with

a benchmark algorithm referred to MLE [6]. The RMSE is used as a performance measure. Monte Carlo

simulations with 104 runs are performed to obtain the results. The system parameters considered in the

simulation results are included in Table 3.2, where f0 and c are the operating frequency and speed of

light, respectively.

Fig. 3.9 shows the BER of the optimal and suboptimal NCD over the Rician fading channel with

different K. Clearly, the optimal and suboptimal detection provide comparable performance for small

values of K. As can be observed also, when the Rician factor K increases the gap between both detectors

increases at low SNR values; however, they converge at high SNR. In addition, the obtained results show

a perfect match between the simulation results and derived analytical BER for the suboptimal detector.

Fig. 3.10 shows an example of the actual and estimated trajectory for the MR with different trajectories
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Figure 3.10: The actual and estimated trajectory of the MR for different paths.

when applying MAR-CG based localization. The SNR is fixed at 30 dB, and the antenna was rotated

4 times with angles {0, 45o, 90o, 135o} resulting in 4 lines, where the location of the MR is evaluated by

calculating the mean of the intersection points between each pair of the lines. As can be noticed, the

proposed MAR-CG provides a very good estimate for the path trajectory.

Fig. 3.11 compares the proposed localization algorithms with the MLE based localization over a wide

range of SNR, where the MR is located at (7.5, 7.5) and (7.5, 0). Two lines were considered, i.e., {0, 90o},

and the intersection point between them is the estimated location of the MR. It is clear from the figure

that the MLE outperforms the proposed algorithms when the MR is located at (7.5, 0), while the proposed

algorithms provide better results when the location is (7.5, 7.5). This behavior means that the proposed

algorithms may suffer from considerable estimation errors at the borders of the grid because the presence

of the concrete posts in the experimental space which disturbed the symmetry of the antenna beam. Here,

the MAR-CG based localization outperforms the MAR-MVA for almost the whole range of SNR and the

two considered locations. The main trend of the figure is that applying error concealment algorithms,

i.e., MVA and CG, improves the RMSE. However, the standard MAR (MAR-Std), which refers to MAR

localization without CG or MVA, provides lower RMSE than MAR-CG and MAR-MVA for the case of

(7.5, 7.5) when SNR≲ 4 dB. This behavior is due to the fact that at very low SNR, the probability of

error is very high, and thus applying MVA or CG may increase the errors.

Fig. 3.12 shows the effect of applying the non-optimum NCD at the MR on both the MVA and

CG based localization algorithms. For the non-optimum ED, the detection threshold is considered as a

static (Stc) value of 0.5, while for the optimum NCD an adaptive (Adpt) threshold is evaluated using

(3.10). Similar to Fig. 3.11, two locations for the MR, (7.5, 7.5) and (7.5, 0), and two beams, {0, 90o}, are
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Figure 3.11: A comparison between different localization algorithms for different locations of the MR, i.e., (7.5, 7.5)
and (7.5, 0).

considered. It is clear from the figure that there is a considerable performance degradation by applying

a static threshold, especially at low and mid-range SNR. However, at high SNR, both detectors provide

the same RMSE except for MVA when the location is (7.5, 0).

Fig. 3.13 shows the effect of increasing the number of beams on the RMSE. The lines {0o, 45o},

{0o, 45o, 90o}, and {0o, 45o, 90o, 135o} are used for the cases of 2, 3, and 4 beams; respectively, and the

MR is fixed at (7.5, 7.5). As can be seen by comparing the two subplots, the MAR-CG outperforms

the MAR-MVA. Moreover, both MAR-MVA and MAR-CG outperform the MLE for SNR≳ 14 dB and

SNR≳ 9 dB, respectively. Although increasing the number of beams from 2 to 3 manages to improve the

RMSE, the performance of the 4 beams case is worse than the 2 beams. This indicates that increasing

the number of beams does not necessarily improve the system performance.

Fig. 3.14 shows the RMSE in estimating the orientation in rad using MVA and CG based techniques.

The MR is located at (7.5, 7.5) and (7.5, 0), and the orientation of the MR is θ = π
4 . Two beams are

considered to estimate the orientation of the MR; namely, the horizontal and vertical beams, where θ̂

is estimated according to (3.22). It can be observed from the figure that CG outperforms the MVA for

almost the whole range of SNR and the two locations. An error floor of about 0.12 rad is achieved by

applying MVA at the location (7.5, 0). However, the RMSE in estimating θ approaches 0 rad for the

MVA at (7.5, 7.5) when SNR≥ 13 dB, while it approaches 0 for SNR≥ 9 for the CG at both locations. It

should be highlighted that the MLE is not included in this figure because it cannot be used for inferring

the direction as it assumes an omni-directional antenna.
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Figure 3.12: The effect of using optimal NCD on the RMSE.
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Figure 3.13: The RMSE of MAR-CG and MAR-MVA based localization for different number of beams.
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Figure 3.14: The RMSE in estimating the orientation of the MR in rad versus SNR in dB.

3.6 Conclusion and Future Work

In this paper, an efficient algorithm was proposed to jointly estimate the location and orientation of

an MR. The MR utilizes a directional antenna to collect information from a sensor grid, and linearly

fits the locations of the responding sensors. The MAR regression technique was used the with two

error concealment algorithms, namely, the CG and MVA. The orientation of the MR was estimated

by considering the slope of the fitted lines of symmetry while the location of the MR was estimated

by intersecting two or more lines. The multiple lines were obtained by rotating the antenna for different

orientations. The numeric results confirmed the superior performance of the proposed algorithm compared

to MLE algorithm at high SNR. In contrast, the highly complex MLE based algorithm outperformed the

proposed techniques at low SNR. Unlike the MLE, the proposed algorithms provide an advantage of

estimating the orientation of the MR’s antenna. In addition, applying error concealment algorithms such

as MVA and CG noticeably reduces the RMSE of the proposed algorithms, where the MAR-CG based

localization provides better RMSE than the MAR-MVA. However, the results also showed that increasing

the number of beams does not always improve RMSE when multiple intersection points are combined

using simple averaging, because each line might have different reliability.

In future work, the measurements setup could be substituted using commercially available platforms to

capture the impact of various hardware imperfections when using inexpensive devices [26–28]. Moreover,

the system performance will be evaluated using various detection schemes and antenna technologies.

Another interesting dimension that worth considering is the case where some of the sensing nodes are

mobile and has predefined position. In such scenarios, the MR has to perform hybrid localization for

sensors with known and unknown positions, or each mobile node estimates its positions and sends it to
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the MR.
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Chapter 4

Decision Fusion for IoT-Based Wireless

Sensor Networks1

Abstract

This paper presents a novel decision fusion algorithm for Internet-of-Things based wireless sensor networks,

where multiple sensors transmit their decisions about a certain phenomenon to a remote fusion center (FC)

over a wide area network. The proposed algorithm, denoted as the individual likelihood approximation

(ILA), can significantly reduce the decision fusion error probability performance while maintaining the

low computational complexity of other state-of-the-art fusion algorithms. The performance of the ILA

rule is evaluated in terms of the global fusion probability of error, and an efficient analytical expression is

derived in terms of a single integral. The analytical results corroborated by Monte Carlo simulation show

that the ILA significantly outperforms all other considered rules, such as the Chair-Varshney (CV) and

MaxLog rules. Moreover, the impact of the link from the cluster head to the FC, which is modeled as a

binary symmetric channel with unknown transition probabilities, has been investigated. It is shown that

the probability of error over such links should not exceed 10−3 to avoid sever performance degradation.

Furthermore, we derive a closed-form expression for the system fusion error probability of the CV rule

for the most general system parameters.

Index Terms

Global connectivity, Internet-of-Things, IoT, wireless sensor network, data fusion, LoRaWAN, NB-IoT.
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4.1 Introduction

The Internet-of-Things (IoT), machine-to-machine communications and cloud computing are among the

main game-changing technologies for the wireless communications sector [1]. The integration of these

technologies will enable the deployment of a massive number of low-cost and low-power devices, such as

sensors, actuators, smart meters, etc. The IoT infrastructure will enable the connectivity of such massive

number of compatible devices, and will allow the design of low-power consumption networks by realizing

the global connectivity vision [2]. More specifically, if a sensor is in close proximity of a base-station,

WiFi access point, etc., then the transmission power of the sensor can be reduced significantly [1]. The

cloud computing technology enables transferring the computational capabilities of the communicating

devices to the cloud, which can simultaneously reduce the cost, size and processing power of these devices

[3], [4]. According to the Cisco internet business solutions group report [5], it is predicted that fifty

billion IoT devices will be connected to the Internet by 2020. This explains the researchers’ global and

growing interest in IoT in recent years. Consequently, developing reliable rules to fuse all collected data

from sensors to get reliable decisions is crucial for the success of wireless sensor network (WSN)/IoT

integration [6]- [11].

Generally speaking, a WSN consists of a group of spatially distributed sensors with limited capabilities

in a certain space, where they cooperate to perform a certain task. WSNs are widely adopted for a

vast number of applications in various fields, including environmental, military, medical, and industrial

applications [12]- [18]. Cooperative spectrum sensing is an emerging application of WSNs and data

fusion [19]- [21]. The design of small-size and low-cost sensing nodes facilitates the deployment of WSNs

in various environments and locations that might be harsh and unreachable. With the aid of IoT and

cloud computing technologies, achieving such objectives becomes feasible. Consequently, it is crucial to

develop efficient decision fusion algorithms that can be used with a very large number of sensors, as well

as to evaluate the performance of such algorithms in the context of IoT [22].

In an IoT-based WSN, the region of interest can be much larger than for a conventional WSN, where

the sensors are distributed over a local area. The network configuration might follow the typical WSN,

where each group of sensors is initially connected to a cluster head (CHD), and all CHDs are connected to

the fusion center (FC) through an IoT infrastructure, which might include base-station, denoted as eNB

in the long-term evolution (LTE) terminology, core network components, etc. Figure. 4.1 shows a simple

example of an WSN-IoT with two clusters and two CHDs; each CHD collects information from three

sensors. Alternatively, each sensor might be connected directly to the cloud via a particular modem. In

both configurations, the fusion process should be performed at the FC, which can be hosted at the cloud.

Fusion over the cloud is very popular nowadays for applications such as sensing as a service [23]. Moreover,

the FC can be also hosted at a fog node in time-sensitive applications. In the first configuration, which is

the model considered in this work, the WSN will experience the same constraints and limitations of a con-
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Figure 4.1: Example of IoT-based data fusion with two-cluster WSN with different connectivity to the fusion
center.

ventional WSN, which include limited bandwidth, energy, power, memory, and computational capability.

Techniques proposed in the literature to reduce the energy consumption are based on compressive sensing,

energy-efficient routing, optimum clustering, and scheduling data communications between sensors and

sink nodes [24]- [27]. Energy-efficient techniques were also introduced to limit the number of transmitting

sensors by applying a certain criterion such as censoring [28] and ordered transmission [29]. To satisfy the

limited bandwidth, [30] suggested that only selected parts of the sensor’s decisions to be transmitted to

the FC, which applies distributed fusion Kalman filter (DFKF) to compensate for the missing decisions.

In [31], an algorithm referred to the finite-time average-consensus is provided to achieve distributed av-

erage consensus in finite time, while maintaining low-computational and memory requirements. Different

congestion control mechanisms and protocols for WSNs can be found in [32].

4.1.1 Related Work

In the literature, various fusion rules (FRs) have been proposed for conventional WSNs, which can be also

used for fusion over IoT infrastructure. For example, the likelihood ratio test (LRT) under the Neyman-

Pearson sense is applied in [33]- [35] to develop an optimum FR. However, the complexity of the optimum

rule and the enormous amount of computations, which are unsuitable to resources-constrained networks,

have motivated researchers to search for less complex rules, which are typically suboptimum in terms of

fusion error performance. One of the most efficient suboptimum FRs is the Chair-Varshney (CV) rule,

which is a two-stage FR. As shown in [33] and [34], the CV probability of error performance asymptotically

approaches the optimum fusion at high signal-to-noise ratios (SNRs). Other low-complexity FRs such as

AND, OR, k out of N and majority voting rules, can be derived from the CV rule by assuming that the

sensors are identical [36]- [38]. Although these rules have relatively low-complexity and do not depend on

the local false alarm and detection probabilities, their performance is worse than the CV rule, particularly
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for networks with non-identical sensors. The MaxLog rule proposed in [35] performs generally better than

the CV rule, yet, it does not guarantee reliable performance for all system and channel conditions. Other

rules based on diversity combining, such as the maximum ratio combining and equal gain combining, are

presented in the literature as very low-complexity FRs; however, these rules do not satisfy the required

detection accuracy [39]. In [15], [17], Al-Jarrah et al. explored the decision fusion problem in cooperative

WSNs, and considered several conventional FRs such as, ILS [35], MaxLog [35], CV [34]. The complexity

of the conventional rules is reduced using various approximations for the decision statistics. However,

the performance of the approximated and exact rules suffer a noticeable performance degradation due

to the simplifying assumptions used to derive these rules. In [40], an impulse radio wide-band system

is proposed with massive antenna arrays applied at the FC, where the trade-off between coherent and

non-coherent detection based fusion rules is studied. However, the decision variable in [40] is based on

the combined signal at the FC, while other types of fusion rules are not considered.

4.1.2 Motivation and Contribution

Although the problem of decision fusion of distributed sensors has been widely investigated, it is apparent

from the extensive literature review that the problem remains open due to the conflict between complexity

and fusion error performance. Most of the techniques reported in the literature are designed to trade-off

one parameter versus the other. Moreover, to the best of the authors’ knowledge, no work has been

reported in the literature that considers the impact of having multiple heterogeneous hops with unknown

characteristics as in the case of IoT applications. The main challenge in such distributed topologies is that

optimum fusion requires knowledge of channel state information (CSI) on all links between any sensor

and the FC. Nevertheless, it is infeasible to have such information in practical scenarios due to the fact

that several communications nodes actually act as decode-and-forward relays, and hence, the CSI on such

links will be suppressed. Moreover, even if the CSI can be estimated for certain links, sending the CSI

to the FC will mostly incur some errors, which may jeopardize the benefit of having such information at

the FC. Therefore, the main contributions of this paper can be summarized as follows:

1. Proposes a procedure for deploying WSNs over IoT infrastructure to enable decision fusion over

wide area networks (WANs).

2. Derives a novel efficient decision FR, referred to the individual likelihood approximation (ILA)

rule, which offers near-optimum fusion error performance with complexity that is comparable to

conventional suboptimum rules. Based on the derived FR, we specify all the information required

to perform reliable fusion, discuss the feasibility of having such information at the FC, and evaluate

the performance of the FR under imperfect information conditions. Moreover, the derived algorithm

is not based on any simplifying assumption, which makes its performance superior as compared to

conventional algorithms.
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3. The probability of detection and false alarm are derived at the FC in terms of a single integral that

can be evaluated numerically.

4. Investigates the performance of the proposed ILA rule with and without sending the decisions over

IoT infrastructure, and evaluates the required core network reliability for near-perfect fusion.

5. Derives a closed-form expression for the performance of the CV rule in the most general case where

each sensor in the network may have its own characteristics. To the best of the authors’ knowledge,

none of the work reported in the literature considered the most general case [15], [21], [28], [34], [41]-

[48]. Such analysis is more realistic because it is practically very challenging to deploy all sensors

with identical characteristics. Moreover, the sensor performance generally depends on many other

factors.

It is worth noting that unlike the other common FRs, the ILA is derived by approximating the

likelihood ratio function without considering any other simplifying assumptions. Therefore, a significant

performance improvement can be gained as compared to conventional rules such as the ones described

in [15], [17], and the references listed therein.

4.1.3 Paper organization

The rest of the paper is organized as follows. Section II describes the system model of a WSN. Section

III introduces the optimum decision FR. The CV rule is revisited in Section IV. The proposed FR and

its performance analysis are presented in Sections V and VI, respectively. Sections VII and VIII provide

simulation results and conclusions, respectively.

4.2 System Model

As depicted in Fig. 4.1, this work considers an integrated WSN-IoT configuration. The main components

of the WSN are the sensing nodes, also referred to sensors, and one or more CHDs. The sensors are

divided into clusters, and the sensors in each cluster are connected to the CHD in a star topology via a

wired/wireless link. The CHD is the interface between the sensors and IoT infrastructure, which refers

to all components that link the CHD to the FC, which may include eNBs, WiFi access points, cellular

modems, unmanned aerial vehicles (UAVs) and satellites [49]. Such components are also denoted as IoT

nodes. The IoT infrastructure also includes the core network, which comprises several wireless and wired

links.

The WSN that consists of K × L distributed wireless sensors deployed in a specific region to collect

observations about a certain phenomenon. The sensors are divided into K clusters, where the sensors in

each cluster communicate with a CHD as shown in Fig. 4.1. All CHDs are connected to an FC through
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a particular wireless link such as cellular/WiFi networks, satellite links, or UAV [9], which is a typical

structure for rural area communications [50]. The UAVs can be used to collect data from the CHDs and

pass it to the FC through a satellite connection or other available connections, or may act as flying CHD if

the WSN density is low [50]. Each sensor makes a binary decision about the existence of the phenomenon

independently and sends the decision to the CHD. Because WSNs may need to provide connectivity to

a large number of sensors, the adopted multiple access (MAC) protocol and network topology should be

designed to support such scenarios. However, WSNs typically have low data rate requirements, and hence,

orthogonal MACs can be used to connect massive number of sensors. For example, the narrowband IoT

(NB-IoT) standard [51], [52] has a bandwidth of 180 kHz, with a possible subcarrier spacing of 3.75 kHz.

Each subcarrier can be allocated to a different user for a period of 32 ms. Therefore, if the sensing duty

cycle for each sensor is one second, then the system can support more than 1, 500 sensors in each cell. On

the other hand, non-orthogonal MACs are also adopted in some industrial standards such as the Long-

Range wide area network (LoRaWAN) network protocol [53], [54]. In this work, the considered MAC

protocol follows the NB-IoT uplink , which is based on single carrier frequency division multiple access

(SC-FDMA), and thus, all sensors send their decisions to the CHD through orthogonal channels [51].

The signal generated by a given sensor during the tth sensing period can be defined as [17], [21]

χk,l[t]|H1 = ℏk,lx[t] + ξk,l[t] (4.1a)

χk,l[t]|H0 = ξk,l[t] (4.1b)

where l and k denote the sensor and cluster indices, respectively, H1 and H0 denote the presence and

absence of the phenomenon, respectively, x is the signal produced by the sensor due to the observed

phenomenon, ℏk,l is a random variable that captures the different signal strengths that the observed

phenomenon would generate at each sensor, and the additive white Gaussian noise (AWGN) ξk,l ∼

N
(

0, σ2
ξ

)
. It is worth noting that χk,l ∀k and l are independent because the AWGN samples and ℏk,l

are independent. The signal at the kth sensor χk,l[t] is then compared to threshold τk,l to make a binary

decision uk,l ∈ {−1, 1}. The decision-making process of the sensor can be characterized by its detection

probability P d
k,l = Pr (uk,l = 1|H1) and false alarm probability P fa

k,l = Pr (uk,l = 1|H0), where they can be

given by

P d
k,l = Pr (χk,l[t] > τk,l|H1)

= Q

(
τk,l − ℏk,lx[t]

σξ

)
(4.2a)

P fa
k,l = Pr (χk,l[t] > τk,l|H0)

= Q

(
τk,l

σξ

)
(4.2b)
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where Q (·) is the complementary cumulative distribution function of the standard normal distribution.

A typical example for such model is the fire detection system using WSNs. In such a system, the

sensors keep sensing the temperature, which is a continuous value, yet, the sensors do not send any alarm

unless the temperature is lager than a predefined threshold. Therefore, uk,l = 1 corresponds to the case

where χk,l is greater than the threshold [55], [56]. Using such approach is necessary to reduce the energy

and bandwidth requirements of the WSN because the continuous data should be represented by a large

number of bits as compared to a single bit in the binary case.

After the generation of the binary decisions, each sensor modulates its decision using binary phase-

shift-keying (BPSK) and transmits it to the CHD. Low-order modulation schemes such as BPSK are

usually adopted in WSN and IoT applications because of their high power efficiency as in the case of the

NB-IoT standard which may use only BPSK or quadrature phase-shift-keying (QPSK) [57]. The wireless

links between the sensors and their corresponding CHDs are assumed to be mutually independent and

identically distributed (i.i.d.) flat fading channels with Rayleigh distribution. At the kth CHD, the

received signal from the lth sensor can be represented as

rk,l =
√

Pk,lhk,luk,l + nk,l (4.3)

where hk,l ∼ CN (0,σ2
h) is the fading coefficient, nk,l ∼ CN (0,σ2

n) is the AWGN, and Pk,l is the average

transmission power. It is worth noting that most IoT standards, such as the NB-IoT, apply error control

coding in the form of repetition codes [52], and hence, the received signal at the CHD (4.3) remains

unchanged with and without coding.

To perform global fusion at the FC, all CHDs should forward their signals rk,l ∀ {k, l} to the FC. For

example, given that each CHD is connected to the FC via a single-hop wireless link, and the CHD is

configured to relay rk,l in an amplify-and-forward manner; then, the received signal of the lth sensor and

kth cluster at the FC can be expressed as [17], [21],

rk,l = ak,lhk,lrk,l + nk,l (4.4)

where hk,l is an arbitrary channel gain between the CHD and FC, ak,l is the relaying gain introduced by

the CHD, and nk,l ∼ CN (0, σ2
n). Moreover, the FC must have knowledge of

{
hk,l, hk,l, P

d
k,l, P

fa
k,l

}
∀ {k, l},

σ2
n and σ2

n [17], [21]. However, for WANs such as the one depicted in Fig. 4.1, it is generally infeasible

to estimate the end-to-end (CHD→FC) CSI because of the large number of intermediate links and relays

with unknown characteristics [11]. Moreover, the signals over the core network are typically digital, and

hence, a quantized and maybe erroneous versions of rk,l, denoted as r̂k,l, will be received by the FC.

Therefore, the link between the CHD and FC is modeled as a binary symmetric channel (BSC) with

an unknown transition probability ρe. As the values of hk,l can not be estimated directly at the FC,
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the CHD has to package and transmit both rk,l and hk,l to the FC. The values of P d
k,l and P fa

k,l can be

estimated at the CHD and forwarded to the FC, or estimated directly at the FC, which is the scenario

considered in this work. The value of σ2
n is typically fixed for relatively long time periods; hence, it is

considered to be known perfectly at the FC. Consequently, the main overhead associated with the fusion

process at the fusion center is the channel fading coefficients hk,l ∀ {k, l}. Because wireless channels can

not be considered static over long time periods, hk,l should be updated for each fusion process, which

may affect the overall system throughput. Moreover, in the case that P d
k,l and P fa

k,l are estimated at the

CHD and forwarded to the FC, then they will also contribute to the system overhead. Nevertheless, the

varying rate of P d
k,l and P fa

k,l is typically much less than the transmission rate, and hence, their impact on

the system overhead is very limited.

4.3 Optimum Fusion Rule (FR)

Using the signals r̂k,l ∀ {k, l} received by the FC, the LRT under Neyman-Pearson sense can be used to

derive the optimum FR that maximizes the system probability of detection PD for a given probability of

false alarm PF A [17]. Therefore [58],

Ĥopt = arg max
Hi

{
f
(
Hi|R̂

)
× κi

}
= arg max

Hi

f
(

R̂|Hi

)
× Pr (Hi)

f
(

R̂
) × κi

 (4.5)

where R̂ =
[
r̂T

1 , r̂T
2 , ..., r̂T

K

]
, r̂k = [r̂k,1, r̂k,2, ..., r̂k,L] and κi is a factor used to give priority to a hypothesis

or to satisfy some constraints on the fusion level false alarm rate. By noting that f
(

R̂
)

can be dropped

without affecting the optimization process, then

Ĥopt = arg max
Hi

{
f
(

R̂|Hi

)
× Pr (Hi) × κi

}
= arg max

Hi

K∏
k=1

L∏
l=1

{f (r̂k,l|Hi) × Pr (Hi) × κi} (4.6)

which can be simplified by computing the logarithm of the argument in (4.6), which gives

Ĥopt = arg max
Hi

K∑
k=1

L∑
l=1

ln {f (r̂k,l|Hi) × Pr (Hi) × κi} . (4.7)
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However, given that rk,l is quantized sufficiently and the CHD-FC link is fairly reliable, i.e., ρe = 0, then

r̂k,l ≈ rk,l. Consequently, the optimum rule can be expressed as

Ĥõpt =

 H1,
∑K

k=1
∑L

l=1 LLRõpt
k,l > τg

H0, otherwise
(4.8)

where τg = ln
(

κ0Pr(H0)
κ1Pr(H1)

)
, and

LLRõpt
k,l = ln

(
f (rk,l|H1)
f (rk,l|H0)

)
. (4.9)

According to the law of total probability, f (rk,l|Hi) can be written as

f (rk,l|Hi) =
∑

uk,l∈{−1,1}

f (rk,l|uk,l) Pr (uk,l|Hi) . (4.10)

By noting that the probability density function (PDF) of the received signal conditioned on uk,l

is f (rk,l|uk,l) ∼ CN (mk,l|uk,l,σ2
n), where mk,l|uk,l =

√
Pk,lhk,luk,l, the LLRõpt

k,l given in (4.9) can be

expanded as shown in (4.11), where µk,l =
√

Pk,lhk,l.

LLRõpt
k,l = ln

P d
k,l exp

(
−|rk,l−µk,l|2

σ2
n

)
+
(

1 − P d
k,l

)
exp

(
−|rk,l+µk,l|2

σ2
n

)
P fa

k,l exp
(

−|rk,l−µk,l|2

σ2
n

)
+
(

1 − P fa
k,l

)
exp

(
−|rk,l+µk,l|2

σ2
n

)
 (4.11)

After some mathematical manipulations, LLRõpt
k,l can be simplified to

LLRõpt
k,l = ln

P d
k,l +

(
1 − P d

k,l

)
exp (−yk,l)

P fa
k,l +

(
1 − P fa

k,l

)
exp (−yk,l)

 (4.12)

where yk,l = 4
σ2

n
ℜ
[
rk,l (µk,l)∗], and thus, it is necessary to know σ2

n to be able to compute yk,l.

Although the FR in (4.8) results in near-optimum detection performance, it suffers from the drawbacks

of high computational complexity and numerical problems which may occur at high SNRs; these may

limit its potential for practical implementation. The computational complexity arises because the rule

requires evaluating KL logarithmic and exponential functions for wide range of arguments. The numerical

instability may result from evaluating exponential functions when σ2
n → 0, and thus, exp (−yk,l) → ∞ or

0 depending on the sign of yk,l. In an alternative realization, the decision variable of the optimum rule

(4.8) can be written as

ln

 K∏
k=1

L∏
l=1

P d
k,l +

(
1 − P d

k,l

)
exp (−yk,l)

P fa
k,l +

(
1 − P fa

k,l

)
exp (−yk,l)

 (4.13)

and thus, the KL logarithmic operations can be reduced to one at the expense of an additional KL −

1 multiplications. Although the complexity of the multiplication operation is generally less than the

logarithm, it is typically difficult to compute the LLR values accurately due to the large number of
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multiplication operations. More specifically, when yl,k ≪ 1, or yl,k ≫ 1, the result of the product will

be either substantially large or small, which makes it infeasible to implement using reasonable hardware

complexity. Therefore, using the form in (4.8) is generally more preferable.

4.4 Existing Suboptimum Rules

This section presents the well-established FRs, which are used in this work for benchmarking purposes.

Although these rules are described in the literature, they are briefly listed in this paper for the sake of

completeness.

4.4.1 Chair-Varshney (CV) Rule [41]

The CV rule is widely considered for applications that require fusing 1-bit decisions transmitted from

distributed sensors, as in the case of cooperative spectrum sensing [21]. The pivotal requirement for

implementing the CV rule is the knowledge of the local probability of detection and false alarm at each

sensor.

In the CV rule, the fusion process is performed in two stages. In the first stage, a hard decision

detector based on the maximum likelihood criterion is applied to detect the transmitted BPSK signals.

Therefore, the estimated nodes’ decisions at the FC are given by

ûCV
k,l =

 1, 4
√

Pk,l

σ2
n

ℜ
(
rk,l(hk,l)∗)

> ln P1
P0

−1, otherwise
(4.14)

where P1 = Pr (uk,l = 1) and P0 = Pr (uk,l = −1). In general, obtaining accurate estimates for P1 and P0

is challenging because they depend on Pr (H0) and Pr (H1) [21]. Therefore, most of the works reported

in the literature assume that Pr (uk,l = 1) = Pr (uk,l = −1) = 0.5, and thus, ln Pr(uk,l=1)
Pr(uk,l=−1) = 0.

In the second stage, the resulted decisions ûCV
k,l ∀ {k, l} are sent for fusion using the CV rule,

ĤCV =

 H1,
∑

k

∑
l LLRCV

k,l > τCV

H0, otherwise
(4.15)

where

LLRCV
k,l =

 ak,l, ûCV
k,l = 1

bk,l ûCV
k,l = −1

(4.16)

ak,l = ln
(

P d
k,l

P fa
k,l

)
, bk,l = ln

(
1−P d

k,l

1−P fa
k,l

)
, and τCV is a fusion threshold used to satisfy certain constraints on

the fusion level false alarm rate. Figure 4.2 shows the LLRCV
k,l . As can be noted from (4.15), the CV

rule does not require evaluating logarithmic and exponential functions, but the values of P d
k,l and P fa

k,l are
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required at the FC.

Although the CV rule is highly reliable at high SNRs, the hard detection leads to significant per-

formance loss at low and moderate SNRs, which are typically the operating ranges of WSNs due to

power constraints. Consequently, applying the CV rule with hard detection may lead to modest error

performance, in addition to the degradation caused by assuming that Pr (uk,l = 1) = Pr (uk,l = −1) .

4.4.2 MaxLog Fusion Rule [41]

In this rule, using the fact that only one term in the denominator and numerator of (4.12) is dominant,

the optimum rule can be approximated by

ĤMaxLog =

 H1,
∑K

k=1
∑L

l=1 LLRMaxLog
k,l > τg

H0, otherwise
(4.17)

where

LLRMaxLog
k,l =


bk,l, yk,l ≤ ek,l

yk,l + ck,l, ek,l < yk,l < dk,l

ak,l, yk,l ≥ dk,l

(4.18)

where ck,l = ln
(

P d
k,l

1−P fa
k,l

)
, dk,l = ln

(
1−P fa

k,l

P fa
k,l

)
, and ek,l = ln

(
1−P d

k,l

P d
k,l

)
. Compared to the CV rule, the

MaxLog rule has the same requirements, and comparable computational complexity.

4.4.3 Ideal Local Sensors Rule (ILS) [35]

In this rule, it is assumed that the FC does not have knowledge of P d
k,l and P fa

k,l, and thus, it assumes

ideal sensors, i.e., P d
k,l = 1 and P fa

k,l = 0, which after substitution in (4.12) yields,

ĤILS =


H1,

K∑
k=1

L∑
l=1

4
√

Pk,l

σ2
n

ℜ
[
rk,l (hk,l)∗]

> τg

H0, otherwise
. (4.19)

Unlike all other FRs considered in this paper, the ILS rule does not require P d
k,l and P fa

k,l, and hence, it has

a computational complexity advantage. However, it is at the expense of error probability performance.

Another advantage in terms of computational complexity is that it does not require the evaluation of

exponential or logarithmic functions, but only of a small number of arithmetic operations.

4.5 Proposed ILA Rule

As can be noted from the discussion of the existing FRs in Section 4.4, the main goal of these techniques

is to reduce the complexity of the optimum FR by simplifying the LLRõpt
k,l . Nevertheless, each of these
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techniques seems to perform reliably only when the condition used for the simplification is accurate, i.e.,

none of them performs well for general operating conditions. For example, the CV rule is designed by

assuming that Pr (uk,l = 1) = Pr (uk,l = −1). However, as demonstrated in [21], this assumption may

lead to significant probability of fusion error (PFE) degradation. Therefore, the proposed ILA rule is

designed to provide an accurate approximation for the LLRõpt
k,l that offers reliable PFE performance for a

wide range of operating conditions while maintaining low-complexity.

As can be noted from Fig. 4.2, the LLRõpt
k,l passes through the point (0, 0) and the mid-point of the

nonlinear region
(
ymid

k,l , z
mid
k,l

)
, where zmid

k,l = ak,l+bk,l

2 , and then ymid
k,l can be evaluated based on (4.12) as

ymid
k,l = ln

1 − P d
k,l −

(
1 − P fa

k,l

)
e

zmid
k,l

P fa
k,le

zmid
k,l − P d

k,l

 (4.20)

Based on the points (0, 0) and
(
ymid

k,l , z
mid
k,l

)
, the slope of the line can be calculated as αk,l = zmid

k,l

ymid
k,l

. Recalling

the equation of a straight line, i.e., y = αx + b, and noting that b = 0 since the line passes through the

point (0, 0), the equation of the line can be simply expressed as LLRLine
k,l = αk,lyk,l. Moreover, referring

to Fig. 4.2, it can be observed that this line is bounded by ak,l and bk,l, and thus, the interval of the

straight line can be evaluated by finding the intersection points between αk,lyk,l and bk,l, and αk,lyk,l and

ak,l. Consequently, LLRILA
k,l can be approximated as

LLRILA
k,l =


bk,l, yk,l ≤ bk,l

αk,l

αk,lyk,l, bk,l

αk,l
< yk,l <

ak,l

αk,l

ak,l, yk,l ≥ ak,l

αk,l

(4.21)

Similar to (4.12), the approximated individual LLR functions are added and compared to the fusion

threshold in order to obtain the final decision ĤILA given by,

ĤILA =

 H1,
∑K

k=1
∑L

l=1 LLRILA
k,l > τg

H0, otherwise
. (4.22)

The accuracy of the approximated LLRILA
k,l is shown in Fig. 4.3, where the normalized error is computed

as

Normalized Error =

∣∣∣∣∣∣LLRILA
k,l − LLRõpt

k,l

LLRõpt
k,l

∣∣∣∣∣∣ (4.23)

and compared to the other considered fusion rules. As can be noted from the figure, the LLRILA
k,l has the

minimum error as compared to the considered fusion rules for yk,l ≲ 3. Otherwise, all LLRs converge and

approach zero, except for the ILS. By noting that yk,l ≫ 3 at high SNRs, then it is expected that the

fusion error probability for all fusion rules, except the ILS, are equivalent.
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Figure 4.2: A plot for the individual LLRk,l for the decision fusion rules.
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Figure 4.3: The normalized error of LLRk,l for the suboptimum fusion rules, using P d
k,l = 0.8 and P fa

k,l = 0.1.
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Quantizer Design: As can be noted from (4.21), the FC requires knowledge of rk,l, hk,l, σ2
n, and Pk,l,

and hence, the data overhead will be large because rk,l is the only signal that carries sensing information

while other variables are side information required for the fusion process. However, because the fusion

center actually requires the knowledge of yk,l = 4
√

Pk,l

σ2
n

ℜ
[
rk,l (hk,l)∗] rather than knowing each parameter

individually, then it is more efficient just to quantize yk,l and then send it to the FC. Consequently, the

CHD should estimate hk,l, compute and quantize yk,l, and pass it to the FC through the available links.

By noting that rk,l is complex while yk,l is real, then rk,l generally requires more bits to provide a certain

quantization error. Therefore, the overhead associated with hk,l, σ2
n, and Pk,l can be considered negligible.

Consequently, certain quality of service (QoS) requirements such as the service rate, queuing delay and

data drop should not be affected because the network does not allocate any noticeable transmission

resources for overhead data [60].

Given that a q-bit quantizer is employed, then yk,l is compared to a set of thresholds λi, where

i = {0, 1, . . . , 2q}, λ0 = −∞ and λ2q = ∞. It should be observed that yk,l is a real-valued random

variable with conditional PDF given in the Appendix, where µy = 0, σ2
y = 16Pk,l

σ4
n

[
2Pk,lσ

4
h + σ2

nσ2
h

4

]
.

Let ψ (·) and ∆ denote the quantization process and interval, respectively; then, the quantizer can be

represented as

dk,l =


0q, λ0 ≤ yk,l < λ1

ψ (yk,l) , λi ≤ yk,l < λi+1

1q, λ2q−1 ≤ yk,l < λ2q

(4.24)

where dk,l is the generated codeword, λ1 = −5σ2
y, λ2q−1 = 5σ2

y, 1q and 0q represent the all ones and all

zeros vectors with q elements. The interval ∆ and λi for 2 ≤ i ≤ 2q − 2 can be evaluated as

∆ = 2q − 2
10σ2

r

(4.25)

λi = λi−1 + ∆

= λ1 + (i− 1) × ∆. (4.26)

The overall process to deploy the proposed ILA in an IoT-based WSN can be summarized as depicted in

P rocedure I.

As can be noted from (4.22), the ILA complexity is mostly determined by the LLRILA
k,l (4.21). Given

that P d
k,l and P fa

k,l varying rate is much less than the transmission rate, which is typically the case, then

bk,l, ymid
k,l , z

mid
k,l , αk,l, and ak,l can be evaluated only once for several fusion operations, and thus, their

computational complexity can be dropped. Consequently, the main arithmetic operations required to

evaluate the ILA rule are 6KL multiplication/division operations, and 6KL − 1 additions/subtractions.

The complexity of the other considered algorithms can be evaluated in a similar approach using (4.14)
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P rocedure I: ILA deployment over WSN-IoT.
1. for each sensor do:
2. Sense the environment, and generate the local de-

cision uk,l

3. Send the local decision uk,l to the corresponding
CHD

4. end
5. for each CHD do:
6. Update the values of hk,l, Pk,l, and σ2

n

7. Compute yk,l = 4
√

Pk,l

σ2
n

ℜ
[
rk,l (hk,l)∗]

8. Digitize yk,l using (4.24) to produce dk,l

9. Forward dk,l to the FC through IoT infrastructure
10. end
11. FC do:
12. Update P d

k,l and P fa
k,l

13. Regenerate yk,l

14. Compute ĤILA using (4.22)
15. end
16. Output: ĤILA

Table 4.1: Computational complexity of the considered fusion rules.

Opt. CV MaxLog ILS ILA
± 6KL− 1 2KL− 1 3KL− 1 2KL− 1 2KL− 1
× 6KL 4KL 4KL 4KL 5KL
÷ 2KL KL KL KL KL
log KL - - - -
exp KL - - - -

and (4.15) for the CV, (4.17) and (4.18) for the MaxLog, and (4.19) for the ILS. Table 4.1 summarizes

the computational complexity of all considered algorithms, which reveals that all rules have generally

equivalent complexity, except for the optimum, which requires several additional operations. In addition

to the high computational complexity, the optimum rule suffers from an instability problem which arises

at high SNR [17].

4.6 Performance Analysis

In this section, the performance analysis for both ILA and CV rules is presented for the most general case

in which P d
k,l and P fa

k,l are different for each sensor. The PD/F A of the ILA rule is derived by evaluating the

numerical integration (4.30), while it is derived in closed-form for the CV rule. To simplify the analysis,

the channel between the CHDs and FC is assumed to be error-free. Moreover, the quantization error is

typically small, and hence, can be ignored.
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4.6.1 ILA Rule

The PD/F A for the ILA rule can be formulated as

P ILA
D/F A = 1

2πj

∫ q+j∞

q−j∞
ϕ−ILA(s|H1/0

) e−τgs

s
ds (4.27)

where ϕ−ILA
(
s|H1/0

)
is the Laplace transform of the PDF of −LLRILA, with LLRILA =

∑
k

∑
lLLRILA

k,l ,

which is given by

ϕ−ILA (s|H1/0
)

=
K∏

k=1

L∏
l=1

∑
uk,l

ϕ−ILA
k,l (s|uk,l) Pr

(
uk,l|H1/0

)
. (4.28)

However, the PDF of LLRILA is discontinuous, and thus, direct application of the Gauss-Chebyshev

quadrature integration is not feasible. Consequently, ϕ−ILA (s|H1/0
)

can be separated into two parts: ϕC

for the continuous part and ϕD for the terms which cause discontinuities

ϕ−ILA (s|H1/0
)

= ϕC
(
s|H1/0

)
+ ϕD

(
s|H1/0

)
=

(
ϕ−ILA (s|H1/0

)
− ϕD

(
s|H1/0

))
+ϕD

(
s|H1/0

)
. (4.29)

Thus, P ILA
D/F A can be written as

P ILA
D/F A = 1

2πj

∫ q+j∞

q−j∞
ϕD
(
s|H1/0

) 1
s
e−τgsds︸ ︷︷ ︸

ΓD|H1/0

+ 1
2πj

∫ q+j∞

q−j∞

1
s
e−τgs

(
ϕ−ILA (s|H1/0

)
− ϕD

(
s|H1/0

))
ds.

(4.30)

The first integral ΓD|H1/0 can be evaluated in closed-form using the inverse Laplace transform, while the

second integral can be efficiently evaluated using the Gauss-Chebyshev quadrature rule. The integral of

the discontinuous term ΓD|H1/0 is derived in Appendix in closed-form.

4.6.2 Chair-Varshney (CV) Rule with Different P d
k,l and P fa

k,l

Similar to the ILA case, the system level detection and false alarm probabilities for the CV rule, PCV
D/F A,

can be formulated as

PCV
D/F A = Pr

(
−LLRCV < −τg|H1/0

)
= 1

2πj

∫ q+j∞

q−j∞
ϕ−CV

(
s|H1/0

) e−τgs

s
ds (4.31)
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where LLRCV =
∑

k

∑
lLLRCV

k,l and ϕ−CV
(
s|H1/0

)
is the Laplace transform of the PDF of −LLRCV,

which can be expressed as

ϕ−CV (s|H1/0
)

=
K∏

k=1

L∏
l=1

ϕ−CV
k,l

(
s|H1/0

)
=

K∏
k=1

L∏
l=1

∑
uk,l

ϕ−CV
k,l (s|uk,l) Pr

(
uk,l|H1/0

)
=

K∏
k=1

L∏
l=1

(
esbk,lϕ

CV
bk,l

+esak,lϕCV
ak,l

)
(4.32)

where

ϕCV
bk,l

=
∑
uk,l

v2

v2 + v1
Pr
(
uk,l|H1/0

)
(4.33)

and

ϕCV
ak,l

=
∑
uk,l

v1

v2 + v1
Pr
(
uk,l|H1/0

)
. (4.34)

The variables v1 and v2 are defined in the Appendix.

For the sake of abbreviation, the final expression for PCV
D/F A is presented below, as the derivation is a

special case of that presented in the Appendix for the ILA rule, where the multi-binomial theorem and

then the Laplace inverse transform are applied to evaluate PCV
D/F A in closed-form as given by

PCV
D/F A =

1∑
n1=0

1∑
t1=0

· · ·
1∑

nK=0

1∑
tL=0

ϕn1
b1,1

ϕ1−n1
a1,1

× · · · × ϕtL

bK,L
ϕ1−tL

aK,L

× Φ [−τg + n1b1,1 + (1 − n1) a1,1 + · · · + tLbK,L + (1 − tL) aK,L] (4.35)

where

ϕbk,l
=
∑
uk,l

v2e
v1bk,l

αk,l

v2 + v1
Pr
(
uk,l|H1/0

)
(4.36)

and

ϕak,l
=
∑
uk,l

v1e
−

v2ak,l
αk,l

v2 + v1
Pr
(
uk,l|H1/0

)
. (4.37)

4.7 Simulation Results

In this section, the detection performance of all decision FRs considered in this paper is evaluated and

compared. Simulation results are obtained using Monte Carlo simulations, where each simulation run

consists of 107 realizations. Analytical results are also presented and compared with simulation results.

The links between the sensors and CHDs are considered i.i.d. flat Rayleigh fading with unit power;

thus, hk,l ∼ CN (0, 1) ∀ k, l. The total transmission power for the network is normalized to 1, and thus,

Pk,l = 1
KL per sensor and the total SNR of network is defined as γT = 1

σ2
n

, which can be easily estimated as
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Table 4.2: The detection and false alarm probabilities for sensors in each cluster.

Cluster (k) P d
k,l∀l P fa

k,l∀l
1 0.50 0.05
2 0.55 0.07
3 0.60 0.09
4 0.65 0.10

Table 4.3: System parameters used in simulations.

Fig. 4.4a Fig. 4.4b Fig. 4.5a Fig. 4.5b Fig. 4.6 Fig. 4.7
K 4 4 4 4 4 4
L 4 16 16 8 8 8
PF A 0.01 0.010 - - - -
τg - - 0 0 - 0
γT - - - - 10 dB -
ρe 0 0 0 0 0 -

described in [59]. The detection and false alarm probabilities for the individual sensors in each cluster are

given in Table 4.2, while Table 4.3 shows the simulation parameters for each of the figures. The values of

P d
k,l and P fa

k,l are typical in decision fusion systems where multiple low-cost sensors are utilized to produce

accurate decisions about certain events [61]- [64]. Unless otherwise mentioned, the link between the CHDs

and FC is considered error free, and the signal has no quantization errors. It is also worth noting that

evaluating the performance the proposed and other fusion algorithms using a physical WSN-IoT testbed

may offer great benefit because it considers comprehensive real-life scenarios. However, developing such

a testbed and testing the network under different scenarios can be quite challenging [60], and hence,

requires a dedicated work.

Figure 4.4 shows the system level detection probability PD for the considered FRs, i.e., the optimum,

ILA, MaxLog, CV and ILS rules. The results in Fig. 4.4a are obtained for a system with four clusters,

each of which has four sensors, i.e., K = 4 and L = 4, whereas K = 4 and L = 16 are considered in Fig.

4.4b. The fusion threshold τg is adjusted such that the system level false alarm probability is fixed at

PF A = 0.01 for both subplots and all SNRs. As can be noted from the figure, analytical results for the

proposed ILA and CV rules perfectly match simulation results. In terms of detection capability, it is clear

that the ILA rule outperforms all the other considered suboptimum rules, and is actually comparable to

the optimum. The MaxLog rule performance is close to ILA, with a fraction of 1 dB difference. For ILS

and CV rules, the performance depends on SNR and the number of sensors. For the 16 sensors case in

Fig. 4.4a, the ILS offers higher PD when compared to the CV rule at γ̄T ≲ 11 dB. For the case of 64

sensors in Fig. 4.4b, the ILS rule consistently outperforms the CV for low and moderate SNRs, while

they converge for γ̄T ≳ 16 dB. It can be also noted from Fig. 4.4a that the ILS rule suffers a fixed error

when the number of sensors is small even at very high SNRs.

Figure 4.5 shows the probability of fusion error Pe for the considered FRs, where Pe = Pr (H1) (1 − PD)+

Pr (H0)PF A. The number of sensors is 64 for Fig. 4.5a and 32 for Fig. 4.5b, where the number of sensors

per cluster is L = 16 and 8, respectively. The fusion threshold τg is set to 0 for all considered cases. As
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Figure 4.4: The detection probability PD for KL = 16 and 64 sensors, respectively, where PF A = 0.01.
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Figure 4.5: The probability of error fusion Pe for KL = 64 and 32, respectively, where τg is set to 0.
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Figure 4.6: The receiver operating characteristics for γT = 10 dB, where KL = 32.

can be noted from Fig. 4.5a, Pe generally suffers from error floor at high SNRs for all FRs, which is caused

by P d
k,l and P fa

k,l. However, the ILS rule is the most sensitive with high error floor of about 0.1, while it

is about 2.5 × 10−6 for the other rules. Moreover, Pe of the proposed ILA rule remains very close to the

optimum rule for the entire range of SNRs, particularly at high SNR where the two curves merge. Unlike

the case in Fig. 4.4, the MaxLog performance at low and moderate SNRs shows significant degradation

with respect to the optimum and ILA rules. This performance degradation is caused by the biasing in

LLRMaxLog
k,l as shown in Fig. 4.2, where LLRMaxLog

k,l ̸= 0 at yk,l = 0, and thus, the optimum threshold for

the MaxLog case is not τg = 0. The effectiveness of the proposed ILA rule is clear in this figure, where

it considerably outperforms all other suboptimum FRs. For the case of L = 16 in Fig. 4.5b, reducing

the number of sensors increases the error floor substantially. Nevertheless, the ILA rule maintained its

superiority with respect to the other considered rules. Similar to the case of 64 sensors, Pe for all rules

converge except for the ILS. Moreover, analytical and simulation results show perfect match.

Figure 4.6 shows the receiver operating characteristics for the system, where PD is plotted versus PF A

using γT = 10 dB. The number of sensors per cluster is L = 8. The results in the figure emphasize

the efficiency of the ILA rule for wide range of PF A and PD, where its performance is comparable with

the optimum rule and better than the other rules. For example, the optimum and ILA rules provide

PD ≈ 0.7 at PF A ≈ 10−4, while the MaxLog, ILS and CV rules provide PD ≈ 0.6, 0.59 and 0.24,

respectively. Moreover, to achieve PD = 0.9 using all rules, PF A should be about 2 × 10−3 for the

optimum and ILA rules, while it is about 5 × 10−3, 6.5 × 10−3, and 4 × 10−2 for the MaxLog, ILS, and

CV rules, respectively.

Figure 4.7 evaluates the impact of the BSC on Pe for the ILA rule; therefore, yk,l at all CHDs is
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Figure 4.7: The impact of the BSC between the CH and FC for different values of ρe, where L = 8 and q = 8.

quantized using an 8-bit quantizer. As can be noted from the figure, the transition probability ρe of the

BSC may have significant impact on the FC performance. More specifically, the transition probability

of the core network should be kept below 10−3 to achieve near-ideal performance. For example, for

ρe = 5 × 10−3, the performance deteriorates by about 5 dB at Pe = 10−4.

The run-time for the proposed ILA, optimum and other suboptimum rules is given in Fig. 4.8 versus

the number of sensors in the network KL. As can be noted from the figure, the ILA, CV and MaxLog

have generally equivalent run-time while the optimum has the maximum. The ILS rule has less run-time

requirements, but it is at the expense of the modest performance.

4.8 Conclusion and Future Work

In this work, the decision fusion problem for IoT-based clustered WSN has been investigated. A new

decision FR denoted as the ILA rule was proposed and analyzed, where an analytical expression in terms

of a single integral has been derived. Moreover, a closed-form expression has been obtained for the CV

rule. The process of fusing the collected sensors’ decisions after passing through an unknown channel was

considered, where the channel is modeled as BSC, and received decisions are quantized at the CHDs. The

analytical results corroborated by simulation revealed that the ILA rule offers near-optimum performance

for various operating conditions, and the transition probability of the BSC should be less than 10−3 to

obtain reliable decisions at the fusion center. Moreover, the computational complexity of the ILA, CV

and MaxLog are generally comparable.

While there are some WSN platforms with MAC protocols that support orthogonal and interference-

free transmission, there are other MAC protocols that do not guarantee interference-free transmission.
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Figure 4.8: The run-time results for the optimum and suboptimum fusion rules.

Therefore, it would be crucial to evaluate the performance of various fusion rules in the presence of

interference and derive efficient algorithms to reduce its impact. Moreover, evaluating the performance

the proposed and other fusion algorithms using a physical WSN-IoT testbed may offer great benefit to

corroborate the analytical and simulation results in real-life scenarios.

Appendix

The PDF of yk,l is [17]

f (yk,l|uk,l) = v1v2

v2 + v1

(
ev1yk,lΦ (−yk,l) + e−v2yk,lΦ (yk,l)

)
(4.38)

where Φ (·) is the unit step function and vi ∀i ∈ {1, 2} can be expressed as

vi =
√√√√w2

k,l + 1
C2

k,l

(
σ2

rk,l
σ2

h − µ2
rk,l,hk,l

) − (−1)iwk,l. (4.39)

The parameters required to compute vi are defined as

wk,l =
µrk,l,hk,l

Ck,l

(
σ2

rk,l
σ2

hk,l
− µ2

rk,l,hk,l

) , Ck,l = 2
σ2

n

√
Pk,l,

µrk,l,hk,l
=
√

Pk,lσ
2
huk,l, and σ2

rk,l
= Pk,lσ

2
h + σ2

n. (4.40)
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Therefore, ϕ−ILA
k,l (s|uk,l) can be evaluated as

ϕ−ILA
k,l (s|uk,l) =

bk,l
αk,l∫

−∞

esbk,lf (yk,l|uk,l) dyk,l +

ak,l
αk,l∫

bk,l
αk,l

esαk,lyk,lf (yk,l|uk,l) dyk,l +
∞∫

ak,l
αk,l

esak,lf (yk,l|uk,l) dyk,l

(4.41)

ϕ−ILA
k,l (s|uk,l) = v1v2

v2 + v1


bk,l
αk,l∫

−∞

esbk,lev1yk,ldyk,l+
0∫

bk,l
αk,l

esαk,lyk,lev1yk,ldyk,l +

ak,l
αk,l∫
0

esαk,lyk,le−v2yk,ldyk,l

+
∞∫

ak,l
αk,l

esak,le−v2yk,ldyk,l

 (4.42)

which can be evaluated as

ϕ−ILA
k,l (s|uk,l) = v1v2

v2 + v1

esbk,l+
v1bk,l

αk,l

v1
+e

sak,l−
v2ak,l

αk,l

v2
+1 − e

(αk,ls+v1)
αk,l

bk,l

αk,ls+ v1
+ e

(αk,ls−v2)ak,l

αk,l − 1
αk,ls− v2

 .

(4.43)

It should be observed that the inverse of ϕ−ILA
k,l (s|uk,l) has discontinuities, and thus, ϕ−ILA (s|H1/0

)
is separated into two parts: ϕ−ILA,C for the continuous part and ϕ−ILA,D for the terms which cause

discontinuities. These terms are evaluated separately and results are obtained in closed-form, where

ϕ−ILA,D is

ϕ−ILA,D (s|H1/0
)

=
K∏

k=1

L∏
l=1

(
esbk,lϕbk,l

+esak,lϕak,l

)
(4.44)

and can be expanded as

ϕ−ILA,D (s|H1/0
)

=
(
esb1,1ϕb1,1+esa1,1ϕa1,1

)
× · · · ×

(
esbK,LϕbK,L

+esaK,LϕaK,L

)
(4.45)

where

ϕbk,l
=
∑
uk,l

v2e
v1bk,l

αk,l Pr
(
uk,l|H1/0

)
v2 + v1

(4.46)

and

ϕak,l
=
∑
uk,l

v1e
−

v2ak,l
αk,l Pr

(
uk,l|H1/0

)
v2 + v1

. (4.47)

113



By applying the multi-binomial theorem in (4.45) yields

ϕ−ILA,D (s|H1/0
)

=
1∑

n1=0

1∑
t1=0

· · ·
1∑

nK=0

1∑
tL=0

{(
1
n1

)(
1
t1

)
· · ·
(

1
nK

)(
1
tL

)
×
(
esb1,1ϕb1,1

)n1(
esa1,1ϕa1,1

)1−n1

· · ·
(
esbK,LϕbK,L

)tL
(
esaK,LϕaK,L

)1−tL
}

(4.48)

which can be written as

ϕ−ILA,D (s|H1/0
)

=
1∑

n1=0

1∑
t1=0

· · ·
1∑

nK=0

1∑
tL=0

{(
1
n1

)(
1
t1

)
· · ·
(

1
nK

)(
1
tL

)
× ϕn1

b1,1
ϕ1−n1

a1,1
· · ·ϕtL

bK,L
ϕ1−tL

aK,L

×es[n1b1,1+(1−n1)a1,1+···+tLbK,L+(1−tL)aK,L]
}
. (4.49)

Therefore, ΓD|H1/0 can be evaluated using the inverse Laplace transform tables [65] as

ΓD|H1/0 =
1∑

n1=0

1∑
t1=0

· · ·
1∑

nK =0

1∑
tL=0

{(
1
n1

)(
1
t1

)
· · ·
(

1
nK

)(
1
tL

)
× ϕn1

b1,1
ϕ1−n1

a1,1
· · ·ϕtL

bK,L
ϕ1−tL

aK,L

×Φ (−τg + n1b1,1 + (1 − n1) a1,1+ · · · + tLbK,L + (1 − tL) aK,L)} . (4.50)

Since
( 1

nk

)
= 1 for nk ∈ {0, 1}, ΓD|H1/0 is reduced to

ΓD|H1/0 =
1∑

n1=0

1∑
t1=0

· · ·
1∑

nK =0

1∑
tL=0

{
ϕn1

b1,1
ϕ1−n1

a1,1
· · ·ϕtL

bK,L
ϕ1−tL

aK,L
× Φ (−τg + n1b1,1 + (1 − n1) a1,1+

· · · + tLbK,L + (1 − tL) aK,L)} . (4.51)
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Chapter 5

A Unified Performance Framework for

Integrated Sensing- Communications based

on KL- Divergence1

Abstract

The need for integrated sensing and communication (ISAC) services has significantly increased in the last

few years. This integration imposes serious challenges such as joint system design, resource allocation,

optimization, and analysis. Since sensing and telecommunication systems have different approaches for

performance evaluation, introducing a unified performance measure which provides a perception about

the quality of sensing and telecommunication is very beneficial. To this end, this paper provides perfor-

mance analysis for ISAC systems based on the information theoretical framework of the Kullback-Leibler

divergence (KLD). The considered system model consists of a multiple-input-multiple-output (MIMO)

base-station (BS) providing ISAC services to multiple communication user equipments (CUEs) and tar-

gets (or sensing-served users). The KLD framework allows for a unified evaluation of the error rate

performance of CUEs, and the detection performance of the targets. The relation between the detection

capability for the targets and error rate of CUEs on one hand, and the proposed KLD on the other hand

is illustrated analytically. Theoretical results corroborated by simulations show that the derived KLD

is very accurate and can perfectly characterize both subsystems, namely the communication and radar

subsystems.
1M. A. Al-Jarrah, E. Alsusa and C. Masouros, “A Unified performance framework for integrated sensing-

communications based on KL-divergence,” Submitted to IEEE Trans. Wireless Commun., Sep. 2022.
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Index Terms

Integrated sensing and communication (ISAC), relative information, Kullback-Leibler distance, zero forc-

ing (ZF) precoding, maximum ratio transmission (MRT) precoding, MIMO radar, multiple targets.

5.1 Introduction

With the immensely successful deployment of fifth generation (5G) networks worldwide, many technolo-

gies, services and applications have been created. Examples for such technologies, include massive con-

nectivity for internet-of-things (IoT) devices [1–3], autonomous or self-driving vehicles [4], and unmanned

aerial vehicles (UAVs) [5,6], which all rely on sensing and are subject to future developments. Therefore,

sensing services such as detection, localization, tracking, navigation and environmental surveillance are

expected to be supplied by network operators in the future to support these kinds of technologies. How-

ever, sensing services would add extra challenges due to limited network resources including spectrum,

time and energy. Therefore integrating telecommunication services and sensing functionalities to optimize

network resources have become an active research area for the past few years [7–13].

Generally speaking, remote sensing can be defined as the collection of measurements and data from

the surroundings without physical contact with objects or the phenomena of interest [3, 14]. Sensing is

used in a massive number of daily applications such as radar, LiDAR, IoT applications, electromagnetic

sensing, underwater sensing, environmental sensing and monitoring, medical applications, global position-

ing systems (GPS), etc [1,15–18]. Two main categories can be used to classify sensing systems, which are

passive and active sensing. Whilst passive detectors rely on signals emitted from sources (e.g. infrared,

the sunlight and smoke detectors) or reflected by objects as the case of cameras, energy is intentionally

emitted from a source and the reflected or backscattered signals are detected and measured by sensors

in the case of active type sensing. Examples for active sensing applications include conventional and

multiple-input-multiple-output (MIMO) radars, LiDAR and sonar. In MIMO radars, the one intended

in this work, multiple antennas are employed with digital receivers and waveform generators feeding the

aperture. Unlike phased array radars in which the separation between the antenna elements is typically

small, MIMO radars employ relatively widely separated antennas (e.g. d ≥ λ/2, where d is the antenna

separation and λ is the wavelength). Therefore, MIMO radars have the ability to integrate energy from

different waveforms to obtain diversity gain which results in high resolution detection and localization

capabilities [21–23].

On the other hand, in multi-user MIMO (MU-MIMO) communication systems, multiple beams can be

transmitted from a base-station (BS) to serve a number of users with adequate data rates and quality-of-

service (QoS). MIMO has become an integral element in wireless communications and has been adopted by

several global standards and specifications such as 4G, 5G, IEEE 802.11n and WiMax, etc [24,25]. More
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recently, massive MIMO BSs which are equipped with a large number of antennas, practically up to 256,

are employed to provide connectivity to a significant number of users simultaneously. Moreover, by using

a large number of antennas, inter-user interference can be efficiently eliminated due to the asymptotic

orthogonality of the channels. Other significant advantages of massive MU-MIMO is achieving a huge

capacity, enhancing the spectral efficiency without network densification, improving the energy efficiency,

providing the ability to generate focused beams that feed small areas [24–27].

Evidently, there is a persistent evolution in wireless communication networks in general where BSs

equipped with a large number of antennas play a main role in this evolution. Moreover, promoting the

functionality of BSs to be able to provide sensing services in addition to their fundamental communication

duties is unavoidable for efficient deployment of IoT and sensing systems. Therefore, exploiting the large

number of antennas to provide integrated sensing and communication (ISAC) services simultaneously is

expected play a significant role in the future [7–13]. Therefore, this paper investigates ISAC system and

studies the performance trade-off using the relative entropy (RE) theorem, or so called Kullback-Leibler

divergence (KLD). Although KLD has been used in the literature to evaluate the detection capability of

sensing systems [28–32], it is not commonly used to describe a communication systems. However, we will

show that KLD can also capture the detection performance of a communication system and has a direct

relation to the symbol error rate (SER). With this introduced performance measure, both subsystems,

namely, the radar and the communication subsystems, can be characterized, and thus the capability of

an ISAC system can be evaluated holistically using a unified performance measure rather than using a

different performance measure for each individual subsystem.

5.1.1 Related work

5.1.1.1 MIMO Radar

In [19], MIMO based radars have been firstly proposed as an alternative solution to phased array radars,

where it is shown that the new concept of MIMO radars is able to provide a spatial diversity. The

performance of MIMO and phased array radars have been compared using analytical derivations for

the detection and false alarm probabilities. The principle of MIMO radar is generalized to the case of

non-orthogonal signal waveforms in [20]. In addition, the effect of interfering signals on the detection

capability is considered in [33], and the effect of a gamma fluctuating target and synchronization errors

are taken into account in [34] and [35], respectively.

The problem of target detection with MIMO radar for multi-target scenarios has also been considered

in the literature [36–41]. In [36], for instance, the statistical angle resolution has been investigated and

the performance is evaluated using derived detection and false alarm probabilities, and the clutter impact

on the radar resolution is considered in [37]. A multiple hypotheses testing problem based multi-target

detection is considered in [38] for passive MIMO radar in which targets illuminate signals rather that
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acting as scatterers or reflectors. Another effort on multi-target multi-hypothesis detection scenario

using cognitive MIMO radars can be found in [39], where an adaptive waveform design algorithm is

proposed. Moreover, a joint multi-target detection and localization problem is investigated in [40], where

low-complex suboptimal detection algorithms have been proposed. Furthermore, a sequential probability

ratio test (SPRT) based method is introduced in [41] to resolve close targets in co-located MIMO radars.

5.1.1.2 ISAC

More recently, ISAC systems have been introduced in the literature and attracted the attention of both

academic research and industrial fields. Generally speaking, ISAC implies the use of the telecommu-

nication network resources for both sensing and telecommunication services [10]. In such scenario, a

multi-antenna BS can be applied to provide both services simultaneously by exploiting multiple beams

generated in the transmission mode. In the reception mode, a portion of the antennas can be used for

radar reception, or time division multiple access (TDMA) can be applied to reduce the interference. Alter-

natively, one can apply interference cancellation algorithms to separate radar signals from communication

signals [10,42,43].

In [7], a robust beamforming matrix is proposed for a MU-MIMO communication system that shares

the same spectrum with a MIMO radar system with the objective of maximize the detection probability

of the radar system. The concept of ISAC is introduced in [8,9] in which a single BS is dedicated for both

functionalities of communications and sensing. Two models, referred to as separated deployment and

shared deployment are presented, where the BS antennas are distributed among each sub-system in the

separated deployment whereas all antennas are exploited for both sub-systems in the latter case. Several

designs for the signals waveforms and beampatterns are proposed in [8, 9] to satisfy the requirements of

communication users’ rates and detection capability of the radar sub-system. A comprehensive survey for

the signal processing tools that can be applied for ISAC systems can be found in [11] for three possible

scenarios, namely, radar-centric, communication-centric and joint design.

In [12] and [13], a dual-functional communication and radar system with massive MIMO-OFDM is

considered for downlink and uplink scenarios, respectively. The achievable rate and detection capability

for both sub-systems are derived and discussed under perfect and imperfect channel side information

(CSI). In [44], the dual functional system is optimized aiming at maximizing the achievable sum-rate

and energy-efficiency while satisfying a minimum required target detection probability and the individual

users’ rates. A novel approach for ISAC system which considers IEEE 802.11ad-based long range radar

operating at 60 GHz is investigated in [45], where the preamble of a single-carrier frame with good

correlated sequences is exploited for the radar signal.

An optimization algorithm to jointly design the transceiver of BS and power allocation for uplink users

is introduced in [46] aiming at maximizing the radar detection probability, while maintaining a desirable
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quality-of-service for the individual communication user equipment (CUEs). In [47], the optimal power

distribution among the communication and training symbols is derived, and the waveform design is

considered to maximize the weighted sum of mutual information for communication and sensing parts.

Rate-splitting multiple access (RSMA) based ISAC system is introduced in [48] based on optimizing the

weighted sum-rate for CUEs while satisfying a pre-defined radar beampattern under constrained average

transmit power. A comprehensive literature survey about resource allocation methods is provided in [49].

Performance trade-off of ISAC system is analyzed in [50] using the detection probability and achievable

rate for radar and communication users, respectively. The power resources of BS is allocated for the radar

waveforms and information signals such that the probability of detection for the radar is maximized with

a minimum required information rate for CUEs. In [51] and [52], the performance of uplink and downlink

integrated ISAC is analyzed in terms of the outage probability, ergodic communication rate, diversity

order, and sensing rate. A full-duplex ISAC scheme that exploits the waiting time of a pulsed radar

to transmit communication signals is proposed in [53]. Besides, the probability of detection for the

radar sensing part and the spectrum efficiency of the communication subsystem are analyzed. In [54],

an ISAC system which employs OFDM and orthogonal time frequency space (OTFS) modulation is

considered, where a vehicle equipped with a mono-static radar is communicating with a receiver and

simultaneously measures some parameters about that receiver by exploiting the backscattered signal.

The maximum likelihood estimator and its corresponding Cramer-Rao bound have been derived for a

single target scenario, and the root mean square error and data rate have been used to evaluate the

performance of radar and communication subsystems, respectively. A similar setup is considered in [55]

under a memoryless channel assumption and the system is analyzed using capacity-distortion trade-off,

which is defined as the maximum achievable communication rate at which the data can be reliably decoded

by the receiver while keeping the sensing distortion at a desirable value.

5.1.2 Motivation and contribution

As can be depicted from the introduction and literature survey above, ISAC systems are expected to play

a pivotal role in future wireless networks such as 6G and beyond. Researches in the literature usually use

different metric for the performance evaluation of sensing and communication subsystems. For example,

sum-rate, bit/symbol error rate, and outage probability are typically used for the communication part,

whereas estimation rate, detection probability, false alarm probability and mean square error (MSE) are

utilized to evaluate the performance of the radar systems. Motivated by this fact, this paper considers

an ISAC system which consists of MIMO-BS serving a number of CUEs and aims at detecting a number

of targets with a main objective concerns in providing a unified performance measure to evaluating the

efficiency of communication and radar subsystems at the same time. The proposed performance measure

is based on the Kullback-Leibler divergence theorem, also referred to the relative information theorem,
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which provides a measure for how different is a certain probability density function (PDF) from another

one. Mathematically, it can be defined as the expectation of the log-likelihood ratio (LLR), and thus

it is asymptotically related to the detection performance of radar systems. More specifically, according

to Stein’s lemma, a higher KLD measure implies a better detection performance for a certain radar

system [30,32].

Although KLD is well-known in the field of sensing and target detection, it is not widely used to

characterize the performance of wireless communication systems. However, we will show in this paper

that KLD can be employed to infer the symbol error rate of the detector at the CUEs, in addition to being

informative of the detection capability of MIMO radars. Consequently, such a measure can be effectively

used to evaluate the performance of ISAC systems as a single entity instead of two separated (unlinked)

performance measures. Accordingly, we consider a generalized system model with a MIMO-BS, multiple

users and multiple targets, where the weighted sum of the relative entropy (WSRE) is proposed to infer

the efficiency of ISAC systems as one system rather than two subsystems. The contribution of this paper

can be summarized in the following.

1. Providing a framework for the statistics of received signals as well as a KLD based analysis for CUEs

using two well-known precoding techniques employed by the MIMO-BS, namely, the zero forcing

(ZF) and the maximum ratio transmission (MRT) precoders. It is worth noting that although MRT

is widely used in the literature, to the best of authors knowledge, the analysis of the statistics of the

received signals and interference from other users and radar signal has not been well investigated.

2. Inspired by full-duplex communications, an interference cancellation (IC) approach, which is appli-

cable at the MIMO-BS before employing targets detection, is proposed in order to cancel out the

communication signal reflected from the environment.

3. Providing a unique KLD analysis for the MIMO radar sub-system. The uniqueness of this KLD

comes from two facts. The first one is that KLD analysis with noncentral Chi-squared observations,

which is the case in most of MIMO radars, has not been derived in the literature. The second fact

is that the analysis takes into account the imperfect cancellation for the communication waveform

portion reflected by the environment.

4. Proposing a unified performance measure for ISAC systems using WSRE for the case of multiple

CUEs and targets.

5. Introducing KLD as a measure for communication systems, and illustrating its relation to SER. Ad-

ditionally, the relation between KLD and the detection probability in MIMO radars is investigated.

6. Evaluating the performance of the proposed WSRE using the derived formulas, and validating the

analysis by simulations.
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The obtained results show that the derived KLD is very accurate and can be efficiently used to infer

the efficiency of both parts of the ISAC systems, namely, the communication and radar subsystems.

5.1.3 Paper Organization

Sec. II presents the system model for the ISAC scenario of interest and a background about KLD. Sec.

III, provides the KLD analysis for the communication subsystem, and the relation between KLD and SER

is investigated in Sec. IV. Sec. V shows the derivation of KLD for a MIMO radar system considering

a multiple targets scenario, and relates KLD to the detection probability of radar. Sec. VI introduces

the WSRE performance measure for ISAC while Sec. VII provides the numerical results and Sec. VIII

concludes the paper.

5.2 System Model

As illustrated in Fig. 5.1, this work considers an ISAC system which consists of MIMO-BS with a total of

N antennas serving a number of single antenna K CUEs in the downlink direction and aims at detecting

T targets which can be ground targets, unmanned aerial vehicles (UAVs) or a mix of ground targets and

UAVs, where the radar-targets propagation medium obeys a line-of-sight channel model. The separated

deployment, in which the BS antennas are distributed among the communication and radar subsystems, is

the scenario of this paper’s interest. The transmitter employs linear precoding techniques such as ZF and

MRT to precode the information intended to CUEs before the transmission process takes place through

the allocated NC ≤ N antennas. Moreover, the power budget at BS is limited to PT which is supposed

to be exploited for data transmission and sensing, and thus PT = PC + Prad where PC and Prad denote

the amounts of power allocated for the communication and radar subsystems, respectively. It is worth

mentioning that although there are several precoding methods in the literature such as interference aware

precoding and dirty paper coding which could outperform ZF and MRT, the later two precoders, ZF and

MRT, are the most attractive solutions due to their low-complexity, implementation feasibility in practice

and reasonable performance [24–27]. On the other hand, the radar matrix is assumed to be designed

using a desired radar signal sl which satisfies a covariance matrix of Rs ≜ 1
L

∑L
l=1 slsH

l with L being

the number of snapshots. The radar signal vector sl is emitted towards the targets using the remaining

NR = N −NC antennas assigned for the radar service.

5.2.1 Communication Subsystem

For a given transmission interval l, a data symbol dk [l] intended for the kth CUE is picked from a

normalized constellation with E
[
|dk [l]|2

]
= 1, and precoded using a linear precoder with a precoding

vector wk ∈ CNC×1, and thus the precoded information symbols for all users dw ∈ CNC×1 can be written
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Figure 5.1: An illustration diagram for separated deployment based ISAC.

as

dw [l] =
K∑

i=1

√
piwidi [l] , (5.1)

where pi is a power control factor. Consequently, the received signal at the kth CUE considering the

interference caused by the radar signal is

yk [l] = gT
k dw [l] +

√
Prad

NR
fT
k sl+nk[l], (5.2)

where Prad is the power allocated to the radar subsystem, gk ∈ CNC ×1 ∼ CN
(
0, 2σ2

g

)
is a flat Rayleigh

channel gain vector from the communication antennas to the kth CUE, fT
k ∈ CNR×1 ∼ CN

(
0, 2σ2

f

)
with (·)T denoting the transpose operation is a flat Rayleigh channel vector which captures the channel

between the radar antennas and CUEs, sl is the radar waveform, and nk ∼ CN
(
0, 2σ2

n

)
is the additive

white Gaussian noise (AWGN). In this paper, channels are assumed independent identically distributed

(i.i.d) and follow flat Rayleigh fading.

5.2.2 Sensing Subsystem

Generally speaking, in MIMO radar, a signal vector s (t) is transmitted from BS towards the targets,

which reflect the signals that are captured at the receiver, which is the same BS in the case of monostatic

scenario. Moreover, due to the multipath nature of the wireless medium, the signals which get reflected

from a target might be received at BS through multiple paths with different amplitudes and phases. In

such scenarios, virtual targets, also known as ghost targets, which are virtual copies of the actual target

with different values of the angle-of-arrival (AoA), will appear. Ray tracing techniques, the uniform

diffraction theory and the law of reflection can be employed to separate the actual target from ghost
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targets [56–58]. However, similar to many existing work in the literature, this work is concerned with

the scenario in which the radar-targets channels are subject to direct path propagation model [20,23,33].

It is noteworthy mentioning that since monostatic MIMO radar with direct path channel is considered,

antennas have almost equal distance to a certain target and thus they are subject to equal pathloss values.

Therefore, unlike wireless communication systems, it is unlikely to have preference for one antenna over

another, and thus Prad can be evenly distributed over the radar antennas. Consequently, for interference

free environment, the baseband representation of the radar return signals from the direct path with time

delay τd and Doppler shift ωd can be written as,

ỹrad (t) =
T∑

t=1
αt

√
Prad

NR
aR (θt) aT (θt)T s (t− τt,d) ejωt,dt + nrad (t) , (5.3)

where αt is the channel gain for BS-Target-BS path, aT (θt) and aR (θt) denote the transmit and receive

array gain, respectively, and nrad (t) is AWGN. The received signals vector ỹrad (t) is typically processed

through a bank of matched filters which are tuned to a Doppler frequency of ωd and a time delay of τd.

In other words, the detection process is applied to a certain range-Doppler bin and could be repeated

for other range-Doppler bins separately [20, 23, 33]. Therefore, let the desired radar waveform in signal

domain sl ∈ CNR×1 ∀l ≤ L, where L is the number of snapshots, aT (θ) and aR (θ) are the transmit

and receive array gains of a uniform linear array (ULA), respectively, the signals vector reflected by the

targets and received at BS, which is processed through a bank of filters tuned to τd and ωd and impinged

by communication signal interference, can be expressed as

ỹrad [l] =
T∑

t=1
αt

√
Prad

NR
aR (θt) aT (θt)T sl + Graddw [l] + nrad [l] , (5.4)

where the term Graddw [l] represents the interference from the communication subsystem which is caused

by backscattering the communication signal from the environment, Grad ∈ CNR×NC is the channel matrix

from the NC communication antennas to NR radar antennas, and nrad ∈ CNR×1is the AWGN, i.e.,

nrad ∼ CN
(
0, 2σ2

nINR

)
where INR

is the identity matrix.

Interestingly, it can be observed from (5.4) that the interference caused by the communication signal

consists of the channel gain of the BS (Communication transmitter)-Environment-BS (radar receiver) link

and the data vector dw [l] which has been already transmitted from BS. Since dw [l] is previously known

at BS, interference cancellation (IC) process can be very beneficial if the estimate of Grad is available at

BS. It worth noting that the estimation of Grad can be performed at BS in a previous phase through pilot

signals. Therefore, inspired by full duplex communication systems, we propose such IC process which is

very useful for real life ISAC systems and analyze the radar system considering that the IC process is not

perfect. Given the estimated channel matrix Ĝrad, the received signals in (5.4) after applying IC can be
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rewritten as

yrad [l] =
T∑

t=1
αt

√
Prad

NR
A (θt) sl + ωrad + nrad [l] , (5.5)

where a monostatic radar is considered with a(θt)≜aR(θt)=aT (θt)≜
[
1, ej 2π∆

λ0
sin θt , · · · , ej 2π∆

λ0
(NR−1) sin θt

]
T,

∆ is the antenna spacing, λ0 is the signal wavelength, A (θt) ∈ CNR×NR = a (θt) a (θt)T is the equivalent

array manifold, and ωrad ∈ CNR×1 = Gerrdw [l] = Gerr
∑K

k=1
√
pkwkdk [l] is the interference from the

communication subsystem to radar subsystem after employing IC with Gerr ≜ Grad − Ĝrad representing

channel estimation errors.

5.2.3 The Relative Entropy or Kullback-Leibler Divergence (KLD)

The relative entropy, or KLD, for a pair of random PDFs is defined in Definition 1 below. Although the

KLD measure is originally defined for a pair of PDFs, it can be extended for multiple PDFs by considering

every pair separately and then evaluating the average for all possible unequal pairs.

Definition 1: For a pair of continuous PDFs, fm (x) and fn (x), KLDn→m is defined as the relative

entropy from fn (x) to fm (x) or a measure of how different a PDF fn (x) is from another PDF fm (x). In

general , KLD is an asymmetric measure, and mathematically KLDn→m for continuous random variable

can be represented as [30]

KLD (fm ∥ fn) =
∞∫

−∞

fm (x) log2

(
fm (x)
fn (x)

)
dx, (5.6)

where KLD (fm ∥ fn) ≜ KLDn→m∀m ̸= n. For multivariate Gaussian distributed random variables

having mean vectors of µm and µn and covariance matrices of Σm and Σn, it can be derived as

KLDn→m = 1
2 ln 2

(
tr
(
Σ−1

n Σm

)
− 2 + (µk,n − µk,m)T Σ−1

n (µk,n − µk,m) + ln |Σn|
|Σm|

)
, (5.7)

Since KLD is generally asymmetric, the average KLD can be evaluated wherever KLDn→m ̸= KLDm→n,

i.e., KLDn,m ≜ 1
2 (KLDn→m + KLDm→n). It worth noting that when the logarithm function with base

2, i.e., log2 (·), is considered, KLD is measured in bits, whereas it is measured in nats when the natural

logarithm ln (·) is used. In this work, we consider the first case and KLD is measured in bits.

KLD, or the relative entropy, has a wide range of applications in several science and engineering disci-

plines such as comparing the information gain of different statistical models for model selection, machine

learning to measure the information gain achieved by using the distribution fm rather than the current

distribution fn, information coding to measure the expected number of extra bits required to encode

samples taken from the distribution fm using a code optimized for another distribution fn, and quantum

information science where the minimum KLD (fm ∥ fn) over all possible separable states fn is used to

model the entanglement in state fm. According to the well known Neyman-Pearson lemma, the best
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way to separate or distinguish between two random variables through an observation X taken from one

of them is obtained by using the log-likelihood ratio test, i.e., log2( fm(x)
fn(x) ), where the performance can

be assessed using the expected value of the log-likelihood ratio which represents the relative entropy or

KLD as defined in (5.6). Moreover, KLDn→m, or equivalently KLD (fm ∥ fn), with fm and fn respec-

tively represent the distribution of received samples under hypotheses H1 and H0, can be interpreted

as the expected discrimination information or information gain for discriminating hypothesis H1 against

hypothesis H0 when H1 is the true hypothesis [59–62].

Clearly, KLD is an informative measure that can be applied for inferring systems to assess the dis-

crimination process between a set of candidates such as the data detection process in communication

systems and hypothesis testing problem in sensing systems. Moreover, unlike traditional metrics such

as SER, detection probability and false alarm probability, KLD is independent of the detection process

and detection thresholds applied at the receiver. By using KLD as a unified performance measure, the

performance of the two subsystems of ISAC are put on the same scale rather than two different scales. It

is noteworthy to mention that according to [30, Ch. 2], KLD is a generalization for the concept of mutual

information which in one role generalizes the Shannon entropy. Therefore, our core aim in this work is to

develop a unified performance framework for both sensing and communications, departing from separate

performance metrics, which is very beneficial for the design of integrated waveforms for ISAC systems.

Additionally, it is worth noting that the trade-off between the two subsystems is not always clear when

different metrics are employed to evaluate the performance of ISAC.

5.3 Relative Entropy Analysis for Communication Subsystem

The received signal at the kth CUE in (5.2) can be represented as

yk [l] = √
pkgT

k wkdk [l] + gT
k

K∑
i=1
i ̸=k

√
piwidi [l] + ηk[l], (5.8)

where ηk[l] ≜
√

Prad
NR

fT
k sl+nk[l] is the radar interference plus noise. It can be shown that the distribution

of fT
k sl follows complex Gaussian with a mean of E

[
fT
k sl

]
= 0 and a variance of

E
[
fH
k slsH

l fk

]
= 2σ2

fE
[
tr
(
slsH

l

)]
= 2σ2

f tr (Rs) = 2σ2
fNR, (5.9)

where the last equality is obtained given the fact that the elements of the main diagonal of Rs are typically

normalized to ones. Consequently, the distribution of ηk[l] =
√

Prad
NR

fT
k sl+nk[l] is complex Gaussian with

ηk ∼ CN
(
0, 2σ2

η

)
where σ2

η = Pradσ
2
f + σ2

n.

For the design of the data beamforming matrix W = [w1,w2, · · · ,wK ], we consider the widely ac-

cepted ZF and MRT in the following two sections. Generally speaking, for a linear precoding matrix W,
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the received data vector at CUEs can be written in a matrix form as

y [l] = GT WPd[l] + η[l], (5.10)

where G ∈ CNC ×K = [g1,g2, · · · ,gK ], W ∈ CNC ×K = [w1,w2, · · · ,wK ] is the precoding matrix, P ∈

CK×K = diag
(√
p1,

√
p2, · · · ,√pK

)
is power control matrix, d[l] ∈ CK×1 = [d1 [l] , d2 [l] , · · · , dK [l]]T ,

F ∈ CNR×K =
[
fT
1 , fT

2 , · · · , fT
K

]
is the interfering channel matrix between the radar antennas and

CUEs, n[l] ∈ CK×1 = [n1 [l] , n2 [l] , · · · , nK [l]]T , and η[l] ∈ CK×1 = [η1 [l] , η2 [l] , · · · , ηK [l]]T , which is

defined as η[l] ≜
√

Prad
NR

FT sl + n[l], is the radar interference plus noise term with ηk ∼ CN
(
0, 2σ2

η

)
where

σ2
η = Pradσ

2
f + σ2

n.

5.3.1 ZF based Data Precoding

Here, we assume ZF is employed at BS to precode the users’ data, which is able to cancel out the

interference between the users. Using such precoder, the precoding matrix W is generally given by

W = G∗ (GT G∗)−1, where (·)∗ is the conjugate operator. Consequently, by substituting W in (5.10)

and noting that GT W = IK with IK represents the identity matrix, we obtain

y [l] = Pd[l] + η[l], (5.11)

where P depends on the normalization scheme employed as discussed in the next two subsections.

5.3.1.1 ZF based on vector normalization

With vector normalization based ZF (VNZF), P = diag (α1,ZF, α2,ZF, · · · , αK,ZF) Pcom where αk,ZF =
1

∥wk∥ is a normalization factor and Pcom ≜ diag
(√

P1,com,
√
P2,com, · · · ,

√
PK,com

)
with constraint PC =∑

k Pk,com is used to control the average transmission power for CUEs. It is worthy to mention that for

users with equal priorities, Pk,com can be selected such that Pk,com = PC
K . Anyway, for the general case

with unequal Pk,com’s, the received signal at the kth CUE is

yk [l] =
√
Pk,comαk,ZFdk [l] +ηk[l]. (5.12)

Based on the received signal yk [l], the conditional density function of yk| {dk [l] , αk,ZF} is complex Gaus-

sian (or bivariate Gaussian), which can be expressed as

f (yk| {dk [l] , αk,ZF}) = 1√
(2π)2 |Σ|

exp
(

− (yk − µk)T Σ−1 (yk − µk)
)
, (5.13)
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where yk ≜ [yk,R, yk,I]T with yk,R ≜ Re (yk) and yk,I = Im (yk) denote the real and imaginary com-

ponents of yk, respectively, and µk ≜ [µk,R, µk,I]T with µk,R =
√
Pk,comαk,ZFRe (dk [l]) and µk,I =√

Pk,comαk,ZFIm (dk [l]). The covariance matrix Σ = σ2
ηI2 with |Σ| = σ4

η and Σ−1 = 1
σ2

η

I2.

Corrolary 1: For a generalized M -ary signal constellation, KLD can be evaluated for each possible

pair of unequal data symbols {dk,n[l] , dk,m[l]} , n ̸=m. Let us consider a pair of symbols
{
dk,n [l] ≜ |ak,n| ejϕk,n ,

dk,m [l]≜ |ak,m| ejϕk,m

}
∀n ̸=m, with corresponding received signals density functions fn ∼ CN (µk,n,Σn)

and fm ∼ CN (µk,m,Σm), thus the relative entropy for the kth CUE measured in bits from fm to fn is

denoted as KLDm→n and can be derived using Definition 1 as

KLDk,m→n = 1
2 ln 2

(
tr
(
Σ−1

m Σn

)
− 2 + (µk,m − µk,n)H Σ−1

m (µk,m − µk,n) + ln |Σm|
|Σn|

)
. (5.14)

By noting that Σn =Σm =σ2
ηI2, and given that µk,m =

[√
Pk,comαk,ZF cosϕk,m,

√
Pk,comαk,ZF sinϕk,m

]
,

KLDm→n can be simplified to

KLDk,m→n = 1
2 ln 2σ2

η

(µk,m − µk,n)H (µk,m − µk,n)

= 1
ln 2γVNZF

(
|am|2 + |an|2 − 2 |am| |an| cos (ϕk,m − ϕk,n)

)
= 1

ln 2γVNZF |dk,n [l] − dk,m [l]|2 , (5.15)

where γk,VNZF =
α2

k,ZFPk,com

2σ2
η

.

As stated earlier, since KLD is measured for a pair of PDFs, the average KLD, KLDk,VNZF, is evaluated

by considering all possible pairs of dissimilar symbols, which can be represented as

KLDk,VNZF = γVNZF

ln 2

M∑
m=1

M∑
n=1
n ̸=m

Pr (ϕk,m, ϕk,n) |dk,n [l] − dk,m [l]|2 , (5.16)

and for equal likelihood symbols, it can be reduced to

KLDk,VNZF = γVNZF

M (M − 1) ln 2

M∑
m=1

M∑
n=1
n ̸=m

|dk,n [l] − dk,m [l]|2 = λ

M (M − 1) ln 2γVNZF, (5.17)

where λ =
∑M

m=1
∑M

n=1
n ̸=m

|dk,n [l] − dk,m [l]|2 which depends on the transmitted data constellation, and thus

λ is a constant for a given constellation. For MPSK signalling, as an example, with a normalized constel-

lation, KLDMPSK
k,VNZF,m→n = 2

ln 2γVNZF × (1 − cos (ϕk,m − ϕk,n)) and KLDMPSK
k,VNZF = λ

M (M − 1) ln 2γVNZF

with λMPSK = 2
∑M

m=1
∑M

n=1
n ̸=m

(1 − cos (ϕk,m − ϕk,n)) are obtained.

The KLD derivations have not considered the randomness nature of the communication channel so

far, which results in a random normalization factor αk,ZF, and thus averaging over αk,ZF must be taken

into account for the sake of completeness. Towards this goal, the distribution of α2
k,ZF ≜ 1

[(GT G∗)−1]
k,k

is
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found first, which under Rayleigh fading follows a Gamma random variable with a scale factor of 1 and

a shape factor of LG = NC −K + 1 [63], i.e., x ≜ α2
k,ZF ∼ Gamma(LG, 1).

fx (x) = 1
Γ (LG)x

LG−1e−x, x ≥ 0. (5.18)

Therefore, αk,ZF follows the generalized Gamma distribution with the following PDF

fαk,ZF (αk,ZF) = 2
Γ (LG)α

2LG−1
k,ZF e−α2

k,ZF , αk,ZF ≥ 0. (5.19)

Consequently, by evaluating the average of (5.17) the relative entropy for the kth CUE is

KLDk,IVNZF,avg = λ

M (M − 1) ln 2E [γVNZF] . (5.20)

Substituting the density function given by (5.19) in (5.20), KLDk,IVNZF,avg can be expressed as

KLDk,IVNZF,avg = λ

M (M − 1) ln 2
Pk,com

2σ2
η

2
Γ (LG)

∫ ∞

0
α2LG+1

k,ZF e−α2
k,ZFdαk,ZF. (5.21)

By using integration by substitution with y = α2
k,ZF, and noting that α2LG

k,ZF =
(
α2

k,ZF

)LG
= yLG and

dαk,ZF = 1
2αk,ZF

dy, KLDk,IVNZF,avg is reduced to

KLDk,IVNZF,avg = λ

M (M − 1) ln 2
Pk,com

2σ2
η

1
Γ (LG)

∫ ∞

0
yLGe−ydy. (5.22)

Thereafter, with the aid of the definition of the Gamma function, i.e., Γ (LG) =
∫∞

0 yLG−1e−ydy, thus∫∞
0 yLGe−ydy = Γ (LG + 1), and using the fact that Γ (LG + 1) = LG! since LG is a positive integer value,

KLDk,IVNZF,avg can be found as

KLDk,IVNZF,avg = λ

M (M − 1) ln 2
Pk,com

2σ2
η

LG. (5.23)

5.3.1.2 ZF with instantaneous matrix normalization

With instantaneous channel matrix based normalization, P ≜α̃ZFPcom with α̃ZF =
√

1
(dH WWH d) , and

the received signal at the kth CUE can be written as

yk [l] =
√
Pk,comα̃ZFdk [l] +ηk[l]. (5.24)

Following the derivations in the previous case, it can be easily shown that α̃ZF follows a generalized

Gamma distribution, i.e., α̃ZF ∼ GG(a = 1, d = 2LG = 2 (NC −K + 1) , p = 2). Based on the received

signal yk [l], the density function of yk| {α̃ZF, dk [l]} is complex Gaussian (or bivariate Gaussian), and thus
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the instantaneous and average KLD for the kth CUE can be respectively expressed as

KLDk,IZF|αZF = λ

M (M − 1) ln 2
Pk,com

2σ2
η

α̃2
ZF, (5.25)

with an average value of

KLDk,IZF,avg = λ

M (M − 1) ln 2
Pk,com

2σ2
η

∫ ∞

0
α̃2

ZFfα̃ZF (α̃ZF) dα̃ZF. (5.26)

By substituting the generalized Gamma distribution for fα̃ZF (α̃ZF), and then employing the integration

by substitution theorem with x = α̃2
ZF and using the definition of Gamma function, KLDk,IZF,avg can be

derived as

KLDk,IZF,avg = λ

M (M − 1) ln 2
Pk,com

2σ2
η

(NC −K + 1) . (5.27)

Interestingly, by comparing (5.27) with (5.23), it can be realized that the KLDs for ZF with instan-

taneous vector normalization and matrix normalization are equal. Therefore, we will consider ZF with

instantaneous matrix normalization in our investigations henceforth.

5.3.2 MRT based Data Precoding with Vector Normalization

To employ MRT, sometimes called the matched filter (MF), for data precoding, the precoding vector for

the kth user data, wk, is evaluated based on the channel vector gk only, and thus wk is independent of

gi∀i ̸= k. For MRT, we consider the instantaneous vector based normalization with wk = g∗
k and thus

the received signal at the kth user can be written as

yk [l] = gT
k

∥gk∥

K∑
i=1

√
Pi,comwidi [l] +

√
Prad

NR
fT
k sl+nk[l] =

√
Pk,com ∥gk∥ dk [l] + ω̃MRT[l], (5.28)

where the equivalent inter-user and radar interference plus noise term ω̃MRT = ωMRT + ηk with ωMRT =

gT
k

∑K
i=1
i̸=k

√
Pi,comğidi [l] is the inter-user interference, where ği = g∗

i / ∥gi∥. To find the statistical distri-

bution of ω̃MRT, we first evaluate the statistical properties of ωMRT. Towards this goal, let us define new

variables as ṽk,i =
√
Pi,com

tk,i

zi
, zi = ∥gi∥ ≜

√∑NC

nc=1 |gi,nc
|2, and tk,i =

∑NC

nc=1 di [l] gT
k,nc

g∗
i,nc

∀i ̸= k,

and thus ωMRT can be written as

ωMRT =
K∑

i=1
i ̸=k

√
Pi,com

∑NC

nc=1 di [l] gT
k,nc

g∗
i,nc

∥gi∥
=

K∑
i=1
i̸=k

ṽk,i. (5.29)

As shown in Appendix I, with the aid of the central limit theorem (CLT), the density of ṽk,i can

be approximated as a complex Gaussian distribution, ṽk,i ∼ CN
(
0, 2Pi,comσ

2
v

)
, and thus ωMRT ∼

CN
(

0, 2σ2
v

∑K
i=1
i ̸=k

Pi,com

)
. Therefore, the equivalent inter-user and radar interference plus noise ω̃MRT ∼

CN
(
0, 2σ2

ω

)
where σ2

ω = σ2
v

∑K
i=1
i ̸=k

Pi,com + σ2
η with σ2

η = Pradσ
2
f + σ2

n. Fig. 5.2 compares the density

functions obtained by approximation (Aprx) with the actual distributions obtained by simulation (Sim)
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for different values of the number of communication antennas NC , where the total number of the BS

antennas is fixed at N = 30. Binary phase shift keying (BPSK) is considered in this figure with PT
σ2

n
= 10

dB, Prad = 0.3 units and the number of CUEs is K = 2. It is worth noting that the legends for Fig. 5.2

a) and Fig. 5.2 b) are similar, as well as, the legend of Fig. 5.2 d) is the same as Fig. 5.2 c). Since

the variables tk,i, ṽk,i and ω̃MRT are complex and symmetric, we plot the real components of the random

variables as the imaginary parts have distributions identical to the real parts. As can noted from the

figure, the accuracy of CLT considered to approximate the PDF of tk,i starts improving as NC increases.

More specifically, the approximated PDF converges to simulations for NC > 8. It can be also observed

from Fig. 5.2 b) that the Gaussian approximation used in Appendix I to approximate the Chi squared

distributed random variable zi is very accurate for NC > 4. As can be seen from Fig. 5.2 b), unlike the

other three subfigures, the mean value of zi increases as NC increases which can be attributed to the fact

that zi is the envelope of the sum of the power gains of a number of NC independent paths according to

the definition of zi above (5.29). On the other hand, it can be observed from Fig. 5.2 a) that the mean

value of tk,i is 0 since it is a sum of i.i.d random variables with zero mean, and so are ṽk,i and ω̃MRT as

seen from Fig. 5.2 c) and Fig. 5.2 d). Interestingly, as can be depicted from Fig. 5.2 c) and Fig. 5.2 d),

the variance of ṽk,i and ω̃MRT is independent of NC because, according to their definition, each term is

normalized by ∥gi∥ which cancels the impact of NC . Interestingly, Fig. 5.2 c) and Fig 5.2 d) show that

the distributions of ṽk,i and ω̃MRT are independent of the number of antennas NC and the approximated

densities perfectly captures the characteristics of these random variables.

Since the distribution of ω̃MRT is accurately approximated as a Gaussian density function, Corrolary

1 can be employed and then the expected value with respect to ∥gk∥2 is evaluated. Consequently, the

KLD for MRT with vector based normalization can be found as

KLDk,NIMRT,avg = Pk,com

2σ2
ωM (M − 1) ln 2λE

[
∥gk∥2

]
=

λσ2
g

σ2
ωM (M − 1) ln 2NCPk,com, (5.30)

where the fact that ∥gk∥2 ∼ Gamma
(
NC , 2σ2

g

)
is used to evaluate E

[
∥gk∥2

]
.

5.4 Relation Between ZF-KLD and SER

For the sake of completeness, in this section we compare the commonly used SER performance evaluation

metric with the KLD metric. Towards this purpose, we consider the ZF precoding scheme with instan-

taneous matrix based power normalization whose received signal is given in (5.24). The SER of most

standard modulation schemes, such as MPSK, MPAM, rectangular and nonrectangular MQAM, under

AWGN channel can be generally approximated as [76, Table 6.1, pp. 180],

SERIZF|α̃ZF = AQ
(√

BγIZF|α̃ZF

)
, (5.31)
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Figure 5.2: The density functions of the approximated random variables: a) The PDF of the real part of ti,k, b)
The PDF of zi, c) The PDF of the real part of ṽi,k, and d) The PDF of the real part of interference plus SNR
ω̃MRT.
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where γIZF|α̃ZF ≜ Pk,com
2σ2

η
α̃2

ZF and SERIZF|α̃ZF denote the instantaneous SNR and SER, respectively, of an

IMZF based precoding system conditioned on α̃ZF, Q (·) is the tail distribution function of the standard

normal distribution, i.e., the Q-function, and the values of A and B are dependent on the modulation

scheme and order. Consequently, by comparing (5.25) with (5.31), the KLD in (5.25) can be written in

terms of SERLTZF|α̃ZF as

KLDIZF|α̃ZF = λ

M (M − 1) ln 2
1
B

(
Q−1

(SERIZF|α̃ZF

A

))2
, (5.32)

where Q−1 (·) is the inverse Q-function. On the other hand, the average SER can be evaluated by

averaging SERIZF|α̃ZF over the PDF of α̃ZF, which can be written as

SERIZF = A

∫ ∞

0
Q

(√
BPk,com

2σ2
η

α̃ZF

)
fα̃ZF (α̃ZF) dα̃ZF. (5.33)

By substituting the PDF of α̃ZF provided in (5.19) and rewriting the Q-function in terms of the comple-

mentary error function erfc, i.e., Q (x) = 1
2erfc

(
1√
2
x

)
, SERIZF can be expressed as

SERIZF = A

Γ (NC −K + 1)

∫ ∞

0
α̃

2(NC−K)+1
ZF e−α̃2

ZFerfc
(√

BPk,com

4σ2
η

α̃ZF

)
dα̃ZF, (5.34)

which can be solved using [65, 2.8.5.6, pp. 104] as

SERIZF = A

(
1
2 − Γ (NC −K + 1.5)

Γ (NC −K + 1)

√
BPk,com

4πσ2
η

2F1

(
[0.5, NC −K + 1.5] ; 1.5; −BPk,com

4σ2
η

))
, (5.35)

where 2F1 ([ · , · ]; · ; ·) is the Gaussian, or ordinary, hypergeometric function. By comparing SERIZF|α̃ZF

with the average KLD in (5.27), it is more convenient to rewrite SERIZF|α̃ZF as a function of KLD.

Therefore, by using (5.27), we obtain Pk,com

2σ2
η

= M (M − 1) ln 2
λ (NC −K + 1)KLDIZF,avg, and thus SERIZF can be

rewritten as

SERIZF = A

1
2 − Γ (NC −K + 1.5)

Γ (NC −K + 1)

√
Bλ̃

2π KLDIZF,avg

× 2F1

(
[0.5, NC −K + 1.5] ; 1.5; −B

2 λ̃KLDIZF,avg

))
, (5.36)

where λ̃ = M (M − 1) ln 2
(NC −K + 1)λ .
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5.5 Radar System with Multiple Targets

For the radar subsystem, we consider the case in which targets are spatially separated such that each

target is in a distinct radar bin [41,66,67]. It is worth noting that some separation algorithms have been

proposed in the literature to separate signals associated with individual targets in the case of unresolvable

targets, and thus estimating the number of targets can be achieved accordingly, [38–40]. We assume that

the number of possibly existing targets in the environment is known at BS, however, a simple counting

method can be performed by employing the detection process in this paper on all radar angular-range-

Doppler bins and then counting the number of detected targets. Additionally, we consider that MIMO

radar is able to generate multiple beams simultaneously by considering a linear combination of multiple

orthogonal signals [21,68–70]. Let Φ = [ϕ1, ϕ2, · · · , ϕT ]T be a set of T orthonormal baseband waveforms,

κt with
∑T

t=1 κt = 1 is a power allocation factor which is used to control the amount of power to be

emitted towards a certain target, and wrad,t [l] ∈ CNR×1, t = {1, 2, · · · , T} is a weight vector at the

lth signalling period, then the transmitted signals vector at the output of transmitting antennas can be

represented as

s̃l =
√
Pt,rad

NR

T∑
t=1

√
κtwrad,tϕt =

√
Pt,rad

NR
Wrad diag (κ̄) Φ, (5.37)

where κ̄ ∈ C1×T =
[√
κ1,

√
κ2, · · · ,√κT

]
with ∥κ̄∥2 =1 is the power allocation vector that is used to control

the portion of power emitted towards each target, and Wrad[l]∈CNR×T =[wrad,1[l] ,wrad,2[l],· · ·, w̌rad,T [l]]

with wrad,t [l] ∈ CNR×1 is the precoding matrix. In general, the precoding vectors wrad,t [l] ∀t can be de-

signed to optimize the radar subsystem performance or satisfy some desired radar covariance matrix; for

example, a radar covariance matrix of Rw ≜ 1
L Wrad × WH

rad = INR×NR
is typically used for omnidirec-

tional radar. Using this signal waveform design for the radar subsystem, the receiver can apply a set of

matched filters to separate the signals reflected by different targets by matched-filtering the received sig-

nals yrad (t) to signal waveforms ϕt∀t = {1, 2, · · · , T}. Consequently, after matched-filtering yrad under

hypothesis H1, the target existence scenario, using the corresponding ϕt, the received signal vector in

baseband in (5.5) can be rewritten as

yrad,t|H1 [l] =
√
κtPrad

NR
αtaR (θt) aT (θt)T wrad,t + Graddw [l] + nrad [l] , (5.38)

where the last equality is obtained using the fact that ϕt∀t = {1, 2, · · · , T} are orthonormal waveforms.

Interestingly, as can be observed from the received signal form, the interference and noise free part of

yrad,t [l] ∈ CNR×1 is a function of the parameters of target t only, and thus targets can be resolved and

detected independently of each other.

By employing IC to cancel out or reduce the amount of interference caused by the communication

signals reflected by the environment and noting that we consider imperfect cancellation due to channel

estimation errors of Gerr, then the received signal vector under hypothesis H1 can be represented as
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y̌rad,t|H1 [l] =
√
κtPrad

NR
αtA (θ) wrad,t + ωrad[l] + nrad [l] , (5.39)

where ωrad[l] ∈ CNR×1 ≜ Gerrdw [l] = Gerr
∑K

i=1
√
piwidi [l] represents the residue of the communication

signal after implementing IC. By assuming that the statistics of channel estimation errors follow a Gaussian

distribution [71, 72], i.e., each entry of Gerr is CN
(
0, 2σ2

err
)

where 2σ2
err is the variance of the channel

estimator, and noting that every element in ωrad is a sum of independent KNC random variables, the

CLT can be applied to approximate the density of the elements of ωrad for large KNC . Consequently, the

errors caused by imperfect IC are approximately complex Gaussian distributed, ωrad ∼ CN
(
0, 2σ2

ωINR

)
with σ2

ω = σ2
errσ

2
wNC ×

∑K
i=1 Pi,com where σ2

w is the variance of the elements of wi. Hence, the received

signal can be expressed as

y̌rad,t|H1 [l] =
√
κiPrad

NR
αtA (θt) wrad,t + ω̃rad[l], (5.40)

where ω̃rad[l] ≜ ωrad + nrad [l] ∼ CN
(
0, 2σ2

ω̃INR

)
with σ2

ω̃ = σ2
ω + σ2

n.

On the other hand, under null hypothesis H0, i.e., the target absence scenario, the received signals

consist of the residues of imperfect IC and AWGN, consequently, the received signals vector is

y̌rad|H0 [l] = ω̃rad[l]. (5.41)

After collecting a number of L snapshots, the received signal matrix can be formulated as

Y̌rad,t|H1 =
√
κiPrad

NR
αtaR (θt) aT (θt)T Wrad,t + Ωrad (5.42)

Y̌rad,t|H0 = Ωrad, (5.43)

where W̃t,rad ∈CNR×L = [wt,rad [1] ,wt,rad [2] , · · · ,wt,rad [L]] and Ωrad ∈ CNR×L = [ω̃t,rad [1] , ω̃t,rad [2] ,

· · · , ω̃t,rad [L]]. By noting that y̌rad,t|H1 [l] ∼ CN
(√

κiPrad
NR

αtA (θt) wrad,t [l] , 2σ2
ω̃INR

)
, the log-likelihood

function of the received signal matrix Y̌rad,t|H1 can be obtained as

ln
(
f
(

Y̌rad,t|H1 ;αt, θt

))
= −NRL ln

(
πσ2

ω̃

)
− 1

2σ2
ω̃

L∑
l=1

∥∥∥∥∥y̌rad,t|H1 [l] −
√
κiPrad

NR
αtA (θt) wrad,t [l]

∥∥∥∥∥
2

. (5.44)

By evaluating the squared norm and neglecting the terms which do not affect the estimation process, the

sufficient statistic matrix can be formulated as

Ẽt = 1
L

L∑
l=1

y̌rad,t|H1 [l] wH
rad,t [l] , (5.45)
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which, after extracting the independent sufficient statistics, can be simplified to [20, Eq. 15],

et = αtdw (θt) + ñ, (5.46)

where dw (θt) = vec
{

A (θt) UΛ1/2
}

with w̆rad,t [l] = Λ−1/2UHwrad,t [l] denotes the equivalent array

steering vector which is a function of the signal correlation matrix, and ñ= 1
L

vec
{∑L

l=1 ω̃rad [l] w̆H
rad,t [l]

}
∼

CN
(
0, 2σ2

ω̃INR

)
. Consequently, the generalized likelihood ratio test (GLRT) can be formulated as

ξ (θt)
H1

⋚
H0

τ , where τ is a detection threshold which, according to Neyman-Pearson test, is determined

by fixing the false alarm rate at a fixed value, and ξ (θt) is the generalized likelihood ratio function and

given by [73, Ch. 6.5]

ξ (θt) ≜ ln
(

arg max
θt,αt

f (et;αt, θt, H1)/arg max
θt,αt

f (et;H0)
)

= ln
(
f
(

et; α̂t, θ̂t, H1

)
/f (et;H0)

)
, (5.47)

where
{
α̂t, θ̂t

}
are the maximum likelihood estimates of the target parameters, which can be evaluated

as

{
α̂t, θ̂t

}
= arg max

θt,αt

f (et;αt, θt, H1) = arg min
θt,αt

∥et − αtdw (θt)∥2
. (5.48)

The generalized likelihood ratio function ξ (θt) can be derived as [20, Eq. 36]

ξ (θt) =
∣∣∣∣aR

(
θ̂t

)H

ẼtaT

(
θ̂t

)∣∣∣∣2/(NRaR

(
θ̂t

)H

RT
t aT

(
θ̂t

))
, (5.49)

where Rt = 1
L

∑L
l=1 wt,rad [l] wH

t,rad [l]. After substituting for Ẽt as given in (5.45), ξ (θt) can be written

as

ξ (θt) =
∣∣∣∣∣aR

(
θ̂t

)H 1
L

L∑
l=1

y̌rad,t|H1 [l] wH
rad,t [l] aT

(
θ̂t

)∣∣∣∣∣
2

/

(
NRaR

(
θ̂t

)H

RT
t aT

(
θ̂t

))
. (5.50)

Thereafter, by using the law of large numbers, it can be deduced that at L −→ ∞, the estimators of

αt and θt are asymptotically consistent estimators, thus θ̂t
asymp.−→ θt and α̂t

asymp.−→ αt. Consequently, by

substituting for y̌rad,t|H1 using (5.40) and considering orthogonal signal waveforms with Rt = INR
, ξ (θt)

can be reduced to

ξ (θt) =
∣∣∣∣∣
(√

κiPrad

NR
αtaT (θt)T RtaT

(
θ̂t

)
+ n̆

)∣∣∣∣∣
2

,

where n̆ ∼ CN
(
0, 2σ2

ω̃

)
. Obviously, by using the fact that the squared amplitude of a complex Gaussian

distributed random variable is Chi-squared distributed, the sufficient statistics of ξ (θk) is [20, Eq. 37], [33,

Eq. 54], [73, Ch. 6.5]

ξ (θt) ∼

 H1 : X 2
2 (λt)

H0 : X 2
2 (0)

, (5.51)
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where X 2
2 (λt) denotes a noncentral Chi-squared random variable with 2 degrees of freedom and a noncen-

trality parameter of λt = |αt|2

σ2
ω̃

κtPrad

NR

∣∣aH (θt) Rta (θt)
∣∣2, which for orthogonal waveforms (e.g. Rt = INR

where INR
is an NR ×NR identity matrix), can be reduced to λt = |αt|2

σ2
ω̃

κtNRPrad.

5.5.1 KLD from ξH1 to ξH0

By using Definition 1, noting that noncentral Chi-squared random variables are strictly positive, sub-

stituting fξ (ξ|H0) = 1
2 e−0.5ξ and fξ (ξ|H1) = 1

2 e−0.5(ξ+λt)I0
(√
λtξ
)
, and using the logarithmic identity

log2 x = ln x
ln 2 , the relative information from ξH1 to ξH0 can be derived as

KLD (ξH0 ∥ ξH1) =
∞∫

0

fξ (ξ|H0) log2

(
fξ (ξ|H0)
fξ (ξ|H1)

)
dξ = 1

2 ln 2

∞∫
0

e−0.5ξ ln
(

1
e−0.5λtI0

(√
λtξ
)) dξ. (5.52)

Thereafter, using the logarithmic identities loga

(
x
y

)
= loga x− loga y and loga (xy) = loga x+loga y, and

noting that ln(1) = 0, ln(ex) = x and
∞∫
0

e−0.5ξ = 2, KLD (ξH0 ∥ ξH1) can be written as

KLD (ξH0 ∥ξH1) = 1
2

0.5λt

ln 2

∞∫
−∞

e−0.5ξdξ− 1
ln 2

∞∫
−∞

e−0.5ξ ln
(
I0

(√
λtξ
))

dξ


= 1

2

1.4427λt− 1
ln 2

∞∫
0

e−0.5ξ ln
(
I0

(√
λtξ
))dξ. (5.53)

To be able to solve the integral, we make use of the infinite series representation of the modified Bessel

function I0 (x) for 0 ≤ x ≤ 1, and an asymptotic approximation for I0 (x) which is very accurate for x > 1.

It is worth noting that since I0 (x) is sharply increasing as x increases, thus the computation of the infinite

series representation is very costly for large values of x. Therefore, the infinite series representation of

I0 (x) is employed for small values of x, i.e., 0 ≤ x ≤ 1, while an efficient asymptotic approximation with

high accuracy is invoked when x > 1 [74, Eq. 9.7.1, pp. 377]. Using the infinite series representation,

I0
(√
λtξ
)
for 0 ≤ ξ ≤ 1

λt
(e.g. the Bessel function argument x ∈ [0, 1]) can be written as [74, Eq. 9.6.10,

pp. 375],

I0

(√
λtξ
)

= 1 +
∞∑

l=1

λl
t

22l (l!)2 ξ
l, 0 ≤ ξ ≤ 1

λt
. (5.54)

However, since this representation will be used for small values of λtξ, the first few terms, i.e., two or

three terms, provide a tractable solution with a very accurate approximation. On the other hand, the

following approximation is used for ξ > 1
λt

[74, Eq. 9.7.1, pp. 377],

I0

(√
λtξ
)

≃
exp

(√
λtξ
)

√
2π 4

√
λtξ

1 +
Q∑

q=1

 1(√
λtξ
)q

∏q
k=1

[
(2k − 1)2

]
q!8q

 , ξ >
1
λt
, (5.55)
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where the results show that using Q = 5 provide very accurate approximation for the considered scenarios

in this paper. Consequently, by dividing the interval of the integral in (5.53) into two subintervals as

discussed above, KLD (ξH0 ∥ ξH1) can be given by

KLD (ξH0 ∥ ξH1) = 1
2

(
1.4427λt − 1

ln 2 (I1 + I2)
)
, (5.56)

where

I1 =

1
λt∫

0

e−0.5ξ ln
(
I0

(√
λtξ
))

dξ, (5.57)

and

I2 =
∞∫

1
λt

e−0.5ξ ln
(
I0

(√
λtξ
))

dξ. (5.58)

By substituting the infinite series representation (5.54) in (5.57), I1 can be written as

I1 =

1
λt∫

0

e−0.5ξ ln
(

1 +
∞∑

l=1

λl
t

22l (l!)2 ξ
l

)
dξ. (5.59)

Thereafter, the Taylor series expansion for ln (1 + x) is invoked [75, Eq. 1.511, pp. 53]. However, by

noting that for the considered range of ξ, i.e., ξ < 1
λt

,
∑∞

l=1
λl

t

22l(l!)2 ξl < 1, using the first term of Taylor

series expansion can be considered, i.e., ln (1 + x) ≈ x for x < 1. Consequently, using the fact that

summation and integration are interchangeable, I1 can be rewritten as

I1 =
∞∑

l=1

λl
t

22l (l!)2

1
λt∫

0

e−0.5ξξldξ, (5.60)

which, after evaluating the integral and some mathematical manipulations, can be evaluated as

I1 =
∞∑

l=1

λ0.5l
t

21.5l−1 (l + 1) (l!)2 e− 0.25
λt M0.5l,0.5l+0.5

(
0.5
λt

)
, (5.61)

where M·,· (·) is the Whittaker-M function.

On the other hand, substituting the approximation given by (5.55) in (5.58) yields

I2 ≈
√
λtI2a −

((
1
2 ln (2π) + 1

4 ln (λt)
)

I2b + 1
4I2c

)
+ I2d, (5.62)

where the derivations of I2a, I2b, I2c and I2a are provided in Appendix II.
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5.5.2 KLD from ξH0 to ξH1

Similar to the previous subsection, the KLD from ξH0 to ξH1 , i.e., KLD (ξH1 ∥ ξH0), can be derived with

the aid of Definition 1 as

KLD (ξH1 ∥ ξH0) =
∞∫

−∞

fξ (ξ|H1) log2

(
fξ (ξ|H1)
fξ (ξ|H0)

)
dξ. (5.63)

By employing the logarithmic identity log
(
x

y

)
= log x − log y, substituting the PDFs of fξ (ξ|H0) and

fξ (ξ|H1), and using some simple mathematical operations, KLD (ξH1 ∥ ξH0) can be found as

KLD (ξH1 ∥ ξH0) = −0.5λte−0.5λt

2 ln 2 I3 + e−0.5λt

2 ln 2 I4 = −0.5λt

ln 2 + e−0.5λt

2 ln 2 I4, (5.64)

where I3 =
∞∫
0

e−0.5ξI0
(√
λtξ
)
dξ which has been solved using [65, Eq. 2.15.5.4, pp. 306], and I4 is given

by

I4 =
∞∫

0

e−0.5ξI0

(√
λtξ
)

ln
(
I0

(√
λtξ
))

dξ. (5.65)

Similar to the procedure applied to evaluate KLD (ξH0 ∥ ξH1), the infinite series representation for the

modified Bessel function and the asymptotic approximation for 0 ≤ ξ ≤ 1
λt

and ξ >
1
λt

, respectively.

Thus the integral I4 can be tightly approximated as

I4 =

1
λt∫

0

e−0.5ξI0

(√
λtξ
)

ln
(
I0

(√
λtξ
))

dξ

︸ ︷︷ ︸
I4a

+
∞∫

1
λt

e−0.5ξI0

(√
λtξ
)

ln
(
I0

(√
λtξ
))

dξ

︸ ︷︷ ︸
I4b

. (5.66)

The evaluation of I4a and I4a is provided with details in Appendix III.

5.5.3 The Detection and False Alarm Probabilities

For the sake of completeness, this subsection compares the commonly used detection probability metric

with the KLD measure. The detection and false alarm probabilities are respectively defined as

PD ≜

∞∫
τ

fξ (ξ|H1) dξ = 1 − Fξ (τ |H1) = Q1

(√
λt,

√
τ
)
, (5.67)

and

PFA ≜

∞∫
τ

fξ (ξ|H0) dξ = 1 − Fξ (τ |H0) = Q1
(
0,

√
τ
)

= Γ (1, 0.5τ) , (5.68)

where Fξ (ξ|Hi) ∀i = {0, 1} is the cumulative distribution function (CDF) of ξ under hypothesis Hi,

Γ (·, ·) is the upper incomplete gamma function, Q1
(√
λt,

√
τ
)

is the Marcum Q-function, and τ is a
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predefined threshold which according to Neyman-Pearson lemma is selected to satisfy a certain false

alarm constraint, for example, τ = 2Γ−1 (1, PFA) with Γ−1 (1, ·) is the inverse incomplete Gamma function.

Consequently, the detection probability is found as PD = Q1

(√
λt,
√

2Γ−1 (1, PFA)
)

. Therefore, by noting

that λt =
(
Q−1

1

(
PD,

√
2Γ−1 (1, PFA)

))2
, the statistics of the test formulated in (5.51) can be rewritten

in terms of PD and PFA instead of λt by substituting λt =
(
Q−1

1

(
PD,

√
2Γ−1 (1, PFA)

))2
in (5.51), and

thus (5.52) and (5.63) can be also rewritten as functions of PD and PFA. Subsequently, all KLD equations

in Sec. V.A and Sec. V.B can be rewritten in terms of {PD, PFA}.

5.6 KLD for Multi-user Multi-target ISAC System

The KLD measures in the previous section have been evaluated for a single user and a single target

scenario. In this section, the weighted sum method is employed to evaluate KLD for multiple CUEs and

targets scenario. Accordingly, the weighted sum for the KLD of each of the subsystems s ∈ {ZF,MRT, rad}

which consists of a number of CUEs or targets denoted as J ∈ {K,T} can be formulated as

KLDs =
J∑

i=1
cs,iKLDi,s,avg, (5.69)

where
J∑

i=1
ci = 1, and for equal weights of ci = 1

J , KLDs is reduced to

KLDs = 1
J

J∑
i=1

KLDi,s,avg. (5.70)

On the other hand, for an ISAC system with multiple CUEs and multiple targets, we introduce a novel

performance measure referred to the weighted sum of the relative entropy (WSRE). This performance

measure will be very beneficial for ISAC systems as it can be employed to assess the performance of

the system holistically as one entity rather than the conventional ways which typically characterize the

ISAC system as two distinct subsystems. Additionally, WSRE will be very useful for a system designer

to allocate the resources of BS, for example, power and antenna allocation. For a number of K CUEs

and a number of T targets, WSRE is defined as

WSREISAC ≜
K∑

k=1
ck,comKLDk,com,avg +

T∑
t=1

ct,radKLDt,rad, (5.71)

where
∑K

k=1 ck,com +
∑T

t=1 ct,rad = 1. It worth noting that ck,com and ct,rad ∀ {k, t} are design parameters

which can be chosen to give some priority for a certain subsystem, CUE or target. In some scenarios in

which CUEs and targets have the equal priority, then ck,com = ct,rad = 1
K+T ∀ {k, t}. Therefore, WSRE is

reduced to
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WSREISAC = 1
K + T

(
K∑

k=1
KLDk,com,avg +

T∑
t=1

KLDt,rad

)
. (5.72)

5.7 Numerical Results

This section presents the measured performance of the ISAC system introduced in this paper, which con-

siders a multi-antenna BS that simultaneously transmits data symbols to K CUEs and aims at detecting

a number of T targets. Monte Carlo simulation with 106 realizations for each run is used to generate

the simulation (Sim.) results and the derived formulas in this paper are used to generate the theoretical

performance. Unless otherwise stated, a number of 2 CUEs and a single target scenario, a number of

L = 100 snapshots, the antenna spacing is half the wavelength, i.e., ∆ = 0.5λ0, and the total transmit

power is normalized to unity, i.e., PT = 1, are considered. The total transmit power PT is distributed

among both subsystems with PC = PT − Prad is the power allocated to the communication subsystem,

where Prad is the allocated power for the radar subsystem. For Figs. 5.3, 5.4, 5.5, 5.6, a single target

located at θ = 35o is deployed in the environment, the radar covariance matrix is Rs = INR
, and the

radar channel pathloss is normalized, i.e., αrad = 1. On the other hand, a number of T = 3 targets

with {θ1, θ2, θ3} = {35o, 100o, 160o} and {αrad,1, αrad,2, αrad,3} = {1, 0.6, 0.3}, in addition to a number of

K = 3 CUEs are considered in Fig. 5.7.

Fig. 5.3 presents the impact of the interference caused from radar subsystem on CUEs and the effect

of estimation errors in Grad on the detection capability of the radar receiver, where the error in Grad is

modeled using the variance of channel estimator σ2
err. The total number of BS antennas is 20 which are

distributed evenly among the radar and communication subsystems with QPSK signalling employed to

modulate CUEs data symbols. The power allocated for radar and communication services are Prad = 0.1

and PC = 0.9 unit power, respectively. Moreover, the achievable performance using IMZF precoding is

compared with IVMRT scheme. The simulation results confirm the accuracy of the derived equations in

this paper for KLDIZF, KLDIVMRT, Pe and KLDrad. As can be depicted from the figure, the interference

caused from a subsystem to the other limits the performance. For example, Fig. 5.3 a) shows that the

probability of error for CUEs with IMZF precoding suffers from an error floor at 5 × 10−6 approximately,

and KLDIZF also reaches an upper bound of about 54 bits for PT
σ2

n
≳ 30 dB. On the other hand, the error

floor for IVMRT scheme is ∼ 3 × 10−4, and the upper bound of KLDIVMRT is almost 10 bits which is

reached at PT
σ2

n
≈ 20 dB. The superiority of IMZF over IVMRT can be attributed to the fact that MRT

generally suffers from inter-user-interference in addition to the interference caused by radar, and thus

the total amount of interference a communication user suffers is much larger in MRT based precoding

systems. As can be observed from Fig. 5.3 a), the detection capability of a communication system can be

interpreted using KLD. More precisely, the relative entropy, or the KLD measure, is inversely proportional
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Figure 5.3: The impact of radar-to-CUs interference and the estimation errors in Grad on the performance of CUs
and radar subsystem, respectively, vs. the transmit SNR PT /σ2

n: a) The error rate and KLD of CUs, b) The
detection probability PD for the radar subsystem, and c) The KLD for the radar subsystems.
to SER where higher KLD values imply lower SER and thus better detection performance. It is worth

noting that there is only one curve for each performance measure in Fig. 5.3 a) because a fixed PC = 0.9

is considered in this figure and the communication subsystem is independent of σ2
err. It can be also seen

from Fig. 5.3 b) and Fig. 5.3 c) that the channel estimation errors in Grad have a severe effect on the

performance of the radar subsystem as the detection probability and KLD significantly decrease as σ2
err

increases. For example, asymptotic detection probabilities of 0.2 and 0.7 are obtained when σ2
err = 0.1 and

0.05, respectively, and KLD of about 3.45 and 11.56 bits for the same values of σ2
err. However, although

further decrease in σ2
err results in huge enhancement for KLDrad, the improvement in PD is small, for

example, a decrease in σ2
err from 0.01 to 0.004 improves KLDrad from 63 to 143 bits at PT

σ2
n

= 30 dB, but

the improvement in PD is almost negligible at the same PT
σ2

n
. Interestingly, by comparing Fig. 5.3 b) with

Fig. 5.3 c), it can be observed that the change in the detection probability is very slow as PT
σ2

n
goes beyond

25 dB unlike KLD that has faster growing rate, which can be attributed to the fact that the detection

probability is upper bounded by 1 whereas KLD is not upper bounded.

Figs. 5.4 and 5.5 show the performance of ISAC system with IMZF data precoder for different values of

Prad, where σ2
err is fixed at 0.01. All other system parameters considered for the simulation environment

of these figures are similar to Fig. 5.3. It worth noting that different Prad values impose different

interference levels at CUEs, as well as, higher Prad implies that less power is allocated to communication

service since the total power is fixed. It is clear from these figures that the theoretical analysis agrees with

the simulation results. Additionally, it can observed from Fig. 5.4 that increasing the value of Prad can

significantly degrade the performance of the communication subsystem by increasing SER and decreasing

KLDIZF. According the results in Fig. 5.4 a), an error floor for SER is obtained even with small amounts

of Prad, for example, the error floor is about 5 × 10−6 and substantially increases considerably as Prad
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Figure 5.4: The impact of different interference levels on the CUs represented by several values of Prad and plotted
vs. the transmit SNR PT /σ2

n, where N = 20 with {NR, NC} = {10, 10}: a) The probability of symbols errors,
and b) The KLD for CUs.

increases, for example, the error floor is more that 4.5 × 10−3 when Prad ≥ 0.3 unit power. Similarly, Fig.

5.4 b) shows that KLDIZF goes below 15 bits for Prad ≥ 0.3 regardless the increase in SNR.

On the other hand, it can be noticed from Fig. 5.5 that increasing Prad can boost the detection

capabilities of the radar subsystem by enhancing KLDrad. For example, the upper bound of KLDrad with

Prad = 0.3 is about 290 bits, whereas it is 70 and 164 for Prad = 0.1 and Prad = 0.2, respectively.

Fig. 5.6 shows the theoretical detection performance of the communication subsystem against the

detection capability of the radar subsystem. Several values for PT
σ2

n
, PT

σ2
n

= {0, 5, 10, 15, 20} dB, a number

of N = 50 antennas distributed evenly among both subsystems with 25 antennas each, QPSK signalling

for the communication part, and a channel estimator variance of σerr = 0.01 are considered in this figure.

The amount of power allocated for the radar is varied over 0 < Prad < 1, and then the pairs (Pe, PD)

and (KLDrad,KLDIZF) are calculated accordingly. As can be observed from Fig. 5.6 a), both systems

suffer from poor detection capabilities regardless the power allocation at PT
σ2

n
= 0 dB. The best Pe can be

obtained at this SNR level is about 10−3 that is obtained at PD = 0, whereas the highest PD is ≲ 0.8

which occurs at Pe ≈ 1. In terms of KLD, it can be seen from Fig. 5.6 b) that a KLDIZF of 16 bits is

obtained at KLDrad = 0 and a KLDrad of 13.2 bits is obtained when KLDIZF = 0 at PT
σ2

n
= 0 dB. On the

other hand, at mid-range SNR, PT
σ2

n
= 5 dB, the capability of the ISAC system in whole starts improving,

however, only one of the two subsystems can operate efficiently at this range of SNR. For example, Fig.

5.6 a) depicts that Pe > 10−3 is obtained for PD > 0.75 when PT
σ2

n
= 5 dB, as well as Fig. 5.6 b) shows

that the highest KLD obtained for each subsystem is about 50 bits which occurs when the KLD of the

other system is 0 bit at the same value of PT
σ2

n
. Nonetheless, the detection capability of both systems is
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Figure 5.5: The performance of the radar system vs. the transmit SNR PT /σ2
n with σ2

err = 0.01 and several values
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Figure 5.6: The trade-off between the radar and communication subsystems for different values of the transmit
SNR PT/σ2

n, where N = 50 with {NR, NC} = {25, 25}: a) The tradeoff between Pe and PD, and b) The trade-off
between KLDIZF and KLDrad.
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superior when PT
σ2

n
≥ 10 dB as a detection probability of PD → 1 can be obtained while maintaining low

values for Pe if the value of Prad is properly selected. On the other side, it is clear from Fig. 5.6 b)

that a maximum KLD value of about 150 bits can be achieved for each subsystem when PT
σ2

n
= 10 dB.

To investigate the trade-off of the KLD of the two subsystems at a fixed transmit SNR, let us consider

the case of PT

σ2
n

= 10 dB. As can be observed from the figure, as one of the KLDs improves, the other one

becomes worse. For example, the maximum achievable KLD for each subsystem is about 150 bits which

occurs when the KLD of the other subsystem deteriorates to 0.

Fig. 5.7 presents a three dimensional (3D) plot for Pe in (5.36), KLDIZF in (5.70), PD in (5.67), KLDrad

in (5.70) and WSREISAC in (5.72) vs. Prad and the number of allocated antennas to the radar subsystem,

NR. For this figure, three CUEs denoted as U1, U2 and U3 using BPSK, QPSK and 8PSK, respectively, and

three targets denoted as T1, T2 and T3 with {θ1, θ2, θ3} = {35o, 100o, 160o} and {αrad,1, αrad,2, αrad,3} =

{1, 0.6, 0.3}, are used. The values of PT
σ2

n
and σ2

err are fixed at 10 dB and 0.01, respectively, the total

number of BS antennas is fixed at N = 50, and NR ranges from 1 to 49 with NC = N −NR. As can be

observed from Fig. 5.7 a) and Fig. 5.7 b), SER and KLDIZF degrade as Prad and/or NR increase as the

resources allocated for the communication subsystem are reduced. Moreover, it can be seen from these two

subplots that as the modulation order increases the performance of CUE becomes worse as SER increases

and KLD decreases. On the other hand, PD and KLDrad improve as Prad and/or NR increase which can

be clearly seen in Fig. 5.7 c) and Fig. 5.7 d). In addition, it can be also observed that the detection

capability of BS substantially decreases as αt decreases, which represents the radar cross section (RCS)

of the target and the pathloss, i.e., lower αt implies lower RCS and/or farther target. Fig. 5.7 e) presents

a 3D plot for the weighted sum of KLD for both radar and communication subsystems, WSREISAC in

(5.72). As can be clearly observed from this subplot, there is a trade-off between the performance of

the radar and the communication subsystems. For example, it can be seen from Fig. 5.7 e) that there

are two local maximum points: (Prad, NR,KLDWSUM) → (0, 1, 116) which represents the best scenario

for the CUEs, and (Prad, NR,WSREISAC) → (1, 49, 20) which is the best case for the radar subsystem.

Although the first scenario provides the global maximum WSREISAC, it deteriorates the performance of

the radar subsystem. On the other hand, by referring to Fig. 5.7 a) and Fig. 5.7 c), it can be realized

that the SER of CUEs at (Prad, NR) → (1, 49) is almost 1 and the detection probability for the radar

subsystem is PD = 1. Fig. 5.7 f) shows the trade-off between KLDrad and KLDIZF as evaluated using

(5.70) for different values of NR, where the total number of antennas is fixed at N = 50. It is worth noting

that the total power consumption is fixed for all the results in this figure, i.e., PT
σ2

n
= 10 dB, where the

portion of power allocated for each subsystem is changed from 0% to 100% to get this trade-off. As can be

noticed, for low values of KLDrad, which basically occurs when the allocated Prad is very low, KLDIZF is

significantly high and increases as NR decreases. By considering a fixed NR value, it can be noticed that

as Prad increases, KLDIZF exponentially decays until reaching very low values. It is worth noting that the
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intersection between different curves with different NR is due to different Prad values. For example, the

intersection between the two curves associated with NR = 20 and NR = 30 (e.g. the black-circles line and

magenta dashed line) at (KLDrad,KLDIZF) = (10, 6.2) occurs when the portion of the power allocated to

the radar subsystem is 51% and 66% for the cases of NR = 30 and NR = 20, respectively. In other words,

an ISAC system with NR = 30 and 51% allocated power for the radar subsystem will provide the same

KLD as NR = 20 with 66% allocated radar power.

5.8 Conclusion

An ISAC system which consists of a multi-antenna BS serving CUEs and aims at detecting multiple

targets simultaneously was introduced in this paper, where the separated deployment was considered. In

addition, ZF and MRT were employed to precode the communication signals. The relative entropy or

KLD was derived for both radar and communication subsystems, and a unified performance measure using

the sum of weighted KLDs was proposed. In addition, the interference caused by the radar subsystem on

CUEs and the impact of imperfect IC on the radar subsystem were analyzed and studied. Moreover, the

relation between this performance measure from one side, and SER and detection probability on the other

side was investigated. The obtained simulation results confirmed the derived equations where a perfect

match was obtained. In addition, the results showed that there is a trade-off between the radar and the

communication subsystems where enhancing one negatively impacts the other. Consequently, the system

designer should be aware of this trade-off and allocate the power and antenna resources to maximize

WSREISAC under some constraints on KLDIZF and KLDrad to guarantee boosting the performance of

the whole system in an efficient way. Moreover, it was revealed that the effect of system imperfections,

i.e., interference and imperfect channel estimation for Grad, result in an error floor in SER and upper

bound in PD, KLDIZF and KLDrad. It was also disclosed that MRT based precoding could experience a

considerable error floor due to inter-user-interference resulted from MRT, in addition to the interference

caused by the radar subsystem.

Future work may include using the derived KLD to allocate the BS resources among the users and

targets to maximize WSREISAC for given constraints on individual KLDs. Moreover, the employment of

KLD for the analysis, design and optimization of ISAC systems in which the radar subsystem aims at

estimating the targets’ parameters is also an interesting research topic.
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Figure 5.7: A 3D plot for the KLD of ISAC system vs. NR and Prad where N = 50: a) The symbol error rate
of CUEs, b) The KLD of CUEs, c) The detection probability PD of the radar subsystem, d) The KLD of the
radar subsystem, e) The WSREISAC of ISAC system, and f) The WSREISAC of ISAC system viewed from different
angle.
5.9 Appendix

5.9.1 Appendix I

Central Limit Theorem (CLT) is applied to approximate the distribution of tk,i =
∑NC

nc=1di [l]gT
k,nc

g∗
i,nc

∀i ̸= k for considerable values of NC . Therefore, with a normalized signal constellation, E
[
|di [l]|2

]
= 1,

tk,i ∼ CN
(
0, 2σ2

t

)
with σ2

t = 2σ4
gNC . On the other hand, the exact density function of zi = ∥gi∥2 is Chi

distribution, which can be derived as below. Let us express zi as zi =
√∑NC

nc=1 |gi,nc
|2, which can be

rewritten as zi = σg z̃i where z̃i =
√∑NC

nc=1

(
gi,nc,R

σg

)2
+
(

gi,nc,I

σg

)2
. Thereafter, by using the definition

of a Chi distributed random variable, it can be easily shown that z̃i ∼ Chi (2NC) with PDF given by

fz̃i (z̃i) = 1
2NC−1Γ (NC) z̃

2NC−1
i e− 1

2 z̃2
i , (5.73)

and then by employing random variable transformation, it can be found that zi ≜ σg z̃i is also Chi

distributed with PDF given by

fzi
(zi) = 1

2NC−1Γ (NC)σ2NC
g

z2NC−1
i e

− 1
2σ2

g
z2

i
. (5.74)

The ratio distribution of independent Gaussian and Chi random variables is a Student-t distribution.

However, the analysis for the density of a sum of K Student-t random variables is not tractable. Therefore,

to make the analysis tractable, we use the fact that for large value of the degrees of freedom of Chi
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distribution, which is directly proportional to NC , the Chi density function can be approximated as real

positive Gaussian PDF, i.e., zi ∼ N
(
σg

√
2 Γ(0.5(2NC+1))

Γ(NC) ,

(
2NC − 2

(
Γ(0.5(2NC+1))

Γ(NC)

)2
)
σ2

g

)
. It is worthy

noting that the assumption of large NC is reasonable in multi-user MIMO systems since BS is typically

equipped with a large number of antennas. Thereafter, we check the correlation between tk,i and zi. To

begin, the correlation between tk,i and z2
i is checked because it is more traceable.

ρti,z2
i

=
E
[(
tk,i − µtk,i

) (
z2

i − µz2
i

)]
√

var [tk,i] var [z2
i ]

. (5.75)

By noting that µtk,i
= 0, and then substituting for zi and tk,i and using the fact that the expectation

operator can be distributed over summation and over a product of independent random variables, ρti,z2
i

can be found as

ρti,z2
i

=

∑NC

nc1=1
∑NC

nc2=1 E
[
g∗

i,nc1
|gi,nc2 |2

]
E
[
gT

k,nc1

]
√

var [tk,i] var [zi]
= 0, (5.76)

where the last equality holds as gi and gk are i.i.d for i ̸= k with zero mean (e.g. E
[
gT

k,nc1

]
= 0).

Consequently, tk,i and zi are uncorrelated and approximately Gaussian variables for considerable values

of NC , and thus it can be assumed that they are independent. Next, let us define ṽk,i can be written as

ṽk,i ≜
√
Pi,com

tk,i

zi
=
√
Pi,com (vk,i,R + jvk,i,R) , (5.77)

where the subscripts (·)R and (·)I denote the real and imaginary components of a complex number,

respectively, vk,i,R = tk,i,R

zi
and vk,i,I = tk,i,I

zi
. Since tk,i is N

(
0, 2σ2

t

)
with identically distributed real

and imaginary parts, then tk,i,R and tk,i,I are N
(
0, σ2

t

)
. When Pr (zi > 0) → 1, or µzi

≫ σzi
, which is a

satisfied condition since zi is a strictly positive random variable in our case, the cumulative distribution

function (CDF) of the ratio of two normally distributed random variables, vk,i,R = tk,i,R

zi
, having means

of µt,R = 0 and µz =
√

2 Γ(0.5(2NC+1))
Γ(NC) , and unequal variance values of σ2

t = 2σ4
gNC and σ2

z ≜ 2NC −

2
(

Γ(0.5(2NC+1))
Γ(NC)

)2
, can be approximated as [76, Eq. (5)],

Fvk,i,R
(v) = Φ

 µzv

σtσz

(
v2

σ2
t

+ 1
σ2

z

)0.5

 , (5.78)

where Φ (x) ≜ 1√
2π

∫ x

−∞ e− u2
2 du is the CDF of a standard normal distribution, i.e., N (0, 1). It is worthy

to note that vk,i,I have the same CDF as vk,i,R. Therefore, by using the derivative of Fvk,i,R
(v), which

can be solved using the chain rule and the derivative of Φ (x) as ∂
∂v Φ (x) ≜ 1√

2π
e− x2

2 , the PDF can be

found as,
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fvk,i,R
(v) ≜

∂

∂v
Fvk,i,R

(v)

= µz

σtσz

√
2π

(
v2

σ2
t

+ 1
σ2

z

)−0.5(
1 − v2

σ2
t

(
v2

σ2
t

+ 1
σ2

z

)−1)
exp

− µ2
zv

2

2σ2
z

(
v2 + σ2

t

σ2
z

)
 .(5.79)

Interestingly, for typical range of NC ≫ 1, fvk,i,R
(v) tends to take the shape of Gaussian random variable

[76, Eq. (5)], consequently, fvk,i,R
(v) is assumed following N

(
µv, σ

2
v

)
where

µv ≜ E [vk,i,R] = E [tk,i,R]E
[

1
zi

]
= 0, (5.80)

and

σ2
v ≜ E

[
(vk,i,R − µv)2

]
= E

[
(vk,i,R)2

]
= E

[
t2k,i,R

]
E
[

1
z2

i

]
= σ2

t

∫ ∞

0

1
z2

i

fz (z) dz. (5.81)

By using the PDF fz (z) which has been derived in (5.74), σ2
v can be written as

σ2
v = σ2

t

2NC −1Γ (NC)σ2NC
g

∫ ∞

0
z2NC −3

i e
− 1

2σ2
g

z2
i
dz. (5.82)

Thereafter, by employing integration by substitution rule with y = 1
2σ2

g
z2

i , the value of σ2
v can be found

as σ2
v = σ2

g . Therefore, ṽk,i can be approximated as a symmetric complex Gaussian random variable, i.e.,

ṽk,i ∼ CN
(
0, 2Pi,comσ

2
v

)
. Next, we check the correlation between ṽk,i∀i ̸= k. It can be easily realized

that zi = ∥gi∥ ∀i are independent, as well as, the correlation coefficient between tk,i∀i ̸= k can be found

using similar derivations in (5.76) as

ρi,j =
E
[
tk,it

∗
k,j

]
√

var [tk,i] var [tk,j ]
=

∑NC

nc1=1
∑NC

nc2=1 E
[
g∗

i,nc1

]
E
[
|gk,nc2 |2

]
E
[
g∗

j,nc1

]√
var [tk,i] var [tk,j ]

= 0. (5.83)

Consequently, since tk,i is complex Gaussian distributed according to CLT and ρi,j = 0∀i ̸= j, tk,i and

tk,j are independent for i ̸= j. Moreover, since zi and zj are independent ∀i ̸= j, and thus ṽk,i =√
Pi,com

tk,i

zi
and ṽk,j =

√
Pj,com

tk,j

zj
for i ̸= j are also independent. Finally, ωMRT =

K∑
i=1
i ̸=k

ṽk,i is a sum

of K − 1 independent complex Gaussian random variables each of which ṽk,i ∼ CN
(
0, 2Pi,comσ

2
v

)
, thus

ωMRT ∼ CN
(

0, 2σ2
v

∑K
i=1
i̸=k

Pi,com

)
. Therefore, the equivalent inter-user and radar interference plus noise

ω̃MRT ∼ CN
(
0, 2σ2

ω

)
where σ2

ω = σ2
v

∑K
i=1
i̸=k

Pi,com + σ2
η with σ2

η = Pradσ
2
f + σ2

n.

5.9.2 Appendix II

Substituting the approximation given by (5.55) in (5.58) and then performing some mathematical ma-

nipulation including some logarithmic and exponential identities such as ln
(

x
y

)
= ln x − ln y, ln (xy) =
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Table 5.1: The values of I2a, I2b,. . . ,I2d that are required to compute KLD(ξH0||ξH1).

I2a =
∞∫
1

λt

√
ξe−0.5ξdξ I2b =

∞∫
1

λt

e−0.5ξdξ = 2
2λt

√
e I2c =

∞∫
1

λt

e−0.5ξ ln (ξ) dξ

I2d =
∞∫
1

λt

e−0.5ξ ln
(

1 +
∑Q

q=1

(
1(√
λtξ
)q

∏q

k=1[(2k−1)2]
q!8q

))
dξ

ln x+ ln y and ln ex = x yield

I2 ≈
√
λtI2a −

((
1
2 ln (2π) + 1

4 ln (λt)
)

I2b + 1
4I2c

)
+ I2d, (5.84)

where I2a, I2b, I2c and I2d are given in Table 5.1.

Thereafter, by using integration by substitution with y =
√
ξ and then using [77, Eq. 1.3.3.8, pp.

140], I2a can be found as

I2a = −
√

2πerf
(

1√
2λt

)
+

√
2π + 2

2λt
√

e
√
λt

. (5.85)

Moreover, using integration by parts rule with dv = e−0.5ξ and u = ln (ξ) and then using the definition

of the exponential integral, I2c can be found as

I2c =
(

−2 lnλt

2λt
√

e + 2Ei1
(

1
2λt

))
. (5.86)

To solve I2d, let us consider the first five terms in the summation, i.e., Q = 5 which can provide a very

good approximation for ξ ≥ 1
λt

. In this case we obtain
∑Q=5

q=1 (·) < 1, and thus Taylor series expansion can

be adopted and the first term is sufficient for providing accurate results, i.e., ln
(

1 +
∑Q=5

q=1 (·)
)

≈
∑Q=5

q=1 (·)

for
∑Q=5

q=1 (·) < 1. Thereafter, by using the fact that summation and integration are interchangeable

operations, I2d can be evaluated as [77, Eq. 1.3.2.4, pp. 137]

I2d =
Q=5∑
q=1

∏q
k=1

[
(2k − 1)2

]
q!8qλ0.5q

t

1
0.51−0.5q

Γ
(

1 − 0.5q, 0.5
λt

)
, (5.87)

where Γ (·, ·) is the upper incomplete gamma function.

5.9.3 Appendix III

By substituting the infinite series representation provided in (5.54) for the modified Bessel function in

(5.66), I4a can be given by

I4a =

1
λt∫

0

e−0.5ξ
∞∑

l1=0

λl1
t

22l1 (l1!)2 ξ
l1 ln

(
1 +

∞∑
l2=1

λl2
t

22l2 (l2!)2 ξ
l2

)
dξ. (5.88)
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Table 5.2: The values of I4b,1, I4b,2,. . . ,I4b,8 that are required to compute KLD(ξH1||ξH0).

I4b,1 =
∞∫
1

λt

ξ0.25 exp
(
−0.5ξ +

√
λtξ
)
dξ I4b,2 =

∞∫
1

λt

ξ−0.25 exp
(
−0.5ξ +

√
λtξ
)
dξ

I4b,3 =
∞∫
1

λt

ξ−0.25 ln (ξ) exp
(
−0.5ξ +

√
λtξ
)
dξ I4b,4 =

∞∫
1

λt

1
ξ

q2
2 + 1

4
exp

(
−0.5ξ +

√
λtξ
)
dξ

I4b,5 =
∞∫
1

λt

1
ξ

q1
2 − 1

4
exp

(
−0.5ξ +

√
λtξ
)
dξ I4b,6 =

∞∫
1

λt

1
ξ

q1
2 + 1

4
exp

(
−0.5ξ +

√
λtξ
)
dξ

I4b,7 =
∞∫
1

λt

1
ξ

q1
2 + 1

4
ln (ξ) exp

(
−0.5ξ +

√
λtξ
)
dξ I4b,8 =

∞∫
1

λt

1
ξ

q1
2 + q2

2 + 1
4

exp
(
−0.5ξ +

√
λtξ
)
dξ

After that, by noting that
∑∞

l2=1
λ

l2
t

22l2 (l2!)2 ξl2 < 1 for 0 ≤ ξ < 1
λt

, the first term of the Taylor series is

considered to approximate the logarithmic function and then interchange the summations and integration

order, I4a can be accurately approximated as

I4a ≈
∞∑

l1=0

λl1
t

22l1 (l1!)2

∞∑
l2=1

λl2
t

22l2 (l2!)2

1
λt∫

0

e−0.5ξξl1+l2dξ, (5.89)

which can be solved as

I4a ≈
∞∑

l1=0

λl1
t

22l1 (l1!)2

∞∑
l2=1

λl2
t

22l2 (l2!)2
21+0.5(l1+l2)

(1 + l1 + l2)λ0.5(l1+l2)
t

e− 0.25
λt M0.5(l1+l2),0.5(l1+l2)+0.5

(
0.5
λt

)
. (5.90)

On the other hand, by substituting the approximation in (5.55) to approximate I4b given in (5.66) for

ξ > 1
λt

and using some algorithmic identities such as log
(
x

y

)
= log x− log y, log (xy) = log x+ log y and

log (xy) = y log x, then I4b can be simplified to

I4b ≈
∞∫

1
λt

e−0.5ξ exp
(√
λtξ
)

√
2π 4

√
λtξ

1 +
Q∑

q1=1

 1(√
λtξ
)q

∏q
k=1

[
(2k − 1)2

]
q!8q



×

√λtξ − ln
(√

2π 4
√
λt

)
− 0.25 ln(ξ) + ln

1+
Q∑

q2=1

 1(√
λtξ
)q

∏q
k=1

[
(2k − 1)2

]
q!8q

dξ(5.91)

= 1√
2π 4

√
λt

(√
λtI4b,1 − ln

(√
2π 4
√
λt

)
I4b,2 − 0.25I4b,3 + Qsum,q2I4b,4

+Qsum,q1 ×
(√

λtI4b,5 − ln
(√

2π 4
√
λt

)
I4b,6 − 0.25I4b,7 + Qsum,q2I4b,8

))
, (5.92)

where Qsum,q =
∑Q

q=1
1

q1!8q
√
λq

t

∏q
k=1

[
(2k − 1)2

]
∀q ∈ {q1, q2}, and I4b,i∀i ∈ {1, 2, · · · , 8} are given

in Table 5.2. Due to the limited space, we will show the complete solutions for I4b,1 and I4b,3 only,

anyway, the other integrals can be solved in a similar way. By using integration by substitution rule with

y =
√

0.5ξ followed by the complete square rule to write the exponents in a more convenient form, i.e.,
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the integrand is multiplied by exp
(

±λt

2

)
, I4b,1 and I4b,3 can be expressed as

I4b,1 = 4 (2)0.25 exp
(
λt

2

) ∞∫
√

1
2λt

y1.5 exp

−

(
y −

√
λt

2

)2
 dy, (5.93)

I4b,3 = 4 (2)−0.25 exp
(
λt

2

) ∞∫
√

1
2λt

y0.5 ln
(
2y2) exp

−

(
y −

√
λt

2

)2
 dy. (5.94)

Next, with the aid of the series representation of exp
(
−x2) [75, Eq. 1.211.3, pp. 26] and then interchang-

ing the integration and summation operations, I4b,1 and I4b,3 can be simplified to

I4b,1 = 4 (2)0.25 exp
(
λt

2

) ∞∑
k=0

(−1)k

k!

∞∫
√

1
2λt

y1.5
∞∑

l=0

(
y −

√
λt

2

)2k

dy, (5.95)

I4b,3 = 4 (2)−0.25 exp
(
λt

2

) ∞∑
k=0

(−1)k

k!

∞∫
√

1
2λt

y0.5 ln
(
2y2)(y −

√
λt

2

)2k

dy. (5.96)

Thereafter, the binomial expansion theorem is invoked and interchanging the summation and integration

is applied. Additionally, to make the series converges to the answer quickly, we limit the integration to

an upper bound of yU =
√
λt

2 + 4√
2

instead of ∞ as exp

−

(
y −

√
λt

2

)2
 ≈ 0 for y >

√
λt

2 + 4√
2

. It

is worthy to notice that the exponential term has a form similar to a normal distribution with a mean of

µ =
√
λt

2 and a standard deviation of σ = 1√
2

, and thus it can interpreted that more than 99.9999% of

the area under the curve is in the range µ− 4σ ≤ y ≤ µ+ 4σ. Subsequently, I4b,1 can be evaluated as

I4b,1 = 4 (2)0.25 exp
(
λt

2

) ∞∑
k=0

(−1)k

k!

2k∑
l=0

(−1)2k−l (2k
l

)(λt

2

)0.5(2k−l) yU∫
√

1
2λt

yl+1.5dy

= 4 (2)0.25exp
(
λt

2

) ∞∑
k=0

(−1)k

k!

2k∑
l=0

(−1)2k−l (2k
l

)(λt

2

)0.5(2k−l) 1
l + 2.5

(
yl+2.5

U −
(

1
2λt

) l+2.5
2
)
(5.97)

and I4b,3 can be further simplified to

I4b,3 = 4 (2)−0.25 exp
(
λt

2

) ∞∑
k=0

(−1)k

k!

2k∑
l=0

(−1)2k−l (2k
l

)(λt

2

)0.5(2k−l) yU∫
√

1
2λt

yl+0.5 ln
(
2y2) dy. (5.98)
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Using the logarithmic identities log (xy) = log x+ log y and log (yx) = x log y, I4b,3 can be written as

I4b,3 =4 (2)−0.25exp
(
λt

2

) ∞∑
k=0

(−1)k

k!

2k∑
l=0

(−1)2k−l (2k
l

)(λt

2

)0.5(2k−l)

×

ln 2
yU∫

√
1

2λt

yl+0.5dy + 2
yU∫

√
1

2λt

yl+0.5 ln ydy

 . (5.99)

Subsequently, with the aid of [77, Eq. 1.6.1.18, pp. 241], the second integral is solved and the final

equation can be expressed as

I4b,3 =4 (2)−0.25exp
(
λt

2

) ∞∑
k=0

(−1)k

k!

2k∑
l=0

(−1)2k−l (2k
l

)(λt

2

)0.5(2k−l)
 ln 2
l + 1.5

(√λt

2 + 5√
2

)l+1.5

−
(

1
2λt

) l+1.5
2
)

+ 2
(
yl+1.5

U

(
ln (yU)
l + 1.5 − 1

(l + 1.5)2

)
−
(

1
2λt

) l+1.5
2
(

− ln (2λt)
2 (l + 1.5) − 1

(l + 1.5)2

)))
.

(5.100)
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Chapter 6

Performance Analysis of Wireless Mesh

Backhauling Using Intelligent Reflecting

Surfaces1

Abstract

This paper considers the deployment of intelligent reflecting surfaces (IRSs) technology for wireless multi-

hop backhauling of multiple basestations (BSs) connected in a mesh topology. The performance of the

proposed architecture is evaluated in terms of outage and symbol error probability in Rician fading

channels, where closed-form expressions are derived and demonstrated to be accurate for several cases

of interest. The analytical results corroborated by simulation, show that the IRS-mesh backhauling

architecture has several desired features that can be exploited to overcome some of the backhauling

challenges, particularly the severe attenuation at high frequencies. For example, using IRS with four

elements, N = 4 provides a symbol error rate of about 10−5 at a signal-to-noise ratio of about 0 dB,

even for a large number of hops. Moreover, the obtained analytical results corroborated by Monte Carlo

simulation show that the gain obtained by increasing N decreases significantly for N > 5. For example,

increasing N from 1 to 2 provides about 8 dB of gain, while the increase from 3 to 4 provides about 4 dB.

Moreover, the degradation caused by the relaying process becomes negligible when the number of IRS

elements N = 3.
1M. A. Al-Jarrah, E. Alsusa, A. Al-Dweik and M.-S. Alouini, “Performance analysis of wireless mesh backhauling

using intelligent reflecting surfaces,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3597-3610, Jun. 2021, doi:
10.1109/TWC.2021.3052370.
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Index Terms

6G, wireless backhauling, mesh backhauling, intelligent reflecting surfaces (IRSs), symbol error rate,

outage probability, Rician channel.

6.1 Introduction

Current wireless communication networks such as the fourth and fifth generations, (4G) and (5G) respec-

tively, have to support more than 6 billion users with a considerable proportion running applications that

require high data rates [1–3], that severely strain the available spectrum. Moreover, the demand for data

services is continuously increasing as shown by the latest statistics of wireless networks, which revealed

that data traffic for mobile users grew 68% in 2019, reaching 38 Exabyte (EB) per month as compared

to 27 EB per month in 2018 [1, 2]. Ericsson predicts that the mobile data traffic will show an upsurge of

27% annually till 2025. Network densification (NeDe) is one of the prominent techniques that can be used

to improve the capacity of wireless networks, and it is an integral part of the 5G architecture [4, 5]. The

main concept of NeDe is to deploy a large number of small cells with low power to complement the macro

cell functionality in areas with poor signal quality, such as indoor environments and urban areas with tall

buildings [6,7]. The term small-cell covers a variety of cell types such as mini-cells, micro-cells, pico-cells,

femto-cells, and mobile-small cell. Wireless coverage at the street level is a key solution in urban areas

where the access points are placed on poles and walls [8, 9].

While indoor small-cell backhauling is typically based on wired technologies, outdoor small cells back-

hauling is mostly performed through wireless technologies, which may increase the macro cell base station

(BS) backhauling traffic rate to several gigabit/s (Gbps) [10]. Although existing fiber infrastructure pro-

vides reliable and large capacity communications with rates that may reach terabit/s, installing new fiber

infrastructure has limitations such as the high installation and maintenance cost, considerable installation

time, and trenching is prohibitively expensive and might be impossible in some areas. For example, ac-

cording to [11,12], about 85% of the fiber links cost is due to trenching and installation. Consequently, high

dense small cells with wireless backhauling, which is the main focus in this work, are widely considered to

combat the wired solutions limitations. The main advantages of wireless over wired backhauling are the

scalability, flexibility, cost efficiency, and low-complexity maintenance process. To reduce the traffic load

on the macro BS, wireless mesh backhauling is indispensable, and is considered an integral technology of

the current 5G, future sixth generation (6G) and 6G+ cellular communication networks [8,9]. Moreover,

wireless backhauling is the key enabler for the integrated access and backhauling (IAB) technology, which

is a promising approach to reduce the deployment cost in ultra-dense networks by utilizing a portion of

the available radio resources for wireless backhauling [13–16]. Recently, wireless backhauling has been

investigated and standardized by the 3rd Generation Partnership Project (3GPP) Rel-16 and Rel-17, the
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European Commission (EC) and Ericsson [8,10,17], and has attracted extensive research attention in the

quest to develop efficient backhauling solutions.

One of the prominent efforts on wireless backhauling is the Telecom Infra Project (TIP), which consists

of more than 500 member organizations that devote their efforts to accelerate the development of new

infrastructure solutions for future networks [18, 19, 21, 22, 62]. Wireless backhauling can be realized with

several network topologies such as ring, tree and mesh, with the later being the most attractive because it

provides backhauling with low-cost, flexible configuration, maintainable, and long distance coverage [23–

26]. However, wireless backhauling suffers from some limitations as compared to optical fiber, particularly

the relatively low capacity, disruptive interference, and severe signal attenuation at high frequencies.

Therefore, several researchers have proposed transmission schemes and technologies to overcome one

or more of the wireless backhauling limitations. Examples for such solutions include millimeter-wave

(mmWave) transmission, free-space optical (FSO), interference management protocols [27–31] and massive

multiple-input-multiple-output (mMIMO) [32–36].

The lack of spectrum supporting wide channel bandwidths has been identified as a potential bottleneck

for wireless backhaul. This has given spectrum administrators the opportunity to introduce wider channels

in currently used frequencies. An additional possibility is to open new frequency bands such as the 90

GHz band [10]. The European Telecommunications Standards Institute (ETSI) and TIP recommend

mmWave communications as a core technology [18, 19, 62]. Realistic experiments have been conducted

for one Gbps average peak user throughput for a maximum range of 250 m [19]. In addition, the TIP

backhaul team has proposed different methods for assessing the performance of mmWave, and provided

a guidance for the installation process [21,22].

Intelligent reflecting surfaces (IRSs), also called metasurfaces, have been introduced recently with the

aim of controlling the propagation medium to enhance the quality of service (QoS) by boosting the energy

and spectral efficiencies of wireless networks. The IRS technology is expected to play a significant role in

the future, where smartness, energy efficiency and spectral efficiency are the main requirements for the

forthcoming wireless networks. IRS applies a large number of passive antenna elements which introduce

a phase-shift to the received signals, and reflect them back to the destination. For efficient transmission,

multiple reflectors are used to target a certain destination, and the introduced phase shifts are selected

to ensure that the reflected signals add coherently at the receiver. As a result, the signal-to-noise ratio

(SNR) increases considerably, and consequently, the spectral efficiency is boosted [37]- [52]. In the context

of wireless backhauling, particularly when small cells are deployed in urban areas, using IRSs is crucial to

improve the signal quality in the absence of line-of-sight (LoS) connectivity between certain BSs. In this

case, a virtual LoS can be created by inserting IRS panels between such BSs, where the locations of IRS

panels are selected to ensure a strong LoS for transmitter-IRS and IRS-receiver paths. Such scenarios

are expected when the small cells are deployed at the street level in urban areas [8]. Moreover, even if
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LoS exists, IRS can significantly boost the signal quality by focusing the radiated energy towards the

destination BS.

6.1.1 Related Work

IRS has recently attracted extensive research attention. For example, the authors of [37, 38] presented

detailed IRS technology overview, and discussed state-of-art solutions and theoretical performance limits.

Energy-efficient approaches for the transmit power allocation and the phase shifts of the IRS elements is

introduced in [39], where an accurate model for IRS power consumption is presented. A realistic implemen-

tation in outdoor environments has shown that the methods proposed in [39] for IRS power allocation may

provide up to 300% higher energy efficiency when compared to multi-antenna and amplify-and-forward

systems. Joint active and passive beamforming is considered in [5], where some recommendations are

provided for optimal deployment. Other research efforts are dedicated to study the performance of IRS

with other existing signalling and communication technologies such as index modulation (IM) [41], space-

shift-keying (SSK) [42], and non-orthogonal multiple access (NOMA) [45]. In [43], IRS assisted MIMO

is investigated, where efficient algorithms for the phase shifts at the IRS and precoding at the trans-

mitter are proposed to minimize the symbol error rate (SER). Since the optimum values for the phase

shifts depend on the instantaneous channel side information (CSI), channel modeling and estimation are

considered in [44]- [47]. In [49], the far-field pathloss model is derived for IRS based links using optical

physics techniques, and it is shown that each reflecting element acts as a diffuse scatterer. A practical

IRS implementation is introduced in [50], where a high-gain and low-cost IRS with 256 reflecting elements

is designed, in which positive intrinsic negative (PIN) diodes are used to design 2-bit phase shifters, and

it was shown that a gain of 19.1 dBi can be achieved using mmWave. In [51], the joint design of the

beamforming matrix and phase shift matrix at the BS and IRS is investigated using deep reinforcement

learning algorithms. An overview about holographic MIMO surfaces is provided in [53] including the

hardware architectures for reconfiguring the surfaces.

6.1.2 Motivation and Contribution

Future mobile networks are expected to confine more of the radio communication needs of current users,

and support many new users and industries, with applications that require ultra high data rates. Examples

for such applications include holographic communication, online gaming, and streaming of super high

definition immersive 3D videos, etc. To be able to support such applications for a large number of users,

the network should be able to handle traffic volumes in the range of terrabit/s per square kilometer,

coming from a massive simultaneous connections [10]. Consequently, the backhaul traffic between the

base stations (BSs) is expected to experience enormous data rate and traffic volume increase, and thus

the design of a backhaul that satisfies such scenarios is indispensable.

168



This work focuses on the wireless portion of the backhaul network where data volumes are forwarded

to a nearby BS which has a fiber connection with the corenetwork. Since the link to the fiber-connected

BS may have multiple hops, the analysis is generalized to multiple hop scenario, where IRS panels with N

reflectors are deployed between communicating BSs in each hop to enhance the connection reliability. The

obtained analytical results corroborated by Monte Carlo simulation demonstrate that the gain achieved

by increasing the number of IRS elements is inversely proportional to the number of IRS elements N ,

particularly for N > 5. Moreover, the degradation caused by the relaying process becomes negligible

when the number of IRS elements is more than 3. The contribution of this paper can be summarized as

follows:

1. Although IRSs have been considered widely in the recent literature [37,38], to the best of the authors’

knowledge, there is no work reported that considers the application of IRS in wireless backhauling

with multiple hops, where BSs relay the traffic until it arrives to the core network.

2. Because wireless backhauling typically requires LoS connectivity to avoid severe signal fading, the

channel gain is assumed to follow the Rician fading model.

3. An accurate approximation for the probability density function (PDF) of the received SNR is

derived.

4. Analytical expressions are derived for the SER and outage probability (OP) for single and multi

hop scenarios.

5. Because some of the analytical results are represented in terms of infinite series, numerical results for

the truncation error are presented to demonstrate the convergence behavior of the derived solution.

The obtained results showed that using about 30 terms in the summations provides a truncation

error of less than 10−7 for most cases of interest.

6.1.3 Paper organization

The rest of the paper is organized as follows. Sec. 6.2 presents the system model with IRS based wireless

backhauling. A derivation for an accurate approximation for the PDF of the received SNR per hop is

introduced in Sec. 6.3. The derivations for the SER and OP are provided in Secs. 6.4 and 6.5, respectively.

Sec. 6.6 shows and discusses the numerical results of the proposed system whereas the conclusion and

future work are provided in Sec. 6.7.

6.2 System Model

This work considers a heterogenous wireless network where a macro cell is overlaid with multiple small

cells. The macro BS (mBS) and small-cells BS (sBS) are configured in a mesh topology. In such networks
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Figure 6.1: Example for a two-hop backhauling using IRS in a mesh network with IBA. The mesh network consists
of four sBSs and one mBS.

[54], each sBS might be able to communicate with multiple other sBSs and choose a particular route

to backhaul its data to the core network. Fig. 7.1 shows a simplified mesh network with IBA using

four sBSs and one mBS. As shown in the figure, some routes may only be utilized through IRS. Once a

particular route is selected, the sBSs cooperate, act as relays, to route the backhaul traffic to the mBS,

and then to the core network. Therefore, the traffic of a particular sBSs may arrive to the mBS through

multiple hops, where the signal in each hop is decoded and forwarded to the next sBS, or to the mBS.

The route selection process is typically performed to optimize certain performance parameters such as

delay, interference, power, energy or load balance [55–59]. Therefore, the number of hops is generally a

random variable which has been the subject of some studies dedicated to model the hop count [60], [61].

To provide LoS links between adjacent sBSs, IRS panels, each of which consists of N reflecting elements,

are placed between each two BSs. The backhaul links are realized using a single broadband antenna at

each BS. Using the region three-dimensional maps, advanced ray tracing techniques [62] can be used to

predict the CSI between adjacent BSs and the IRS, which allow selecting the optimum location for the

IRS panels’. The channel fading is considered to be Rician to capture the LoS signal component and other

small reflections from the surrounding environment. The LoS is considered only between the BSs and the

IRS, while the direct path between BSs is typically blocked by large buildings or other obstacles.

In each hop, a sBS transmits its backhaul traffic to one of the adjacent sBSs, or to the mBS, through

an IRS panel, where each reflecting element introduces a phase shift φn and amplitude gain βn. The

process is repeated L times until the data arrive at the corenetwork or mBS. It is worth noting that an

IRS panel can be shared by multiple BSs simultaneously, where the available reflecting elements can be
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assigned to BSs that have LoS link with the IRS panel. However, an IRS element can be assigned only

to one BS to avoid interference.

In this work, we initially consider the single hop scenario, and then the model is extended to multiple

hops. Consequently, the hop index is dropped unless it is necessary to include it. Given that a particular

sBS transmits a data symbol s, the signal reflected from the nth IRS element can be expressed as

xn =
√
P0Hnℏns, n ∈ {1, 2, . . . , N} (6.1)

where Hn = βnejφn , φn is the phase shift and βn ≤ 1 is the reflection coefficient of the nth IRS element,

P0 is the sBS transmission power, and the channel coefficient ℏn ≜ |ℏn| ejθn ∼ CN
(
mn, 2σ2

n

)
. In urban

environments, sBSs do not typically have LoS link with each other due to the dense and large structures

in such environments. Therefore, IRSs can be deployed in specific locations such that a LoS connection is

established between the IRS and each of the concerned sBSs. Therefore, the PDF of the channel envelop

αn ≜ |ℏn| can be considered Rician [63],

f (αn) = 2(1 +Kn)
Ωn

αn e−Kn e− (1+Kn)
Ωn

α2
n ×I0

2αn

√
Kn(1 +Kn)

Ωn

 (6.2)

where I0 (·) is the modified Bessel function of the first kind and zero order, Ωn ≜ E
[
α2

n

]
= µ2

n + 2σ2
n,

µn = |mn|, the average channel fading mn ≥ 0, and Kn = µ2
n

2σ2
n

is the Rician factor that determines the

link quality, Kn ∈ (0, ∞). For small values of Kn, the channel fading becomes severe, which indicates that

the LoS signal component is weak. However, according to some experimental measurements, it has been

shown that the received signal amplitude in urban and suburban areas follows the Rician distribution

with Kn ≳ 9 dB due to strong LoS propagation [64]- [69]. The first moment of αn with parameters Kn

and Ωn is given by [70]

E [αn] = 1
2

√
πΩn

1 +Kn
1F1

(
−1

2 , 1,−Kn

)
(6.3)

where E [·] denotes the expected value and 1F1 (·, ·, ·) is the confluent hypergeometric function of the first

kind.

In the reflecting phase, the signal will go through a second fading channel hn before arriving to the

destination BS. Therefore, the received signal at the destination BS is given by

y =
√
P0

N∑
n=1

βnhnℏnejφns+ w

=
√
P0

N∑
n=1

βn |ℏn| |hn| ej(θn+ζn+φn)s+ w. (6.4)

where the channel coefficient hn ≜ |hn| ejζn ∼ CN
(
m̄n, 2σ̄2

n

)
and w is the additive white Gaussian noise
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(AWGN), w ∼ CN
(
0, σ2

w

)
. By selecting φn = − (θn + ζn), all the reflected signal components are added

coherently in the channel, and thus, the received signal at BS can be rewritten as

y =
√
P0

N∑
n=1

βnϖns+ w. (6.5)

where |ℏn| |hn| ≜ ϖn. Therefore, ϖn is formed by the product of two Rician random variables, and hence,

its PDF is given by [71, eq. 6.67]

fϖn (ϖn) = e−(Kn+K̄n)
σ2

nσ̄
2
n

ϖn

∞∑
i=0

∞∑
l=0

K̄l
nK

i
n

(i!l!)2

(
ϖn

2σ̄nσn

)i+l

× Ki−l

(
ϖn

σnσ̄n

)
(6.6)

where K̄ is the Rician factor for channel hn and Km (·) is the modified Bessel function of the second kind

with order m.

6.3 SNR Distribution

To derive the SER and OP, the SNR distribution should be evaluated. Towards this goal, the following

two subsections present the PDF derivation of the instantaneous SNR at the destination BS for a single

and multiple reflectors, respectively.

6.3.1 Single Reflector (N = 1)

Based on the received signal in (6.5), the instantaneous SNR of the received signal at the BS for a signal

reflected from the nth reflector, can be written as

γn = Pβ2
n ϖ

2
n (6.7)

where P ≜ P0/σ
2
w. Using fϖn

(ϖn) given in (6.6), the PDF of γn can be obtained by applying random

variable transformation. Consequently, fγn (γn) can be written as

fγn
(γn) = Cn

∞∑
i=0

∞∑
l=0

Dn
i,lγ

i+l
2

n Ki−l (En
√
γn) (6.8)

where

En = 2
βn

√
(1 +Kn)

(
1 + K̄n

)
Ωn Ω̄nP

(6.9)

Cn = E2
n

2 e−(Kn+K̄n) (6.10)

Dn
i,l = Ki

nK̄
l
n

(i!l!)2

(
En

2

)i+l

. (6.11)
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6.3.2 Multiple Reflectors(N > 1)

Based on the received signal in (6.5), the instantaneous SNR for N > 1 can be written as

γ =
(

√
P

N∑
n=1

βnϖn

)2

. (6.12)

Unlike the single reflector case, deriving a closed-form expression for the PDF of γ is intractable. Conse-

quently, an approximate PDF will be derived to enable analytical performance evaluation. To this end, the

cascaded channels for the nth reflector can be written as Zn = ℏnhn ≜ ZI
n+jZQ

n , where ZI
n = ℏI

nh
I
n−ℏQ

n h
Q
n

and ZQ
n = ℏI

nh
Q
n + ℏQ

n h
I
n,
{
ℏI

n, ℏQ
n , hI

n, hQ
n

}
∼ N

({
m̄I

n, m̄Q
n , mI

n, mQ
n

}
,
{
σ̄2

n, σ̄2
n, σ2

n, σ2
n

})
. In general,

the product of two independent Gaussian random variables X ∼ N
(
mX , σ

2
X

)
and Y ∼ N

(
mY , σ

2
Y

)
is

not Gaussian [72]. However, if
{

µX

σX
, µY

σY

}
≫ 1, then the PDF of the product can be approximated by

N
(
mXmY ,m

2
Xσ

2
Y +m2

Y σ
2
X

)
[73, 74]. For Rician fading channels, such condition can be satisfied when

the Rician factors
{
K̄,K

}
≫ 1 dB, and thus the approximation is very accurate for strong LoS en-

vironments. Consequently, the PDFs of ZI
n and ZQ

n can be approximated as ZI
n ∼ N

(
mZI

n
, σ2

Zn

)
and

ZQ
n ∼ N

(
mZQ

n
, σ2

Zn

)
. Given that σI

n = σQ
n = σn and σ̄I

n = σ̄Q
n = σ̄n, the statistics of ZI

n and ZQ
n are

given by

mZI
n

= mI
nm̄

I
n −mQ

n m̄
Q
n (6.13)

σ2
ZI

n
= µ2

nσ̄
2
n + µ̄2

nσ
2
n (6.14)

mZQ
n

= mI
nm̄

Q
n +mQ

n m̄
I
n (6.15)

σ2
ZQ

n
= µ2

nσ̄
2
n + µ̄2

nσ
2
n. (6.16)

Therefore,
√

PβnZ
I
n ∼ N

(√
PβnmZI

n
, β2

nPσ2
Zn

)
and

√
PβnZ

Q
n ∼ N

(
βn

√
PmZQ

n
, β2

nPσ2
Zn

)
. Conse-

quently, the PDF of Zn can be approximated as Zn ∼ CN
(
mZn

, 2σ2
Zn

)
, where mZn

= mZI
n

+ jmZQ
n

and

σ2
Zn

= σ2
ZI

n
= σ2

ZQ
n

. In addition, as can be noted from the statistics of ZI
n and ZQ

n in (6.13)-(6.16), ZI
n

and ZQ
n have the same variance but different mean values. Consequently, the distribution of ϖn can be

approximated by a Rician PDF with mean and variance that are given by

µZn = |mZn |2

= µ̄nµn (6.17)

σ2
Zn

= µ2
nσ̄

2
n + µ̄2

nσ
2
n. (6.18)
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Consequently, the Rician PDF parameters Ωϖn
and Kϖn

can be written as

Ωϖn
= µ2

Zn
+ 2σ2

Zn

= µ̄2
nµ

2
n + 2

(
µ2

nσ̄
2
n + µ̄2

nσ
2
n

)
(6.19)

Kϖn
= K̄nKn

K̄n +Kn

. (6.20)

Based on (6.20), a cascaded channel of two Rician channels having Rician factors K̄ and K can be

approximated as a Rician channel with Rician factor Kϖn < min
(
K̄n,Kn

)
given that K̄n and Kn are

large.

By simple random variable transformation, the PDF of λn=
√

Pβnϖn can be found as Rician with the

following distribution.

fλn (λn) = 2(1 +Kλn
)

Ωλn eKλn
λn e−

(1+Kλn
)

Ωλn
λ2

n ×I0

(
2λn

√
Kλn

(1 +Kλn
)

Ωλn

)
(6.21)

where Kλn = Kϖn and Ωλn = ΩϖnPβ2
n. However, the distribution of the sum of multiple Rician random

variables, Λ =
∑

n λn, does not have a closed form expression. Therefore, an accurate closed-form

approximation will be used as described in [75] to enable analytical performance evaluation. It is worth

noting that there is a typo in [75, Eq. 5], where the first term should be 1/
√

2πσ2
λn

instead of 1/
√

2π.

To simplify the discussion, it is assumed that βn = β ∀n, and a new variable is defined as P̌0 ≜ β2P0

and P̌ ≜ P̌0/σ
2
w, to simplify the notation. Finally, by simple random variable transformation for the

distribution of Λ given in [75], the distribution of γ=Λ2 can be provided as

fγ (γ) = 1

σλn

√
8πN P̌γ

e
−

(√ γ

P̌
−µλn

N)2

2Nσ2
λn +fc (γ) (6.22)

where µλn and σ2
λn

are the mean and variance of λn, respectively, and fc (γ) is a correction

fc (γ) = a0

2a1

√
P̌γ

Ψ(γ)

(
Ψ2

(γ) − 3
)

e− 1
2 Ψ2

(γ) (6.23)

where Ψ(γ) =
(√

γ

P̌ −
√
Na2

)
/
√
Na1, and the coefficients a0, a1 and a2 are used to control the amplitude,

spread and shift, respectively. In [75], the values of these coefficients depend on the Rician factor K and

the number of random variables N . The method for evaluating the coefficients is introduced in [75],

which is based on the least squares fitting with the exact cumulative distribution function (CDF). A

table is provided in [75] for certain cases, however, these coefficients can be evaluated using nonlinear

curve-fitting in least-squares sense, where the exact CDF can be obtained by convolving N Rician PDFs

and then performing numerical integration.
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6.3.3 The SNR Gain

The SNR improvement gained by increasing N can be measured using the effective SNR of the received

signal, which can be defined for the lth hop as

γ̄N,l ≜ E [γ] (6.24)

Substituting (6.12) into (6.24) gives

γ̄N,l = P E

( N∑
n=1

βnϖn

)2
= P E

[
N∑

n=1

(
β2

n |ℏn|2 |hn|2 + 2
N∑

k>n

βn × |ℏn| |hn|βk |ℏk| |hk|)
]

= P
N∑

n=1

(
β2

nΩnΩ̄n + 2
N∑

k>n

βkβn ×E [|ℏn|] E [|hn|] E [|ℏk|] E [|hk|]
)

(6.25)

where the expected value of the channel envelope is given in (6.3). For independent and identically

distributed (i.i.d.) channels and equal reflection coefficients, βn = β ∀n, then γ̄N can be expressed as

γ̄N,l = P β2N
(
Ω2 + (N − 1)β2E4 [α]

)
= P β2N2

(
Ω2 − β4E4 [α]

N
+ β2E4 [α]

)
(6.26)

For large value of N , β2E4 [α] ≫ Ω2−β4E4[α]
N , and thus,

γ̄N,l ≈ P β4E4 [α] N2. (6.27)

Therefore, the effective received SNR for large number of reflectors becomes linearly proportional to N2.

It is also worth noting that E [α] is an increasing function versus the Rician factor K, which implies that

increasing K provides additional improvement to γ̄N,l.

6.4 Symbol Error Rate (SER) Analysis

To evaluate the SER of signalling over fading channels, the general method is to model the channel

as conditionally Gaussian, obtain the SER, and then to eliminate the conditioning by averaging the

conditional SER over the instantaneous SNR γ. Therefore, the average SER P̄S can be computed as

P̄S =
∫ ∞

0
PS (γ) fγ (γ) dγ. (6.28)
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For most widely used modulation schemes such as quadrature amplitude modulation (QAM) and phase

shift keying (PSK), the conditional SER for a given γ in the presence of AWGN can be approximated as

PS (γ) ≃ AQ
(√

Bγ
)

(6.29)

where Q (·) is the complementary cumulative distribution function of the Gaussian distribution, and the

values of A and B depend on the modulation scheme [76, Table 6.1, pp. 167]. The values of A and B can

be selected such that (6.29) can be used to evaluate the bit error rate (BER).

6.4.1 Single Reflector (N = 1), Single Hop (L = 1)

The SER for the single reflector case can be obtained by substituting (6.8) and (6.29) into (6.28), and

defining √
γ ≜ y, which yields

P̄S = 2ACn

∞∑
i=0

∞∑
l=0

Dn
i,l

∫ ∞

0
yi+l+1Q

(√
By
)

Ki−l (Ey) dy. (6.30)

As can be noted that the closed form for the integral is very difficult to obtain. Therefore, approximating

either the Q-function or the modified Bessel function can result in a solvable integration. However, to

make the integration feasible, tight and tractable approximation for Q (x), which has been proposed

in [84], is applied. The approximation is based on a truncated series and given by

Q (x) ≃ e− x2
2

1.135
√
π

na∑
i=1

(−1)i+1 1.98i

i! 2 i+1
2

xi−1 (6.31)

where the number of terms in the summation na can be selected depending on the desired tightness.

Substituting (6.31) in (6.30) yields

P̄S = 2ACn

1.135
√
π

∞∑
i=0

∞∑
l=0

Dn
i,l

na∑
k=1

(−1)k+1 1.98kB
k−1

2

2 k+1
2 k!

×
∫ ∞

0
yi+l+ke− By2

2 Ki−l (Eny) dy. (6.32)

The integral can be solved as described in [78, eq. (2.16.8.4)], which yields the SER in (6.33), where W

is the Whittaker hypergeometric function.

P̄S = ACne
E2

n
4B

1.135
√
πEn

∞∑
i=0

∞∑
l=0

Dn
i,l

na∑
k=1

(−1)k+1 1.98kB
k−1

2
(

B
2
)− i+l+k

2

2 k+1
2 k!

Γ
(
i+ k + 1

2

)
Γ
(
l+ k + 1

2

)
W− i+l+k

2 , i−l
2

(
E2

n

2B

)
(6.33)
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6.4.2 Multiple Reflectors (N ≥ 2), Single Hop (L = 1)

The average SER P̄S for this case can be derived by substituting (6.29) and (6.22) into (6.28), which after

some manipulations, as shown in Appendix I, gives

P̄S = A

(
1

σλn

√
2πN

T1 + a0

a1
[T2 − 3T3]

)
(6.34)

where the integrals T1, T2 and T3 are evaluated in Appendix I and the final solutions are given by

T1 = e
−

µ2
λn

N

2σ2
λn

1.135
√
π

na∑
k=1

(
(−1)k+1 1.98k

2 k+1
2 k!

(
BP̌

) k−1
2 Γ (k)

ρk
n

× e
µ2

λn
4ρ2

nσ4
λn D−k

(
−µλn

σ2
λn
ρn

) (6.35)

T2 =
√
N

2πa1 e− 1
2 á

(√
π

2 (2 + á) − e ν2
8δ

3∑
k=1

ωkD−k

(
ν√
2δ

))
(6.36)

T3 = 1
2

√
N

π
a1 e− 1

2 á

(√
π − 1√

δ
e ν2

8δ D−1

(
ν√
2δ

))
(6.37)

where á = a2
2/a

2
1, ρn =

√
1

σ2
λn

N
+BP̌, δ = 1

2

(
1 + 1

Na2
1BP̌

)
, ν = −a2

a2
1

√
NBP̌

, ω1 = (2 + á) 1√
2δ

, ω2 = 2ν
2δ and

ω3 = δ
−3
2√

2a2
1NBP̌ , and D−n (·) is the parabolic cylindrical function.

6.4.3 Single and Multiple Reflectors (N > 1), Multiple Hops (L ≥ 2)

To extend the SER analysis for the general case where {N,L} ≥ 2, we define the vector ŝ = [ŝ1, ŝ2, . . . , ŝL],

which contains the decoded symbols of each hop. Given that symbol s0 is transmitted over a route of L

total number of hops, the SER can be expressed as

P̄S|L = Pr (s0 ̸= ŝL)

=
∑
s0

Pr (ŝL ̸= s0|s0) Pr (s0)

= 1
M

∑
s0

∑
ŝ∈S

Pr (ŝ1|s0)
L∏

l=2
Pr (ŝl|ŝl−1) (6.38)

where M is the modulation order, Pr (ŝ1|s0) is the conditional probability for the first hop, and Pr (ŝl|ŝl−1)

is the conditional probability for the remaining L − 1 hops. The vector ŝ ∈ S, where S is the set of all

vectors that has ŝL ̸= s0. Evaluating (7.61) can be performed using the approach described in [79, 80],

which for the special case of binary phase shift keying (BPSK) is given by

P̄S|L = 1
2 − 1

2

L∏
l=1

(
1 − 2P̄S,l

)
(6.39)

where P̄S,l is the average symbol/bit error rate for the lth hop.
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6.4.4 Performance Analysis with Random L

The routing protocol for a mesh network is typically designed to optimize the network parameters, i.e.,

maximize the total traffic, minimize the average error rate or the outage probability. In addition, most

of the routing strategies permit a certain maximum limit for the number of hops based on QoS measures

such as latency and time delay. Accordingly, the number of hops in a mesh network is a random variable,

where the probability mass function (PMF) of the hop count depends on the system parameters and the

adopted routing technique [60, 61]. For example, empirical and analytical PMFs have been compared

in [60] for unit disk planar network (UDPN) and unit disk linear network (UDLN) routing protocols

where the furthest neighbor (FN) and nearest neighbor (NN) strategies are considered. On the other

hand, different path selection strategies for IAB are discussed in [61] including the highest quality first

(HQF), wired first (WF), position aware (PA) and the maximum local rate (MLR). In this paper, the

WF routing strategy is adopted [61]. According to the WF approach, if the sBS has a link with a wired

mBS with SNR greater than a certain threshold, then this link is selected. Otherwise, the sBS selects the

link with the highest SNR by employing HQF strategy. The same process is repeated by the receiving

sBS to select the appropriate BS for the next hop. Therefore, the WF strategy tends to select paths with

low number of hops. In general, given the PMF of the number of hops, the probability of error can be

expressed as

P̄S =
Lmax∑
L=1

Pr (L) P̄S|L (6.40)

where Pr (L) is the probability that the message travels over a route with L hops.

6.5 Outage Probability

The OP is defined as the probability that the SNR is below a certain threshold γth, will be also denoted

as χ for notational simplicity,

P̄O =
∫ χ

0
fγ (γ) dγ. (6.41)

6.5.1 Single Reflector (N = 1), Single Hop (L = 1)

By substituting (6.8) into (6.41), and applying the series expansion of the modified Bessel function, the

OP can be found as

P̄O = Cn

∞∑
i=0

∞∑
l=0

Dn
i,l

∫ χ

0
γ

i+l
2 Ki−l (En

√
γ) dγ. (6.42)

By substituting y = γ/χ, and after some simplifications P̄O,1 can be expressed as

P̄O = Cn

∞∑
i=0

∞∑
l=0

Dn
i,lχ

i+l
2 +1

∫ 1

0
y

i+l
2 Ki−l (En

√
yκ) dy. (6.43)
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Based on [81, Eq. 6.592.2], P̄O can be solved in a closed-form in terms of the Meijer G function,

P̄O = Cn

∞∑
i=0

∞∑
l=0

2i−l−1

Ei−l
n

Dn
i,lχ

l+1G2,1
1,3

(
χE2

n

4

∣∣∣∣ −l
i− l, 0,−l − 1

)
(6.44)

6.5.2 Multiple Reflectors (N ≥ 2), Single Hop (L = 1)

The OP for this case is derived by substituting (6.22) in (6.41) and evaluating the integral. The resultant

expression can be written as

P̄O = P̄
(a)
O + P̄

(b)
O − P̄

(c)
O (6.45)

where the expressions of P̄ (a)
O , P̄ (b)

O and P̄
(c)
O are given by

P̄
(a)
O = 1

2

(
erf
(
µλn

√
N√

2σλn

)
− erf

(
−χ̌+ µλn

N√
2Nσλn

))
(6.46)

P̄
(b)
O = a0 e− 1

2 á

a2
1
√
N

(
N
(
a2

2 + 2a2
1
)

+ Γth e
− χ̌2−2

√
Na2χ̌

2Na2
1

)
(6.47)

P̄
(c)
O = 3a0

√
N e− 1

2 á

(
1 − e

−χ̌

(
χ̌−2

√
Na2

2Na2
1

))
(6.48)

where erf (·) is the error function, χ̌ =
√

χ

P̌ and Γth = −Na2
2 + 2

√
Na2χ̌− χ̌2 − 2Na2

1. Multiple reflectors

(N ≥ 2), multiple hops (L ≥ 2)

Given that the signal will undergo L hops, the outage event occurs if one or more of the L hops go

through an outage. Therefore, OP can be formulated as [82,83],

P̄O|L = 1 −
L∏

l=1

(
1 − P̄O,l

)
(6.49)

where P̄O,l is the OP for the lth hop, which is given by (6.44) and (6.45) for N = 1 and N ≥ 2, respectively.

6.5.3 Outage Probability with Random L

Similar to Sec. 6.4.4, the effect of a random number of hops on the outage probability can be computed

as

P̄O =
Lmax∑
L=1

Pr (L) P̄O|L (6.50)

where Pr (L) is the probability that the message travels over a route with L hops.
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Figure 6.2: SER using BPSK for various values of N , K = 10 dB and L = 1.

6.6 Numerical Results

This section presents the analytical and simulation results for OP and SER of the considered system. The

simulation results are obtained using Monte Carlo simulation, where each simulation run consists of 107

realizations. The links TxBS-IRS and IRS-RxBS are considered i.i.d. flat Rician fading channels where

Kn = K̄n = K, unless mentioned otherwise. The average transmission power of the TxBS P0 and the

reflection coefficient β are normalized to unity, i.e., β = P0 = 1, and the SNR is defined as P = P0/σ
2
w.

Figs. 6.2 and 6.3 show the SER for the single hop case, L = 1, using various values of N using BPSK

and quadrature phase shift keying (QPSK), respectively, and using K = 10 dB. As can be noted from the

two figures, the analytical and simulation results for the single reflector case, N = 1, match very well for

the considered range of SNR because the cascaded channel PDF is exact, and the only approximation used

is for the Q-function. For the multiple reflectors case, the PDF approximation of the cascaded channel

resulted in some discrepancies for the N = 2, 3 cases, at high SNRs. Such results are obtained because the

approximation error is relatively more significant for N < 4, particularly at high SNRs where the effect

of the AWGN is small when compared to the approximation error. As can be noted from the figures,

increasing the number of reflectors N effectively improves the SNR, or equivalently, it enhances the SER

considerably. Nevertheless, the improvement gained by increasing N decreases for large values of N . For

example, the gain obtained using N = 2 as compared to the case of N = 1 is about 8 dB at P̄S = 10−4,

increasing N from 2 to 3 provides only and additional 6 dB, and so forth. Such behavior is obtained

because SNR increases nonlinearly versus N . As an example, for the special case where {βn, ϖn} = 1 ∀n

in (6.5), the SNR improvement becomes 2 log10 (N). Interestingly, increasing N to 30 provides about 36

dB of SNR improvement. The significant SNR improvement can be exploited to increase the modulation
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Figure 6.3: SER using QPSK using various values of N , K = 10 dB and L = 1.

order, and thus enhance the spectral efficiency.

Fig. 7.5a shows the analytical and simulated SER versus SNR using QPSK for various values of N

and K. As can be noted from the figure, the derived approximation matches the simulation results very

well for high values of K for the considered SNR range. For small K values, the difference between the

approximated and simulation results is noticeable for N = 10, and it decreases by increasing N . It can

be also noted that the approximation error becomes less significant at low SNRs because the performance

in such regions is dominated by the AWGN. The impact of the channel quality on SER decreases by

increasing N , which is demonstrated by the condensed SER curves for large values of N .

Fig. 6.5 presents the analytical and simulated SER using BPSK for various values of N and L, where

the transmitted power per each TxBS and the Rician factor K are fixed at 0 and 10 dB, respectively. The

results show the high accuracy of the approximations used because K ≫ 1 dB. The figure also shows the

SER for a random number of hops. The number of possible hops takes a value from the set {1, 2, 3, 4, 5, 6}

with probabilities {0.75, 0.15, 0.05, 0.025, 0.015, 0.01}, where this model corresponds to the WF routing

policy proposed in [61] with gNodeB BSs density of 30 gNB/km2. As can be seen from the figure, the

SER for a random number of hops is bounded by the SER of Lmax = 1 and 6, but closer to Lmax = 1

because the considered routing protocol tends to select the path with minimum number of hops.

Fig. 6.6 presents the results of the OP for various values of γth, i.e., χ, and N . The Rician factor

K = 10 dB, γth = [5, 10, 15] dB, and N = [10, 20]. As the figure shows, derived OP shows an excellent

match with simulation results for all of the considered scenarios. Clearly, increasing γth for a given value

of N deteriorates OP, however, the degradation can be compensated by increasing N . It is interesting to

note that increasing γth by a certain value degrades P̄O approximately by the same value. For example,
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Figure 6.4: SER using QPSK for various values of N and K, L = 1.
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Figure 6.5: SER versus SNR using BPSK for fixed and random values of L, K = 10 dB.
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Figure 6.6: The OP for various values of N and γth, K = 10 dB and L = 1.

when N = 10, increasing γth from 5 to 10 dB increases the SNR required to achieve P̄O = 10−5 from −5

to −10 dB.

Fig. 7.5b shows the OP versus SNR for various values of K, where N = 10, L = 1, and γth = 10 dB.

As shown in the figure, the difference between the analytical and simulation results is about 0.3 dB at

P̄O = 10−4, it decreases by decreasing SNR. The approximation becomes more accurate for larger values

of K. The figure also shows the impact of K on P̄O, where increasing K can significantly improve P̄O,

particularly when K has originally small values. For example, the SNR required to obtain PO = 10−5

can be reduced by about 2.5 dB when K increases from 4 dB to 7 dB, while the gain is reduced to less

than 1 dB when K increases from 16 dB to 20 dB.

Fig. 6.8 presents the analytical and simulated OP for various values of L andN , K = 10 dB and γth = 5

dB. As can be noticed from the figure, the analytical and simulation results match very well for N = 1

because P̄O is exact for this case, and for N ≥ 5 because the approximation accuracy improves versus

N . Moreover, it can be noted that increasing N improves P̄O significantly, and dilutes the degradation

caused by increasing L. More specifically, the effect of N becomes negligible for N ≥ 10.

Fig. 6.9 shows the normalized truncation error that results when using a small number of terms in

the summations used to evaluate the BER in (6.33) and (6.34), which is defined as

TE ≜

∣∣P̄e|50 − P̄e|lmax

∣∣
P̄e|50

(6.51)

where lmax is the number of terms used in the summations, and P̄e|50 is the probability of error for

lmax = 50. The P̄e|50 is taken as the reference because TE for lmax > 50 ≈ 0. The results are obtained

for various values of the number of reflectors N and SNR values. As can be noted from the figure, TE
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Figure 6.7: OP for various values of K, where N = 10, γth = 10 dB and L = 1.
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Figure 6.8: OP for various values of N , L = 1 and 6, K = 10 dB and γth = 5 dB.
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Figure 6.9: The truncation error for various values of N and SNR.

decreases as lmax increases, and it becomes less than 10−7 for lmax ≥ 30.

Fig. 6.10 shows the theoretical and simulated effective SNR γ̄N versus N for K = 0, 10 and 30 dB,

σ2
w = −10 dB, Ω = 1, and all channels are considered i.i.d. As can be seen from the figure, the relation

between γ̄N in dB and N is nonlinear due to the log function. Moreover, the figure shows that increasing

K improves γ̄N .

Fig. 6.11.a and Fig. 6.11.b show the outage probability versus N and L, respectively, using SNR=

−34.5 dB, K = 20 dB, Ω = 1, and γth = 5 dB. The results in Fig. 6.11.a show that using L > 10 may

provide P̄O > 10−2 for N < 98. Therefore, using large number of hops should be avoided unless the

number of elements in each IRS is large. Moreover, it can be noted that P̄O decreases sharply for N > 98.

For the case of Fig. 6.11.b, it can be noted that P̄O increases severely for L < 20, and then the increase

becomes moderate. Moreover, it can be seen that P̄O is very sensitive to the variations of N .

6.7 Conclusion and Future Work

This paper have investigated the performance of the promising IRS technology for wireless mesh back-

hauling, where data traffics for each BS reaches the corenetwork through multiple wireless hops. The

proposed system model was analyzed for the single hop, and then generalized to multiple hops. The sys-

tem performance was evaluated in terms of SNR, SER and OP were exact and approximated analytical

expressions were derived for IRS systems over Rician fading channels. The analytical results were veri-

fied using Mote Carlo simulation, and the extensive comparisons confirmed the accuracy of the derived

solutions, particularly when the number of reflectors N and the Rician K factors are high. In addition,

the results showed that the proposed IRS based backhauling can be considered as an attractive solution
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Figure 6.11: The outage probability versus the number of hops L and number of reflectors N .
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for wireless backhauling because it can boost the effective SNR, and reduce OP and SER considerably.

Consequently, IRS is an energy and spectrum efficiency enabler for wireless backhauling.

Our Future work will focus on investigating the IRS backhauling system in multihop scenarios where

the channel estimation and compensation at each hop is imperfect, and the limitations for the timing

alignment and its impact on the bandwidth will be evaluated. In addition, the design of routing protocols

and path selection mechanisms based on the derived formulas will be performed to minimize the OP for

a given energy constraint will be considered. The use of multi IRSs between adjacent BSs will be also

considered.

Appendix I: Evaluating T1, T2 and T3

The SER for N ≥ 2 is obtained by substituting (6.23) in (6.22), and thus the complete expression fγ (γ)

is easily obtained. The obtained fγ (γ) and (6.29) are then substituted in (6.28), where the result is

expressed in (6.52).

P̄S =A

 1
σλn

√
2πN

1
2
√

P̌

∫ ∞

0
e

−
(√ γ

P̌
−µλn

N)2

2Nσ2
λn

Q
(√
Bγ
)

√
γ

dγ + a0

a1

∫ ∞

0

Q
(√
Bγ
)

2
√

P̌γ
Ψ(γ)

(
Ψ2

(γ)−3
)

e− 1
2 Ψ2

(γ) dγ


(6.52)

After some mathematical manipulations, the resulting integral can be expressed as

P̄S = A

(
1

σλn

√
2πN

T1 + a0

a1
[T2 − 3T3]

)
(6.53)

where

T1 = 1
2
√

P̌

∫ ∞

0

Q
(√
Bγ
)

√
γ

e
−

(√ γ

P̌
−µλn

N)2

2Nσ2
λn dγ (6.54)

T2 = 1
2
√

P̌

∫ ∞

0

Ψ3
(γ)√
γ
Q
(√

Bγ
)

e− 1
2 Ψ2

(γ) dγ (6.55)

T3 = 1
2
√

P̌

∫ ∞

0
Q
(√

Bγ
) Ψ(γ)√

γ
e− 1

2 Ψ2
(γ) dγ (6.56)

These three integrals are solved individually in the three subsections below.

6.7.1 Evaluating the Integral T1

By substituting y =
√

γ

P̌ , the integral T1 in (6.54) is reduced to

T1 =
∫ ∞

0
Q
(√

BP̌y
)

e
− 1

2N

(
y−Nµλn

σλn

)2

dy. (6.57)
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The approximation of the Q-function provided in (6.31) is applied, and then the resulting integral can be

written as

T1 = e
−

µ2
λn

N

2σ2
λn

1.135
√
π

na∑
i=1

(−1)i+1 1.98i

2 i+1
2 i!

(
BP̌

) i−1
2 ×

∫ ∞

0
yi−1 e

− 1
2

(
1

Nσ2
λn

+BP̌
)

y2+
µλn
σ2

λn

y

dy (6.58)

which can be solved as [81, 3.462.1]

T1 = e
−

µ2
λn

N

2σ2
λn

1.135
√
π

na∑
i=1

(−1)i+1 1.98i

2
(i+1)

2 i!

(
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2 Γ (i)

ρi
n

× e
µ2

λn
4ρ2

nσ4
λn D−i

(
−µλn

σ2
λn
ρn

)
(6.59)

where ρn =
√

1
σ2

λn
N

+BP̌, Γ (·) is the Gamma function, and D−n (·) is the parabolic cylinder function.

6.7.2 Evaluating the Integral T2

By substituting x = √
γ, the integral T2 in (6.55) is reduced to

T2 = 1√
P̌

∫ ∞

0
Ψ3

(x2) e− 1
2 Ψ2

(x2) Q
(√

Bx
)
dx. (6.60)

The definition of the Q-function is then substituted in (6.60), i.e., Q (x) ≜ 1√
2π

∫∞
x

e− y2
2 dy, and thus T2

can be written as

T2 = 1√
ˇ2πP

∫ ∞

0

∫ ∞

√
Bx

Ψ3
(x2) e− 1

2 Ψ2
(x2) e− y2
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Subsequently, by changing the order of the integrals, thus T2 can be rewritten as

T2 = 1√
ˇ2πP

∫ ∞

0

∫ y√
B

0
Ψ3

(x2) e− 1
2 Ψ2

(x2) e− y2
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0
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where T2,1 is given by

T2,1 =
∫ y√

B

0
Ψ3

(x) e− 1
2 Ψ2

(x) dx. (6.63)

Therefore, T2,1 should be solved first, then the result is substituted in (6.62) to solve T2. By using the

change of variables Ψ(x2) =
(√

x2

P̌ −
√
Na2

)
/
(√

Na1

)
in (6.63), T2,1 can be written as

T2,1 =
√
N P̌a1

Ψ2
(y2/B)∫

−a2
a1

Ψ3
(x) e− 1

2 Ψ2
(x2) dΨ(x2) (6.64)
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which can be solved as [81]

T2,1 =
√
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Consequently, (6.65) is substituted in (6.62), and thus T2 is reduced to
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√
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By using the definition of the Q-function, it can be easily shown that
∫∞

0 e− y2
2 =

√
π
2 . After some

algebraic operations, T2 can be simplified to (6.67).
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√
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Thereafter, the integration can be evaluated in closed form as given in (6.7.2) [81, 3.462.1].
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√
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2 á

(√
π (2 + á) − e ν2

8δ
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(
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(6.68)

Finally, the expression in (6.7.2) can be written using the summation notation, where the result is

expressed in (6.36) where δ and ν are defined below (6.37).

6.7.3 Evaluating the Integral T3

The steps followed to evaluate T3 is very quiet similar to the procedure used to evaluate T2, and therefore

the derivation of T3 is not included for the sake of brevity.
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Chapter 7

On the Performance of IRS-Assisted

Multi-Layer UAV Communications with

Imperfect Phase Compensation1

Abstract

This work presents the symbol error rate (SER) and outage probability analysis of multi-layer unmanned

aerial vehicles (UAVs) wireless communications assisted by intelligent reflecting surfaces (IRS). In such

systems, the UAVs may experience high jitter, making the estimation and compensation of the end-to-end

phase for each propagation path prone to errors. Consequently, the imperfect phase knowledge at the

IRS should be considered. The phase error is modeled using the von Mises distribution and the analysis

is performed using the Sinusoidal Addition Theorem (SAT) to provide accurate results when the number

of reflectors L ≤ 3, and the Central Limit Theorem (CLT) when L ≥ 4. The achieved results show that

accurate phase estimation is critical for IRS based systems, particularly for a small number of reflecting

elements. For example, the SER at 10−3 degrades by about 5 dB when the von Mises concentration

parameter κ = 2 and L = 30, but the degradation for the same κ surges to 25 dB when L = 2. The

air-to-air (A2A) channel for each propagation path is modeled as a single dominant line-of-sight (LoS)

component, and the results are compared to the Rician channel. The obtained results reveal that the

considered A2A model can be used to accurately represent the A2A channel with Rician fading.
1M. A. Al-Jarrah, A. Al-Dweik, E. Alsusa, Y. Iraqi, and M.-S. Alouini, “On the performance of IRS-assisted multi-layer

UAV communications with imperfect phase compensation,” IEEE Trans. Commun., vol. 69, no. 12, pp. 8551-8568, Dec.
2021, doi: 10.1109/TCOMM.2021.3113008.
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Index Terms

Bit error rate (BER), outage probability, Rician fading, intelligent reflecting surfaces (IRS), imperfect

phase estimation, sinusoidal addition theorem (SAT), unmanned aerial vehicle (UAV), flying network,

von Mises density, 6G.

7.1 Introduction

Intelligent reflecting surfaces (IRS), also called metasurfaces, is an emerging technology that has recently

received extensive attention [1–13]. The main aim of IRS is controlling the propagation medium to

improve the quality of wireless signals by increasing their total energy. The IRS technology is expected

to play a significant role in future wireless networks, such as sixth generation (6G), because of its positive

impact on energy and spectral efficiency. IRS consist of a large number of passive antenna elements that

can introduce phase-shifts to wireless signals before reflecting them to their destination. For efficient

transmission, multiple reflectors are used for a certain destination, and the introduced phase shifts are

selected such that the reflected signals add coherently in the channel. As a result, the signal-to-noise

ratio (SNR) increases considerably, which allows using high modulation orders to improve the spectral

efficiency. Recently, holographic multiple-input-multiple-output surfaces, which are capable of shaping

electromagnetic waves according to desired objectives, have gained significant attention [14].

Likewise, the use of unmanned aerial vehicles (UAVs) as flying networks has recently attracted a sub-

stantial attention in both academic and industrial sectors. Because of their autonomy, flexibility and cost

efficiency, there has been a significant growth in the deployment of UAVs in many applications including

surveillance, localization and tracking, remote sensing, search and rescue missions, aerial imaging, and

military applications. In addition, UAVs can be integrated with base stations (BSs) to construct cost and

energy efficient flying BSs. These flying BSs can provide integrated access and backhaul (IAB) solutions

with significantly improved coverage, capacity and connectivity. Furthermore, UAV based IAB can assist

the terrestrial cellular network that may suffer from congestion due to extremely high traffic or physical

failure due to emergencies such as storms and earthquakes [1,15,17–21]. However, UAV design and deploy-

ment are typically confronted with serious regulatory and technical hurdles [22]. In terms of regulations,

the aviation regulation authorities in most countries impose strict constraints on UAVs’ weight, speed,

altitude and permitted flying sites. Technically speaking, the UAV engine energy consumption drastically

affects the UAV flying time, and thus, limits the UAV maneuvering capability. Therefore, optimizing the

trajectory and UAV placement have received great attention as potential solutions to improve the UAV

performance in terms of coverage, connectivity and networking capabilities, as reported in [23] and the

references listed therein. More recently, multi-layer UAV networks have been considered to mitigate the

regulatory and technical UAV limitations [22]. In multi-layer UAV network structures, a quasi-stationary
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(a) Rural and farming areas (b) Urban areas
Figure 7.1: IRS-assisted two-layer flying network examples in rural and urban areas.

UAV, such as a balloon, is placed at higher altitudes to serve smaller UAVs with lower altitudes, and

hence, increase the probability of LoS connectivity and the UAV link to the core network without the need

for the UAV to change its location considerably [22, 24, 25]. Fig. 7.1 shows an example for a two-layer

UAV networks in rural and urban scenarios.

Although IRS may lead to significant SNR gain, such gain is highly dependent on the system capability

to accurately estimate and compensate the end-to-end phase for each IRS element, which is one of the

main challenges for IRS technology. Therefore, channel estimation, phase shift design, and performance

evaluation with imperfect phase have received extensive attention [13, 26–33]. The phase estimation

and compensation problem becomes more critical when IRS is integrated with flying nodes. In such

contexts, UAV assisted communications may employ IRS to improve the signal quality in the absence

of LoS connectivity between certain UAVs due to Skyscrapers, as in the case of urban areas [12, 34–42],

or to provide efficient IAB as in the case of rural areas. Nevertheless, imperfect conditions such as

UAVs jittering [43], channel estimation errors and phase noise imply that the IRS might be provided

with inaccurate phase information. To model the effect of UAV jittering, a uniformly distributed random

variable is assumed in [43]. Hence, performance analysis of IRS based systems while considering imperfect

co-phasing process is crucial.

7.1.1 Related Work

Existing research work on IRS has covered a broad range of topics such as, but not limited to, power and

energy optimization [1, 8, 13, 36, 44], physical layer security [7], resource allocation with non orthogonal

multiple access (NOMA) [9], full duplex cognitive radio [5], and symbol-level precoding [11]. The integra-

tion of IRS and simultaneous wireless information and power transfer (SWIPT) is considered in [4]. Gao

et al. considered the design of distributed IRS with passive reflecting beamforming that exploits statistical

channel state information (CSI) and analyzed the ergodic achievable rate. Xie et al. [3] formulated and

solved a joint optimization problem for the coordinated transmit and reflective beamforming for maxi-
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mizing the minimum weighted received signal-to-interference-plus-noise ratio (SINR) at users subject to

transmit power constraints. In [45], IRS is used to enhance the coverage of TeraHertz (THz) waveforms

by using multi-hop transmission with multiple IRS panels, where deep reinforcement learning is employed

to design the beamforming matrices.

The integration of IRS and UAVs has also been considered in the literature. For example, Lu et al. [12]

proposed deploying flying platforms such as balloons or UAVs equipped with IRS to serve terrestrial users.

The presented results show that flying IRS has an extra degree of freedom because of the capability of

relocating the IRS to optimize certain system parameters such as maximizing the SNR. Moreover, it is

shown that flying IRS require less number of elements to achieve a certain gain as compared to terrestrial

IRS. Ma et al. [34] used the IRS to direct the signal to the UAV to increase its received signal strength.

The obtained results show that significant signal improvement can be obtained using a small number of

reflectors given that the location of the IRS and phase of the reflected signals are optimized. Ge et al. [35]

considered a system where a single UAV transmits to multiple terrestrial IRS. The work focused on the

optimal design of beamforming at the UAV, IRS and the UAV’s trajectory to maximize the received

power at the ground users. Mohamed and Aı̈ssa [36] considered the downlink of a multi-antenna BS that

communicates to a single antenna user via an IRS-UAV platform. The work evaluates the advantage of the

IRS to maximize the total energy efficiency of the system by jointly optimizing the beamforming vector at

the BS and the phase shifts matrix of the IRS. Various optimization techniques under the assumption of

perfect CSI. Several other articles have considered integrated IRS-UAV [37–42] to minimize the transmit

power, maximize the SNR, maximize the spectral efficiency, or maximize the sum rate. Nevertheless, they

did not consider the error or outage probability analysis, or the impact of imperfect phase estimation and

control process.

The impact of the phase modeling, estimation and compensation has been considered by Abeywick-

rama et al. [13], who proposed a more practical phase model that considers the correlation between the

phase and amplitude of the individual reflected signals. The authors formulated an optimization problem

to minimize the total transmit power by jointly designing the transmit and IRS beamforming. Although

the phase model is interesting, the phase estimation and control processes are considered perfect. More-

over, the error and outage probabilities are not considered. The CSI estimation and discrete phase model

are considered in [26], where the presented results, in terms of the achievable rate, demonstrate the

significant impact of using a discrete phase. Hu et al. [27] considered the imperfect phase scenario by in-

troducing user location uncertainty. The objective of this work is to minimize the transmit power subject

to quality of service (QoS) constraint. CSI estimation has also been considered in [28–33], though the

focus of these works is mostly on evaluating the CSI estimates accuracy, rather than evaluating its impact

on the system performance. In [46], a channel estimation framework is introduced based on parallel fac-

tor decomposition, where iterative algorithms such as alternating least squares and vector approximate
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message passing are employed to estimate the unknown channel matrices. In [47], the achievable capacity

of IRS-based UAV communications with imperfect phase compensation is evaluated.

The error probability analysis of IRS based systems with perfect phase estimation and compensation

is considered in [48–54], and with imperfect phase information in [55,56] . The work in [55] approximated

the composite fading channel, for a large number of reflectors, by a direct fading channel with Nakagami

distribution. By deriving the distribution of the instantaneous signal-to-noise ratio (SNR), the bit error

rate (BER) of the system is approximated using [57, Eq. 4]. Although the derived BER is generally

accurate for large number of reflectors, it is not the case for small number of reflectors where the accuracy

starts to degrade when the number of reflectors is less than 16. The work in [56] considered a more

general model where the Central Limit Theorem (CLT) is used to approximate the composite double

Nakagami channel distribution with von Mises phase errors, when a large number of reflectors is used.

For a small number of reflectors, the Sinusoidal Addition Theorem (SAT) [58, 59] was used to evaluate

the distribution of the received signal envelope. Nevertheless, the phase error for this case is considered

to be uniform [56, Eq. 13, Eq. 14]. It is worth noting that both [55] and [56] considered only the BER

analysis.

7.1.2 Motivation and Main Contributions

As can be noted from the surveyed literature, integrating IRS with flying networks using UAVs has a

strong potential to improve UAVs connectivity in various applications. The extra degree of freedom that

UAVs have can enable optimizing the IRS link by selecting the most suitable placement for the IRS-UAV.

Nevertheless, achieving the ultimate gain using IRS is highly dependent on the reliability of the phase

estimation and co-phasing processes. Practically speaking, both operations are not perfect, and thus, the

ultimate gain promised by the IRS technology may not be guaranteed, which is particularly critical for

IRS-UAV configurations. Therefore, this work analyzes the performance of a two-layer IRS assisted UAV

communications under a more realistic scenario, where the phase estimation and co-phasing processes are

imperfect. The phase error is modeled using the von Mises distribution, and the channels are considered

to have a dominant LoS component. Unlike [47], which evaluates the achievable ergodic capacity, this

paper evaluates the system performance in terms of symbol error rate (SER) and outage probability,

where exact closed-form expressions are derived for a small number of reflecting elements, and accurate

approximations are derived for large number of reflectors. In addition, this work considers a multi-layer

UAV network with multiple hops, whereas [47] considers only the single hop scenario. It is worth noting

that this paper considers the von Mises distribution to model the phase error, and thus it generalizes the

derivations of the envelope distribution in [58, 59] where the phase error is considered to be uniformly

distributed. Moreover, [58,59] consider a single hop system with a small number of reflections and without

IRS. The obtained results show that the gain achieved using IRS depends strongly on the reliability of the
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Table 7.1: Nomenclature.

Symbol Definition Symbol Definition
s Complex data symbol ψ Channel phase, Tx→IRS
r Received passband signal at IRS y Received passband signal at Rx
Ts Symbol duration ℏi Channel attenuation, IRS→Rx
p(t) Pulse shape ϕi Channel phase, IRS→Rx
L Number of IRS elements z AWGN at Rx
fc Carrier frequency σ2

z AWGN variance
a Amplitude of data symbol, |s| ζL Signal phase at Rx
φ Phase of data symbol, tan−1

(
ℑ{s(ℓ)}
ℜ{s(ℓ)}

)
BL Signal amplitude at Rx

τi Time delay of the i d Decision variable at Rx
h Channel attenuation, Tx→IRS µ Phase error mean
τ Channel delay, Tx→IRS κ Phase error shape parameter
Pe Conditional SER I0(·) The modified Bessel function
K Rician fading factor P̄e Average SER

Table 7.2: Frequently used definitions.

α = j(b2
2 −A2

1 −A2
2) A1 = 2

√
A1A2 K = κ2

2A1A2

ά = j(b2
3 − b2

2 −A2
3) A2 = (A1 −A2)2

Ḱ = κ3
2A3b2

α̌ = b2
3 − b2

2 −A2
3 A3 = (A1 +A2)2

θi = ψi + ϕi

α̃ = −jα v = −K (sin (ϵ1) + j cos (ϵ1)) Ai = giℏihi

β = −2 |A1A2| v́ = −Ḱ(sin(ζ2) + j cos(ζ2)) ϵi = θ̂i − θi

B(b2) ≜ B =
√
α2 + β2 I

(2)
0 (κ) = I0(κ1)I0(κ2) λ = K sin (ϵ1)

B2(b2) ≜ B2 = α̃
2A1A2

I
(3)
0 (κ) = I0(κ1)I0(κ2)I0(κ3) λ́ = Ḱ sin(ζ2)

B3(b3) ≜ B3 = α̌
2A3b2

B́(b3) ≜ B́ =
√
ά2 + β́2 β́ = −2 |A3b2|

co-phasing process, particularly when the number of reflectors is small. For a large number of reflectors,

the system sensitivity to the co-phasing process decreases significantly.

7.1.3 Notations

For the readers’ convenience, the nomenclature and main symbol definitions are given in Tables 7.1 and

7.2, respectively. In Table 7.2 j ≜
√

−1.

7.1.4 Paper Organization

The rest of the paper is organized as follows. Sec. 7.2 presents the system and channel models. Sec. 7.3

presents the derivation of the signal envelope distribution for different number of reflectors. Secs. 7.4 and

7.5 present the SER and outage probability analysis. Numerical and simulation results are presented in

Sec. 7.7, and finally the paper is concluded in Sec. 7.8.

7.2 System and Channel Models

This work considers an IRS-assisted multi-layer UAV network where each device is equipped with a single

antenna. As depicted in Fig. 7.1, a BS located at pBS = [xBS, yBS,hBS], where hBS is the height of the

BS, aims at improving the transmission to users with poor channel conditions by creating virtual LoS
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links through a multi-layer network of UAVs. The top layer consists of an IRS panel carried by a UAV

and located at pIRS = [xIRS, yIRS, zIRS]. The IRS panel reflects the BS signal to a low-altitude UAV

(LA-UAV) located at pUAV = [xUAV, yUAV, zUAV], which decodes-and-forwards (DF) the received data to

ground users (GUs). The direct path between the BS and LA-UAVs is considered blocked because the

UAV is far from the BS as shown in Fig. 7.1a, or due to obstacles such as skyscrapers in urban areas

as shown in Fig. 7.1b.All UAVs are considered to have hovering capability. It is worth noting that this

scenario is widely adopted in the literature as reported in [1, 15, 17–21] and the references listed therein.

Therefore, the channel between the BS and ith IRS element can be modeled as flat fading link, and thus,

the passband signal at the ith IRS element can be written as

ri(t) =
√
Pthis cos [ωct− ψi]

=
√
Pthia cos [ωct+ φ− ψi] , i = [1, 2, . . . , L] (7.1)

where Pt is the transmission power, s ∈ S is the complex information symbol, s = aejφ, ωc ≜ 2πfc

is the angular carrier frequency, fc is the carrier frequency in Hz, hi is the envelope of channel fading

coefficient between the transmitter and the ith IRS element, ψi is the phase introduced by the channel,

and , and z (t) is the additive white Gaussian noise (AWGN). The phases ψi ∀i are typically modeled as

mutually independent and identically distributed (i.i.d.) random variables that are uniformly distributed

over [−π, π) [60]. Each IRS element shifts the signal phase by a value θi ∈ [−π, π) and attenuates the

signal by a factor gi. The phase shifts are typically evaluated at the BS based on the channel estimates

and sent to the IRS panel through a dedicated control channel. Therefore, the reflected L signals received

by a LA-UAV from the IRS can be written as [47]

y (t) =
√
Pt

L∑
i=1

giℏihia cos [ωt+ φ− ψi − ϕi + θi] + z (t) (7.2)

where ℏi is the channel attenuation between the ith IRS element and LA-UAV, and ϕi ∈ [−π, π) is the

phase shift caused by the channel. To maximize the received SNR, the value of θi is selected such that

θi = ψi + ϕi, [R1,1] ψi ∈ [−π, π). Thus, y (t) can be written as

y(t) =
√
PtBL cos [ωct+ φ] + z (t) (7.3)

where BL =
∑L

i=1 giℏihia. For IRS phase estimation and compensation, we consider the protocol pro-

posed in [61], where the cascaded channel associated with each IRS element is estimated separately from

other reflectors, and the phase estimation and compensation processes are performed prior to data trans-

mission. Consequently, the phase estimates for the L reflectors can be considered mutually independent.

Moreover, the estimated phases will generally be different from the phases during the data transmission
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interval, and the phase difference is proportional to the number of IRS elements for which the phase

will be estimated and compensated. As such, it is practically infeasible to estimate and compensate the

phases ψi and ϕi perfectly because of the UAVs’ jitter while hovering and the AWGN. Therefore, y (t)

with imperfect phase estimation and compensation should be written as

y (t) =
√
Pt

L∑
i=1

giℏihia cos
[
ωt+ φ− ψi − ϕi + θ̂i

]
+ z (t) (7.4)

where θ̂i = ψ̂i + ϕ̂i, ψ̂i and ϕ̂i are the estimated and compensated ψi and ϕi, respectively. Thus,

y(t) =
√
Pta

L∑
i=1

Ai cos [ωt+ φ+ ϵi] + z (t) (7.5)

where ϵi = θ̂i − θi, giℏihi ≜ Ai ∈ (−∞,∞), and ϵi ∈ [−π, π). According to the SAT [58, 59], the sum

of weighted sinusoidals with different phase values can be represented as a single sinusoid with phase ζL

and amplitude BL. Therefore,

y (t) =
√
PtaBL cos(ωt+ φ+ ζL), t ≥ 0 (7.6)

where

B2
L = ∥A∥2 + 2

∑
L≥j>k≥1

AjAk cos (ϵj − ϵk) (7.7)

ζL = tan−1

[∑L
i=1 Ai sin (ϵi)∑L
i=1 Ai cos (ϵi)

]
(7.8)

and ∥·∥ is the Euclidian norm.

At the receiving LA-UAV, the carrier signal will be removed and the data symbol during the ℓth

signaling period can be expressed as

y ≜ 1
Ts

∫ Ts

0
2y(t)e−j(ωt+ζ̂L) dt =

√
PtsBLej(ζL−ζ̂L) + z (7.9)

where ζ̂L is an estimate of the accumulated phase offset ζL, and z ∼ CN
(
0, σ2

z

)
is the AWGN. According

to the European Telecommunications Standards Institute (ETSI), each data resource block (RB) in the

fifth generation new radio (5G-NR) includes large number of pilot symbols that can be used for channel

estimation [62,63]. Therefore, ζL can be estimated accurately at the receiving UAV. Moreover, ζ̂L is used

locally at the receiver and will not be sent to the IRS, and hence, it is less prone to errors. Consequently,

we can assume that ζ̂L ≈ ζL, which reduces y to

y =
√
PtBLs+ z. (7.10)
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At the LA-UAV, maximum likelihood detection (MLD) can be applied to extract the transmitted symbol

s, such that

ŝ = arg max
s∈S

∣∣∣y −
√
PtBLs

∣∣∣2 . (7.11)

The LA-UAV forwards ŝ to a GU located at pGU = [xGU, yGU, 0] where the channel is denoted as h̃. The

received signal at the GU can be written as

x =
√
PUh̃ŝ+ w (7.12)

where PU is the UAV transmit power. Similar to the detection method at the LA-UAV, the GU detects

the transmitted symbol using MLD, which in the absence of SER information is given by [64]

ŝGU = arg max
s∈S

∣∣∣x−
√
PUh̃s

∣∣∣2 . (7.13)

7.2.1 Channel Model for BS-IRS-UAV

The elements of AL = [A1, ..., AL] depend on the channel model. For air-to-air channels (A2A), the signal

typically has a strong LoS and a small number of weak reflected components, and thus, such channels

can be modeled using the Rician fading [66–72]. According to the general Rician channel model, the

instantaneous channel coefficient can be represented as

h̆i = ρt-r,i

√
1

1 + Kh̆

(√
Kh̆h̆i,LoS + h̆i,nLoS

)
(7.14)

where h̆i ∈ {hi, ℏi, h̃}, ρt-r,i is the pathloss which depends on the distance between a transmitter t and

a receiver r, h̆i,LoS is the LoS component which can be considered deterministic, h̆i,nLoS is the non-LoS

component which is typically modeled as a complex Gaussian random variable, and Kh̆ is the Rice factor.

However, because the spacing between reflectors is very small as compared to the distance between

transceivers, the distance between the BS and any IRS element can be assumed equal. Similarly, the

distance between any reflector and the small drone can be assumed equal for all reflectors. Therefore,

the subscript i in ρi can be omitted, and for given transmitter and receiver locations in 3D Cartesian

coordinates as pt = [xt, yt, zt] and pr = [xr, yr, zr], respectively, ρ can be represented by

ρt-r ≜
c

4πfc
d

−ϱ/2
t-r = c

4πfc
∥pt − pr∥−ϱ/2 (7.15)

where c is the speed of light, dt-r is the distance between the transmitter and receiver, and ϱ is the pathloss

exponent.

However, as the measurements indicate, the Rice factor K for A2A channel is about 20 dB, and the

received signal power may remain constant for long time periods [66–72]. Consequently, the channel
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coefficients hi’s are not suffering from small scale fading, and the large scale fading is dominated by the

free space path loss. Similarly, for a sufficiently high BS, hBS is large, ℏi can be assumed dominated

by the LoS term. Mathematically, by referring to (7.14), for large values of the Rice factor (Kh̆ −→ ∞),√
Kh̆h̆i,LoS ≫ h̆i,nLoS, and thus Ai can be approximated as,

Ai = gi

(
c

4πfc

)2
∥pBS − pIRS∥−ϱ/2 ∥pUAV − pIRS∥−ϱ/2

√
KhKℏ

(1 + Kh) (1 + Kℏ)hi,LoSℏi,LoS. (7.16)

Nevertheless, the obtained results in Sec. 7.7 show that the constant fading coefficients model can be

used to closely approximate the Rician fading channel with high K values, i.e., K ≥ 20 dB.

7.2.2 Channel Model for UAV-GU

Unlike BS-UAV and UAV-UAV channels, it is very likely that the GU detects some reflected signals from

surroundings, and thus this channel is modeled as Rician channel with limited Rice factor

h̃ = c

4πfc
∥pUAV − pGU∥−ϱ/2

√
1

1 + Kh̃

(√
Kh̃h̃i,LoS + h̃i,nLoS

)
(7.17)

Since the top layer, i.e., BS-IRS-UAV link, is the main interest of this paper, Secs. III, IV and V focus

on the derivations of the PDF of the received signal envelope, SER and outage probability for this layer,

respectively. Nevertheless, the derivations for the SER and outage probability for the multi-layer network

scenario are provided in Sec. VI.

7.3 PDF of the Signal Envelope BL

For given values of A1, A2, ..., AL, the PDF of BL can be computed as [58,59]

fBL
(bL) = bL

π

∫ ∞

−∞
e−jb2

Lt

∫ π

−π

ejt{b2
L−1+A2

L+2ALbL−1 cos (ϵL−ζL−1)} × fϵ(ϵ)dϵdt (7.18)

where ϵ = [ϵ1, ϵ2, . . . , ϵL] are the phase errors for the L reflecting elements. The PDF fBL
(bL) is derived

in [58, 59] for the uniform phase ϵi ∼ U [−π, π] ∀i, and has been used to model fading, interference and

jamming in wireless systems [60,73,74]. However, when the SAT is used to model phase estimation errors,

the uniform phase model is not applicable for such scenarios [75], because the phase error generally follows

the von Mises distribution with mean µ and shape parameter κ [47, 76],

fϵi(ϵi) = eκi cos(ϵi−µi)

2πI0(κi)
(7.19)

where Iq(.) is the modified Bessel function of the first kind and order q. It is worth noting that the

values of κi and µi depend on the accuracy of phase estimation and compensation process, where µi
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represents the bias of the estimator whereas κi is inversely proportional to the mean-squared error (MSE)

of phase estimation and compensation. For example, high values of κi are obtained when accurate phase

compensation with low MSE is performed. In [43], the phase error caused by UAV jitter is modeled as

a uniformly distributed random variable, whereas this work considers von Mises distribution which is

more general. In this paper, we assume that the phase compensation error caused by all kinds of possible

imperfections, such as UAV jittering, air turbulence effects, phase noise, and channel estimation process,

is represented by ϵi with parameter κi. As can be noted from (8.5), the uniform PDF is a special case of

the von Mises PDF with κ = 0, which corresponds to the worst case phase error. For large values of κ,

the PDF becomes concentrated around µ, which indicates small phase errors, and setting µ = 0 implies

that the phase error is unbiased. Although in theory κ ∈ [0,∞), typical values of κ occupy a smaller

bounded range. For example, least square channel estimation (LSCE) using a single pilot symbol provides

κ = [1.25, 3, 8, 25, 250] for SNR = [−5, 0, 5, 10, 20], respectively.

In the following subsections, the exact PDF fBL
(bL) is derived for the cases of L = 2, 3, and the

PDFs for L ≥ 4 are approximated using the CLT. It is worth noting that considering the cases with small

number of IRS elements is crucial for several applications such as resource allocation for multiuser IRS

where each user can be assigned a wide range of IRS elements [77]. Consequently, this paper considers

a wide range of reflecting elements including L = {2, 3} as well as L ≥ 4. Moreover, for all scenarios,

the phase error will be considered unbiased, µi = 0 ∀i, and the values of κi are considered unequal

deterministic variables. Additionally, the phase errors ϵi ∀i are i.i.d. von Mises random variables.

7.3.1 The Signal Envelope PDF for L = 2, fB2 (b2)

For L = 2, ζL−1 = ζ1 = ϵ1 and b1 = A1. Substituting these terms in (7.18) and rearranging the order of

integrals give

fB2(b2) = b2

4π3I
(2)
0 (κ)

∫ ∞

−∞
e−jt(b2

2−A2
1−A2

2)
∫ π

−π

eκ1 cos(ϵ1)
[∫ π

−π

e2jtA1A2 cos(ϵ2−ϵ1)+κ2 cos(ϵ2)dϵ2

]
dϵ1dt.

(7.20)

It should be noted that when the distributions of phase errors are not uniform, it cannot be assumed that

one of these errors is zero as reported in [58,59], which implies that there is an additional integration that

should be solved for the von Mises PDFs. The integral inside the brackets can be evaluated with respect

to ϵ2 as [78, 3.338.4],

I2 =
∫ π

−π

e2jtA1A2 cos(ϵ2−ϵ1)+κ2 cos(ϵ2)dϵ2

= 2πI0

(
2 |A1A2|

√
−t2 +K2 + 2jtK cos(ϵ1)

)
. (7.21)
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By substituting (7.21) in (7.20) and rearranging the integrals order, fB2(b2) can be obtained as

fB2(b2) = b2

4π3I
(2)
0 (κ)

∫ π

−π

eκ1 cos(ϵ1)
[∫ ∞

−∞
e−jtα̃I2dt

]
dϵ1. (7.22)

The integral inside the brackets, I3, can be evaluated using the following tabulated integral [78, 6.616.1],

∫ ∞

0
e−αxJ0

(
β
√
x2 + 2λx

)
dx = 1√

α2 + β2
eλ
(

α−
√

α2+β2
)

(7.23)

which after some straightforward manipulations can be written as,

∫ ∞

−∞
e−αxI0

(
−jβ

√
x2 + 2λx

)
dx = 1√

α2 + β2

[
eλ
(

α−
√

α2+β2
)

+ eλ
(

α+
√

α2+β2
)]
. (7.24)

By using the change of variable x = t+ v,

∫ ∞

−∞
e−αxI0

(
−jβ

√
x2 + 2λx

)
dx = e−αv

∫ ∞

−∞
e−αtI0

(
−jβ

√
t2 + 2t(v + λ) + v2 + 2λv

)
dt. (7.25)

Therefore, I3 can be evaluated as

I3 = eαv 2π
B

[
eλ(α−B) + eλ(α+B)

]
, α2 + β2 ≥ 0. (7.26)

By noting that v + λ = −jK cos (ϵ1) and v2 + 2λv = −K2, fB2(b2) can be expressed as

fB2(b2) = b2

2π2BI(2)
0 (κ)

[∫ π

−π

e[(Kα̃+κ1) cos(ϵ1)−KB sin(ϵ1)] +
∫ π

−π

e[(Kα̃+κ1) cos(ϵ1)+KB sin(ϵ1)]
]
dϵ1

= b2

πBI(2)
0 (κ)

[
I0

[√
(Kα̃+ κ1)2 + [KB]2

]
+ I0

[√
(Kα̃+ κ1)2 + [KB]2

]]
= 2b2

πBI(2)
0 (κ)

I0

[√
(2KA1A2B2 + κ1)2 +K2 (−4A2

1A
2
2B2

2 + 4A2
1A

2
2)
]

= 2b2

πBI(2)
0 (κ)

I0

[√
(κ1 − κ2)2 + κ2κ1

A1A2
(b2

2 − A2)
]

(7.27)

which, after some algebraic simplifications, can be simplified to

fB2(b2) =
2b2I0

[√
(κ1 − κ2)2 + κ2κ1

A1A2
(b2

2 − A2)
]

π
√

(A3 − b2
2) (b2

2 − A2)I(2)
0 (κ)

, |B2| ≤ 1. (7.28)

The condition |B2| ≤ 1 can be solved as
∣∣∣ b2

2−A2
1−A2

2
2A1A2

∣∣∣ ≤ 1, which gives B2,m ≤ b2 ≤ B2,M, where B2,m =

|A1 −A2| and B2,M = A1 + A2. It can be noted that fB2 (b2) derived in [58, 59] is just a special case of

(7.28) with κi = 0 ∀i.

Fig. 7.2a shows the PDF of fB2 (b2) for different values of κ, where the individual signal amplitudes are

Ai = 1 ∀i. As can be noted from the figure, the derived formula in (7.28) matches the simulation results
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Figure 7.2: The PDF of the signal envelope for different values of κ for L = 2, 3, Ai = 1 ∀i.

for all the considered values of κ, including κ = 0, which corresponds to the uniformly distributed phase

errors. The figure shows that large phase errors may drive the amplitude B2 below the min{A1, A2},

which implies that the error rate would be worse than the case without IRS. Increasing the value of κ

makes the envelope more concentrated around A1 +A2, which implies that the IRS will provide a gain of

about 6 dB in terms of SNR.

7.3.2 The Signal Envelope PDF for L = 3, fB3 (b3)

Using the same assumptions of L = 2, fB3 (b3) can be expressed as

fB3(b3) = b3

8π4I
(3)
0 (κ)

∫ ∞

−∞
e−jb2

3t

∫ π

−π

∫ π

−π

∫ π

−π

ejt{b2
2+A2

3+2A3b2 cos (ϵ3−ζ2)}e
∑L

i=1
κi cos(ϵi)dϵ1dϵ2dϵ3dt.

(7.29)

where b2
2 = A2

1 + A2
2 + 2A1A2 cos(ϵ2 − ϵ1) and ζ2 = tan−1

[
A1 sin(ϵ1)+A2 sin(ϵ2)
A1 cos(ϵ1)+A2 cos(ϵ2)

]
. Hence, the constraint

|B2| ≤ 1 is also applicable. By substituting the identity cos(ϵ3 − ζ2) = cos (ϵ3) cos (ζ2) + sin (ϵ3) sin (ζ2)

and evaluating the integral with respect to ϵ3, fB3(b3) can be written as

fB3(b3) = b3

4π3I
(3)
0 (κ)

∫ ∞

−∞
e−jt(b2

3−A2
3)
∫ π

−π

∫ π

−π

ejtb2
2eκ1 cos(ϵ1)+κ2 cos(ϵ2)

× I0

[√
[2jtA3b2 cos (ζ2) + κ3]2 + [2jtA3b2 sin (ζ2)]2

]
dϵ1dϵ2dt

= b3

4π3I
(3)
0 (κ)

∫ π

−π

eκ1 cos(ϵ1)
∫ π

−π

1
B́

eκ2 cos(ϵ2)

×
[
e−Ḱ sin(ζ2)B́+α̌Ḱ cos(ζ2) + eḰ sin(ζ2)B́+α̌Ḱ cos(ζ2)

]
1{|B3|≤1}dϵ2dϵ1 (7.30)
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where 1{·} is the indicator function of the set {·}. Thus,

fB3(b3) = b3

2π3I
(3)
0 (κ)

∫ π

−π

∫ π

−π

1
B́

eκ1 cos(ϵ1)+κ2 cos(ϵ2)
[
eḰα̌ cos(ζ2) cosh

(
Ḱ sin(ζ2)B́

)]
1{|B3|≤1}dϵ1dϵ2.

(7.31)

As can be noted from (7.31), deriving fB3(b3) in a closed-form is intractable. Fig. 7.2b shows fB3(b3)

for various values of κ, where high values of κ make the PDF to be mostly concentrated close to the

maximum amplitude, i.e., B3,M = A1 + A2 + A3. For the perfect phase estimation case, the anticipated

gain provided by the IRS will be about 9.5 dB. Nevertheless, for low values of κ, the signal will experience

fading, which may cause severe increase in the probability of error. In such scenarios, the error probability

without IRS may become less than that with IRS.

7.3.3 The Signal Envelope PDF fBL
(bL) for L ≥ 4

As can be observed from the derivations for the case of L = 3, the exact solution for the PDF of the

received SNR is not feasible when L ≥ 4. Therefore, the CLT can be invoked to approximate the PDF

fBL
(bL) when L ≥ 4. By referring to B2

L in (7.7), which is obtained by using the SAT, it is easier to

compute fB2
L

(
b2

L

)
. Moreover, because the values of BL are bounded by BL,m ≤ bL ≤ BL,M, it will be

more accurate to use the truncated Gaussian distribution [79] to derive the PDF using CLT. By defining

yL ≜ b2
L for notational simplicity, we obtain

fYL
(yL) = 1

ϖL

√
2πσ2

YL

exp
(

− (yL −mYL
)2

2σ2
YL

)
(7.32)

where ϖL is the truncated PDF normalization factor, and mYL
and σ2

YL
are the mean and variance of

the Gaussian PDF, which are given by

mYL
=

L∑
i=1

A2
i + 2

∑
L≥j>k≥1

AjAk
I1 (κj) I1 (κk)
I0(κj)I0(κk) (7.33)

and

σ2
YL

≜ E
[
Y 2

L

]
−m2

YL
(7.34)

The complete derivations of mYL
, E
[
Y 2

L

]
and σ2

YL
are given in Appendix II.

The truncated PDF normalization factor ϖL can be written as [79, pp. 20]

ϖL = Φ
(
BL,M −mYL

σYL

)
− Φ

(
BL,m −mYL

σYL

)
(7.35)

where Φ (·) is the cumulative distribution function of the standard normal distribution. It is worthy to

observe that ϖL is approximately a unity for high values of mYL
, where this condition is satisfied when
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a very large number of reflectors is deployed.

7.4 SER Analysis for BS-IRS-UAV Link

In general, the SER of communication systems over fading channels can be expressed as,

P̄e =
∫ ∞

0
(Pe|bL) fBL

(bL) dbL (7.36)

where fBL
(bL) is the probability density function (PDF) of the signal envelope BL and Pe|bL is the

conditional SER given BL = bL.

7.4.1 One Reflector, L = 1

In this case, b1 = β1h1ℏ1 ≜ A1, hence the channel is deterministic and based on (8.6), the instantaneous

SNR is γ1 = A2
1/σ

2
z . Therefore, the SER can be expressed as

P̄e = C1Q
(√

C2γ1

)
(7.37)

where Q (·) is the tail distribution function of the standard normal distribution, and C1 and C2 are

constants that depend on the modulation scheme [80, Table 6.1, pp. 179].

7.4.2 Two Reflectors, L = 2

Because the phase compensation errors at the two reflectors are i.i.d random variables, then the instan-

taneous SNR γ2 = b2
2

σ2
z

is also random. Therefore, the average SER P̄e can be expressed as

P̄e = C1

∫ B2,M

B2,m

Q

(
b2

√
C2

σ2
z

)
fB2(b2)db2

= 2C1

πI
(2)
0 (κ)

∫ B2,M

B2,m

b2Q
(
b2

√
C2
σ2

z

)
√

(A3 − b2
2) (b2

2 − A2)
I0

[√
(κ1 − κ2)2 + κ2κ1

A1A2
(b2

2 − A2)
]
db2. (7.38)

By substituting x =
√
b2

2 − A2, and noting that B2,m = |A1 −A2| and B2,M = (A1 +A2), then

P̄e = 2C1

πI
(2)
0 (κ)

∫ A1

0

Q
(√

C2
σ2

z
(x2 + A2)

)
√

−x2 + A2
1

I0

[√
(κ1 − κ2)2 + κ2κ1

A1A2
x2
]
dx. (7.39)

Evaluating the integral in (7.39) is intractable due to the Bessel function. Therefore, we use the infinite

series representation of I0 (·), which gives

P̄e = 2C1

πI
(2)
0 (κ)

∞∑
m=0

1
22m (m!)2

∫ A1

0

Q
(√

C2
σ2

z
(x2 + A2)

)
√

−x2 + A2
1

[
(κ1 − κ2)2 + κ2κ1

A1A2
x2
]m

dx. (7.40)
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Using the binomial theorem, (7.40) can be expressed as

P̄e = 2C1

πI
(2)
0 (κ)

∞∑
m=0

1
22m (m!)2

m∑
k=0

(
m

k

)
(κ1 − κ2)2(m−k)

(
κ2κ1

A1A2

)k ∫ A1

0

Q
(√

C2
σ2

z
(x2 + A2)

)
√

−x2 + A2
1

x2kdx.

(7.41)

However, the integral in (7.41) does not have a closed-form solution except for the special case when

A1 = A2 ≜ A. Consequently, P̄e is reduced to

P̄e = 2C1

πI
(2)
0 (κ)

∞∑
m=0

1
22m (m!)2

m∑
k=0

(
m

k

)
(κ1 − κ2)2(m−k)

(κ2κ1

A2

)k
∫ A1

0

Q
(√

C2
σ2

z
x
)

√
−x2 + A2

1
x2kdx (7.42)

which can be evaluated as [81, 2.8.3.1, pp. 102],

P̄e = C1

πI
(2)
0 (κ)

∞∑
m=0

1
22m (m!)2

m∑
k=0

(
m

k

)
(κ1 − κ2)2(m−k)

(κ2κ1

A2

)k

×

{
A2k

1
2 B

(
k + 1

2 ,
1
2
)

−

√
C2

2πσ2
z

A2k+1
1 B

(
k + 1, 1

2
)

2F2

([
k + 1, 1

2
]

;
[
k + 3

2 ,
3
2
]

; −A2
1C2

2σ2
z

)}
(7.43)

where 2F2 (·) is the hypergeometric function and B (·, ·) is the beta function, B (α, β) = Γ(α)Γ(β)
Γ(α+β) .

For the general case of A1 ̸= A2, the integral can be solved using the Q-function approximation [82]

Q (x) ≃
N∑

l=1
δl exp

(
−εlx

2) , x > 0 (7.44)

where δl and εl are constants evaluated to minimize the approximation error, where their values can be

found in [82]. Using the Q-function approximation, (7.41) can be simplified to

P̄e = 2C1

πI
(2)
0 (κ)

∞∑
m=0

1
22m (m!)2

m∑
k=0

(
m

k

)
(κ1 − κ2)2(m−k)

(
κ2κ1

A1A2

)k N∑
l=1

δl exp
(

−C2A2

σ2
z

εl

)

×
∫ A1

0

exp
(

− εlC2
σ2

z
x2
)

√
−x2 + A2

1
x2kdx. (7.45)

Substituting u = x2 yields

P̄e = C1

πI
(2)
0 (κ)

∞∑
m=0

1
22m (m!)2

m∑
k=0

(
m

k

)
(κ1 − κ2)2(m−k)

(
κ2κ1

A1A2

)k N∑
l=1

δl exp
(

−C2A2

σ2
z

εl

)

×
∫ A2

1

0

exp
(

− εlC2
σ2

z
u
)

√
−u+ A2

1
uk−0.5du. (7.46)
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Thereafter, [19, 2.3.6.1, pp. 324] is used to solve the integral, which gives,

P̄e = C1

πI
(2)
0 (κ)

∞∑
m=0

1
22m (m!)2

m∑
k=0

(
m

k

)
(κ1 − κ2)2(m−k)

(
κ2κ1

A1A2

)k N∑
l=1

δl exp
(

−C2A2

σ2
z

εl

)
× B (k + 0.5, 0.5) (4A1A2)k

1F1

(
k + 0.5, k + 1,−A2

1
εlC2

σ2
z

)
. (7.47)

7.4.3 Three Reflectors, L = 3

Similar to the L = 2 case, the SER for L = 3 can be computed as,

P̄e = C1

∫ B3,M

B3,m

Q

(
b3

√
C2

σ2
z

)
fB3(b3)db3 (7.48)

where B3,m and B3,M are the minimum and maximum values of B3. As can be noted from (7.31), evaluat-

ing P̄e in a closed-form is infeasible because fB3 (b3) does not have a closed-form solution. Consequently,

the SER can be obtained numerically after substituting (7.31) into (7.48).

7.4.4 Number of Reflectors L ≥ 4

Because BL,m ≤ BL ≤ BL,M, then YL = B2
L is bounded as B2

L,m ≤ YL ≤ B2
L,M. Therefore,

P̄e =
∫ B2

L,M

B2
L,m

Pe fYL
(yL)dyL = C1

ϖL

√
2πσ2

YL

∫ B2
L,M

B2
L,m

Q

(√
C2

σ2
z

yL

)
exp

(
− (yL − µYL

)2

2σ2
YL

)
dyL. (7.49)

To be able to solve the integral, the Q-function approximation in [84] is applied, and thus

P̄e =
C1 exp

(
− µ2

YL

2σ2
YL

)
1.135πϖL

√
2σ2

YL

na∑
i=1

(−1)i+1 1.98i

i! 2 i+1
2

(
C2

σ2
z

) i−1
2

×
∫ B2

L,M

B2
L,m

y
i−1

2
L exp

(
− y2

L

2σ2
YL

+
(
µYL

σ2
YL

− C2

2σ2
z

)
yL

)
dyL.

(7.50)

The integral in (7.50) can be solved recursively [19, 1.3.3.19, pp. 140], and the solution is given in

terms of the error function or Q-function. However, when B2
L,m → 0 and B2

L,M → ∞, P̄e can be given

as [19, 2.3.15.3, pp. 343]

P̄e = Z

na∑
i=1

(−1)i+1

1.98−i i!Γ
(
i+ 1

2

)(
σYL

C2

2σ2
z

) i
2

D−( i+1
2 )

(
σYL

(
C2

2σ2
z

− µYL

σ2
YL

))
(7.51)

where

Z = C1σz

2 × 1.135πϖL

√
C2σYL

exp
(
σ2

YL

4

(
µYL

σ2
YL

− C2

2σ2
z

)2
−

µ2
YL

2σ2
YL

)
(7.52)

and D(·) (·) is the parabolic cylinder function.
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7.5 Outage Probability Analysis for BS-IRS-UAV Link

For L = 1, the channel gain is fixed and the outage process depends only on the signal power. For L ≥ 2,

the derivation of the outage probability is presented below.

7.5.1 Two Reflectors, L = 2

Given that the instantaneous SNR threshold γO ≜ b2
O/σ

2
z , then the envelope threshold is bO =

√
σ2

zγO.

Therefore, the outage probability can be derived as

P̄O =


∫ bO

B2,m

fB2(b2)db2, bO > B2,m

1, bO ≤ B2,m

(7.53)

where P̄O|bO>B2,m can be computed as

P̄O = 2
πI

(2)
0 (κ)

∫ bO

B2,m

b2I0

[√
(κ1 − κ2)2 + κ2κ1

A1A2
(b2

2 − A2)
]

√
(A3 − b2

2) (b2
2 − A2)

db2. (7.54)

Substituting x =
√
b2

2 − A2 and noting that B2
2,m = A2 give

P̄O = 2
πI

(2)
0 (κ)

∫ √
b2

O
−A2

0

I0

[√
(κ1 − κ2)2 + κ2κ1

A1A2
x2
]

√
−x2 + A2

1
dx. (7.55)

Using the infinite series representation of the Bessel function gives

P̄O = 2
πI

(2)
0 (κ)

∞∑
m=0

1
22m (m!)2

∫ √
b2

O
−A2

0

(
(κ1 − κ2)2 + κ2κ1

A1A2
x2
)m

√
−x2 + A2

1
dx. (7.56)

Then, by applying the binomial series expansion,

P̄O = 2
πI

(2)
0 (κ)

∞∑
m=0

1
22m (m!)2

m∑
l=0

(
m

l

)
(κ1 − κ2)2(m−l)

(
κ2κ1

A1A2

)l ∫ √
b2

O
−A2

0

x2l√
−x2 + A2

1
dx (7.57)

which can be solved using [19, 1.2.48.8, pp. 97] as

P̄O = 2
πI

(2)
0 (κ)

∞∑
m=0

1
22m (m!)2

(
P̄O|l=0 + P̄O|l≥1

)
(7.58)
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where P̄O|l=0 = (κ1 − κ2)2m arcsin
(

BO

A1

)
, BO =

√
b2

o − A2, and

P̄O|l≥1 =
m∑

l=1

(
m

l

)
(κ1 − κ2)2(m−l)

(
κ2κ1

A1A2

)l
{[

B2l−1
O +

l−1∑
k=1

Hk,lA2k
1 B2l−2k−1

O

]

× −1
2l

√
A2

1 −B2
O +A2l

1 (2l − 1)!!
2ll! arcsin

(
BO

A1

)}
(7.59)

where Hk,l = (2l−1)(2l−3)···(2l−2k+1)
2k(l−1)(l−2)···(l−k) , and (·)!! is the double factorial.

7.5.2 Three Reflectors, L = 3

The outage probability for this case can be derived as described in (7.53) except that B2,m is replaced

by B3,m. Similar to the SER, the outage probability for this case will be evaluated numerically because

fB3(b3) in (7.31) does not have a closed-form representation.

7.5.3 Number of Reflectors L ≥ 4

In this case, the PDF obtained using the CLT can be used to derive P̄O as

P̄O =
∫ b2

O

B2
L,m

fYL
(yL)dyL

= 1
σYL

ϖL

√
2π

∫ b2
O

B2
L,m

exp
(

−1
2

(
yL − µYL

σYL

)2
)
dyL

= 1
ϖL

Q

(
B2

L,m − µYL

σYL

)
− 1
ϖL

Q

(
b2

O − µYL

σYL

)
. (7.60)

7.6 End-to-End performance for Multi-Layer UAV Network

In this section, the SER and outage probability derivations are extended for the general case of multi-

layer UAV network. A multi-layer network can be observed as a network with N number of hops. In

this work, we assume DF relaying is employed at the receiving node in each hop. Moreover, we consider

the network architecture in Fig. 7.1 where the top layer consists of BS-IRS-UAV link which is already

analyzed above. The remaining N − 1 layers could be a combination of UAV-IRS-UAV, which can be

analyzed similar to the top layer, and simple point-to-point links. The performance analysis for the latter

case, i.e., point-to-point links, is already provided in the literature, for instance, a point-to-point system

with perfect phase knowledge can be found in [80] whereas with imperfect phase is investigated in [85].

Thus, we will not include the analysis here for the sake of brevity. Nevertheless, interested readers are

recommended to refer to these articles and the references therein for more details.
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7.6.1 SER for N Hops

Let us define the vector ŝ = [ŝ1, ŝ2, . . . , ŝN ], which contains the decoded symbols of the receiver in each

hop. Given that symbol s0 is transmitted by the BS over a route of N total number of hops, the SER at

the destination node, which is the GU, can be expressed as [48]

P̄e,GU = Pr (s0 ̸= ŝN )

=
∑
s0

Pr (ŝN ̸= s0|s0) Pr (s0)

= 1
M

∑
s0

∑
ŝ∈S

Pr (ŝ1|s0)
N∏

l=2
Pr (ŝn|ŝn−1) (7.61)

where M is the modulation order, Pr (ŝ1|s0) is the conditional probability for the first hop (BS-IRS-UAV

link), Pr (ŝn|ŝn−1) is the conditional probability for each of the remaining N − 1 hops, and S is a set of

all possible combinations for the vector ŝ with ŝN ̸= s0.

7.6.2 Outage Probability for N Hops

The outage event in multiple hops based communication system occurs if one or more of the hops suffers

from outage, and thus the outage probability can be given by [48]

P̄O,GU = 1 −
N∏

n=1

(
1 − P̄O,n

)
(7.62)

where P̄O,n is the OP for the nth hop.

7.7 Numerical Results

This section presents the numerical results obtained from the derived formulae, and compares them to

Monte Carlo simulation results using various configurations. The performance of the considered UAV-IRS

system is evaluated in terms of SER and outage probability. Each simulation point is obtained using 107

realizations. The average transmission power for all scenarios is normalized to unity, and the SNR in dB is

defined as SNR ≜ −10 log10
(
σ2

z

)
. The phase estimates are considered unbiased, i.e., µ = 0, and κi = κ ∀i

is considered for all figures. For the outage probability, the SNR threshold has been set at γO = 10 dB

for all scenarios. The modulation used is BPSK, and hence, the SER and bit error rate (BER) are equal.

The analytical SER results for L = 2 are obtained using (7.43) and (7.47) for equal and unequal received

signal amplitudes, respectively. On the other hand, the outage probability for L = 2 is obtained using

(7.59). Unless it is specified otherwise, the SER for L = 3 is obtained using (7.48) while and outage

probability is obtained (7.53) and replacing B2,m with B3,m. For L ≥ 4, the SER is obtained using (7.51)

and the outage probability is obtained using (7.60). In all infinite summations, we consistently use the
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Figure 7.3: Analytical and simulated SER and outage probability of the system for various number of reflecting
elements L, where κ = 20, and Ai = 1 ∀i.

first 30 terms.

Fig. 7.3 shows the analytical and simulated SER and outage probability of the considered system for

various values of L where κ = 20, and Ai = 1 ∀i. As can be noted from Fig. 7.3a, the derived SER

expressions match very well the simulation results, including the SER case for L ≥ 4, which is derived

based on the CLT. In addition, the results show the considerable SER enhancement caused by using IRS.

However, the obtained SNR gain decreases as L increases. For example, the SNR gain is about 6 dB

using L = 10 as compared to L = 20, while the gain is only 3.5 dB when increasing L from 20 to 30. The

same behavior is obtained for L = 1, 2, 3.

Fig. 7.3b shows the outage probability of the system where the SNR threshold γO = 10 dB. According

to the figure, a perfect match between simulations and analysis is obtained for L ≤ 3 and L ≥ 20.

However, for the remaining cases, i.e., 4 ≤ L < 20, a small mismatch can be noted when P̄O is below

10−3. The small difference is due to the CLT, which becomes more accurate by increasing L. Moreover, it

can be observed that using IRS can significantly enhance the outage probability. Nevertheless, the outage

probability curves are very steep at high values of L because the received signal power distribution is very

narrow, and thus, small SNR changes may cause significant change in the outage probability.

Fig. 7.4 shows the analytical and simulated system SER and outage probability for various values of L,

and two cases for Ai. In case 1, Ai = 1 ∀i, and in Case 2, {A1, A2, A3} = {5, 3, 2} and A4, A5, . . . , A30 = 1.

For all cases in the figure κ = 20. As can be noted from Fig. 7.4a, the SER analytical results match

very well the simulation results for all the considered scenarios. The results are presented for the unequal

amplitudes as well to evaluate the impact of the signal amplitude on P̄e. For example, there is a gain of

about 10 dB in favor of Case 2 as compared to Case 1 when L = 3; however, this gain decreases to about

1.9 dB when L = 30. This implies that the link quality has a significant effect on the system performance
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Figure 7.4: Analytical and simulated SER and outage probability for various values of L with equal and unequal
Ai, and for κ = 20.

in addition to the number of reflectors L. Fig. 7.4b shows the outage probability. As can be observed

from the figure, the obtained analysis perfectly matches the simulation results. The figure also shows that

the outage probability is inversely proportional to the link quality.

Fig. 7.5a shows the SER for different values of κ and L using Ai = 1 ∀i. The SER for L = 1 is used

as a benchmark, and it is not affected by κ since the receiver is assumed to know the overall signal phase

accurately. As can be noted from the figure, the analysis matches the simulation results for all cases

except for L = 3 with κ ≤ 5, where some mismatch is resulted from the multiple discontinuities in b2
3 that

appear at low κ values. It can be also noted that large values of κ correspond to small phase errors, and

thus, better SER is obtained as κ increases for a given L. The figure also shows that the SER degradation

versus κ depends on L. For small values of L the SER is very sensitive to κ. Consequently, for a particular

value of κ, increasing L does not necessarily improve the system performance. Such observation is critical

for resource allocation problems where different users have different values of κ. The same observations

and conclusions can be generally made for the outage probability in Fig. 7.5b.

Fig. 7.6 shows the SER and outage probability for various values of L, Ai = 1 ∀i, and κ = 5. All

the results in the figure are obtained using the CLT given in (7.51) and (7.60) for the SER and outage

probability, respectively. As can be noted from Fig. 7.6a, the simulation results deviate significantly from

the theoretical results obtained using CLT when L < 4. However, the mismatch decreases for L ≥ 4 and

becomes negligible for L ≥ 6. Therefore, the accurate analysis for the cases of L = 2 and 3 is necessary

to provide accurate analytical results for such cases. The outage probability results in Fig. 7.6b show a

higher deviation between the simulation and analytical results obtained suing the CLT, particularly for

L < 10. Moreover, it can be noted that the deviation becomes more apparent for P̄O < 10−3.

Fig. 7.7 is produced using the same settings of Fig. 7.6 except that κ = 20. As can be noted from
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Figure 7.5: SER and outage probability for various values of κ and L using Ai = 1 ∀i.

Fig. 7.7a, the CLT in this case gives near perfect match even for L = {1, 2, 3}. Such performance is

obtained because at high values of κ the PDF of the envelope becomes mostly concentrated around BL,M,

and hence, averaging the conditional SER over the PDF will be mostly dependent on the mean and

variance of the PDF rather than the actual shape of the PDF. For the outage probability the scenario is

different because outage computation involves integration over the PDF itself with no averaging operation.

Therefore, it can be noted from the results in Fig. 7.7b the CLT does not provide accurate results for

L < 10.

Fig. 7.8 shows the SER versus SNR for the cases where the signals have fixed and random amplitudes.

For the random amplitudes, the fading factor is modeled as Rician distribution with parameters Ω and

K i.e., Ai ∼ R (Ω,K). For fair comparison, we set Ω = 1 for each of the L signals in the Rician case and

Ai = 1 ∀i for the fixed amplitudes case. As can be noted from the figure, the SER performance for the

Rician model converges to the fixed amplitude model when L or K increases. For example, it can be noted

that P̄e| (Ai = 1) ≈ P̄e| (Ai ∼ R(1, 20)). Moreover, the SNR gain obtained by increasing K becomes less

important as L increases. For example, at P̄e = 10−5, the SNR gain obtained by increasing K from 5 to

20 dB is 27 dB when L = 2, while it is almost 4 dB when L = 20.

Fig. 7.9 shows the SER and outage probability for a 3-layer UAV network. The first layer consists

of a BS-IRS-UAV link with a fixed κ = 20, Kh = 20 dB, and Kℏ = 20 dB. The second and third

layers are UAV-UAV with Kh̆ = 20 and UAV-GU links, respectively, with a perfect phase knowledge at

the receiving nodes. The other system parameters that appear in (7.16) and (7.17) are summarized as

follows: c = 3 × 108m/s, fc = 1 GHz, ϱ = 2, gi = 1, hi,LoS = 1, ℏi,LoS = 1, h̃i,LoS = 1, and h̃i,nLoS = 1.

Moreover, the locations of the nodes in 3D Cartesian coordinates measured in meters are pBS = [0, 0, 50],

pIRS = [50, 50, 400], pUAV1 = [300, 1000, 200], pUAV2 = [4000, 4000, 150], and pGU = [5100, 6200, 0]. The

transmission power of each transmitting node is normalized to 1, and the receiver in each hop applies DF
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Figure 7.6: The SER and outage probability for different values of L, where the CLT is applied for all L, and
κ = 5.
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Figure 7.7: The SER and outage probability for different values of L, where the CLT is applied for all L, and
κ = 20.
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Figure 7.8: The SER for Rician distributed amplitudes, i.e., Ai ∼ R (Ω,K).

relaying protocol and employs 2 antennas to achieve full duplex transmissions. The noise samples at the

receivers are assumed i.i.d with zero mean and a variance of σ2
z , and the average SNR in this figure is

defined as SNR ≜ Pr,GU/σ
2
z where Pr,GU is the amount of received power at GU. As can be observed from

the Fig. 7.9a, at low and moderate SNR, the decrease rate in SER is high as the SNR and number of

reflecting elements L increase. However, at high SNR, the rate of the decrease in SER becomes less sharp

and the effect of L becomes negligible. This behavior is attributed to the fact that the SER is affected by

the three hops and the worst hop dominates the SER. The effect of Kh̆ becomes more important at high

SNR as the link between UAV2 and GU dominates the SER performance at high SNR. It can be also

noticed from Fig. 7.9b that the effect of Kh̆ is very significant as the outage probability suffers from high

error floors at low values of Kh̆; however, the error floor disappears, or lower than 10−6 when Kh̆ = 15

dB.

7.8 Conclusion and Future Work

This paper has presented an investigation into the SER and outage performance of IRS assisted UAV-UAV

communications when phase compensation at the reflectors is imperfect. The derived expressions were

provided for L = {1, 2, 3} using SAT, and CLT when L ≥ 4. The results gave an insight on the interplay

between the number of elements, phase errors and system performance. It was demonstrated that IRS

significantly improve the performance of UAV-UAV communications, particularly for large values of L.

More interestingly, it was shown that increasing the number of reflectors provides some form of immunity

against phase error. On the other hand, when L is small, the degradation due to large phase errors may

surpass the IRS gain, hence it is paramount that the system designer is aware of the amount of phase

221



0 5 10 15 20 25 30 35 40
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(a) Average SER

18 20 22 24 26 28 30 32 34 36 38

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(b) Average outage probability
Figure 7.9: The SER and outage probability for a 3-layer UAV network with different values of Kh̆.

error. In addition, the results revealed that the accuracy of the CLT approximation improves as L and κ

increase. Finally, it was found that the nonfading amplitudes model can be used to accurately model the

fading amplitudes with Rician fading given that the Rician factor, or the number of reflectors, is large.

Our future work will focus on finding the relation between κi and the compensated phase MSE caused

by phase noise, UAV jittering, and phase estimation errors. Moreover, we will consider the case where

the phase errors of certain IRS elements are correlated. In such scenarios, splitting the IRS large panels

into several small distributed panels may improve the system performance. However, the number and

location of the distributed IRS panels should be optimized [65].

Appendix I

The expected value of cos (nϕj) can be expressed as

E [cos (nϕj)] = 1
2πI0(κj)

∫ π

−π

cos (nϕj) eκj cos(ϕj)dϕj (7.63)

By dividing the interval of the integral into two subintervals, [−π, 0] and (0, π], E [cos (nϕj)] and substi-

tuting θ = ϕj in the first integral, and noting that cos (−θ) = cos θ yields

E [cos (nϕj)] = 1
2πI0(κj)

(
−
∫ 0

−π

cos (nθ) eκj cos(θ)dθ +
∫ π

0
cos (nϕj) eκj cos(ϕj)dϕj

)
= 1
πI0(κj)

∫ π

0
cos (nϕj) eκj cos(ϕj)dϕj . (7.64)
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Using the modified Bessel function definition, In (x) = 1
π

∫ π

0 cos (nθ) ex cos(θ)dθ, E [cos (nϕj)] can be written

as

E [cos (nϕj)] = In (κj)
I0(κj) . (7.65)

On the other hand, the expected value of cos (nϕj) can be expressed as

E [sin (nϕj)] = 1
2πI0(κj)

∫ π

−π

sin (nϕj) eκj cos(ϕj)dϕj = 0 (7.66)

where the last equality is obtained by substituting θ = −ϕj and noting that sin (−θ) = − sin θ while

cos (−θ) = cos θ.

Appendix II

This Appendix derives mYL
and σ2

YL
based on the CLT. By computing the expected value of (7.7) and

noting that ϕi’s are mutually independent, then mYL
= E

[
B2

L

]
can be evaluated as

mYL
= E

[
||A||2

]
+ 2

∑
L≥j>k≥1

E [AjAk cos (ϕj − ϕk)]

=
L∑

i=1
E
[
A2

i

]
+ 2

∑
L≥j>k≥1

E [Aj ]E [Ak]E [cos (ϕj − ϕk)] . (7.67)

After some mathematical manipulations and given that Ai ∀i is deterministic, then mYL
can be computed

with the aid of (7.65) and (7.66) as

mYL
=

L∑
i=1

A2
i + 2

∑
L≥j>k≥1

AjAk (E [cosϕj ]E [cosϕk] + E [sinϕj ]E [sinϕk])

=
L∑

i=1
A2

i + 2
∑

L≥j>k≥1
AjAk

I1 (κj) I1 (κk)
I0(κj)I0(κk) . (7.68)

By using the variance definition σ2
YL

≜ E
[
Y 2

L

]
−m2

YL
,

where

E
[
Y 2

L

]
= E


||A||2 + 2

∑
L≥j>k≥1

AjAk cos (ϕj − ϕk)

2
 (7.69)

By taking the square value for the term inside the bracket and noting that the expected value can be
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distributed over the sum, E
[
Y 2

L

]
can be found as

E
[
Y 2

L

]
=
(
||A||2

)2 + 4E


 ∑

L≥j>k≥1
AjAk cos (ϕj − ϕk)

2


︸ ︷︷ ︸
T1

+ 4||A||2
∑

L≥j>k≥1
AjAkE [cos (ϕj − ϕk)]︸ ︷︷ ︸

T2

By noting that cos(x− y) = cos(x) cos(y) + sin(x) sin(y) and using Appendix I, then T2 becomes

T2 = 4||A||2
∑

L≥j>k≥1
AjAkE [cos (ϕj − ϕk)] = 4||A||2

∑
L≥j>k≥1

AjAk
I1 (κj) I1 (κk)
I0(κj)I0(κk) . (7.70)

Similarly, the term T1 can be split into two terms, T1 = T1,1 + T1,2. By evaluating and expanding the

term inside the expectation, and using the identity cos2(x) = 0.5(1 + cos(2x)), then T1,1 becomes

T1,1 = 4
∑

L≥j>k≥1
A2

jA
2
kE
[
cos2 (ϕj − ϕk)

]
= 2

∑
L≥j>k≥1

A2
jA

2
k (1 + E [cos (2ϕj − 2ϕk)]) . (7.71)

By employing the cosine of difference of two angles trigonometric identity, and then using the results

obtained in Appendix I, T1,1 can be evaluated as

T1,1 = 2
∑

L≥j>k≥1
A2

jA
2
k (1 + E [cos (2ϕj) cos (2ϕk) + sin (2ϕj) sin (2ϕk)])

= 2
∑

L≥j>k≥1
A2

jA
2
k

(
1 + I2 (κj)

I0(κj)
I2 (κj)
I0(κj)

)
, (7.72)

and T1,2 can be derived as

T1,2 =
∑

1≤k≤L

∑
1≤j<k

∑
1≤i≤L

i̸=k

∑
1≤l<i

4AjAkAiAlEk,j,i,l +
∑

1≤k≤L

∑
1≤j<k

∑
1≤i≤L

∑
1≤l<i

l ̸=j

4AjAkAiAlEk,j,i,l, (7.73)

where Ek,j,i,l = E [cos (ϕj − ϕk) cos (ϕi − ϕl)] . By noting that ϕj ̸= ϕk and ϕi ̸= ϕl, considering all possi-

bilities for the equality conditions between ϕj and {ϕi, ϕl}, and between ϕk and {ϕi, ϕl}, and employing

the results in Appendix I, Ek,j,i,l can be expressed as

Ek,j,i,l =



4∏
k=1

I1(κk)
I0(κk) , i ̸= k, i ̸= j, l ̸= k, l ̸= j

1 +
2∏

k=1

I2(κk)
I0(κk) , i ̸= k, i = j, l = k, l ̸= j

1
2

I1(κk)I1(κl)
I0(κk)I0(κl)

(
1 + I2(κi)

I0(κi)

)
, i ̸= k, i = j, l ̸= k, l ̸= j

1
2

I1(κj)I1(κi)
I0(κj)I0(κi)

(
1 + I2(κk)

I0(κk)

)
, i ̸= k, i ̸= j, l = k, l ̸= j

1
2

I1(κk)I1(κi)
I0(κk)I0(κi)

(
1 + I2(κj)

I0(κj)

)
, i ̸= k, i ̸= j, l ̸= k, l = j

1
2

I1(κj)I1(κl)
I0(κj)I0(κl)

(
1 + I2(κk)

I0(κk)

)
, i = k, i ̸= j, l ̸= k, l ̸= j

(7.74)
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Chapter 8

Capacity Analysis of IRS-Based UAV

Communications with Imperfect Phase

Compensation1

Abstract

This paper presents the capacity analysis of unmanned aerial vehicles (UAVs) communications supported

by flying intelligent reflecting surfaces (IRSs). In the considered system, some of the UAVs are equipped

with an IRS panel that applies certain phase-shifts to the incident waves before being reflected to the

receiving UAV. In contrast to existing work, this letter considers the effect of imperfect phase knowledge

on the system capacity, where the phase error is modeled as a von Mises random variable with parameter

κ. Analytical results, corroborated by Monte Carlo simulations, show that the achievable capacity is

dependent on the phase error, however, the capacity loss becomes negligible at high signal-to-noise ratio

(SNR) and when κ ≥ 6.

Index Terms

Wireless backhauling, IRS, capacity, imperfect phase compensation, UAV, flying network.

8.1 Introduction

Because of their autonomy, flexibility, three dimensional mobility, and cost efficiency, unmanned aerial

vehicles (UAVs) are receiving an increasing attention from industrial and academic researchers. UAVs
1M. A. Al-Jarrah, E. Alsusa, A. Al-Dweik, and D. K. C. So,“Capacity analysis of IRS-based UAV communications

with imperfect phase compensation,” IEEE Wireless Commun. Lett., vol. 10, no. 7, pp. 1479-1483, Jul. 2021, doi:
10.1109/LWC.2021.3071059.
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have been considered for several applications such as surveillance, tracking, search and rescue missions,

and remote sensing [1, 2]. They can also support existing cellular networks that experience temporary

congestion or damage caused by environmental disasters such as earthquakes and storms. Recently, flying

base-stations (BSs), or UAV based BS (UAV-BS), have been introduced to provide integrated access

and backhaul (IAB) with wide coverage area, high capacity and ultimate connectivity. Moreover, the

deployment of flying networks of various types of UAVs, including low altitude drones (LAD) and high

altitude airships (HAA), is expected to provide reliable and high transmission rate communications as

reported in [3–5]. Some challenges for the deployment of LADs and HAAs are discussed in [3], where

practical solutions are provided to ensure reliable connectivity.

Recently, intelligent reflecting surfaces (IRSs) have been proposed to control the wireless medium

between transceivers. In IRS aided communications, a panel of programmable reflectors, which are able

to apply phase shift to the incident waves and reflect them to the receiver, are used to enhance the

signal quality at the receiver. The values of the phase-shifts for all reflectors are computed such that the

reflected signals add coherently in the medium, and consequently the signal-to-noise ratio (SNR) can be

significantly increased. The phase values are typically computed by the BS and sent to the programmable

IRS through a control channel [6–8].

The achievable capacity and coverage probability with a limited number of reflectors are discussed

in [9] under ideal and arbitrary phase compensation. The results in [9] showed that the capacity achieved

with arbitrary phase shifts is very poor relative to the ideal case. However, ideal phase compensation is

practically infeasible due to the phase estimation and quantization errors. Consequently, investigating

the scenario of non-ideal phase compensation is necessary to explore the performance limits of IRS based

communication systems [10–12]. In [10], the capacity limit of multiple-input multiple-output (MIMO)

IRS systems is characterized by optimizing the reflection coefficients matrix of the IRS system aiming

at maximizing the system capacity. In [11], the impact of a finite number of possible phase shifts on

the achievable ergodic capacity (EC) is investigated, where the capacity bounds as a function of channel

statistics are derived based on Jensen’s inequality, and the phase quantization error is modeled as the

derivative of the actual phase value. In [13], the bit error rate (BER) is derived where a statistical

model is employed to characterize the phase compensation error caused by imperfect channel estimation

and phase quantization. In addition to being considered separately, the synergy of IRSs and UAVs is

considered as a promising solution for supporting reliable wireless communications in future generations

such as the sixth generation (6G) and beyond [5, 14]. Fig. 8.1 depicts an example where IRS panels

are attached to HAAs with hovering ability to support data exchange between small drones and a main

BS. However, the wobbling of UAVs makes the assumption that the phase is perfectly compensated

unrealistic. Consequently, evaluating the link capacity where IRS-UAV is incorporated with imperfect

phase compensation is indispensable. Although similar system model is introduced in [5], the probability
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Figure 8.1: IRS assisted flying networks.

density function (PDF) of the received SNR, outage probability and BER have been analyzed, whereas the

achievable EC has not been evaluated. Accordingly, the main contribution of this letter is the derivation

of the achievable EC of flying IRS (FIRS) assisted UAV communications while considering the impact

of imperfect phase compensation. Unlike [11], which considers the phase error as the derivative of the

correct phase, we model the phase error using the von Mises PDF. The obtained results show that the

phase compensation error has a significant impact on the achievable capacity at low values of κ and SNR,

however, the performance degradation becomes negligible at high values of SNR and κ.

The rest of the letter is organized as follows. Sec. II presents the system model of a flying network

supported by an IRS. The derivation of the achievable capacity is parovided in Sec. III, while Sec. IV

shows the numerical results. Conclusion and future work are provided in Section V.

8.2 System Model

As shown in Fig. 8.1, this work considers an IRS attached to HAA that is deployed to provide efficient

wireless backhauling to terrestrial users. In addition, a flying BS represented as a drone is deployed to

provide alternative line-of-sight (LoS) paths to users which may suffer from blockage. The IRS panel

consists of L elements each of which applies a phase shift θ̂i, attenuates the signal by a coefficient gi, and

then reflects the signal to the destination drone. The phase compensation is assumed imperfect due to

IRS phase noise and non-ideal phase estimation process, which becomes more challenging due to UAV

wobbling. Given that the transmitted symbol is s = |s| ejφ, and the cascaded channel envelope is |hi|

with total phase shift θi, the received signal at the drone can be written as

r̃ (t) = |s|
L∑

i=1
Ai cos (ωct+ φ+ ϵi) + z (t) (8.1)
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where ωc is the carrier angular frequency, Ai = gi |hi|, ϵi = θ̂i − θi is the phase compensation error, and

z (t) is the additive white Gaussian noise (AWGN). Using the sinusoidal addition theorem (SAT) [15],

r̃ (t) can be written as

r̃ (t) = |s|BL cos(ωct+ φ+ ζL) + z (t) , t ≥ 0 (8.2)

where and ζL are the equivalent channel envelope and phase, respectively,

B2
L = ∥A∥2 + 2

∑
L≥j>k≥1

AjAk cos (ϵj − ϵk) , (8.3)

ζL = tan−1

(
L∑

i=1
Ai sin (ϵi)

/ L∑
i=1

Ai cos (ϵi)
)

(8.4)

and ∥·∥ is the Euclidian norm. The elements of A = [A1, . . . , AL] depend on the channel model. For air-

to-air channels, the signal typically has a strong LoS component and a small number of weak scattered

components; thus, the small scale fading of such channels follows the Rician distribution. However,

according to experimental measurements, the Rician factor K for ground-to-air and air-to-air channels is

more than 15 dB, and the received signal power may remain constant for long time periods [2,4,5,16,17].

Therefore, it can be assumed that the channel coefficients Ai’s do not experience small scale fading, and

that free space pathloss dominates the received signal power. Nevertheless, the obtained results in Sec.

IV show that the constant fading coefficients model can be used to closely approximate the Rician fading

channel with considerable values of K. It is worthy to note that the analysis provided here are valid

for both BS-FIRS-UAV and BS-FIRS-BS links with sufficiently high BSs, where these links are shown in

Fig. 1 in elliptical shape. The von Mises, or circular normal, distribution is typically used to model the

random phase error ϵi [13], where the PDF is given by

fϵi
(ϵi) = 1/(2πI0(κi)) eκi cos(ϵi−µi) (8.5)

where µi and κi are the mean and shape parameter of ϵi. For unbiased estimators, the mean of ϵi is

typically µi = 0 ∀i.

In slow fading channels, the accumulated phase offset ζL can be perfectly estimated by the receiving

drone, and consequently the baseband representation of the received signal can be expressed as

r = BLs+ z (8.6)

where z ∼ CN
(
0, σ2

z

)
is the AWGN.
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8.3 The Achievable Capacity

The provided derivations consider a single user scenario. However, if the total number of reflectors is

distributed among users with fixed assignment and orthogonal resource blocks are assigned to users [18],

the analysis can be applied for multi-user system by adding the individual user’s rates.

8.3.1 Single Reflector (L = 1)

In this case, the received signal envelope is deterministic, and thus the instantaneous SNR is γ1 = A2
1

σ2
z

.

Consequently, the capacity normalized to the bandwidth W is

R1 ≜ C1/W = log2 (1 + γ1) (8.7)

where C1 indicates the capacity for the case L = 1.

8.3.2 Two Reflectors (L = 2)

Given the instantaneous normalized rate for the L = 2 case R (b2) = log2

(
1 + b2

2
σ2

z

)
, where b2 is the

channel envelope when L = 2, and the PDF of the signal envelope fB2(b2) in [5, eq. (22)], the average

rate can be expressed as

R̄2 =
∫ ∞

0
R (b2) fB2(b2)db2

= 2
πκ̃

∫ A2

|A1|

b2R (b2) I0

(√
(κ1−κ2)2+ κ1κ2

A1A2
(b2

2−A2
1)
)

√
− (b2

2 − A2
2)
√

(b2
2 − A2

1)
db2 (8.8)

where |A1| ≤ b2 ≤ A2, κ̃ = I0(κ1)I0(κ2), A1 = A1 − A2 and A2 = A1 + A2. By using the infinite series

definition for the modified Bessel function, R̄2 can be written as

R̄2 = 2
πκ̃

∫ A2

|A1|

b2R (b2)√
− (b2

2 − A2
2)
√

(b2
2 − A2

1)
×

∞∑
m=0

1
22m(m!)2

(
(κ1−κ2)2+ κ1κ2

A1A2

(
b2

2 − A2
1
))m

db2. (8.9)

To simplify the analysis, the binomial theorem is applied to find the algebraic expansion for the last

term of the integrand in (8.9), and thus R̄2 can be expressed as

R̄2 = 2
πκ̃

∞∑
m=0

1
22m (m!)2

m∑
n=0

Tm,n ×
∫ A2

|A1|
b2R (b2)

(
b2

2 − A2
1
)n−0.5√

− (b2
2 − A2

2)
db2 (8.10)

where Tm,n =
(

m
n

)
(κ1 − κ2)2(m−n)

(
κ1κ2
A1A2

)n

.

Using the integration by substitution rule with y = b2
2 − A2

1, and the logarithmic identity logk x = ln x
ln k
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yields

R̄2 = 1
πκ̃ ln 2

∞∑
m=0

1
22m (m!)2

m∑
n=0

Tm,n ×
∫ A2

3

0

yn−0.5√
−y + A2

3
ln
(
y

σ2
z

+ σ2
z + A2

1
σ2

z

)
dy (8.11)

where A3 =
√

4A1A2.

The integral in (8.11) can be solved using [19, 2.6.10.31, pp. 502], and consequently R̄2 can be found

as

R̄2 = 1
πκ̃ ln 2

∞∑
m=0

1
22m (m!)2

m∑
n=0

Tm,n

{
A2n

3 ln (ν) B (n+ 0.5, 0.5) + A2(n+1)
3
σ2

zν
B (n+ 1.5, 0.5)

× 3F2

(
[n+ 1.5, 1, 1] , [2, n+ 2] ,− A2

3
νσ2

z

)}
(8.12)

where ν = σ2
z+A2

1
σ2

z
and B (a, b) ≜ Γ(a)Γ(b)

Γ(a+b) is the beta function.

8.3.3 Three Reflectors (L = 3)

As reported in [5], the PDF fB3(b3) does not have a closed-form expression. Therefore, the capacity will

be evaluated using the same approach of L = 2, but the integrals will be solved numerically.

8.3.4 Central Limit Theorem (CLT) for L ≥ 4

Since the derivation of closed-form expressions for the PDF when L ≥ 4 is not feasible, the CLT is invoked.

With the aid of SAT, B2
L in (8.3) can be rewritten as B2

L=B2
L,I +B2

L,Q, where BL,I =
∑L

i=1 Ai cos ϵi and

BL,Q =
∑L

i=1 Ai sin ϵi. Since Ai and ϵi are independent ∀i, CLT can be applied for large values of L

to evaluate the distributions of BL,I and BL,Q. Accordingly, the distribution functions of BL,I and

BL,Q can be found as N
(
µI , σ

2
I
)

and N
(
µQ, σ

2
Q
)
, respectively. By noting that E [cos (nθi)]= In(κi)

I0(κi) and

E [sin (nθi)]=0 [5, Appendix I], µQ≜E [BQ] = 0 can be obtained whereas µI can be found as µI = E [BI ]=∑L
i=1 Ai

I1(κi)
I0(κi) . The second moment for BI can be evaluated as E

[
B2

I
]

= E
[∑L

i=1 Ai cosϕi

]2
. Using the

expansion for squared summation and, then evaluating the expected value yields

E
[
B2

I
]
=

L∑
i=1

A2
i

2

(
1+ I2 (κi)

I0(κi)

)
+2

L∑
i<j

AiAj
I1 (κi) I1 (κj)
I0(κi)I0(κj)

. (8.13)

Similarly, E
[
B2

Q
]

can be derived as

E
[
B2

Q
]
≜E

[
L∑

i=1
Ai sinϕi

]2

=
L∑

i=1

A2
i

2

(
1 − I2 (κi)

I0(κi)

)
. (8.14)

Consequently, σ2
I and σ2

Q can be found using the well known formula σ2
I|Q ≜ E

[
B2

I|Q

]
− E2 [BI|Q

]
.

Using the definition of the correlation coefficient, and then employing the product of two summations
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rule to find E [BL,IBL,Q], the correlation between BL,I and BL,Q is

ρI,Q = 1
σIσQ

L∑
i=1

L∑
j=1

AiAjE [cos ϵi sin ϵj ]. (8.15)

For i ̸= j, E [cos ϵi sin ϵj ] = E [sin ϵj ] E [cos ϵi] = 0. On the other hand, when i = j, the trigonometric

identity cos ϵi sin ϵi = 0.5 sin (2ϵi) can be applied, which implies that E [cos ϵi sin ϵj ] = 0 as well . Since

BL,I and BL,Q are Gaussian distributed according to CLT and they are uncorrelated, BL,I and BL,Q

are independent random variables. For a special case when the phase error is uniformly distributed,

κ = 0, µI = µQ = 0 and E
[
B2

I
]

= E
[
B2

Q
]

=
∑L

i=1 A
2
i /2. Therefore, the propagation environment

follows Rayleigh channel model when κ = 0. For the general case when κ > 0, BL is the envelope of

a complex Gaussian with different values for the variance of the in-phase and quadrature components

with one of the components has non-zero mean. The PDF of such random variable is given in [20, eq.

(8)]. However, the form provided in [20] contains infinite sum of modified Bessel functions product with

different orders, which makes the distribution untraceable. An accurate approximation for the PDF of

|BL|2 has been derived in [13], where the PDF is approximated as Gamma random variable with shape

parameter α = µ2
I
/4σ2

I and inverse scale factor β = 1/4σ2
I . By denoting y = B2

L and using the gamma

distribution function, the achievable EC can be expressed as

R̄CLT =
∫ ∞

0
R (bL) fBL

(bL)dbL

= βα

Γ (α) ln 2

∫ ∞

0
yα−1e−βy ln

(
1 + y

σ2
z

)
dy. (8.16)

By using [19, eq. (2.6.23.4), pp. 530], R̄CLT can be found in closed-form as

R̄CLT = βα

Γ (α) ln 2

(
πσ2α

z 1F1
(
α;α+ 1;βσ2

z

)
α sin (απ) −Γ (α)β−α

{
ln
(
βσ2

z

)
−Ψ (α) + βσ2

z

1−α 2F2
(
[1,1], [2,2 − α],βσ2

z

)})
(8.17)

where Ψ (·) is the digamma function which is defined as Ψ (α) = Γ (α)/Γ′ (α).

For high SNR, y
σ2

z
≫ 1 and thus R̄CLT can be reduced to

R̄CLT,H = βα

Γ (α) ln 2

∫ ∞

0
yα−1e−βy ln

(
y

σ2
z

)
dy. (8.18)

By using the logarithmic identity ln x
y = ln x − ln y and evaluating the resulting integral using [19, eq.

(2.6.21.2), pp. 527] and [19, eq. (2.3.3.1), pp. 322], R̄CLT can be found as

R̄CLT,H = (Ψ (α) − ln β − ln σ2
z)/ln 2. (8.19)

By comparing the derived R̄CLT in (8.19) with the formula in (8.17), it can be realized that (8.19) is more
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Figure 8.2: The achievable R̄ for L = {2, 40} for different values of κ, where Ai = 1∀i.

tractable and has less computational complexity.

8.4 Numerical Results

This section presents the achievable capacity for the considered system model. The analytical results

obtained from the derived formulae are compared to Monte Carlo simulation results with 107 realizations.

To evaluate the impact of phase error compensation, the results are also compared to the cases of ideal

and arbitrary phase compensation, which are respectively referred as κ → ∞ and κ = 0. The average

transmission power is normalized to unity, and the SNR in dB is defined as SNR= −10 log10
(
σ2

z

)
. Un-

biased phase estimators with equal variance are considered, i.e., µ = 0 and κi = κ ∀i. For the infinite

summation in (13), the first 30 terms have been considered.

Fig. 8.2a shows the achievable normalized EC R̄ in bps/Hz for different values of κ when the number of

reflectors is L=2 and A1=A2 =1. As can be observed from the figure, the derived equation for R̄2 matches

the simulation results. As expected, the phase compensation errors negatively affect the achievable rate,

and as κ increases, i.e., channel estimation and compensation improves, the achievable rate improves.

For example, when the SNR is 0 dB, the capacity achieved with κ→∞, ideal phase shift, is about 1.7

times the capacity when κ = 0, i.e., arbitrary phase compensation. However, the capacity loss decreases

as κ increases. For example, the capacity loss is less than 0.5 dB when κ = 6 as compared to the ideal

case. Moreover, the figure shows that the effect of κ becomes negligible when κ≥ 6, which implies that

near-ideal performance for L = 2 can be achieved by designing a phase estimation and compensation

processes satisfying the condition κ≥6.

Fig. 8.2b shows the achievable R̄ for different values of κ when the number of reflectors L = 40, where
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Figure 8.3: The achievable R̄ for different numbers of reflectors L, Ai = 1∀i.

Ai = 1 ∀i. The obtained results show a perfect match for the derived CLT based equation for a wide

range of κ values, except for the case of κ = 0. Similar to Fig. 8.2a, the impact of κ decreases as its

value increases and becomes negligible when κ ≥ 6. However, by comparing Fig. 8.2b with Fig. 8.2a, it

can be realized that when L = 40, the arbitrary phase compensation causes significant capacity loss as

compared to the ideal case. For example the difference between the arbitrary and ideal scenarios in Fig.

8.2b is about 20 dB at R̄ = 10 bps/Hz.

Figs. 8.3a and 8.3b show the impact of increasing the number of reflectors L on the achievable rate

R̄ when the phase compensation error parameter κ=6 and κ→∞, respectively. As can noticed, a perfect

match between simulation and theoretical results is obtained, and the asymptotic capacity derived in

(8.19) for L≥ 4 converges to the exact formula in (8.17) when R̄≳ 3 bps/Hz. By comparing Fig. 8.3a

with Fig. 8.3b, it can be observed that the effect of phase compensation errors is negligible when κ = 6.

It is worth noting that the case of L= 1 is not affected by κ, as discussed in Sec. III. The figure shows

that R̄ significantly improves by increasing L. For example, at SNR = 0 dB, the value of R̄ increases by

10-fold when L is increased from 1 to 50. Moreover, by comparing L = 1 with other cases, it is realized

that deploying IRS with phase compensation error statistics of κ= 6 can enhance the system capacity

considerably.

Fig. 8.4 shows the achievable normalized rate R̄ for double Rician, i.e., {|ℏi| , |hi|} ∼ R (Ω,K) for

Ω = 1 and different values of the Rician factor K. It is noteworthy that the case of K → ∞ is equivalent

to the deterministic channel scenario with Ai = 1∀i. The figure shows that the impact of the Rician factor

is negligible when K ≥ 15 dB. For example, the achievable rate when K = 15 dB is almost the same as

the deterministic channel scenario, (K → ∞). In addition, the impact of K becomes less important for
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Figure 8.4: The achievable R̄ with Rician fading channel R(Ω, K) for Ω = 1 and different values of K, where
κ = 10.

small values of L and the rate is mainly determined by the number of reflectors L.

8.5 Conclusion And Future Work

The normalized EC achieved by employing FIRS to support UAV based communications was derived

taking into account imperfect phase compensation. The phase compensation error was modeled using

von Mises distribution, and the capacity was derived for L = 1 and 2 in closed-forms, whereas numerical

integration and CLT were applied when L = 3 and L ≥ 4, respectively. The obtained results demonstrated

that capacity degradation due to phase errors is inversely proportional to SNR, which is more apparent

for large L values. Interestingly, the capacity deterioration is negligible for κ ≥ 6. It was also shown

that increasing L enhances the capacity even when the phase compensation is not ideal. Moreover, it was

proven that the effect of the Rician factor K becomes negligible when K ≥ 15 dB.

The study of UAVs mobility effects on the achievable EC is an interesting future extension to the

current work.
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Chapter 9

Conclusions and Future Plan

To conclude, this thesis is generally concerned in the performance evaluation of wireless communication

systems such as sensor networks, integrated sensing and communication systems and intelligent reflecting

surfaces. Simulations corroborated by analytical results have been provided for several operating scenarios.

In this chapter, conclusions about the achieved work so far are provided, as well as, interesting work to

be explored in future is discussed.

9.1 Conclusions

In Chapter 2, target localization problem using RFID network has been investigated using a number of

tags deployed in the region of interest with fixed and known positions. A reader, which represents the

target, sends interrogation signal which is received by the tags which respond to the reader after harvesting

a certain amount of the received power. Then the reader employs the maximum likelihood estimation

based on the received signals strength from the tags, after correcting the measurements using majority

voting algorithm, to estimate its location giving the positions of the tags in prior. The performance of the

proposed localization method has been evaluated using simulations and theoretical derivations, where the

theoretical derivations have been carried out using CRLB. The obtained results have shown that CLRB

provides a good performance limit of the localization method, and the RMSE of the estimator approaches

CRLB when SNR and number of RFID tags are large [1]. Chapter 3 has presented a joint location and

orientation estimation algorithm for a mobile robot using a network of wireless sensors. The mobile robot

is equipped with directional antennas and the directivity of those antennas is utilized for the estimation

process. Error concealment methods, such as the local majority voting and connected graph algorithms,

have been also used to enhance the accuracy of the obtained results. The obtained experimental and

simulation results have displayed that the proposed approach can efficiently estimate the location and

orientation of the mobile robot with high accuracy, especially at high signal-to-noise-ratio (SNR) [2]. As

well as, Chapter 4 has explored the decision fusion problem in clustered WSNs over IoT infrastructure,

where multiple sensors transmit their decisions about a certain phenomenon to a remote fusion center over
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a wide area network. The proposed ILA fusion rule managed to reduce the decision fusion error probability

performance while maintaining the low computational complexity. The performance of the ILA rule is

evaluated and compared to other well-established fusion rules in the literature in terms of the detection

probability, false alarm probability and global fusion probability of error. The obtained results have shown

the robustness of ILA rule where it managed to outperform all other considered suboptimal fusion rules,

and its performance has converged to the optimal rule under many operating conditions [3]. In Chapter

5, a modern and emerging technology called ISAC has been investigated, in which a MIMO base-station

aims at providing sensing services in addition to the conventional data communication services. The

separated deployment has been considered, in which the base-station antennas are distributed among the

two subsystems; the sensing and communication subsystems. Performance analysis for the introduced

ISAC system haveb been provided based on the information theoretical framework of Kullback-Leibler

divergence. It worths noting that with this analysis, a unified performance evaluation for ISAC systems

has been obtained holistically. Multiple targets have been assumed, and ZF and MRT precoding methods

have been assumed for the data communication subsystem in downlink. Theoretical results corroborated

by simulations showed that the derived relative entropy is very accurate and can perfectly characterize

both subsystems [4].

Furthermore, Chapters 7 through 9 have explored the emerging IRS technology and its applica-

tions in wireless communications, more specifically, wireless backhauling [5–7]. Chapter 6 introduced a

multi-hop wireless backhauling where each hop is assisted by a panel of IRS wherever the LoS between

communicating base-stations is dropped. The performance of the introduced system model has been

evaluated by simulations and derived equations for the bit error rate and outage probability, where the

communication link is modeled as Rician fading channel. The obtained results showed that the IRS-mesh

backhauling architecture has several desired features that can be exploited to overcome some of the back-

hauling challenges, particularly the severe attenuation at high frequencies [5]. In Chapter 7, the symbol

error rate (SER) and outage probability analysis of multi-layer unmanned aerial vehicles (UAVs) wireless

communications assisted by intelligent reflecting surfaces (IRS) have been investigated. The non-ideal

channel estimation at the base-station, which results in erronous phase compensation errors at IRS, has

been considered. Such imperfect conditions may rise in UAV communications since UAVs generally suf-

fer from jitter while hovering. The phase compensation error at IRS was modeled using the von Mises

distribution and the analysis was performed by using the Sinusoidal Addition Theorem (SAT) when the

number of reflectors L ≤ 3, and Central Limit Theorem (CLT) when L ≥ 4. The obtained results showed

that accurate phase estimation is critical for IRS based systems, particularly for a small number of re-

flecting elements [6]. Moreover, Chapter 8 has explored the achievable capacity for unmanned aerial

vehicles (UAVs) communications supported by flying IRSs taking into account the effect of imperfect

phase knowledge on the system capacity. Similar to Chapter 8, the phase error was modeled as a von
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Mises random variable with parameter κ. Theoretical and simulation results showed that the achievable

capacity is dependent on the quality of the compensated phase by IRS, however, the capacity loss becomes

negligible at high signal-to-noise ratio (SNR) and when κ ≥ 6 [7].

9.2 Future Work

The problem of multiple target localization can be a significant improvement for the system model consid-

ered in Chapters 2 and 3. Accordingly, the derivation for the generalized maximum likelihood estimator

can be performed, and the performance evaluation for the estimator based on the new system model can

be performed. Moreover, the employment of relevant machine learning tools to perform data fusion rather

than the statistical tools used in the current work (e.g. the likelihood ratio test) can be considered at

future. As well as, a comparison between the currently used algorithms and machine learning algorithms

can be performed in terms of achievable performance, computational complexity and the possibility of

practical implementation. On the other hand, the unified performance framework derived in Chap-

ter 5 can be utilized for optimizing the network resources. Therefore, resource allocation algorithms

based on the derived relative information can be introduced to allocate the resources among radar and

communication subsystems.

Moreover, the derived expressions in this thesis can be considered to efficiently design wireless com-

munication systems depending on the application of interest. For instance, the design may include

proposed algorithms for the placement of IRS panels and/or portable BSs aiming at optimizing the sys-

tem performance, for examples, maximizing the achievable rate, minimizing OP or minimizing SER. The

current work studies point-to-point links with single antennas at the transceivers, whereas multi-user

with multi-antenna BSs will be considered at future. In addition, the joint design of precoding matrix

at a multi-antenna BS and phase shift design of IRS for multi-user multiple input single output (MISO)

system. The design of spectral efficient non-orthogonal multiple access (MAC) algorithms for the BSs is

also an interesting field of research, as well.

Furthermore, modern wireless technologies can be explore and investigated in the future. For instance,

non-orthogonal MAC schemes like NOMA and rate-splitting multiple access (RSMA) would improve the

spectral efficiency of the system, especially for highly dense small cells systems, and thus they could be

interesting areas of study. As well as, the design of efficient routing algorithms for wireless networks is an

important aspect which can be considered in future, where data packets select the best path among all

possible routes in mesh backhauling topology. This routing algorithm can be formulated with the aim of

maximizing the system capacity under energy constraints. Finally, the deployment of UAVs with hybrid

links to assist wireless backhauling would be considered at future as a strong candidate for 6G networks.

For example, radio frequency (RF) links between a micro BS and an UAV, while the UAV is connected

to the main BS through a free-space optical (FSO) link.
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