967 research outputs found

    Using Minimum Connected Dominating Set for Mobile sink path planning in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are a motivating area of research and have a variety of applications. Given that these networks are anticipated to function without supervision for extended periods, there is a need to propose techniques to enhance the performance of these networks without consuming the essential resource sensor nodes have, which is their battery energy. In this paper, we propose a new sink node mobility model based on calculating the minimum connected dominating set of a network. As a result, instead of visiting all of the static sensor nodes in the network, the mobile sink will visit a small number or fraction of static sensor nodes to gather data and report it to the base station. The proposed model's performance was examined through simulation using the NS-2 simulator with various network sizes and mobile sink speeds. Finally, the proposed model's performance was evaluated using a variety of performance metrics, including End-To-End delay, packet delivery ratio, throughput, and overall energy consumption as a percentage

    A New MANET Wormhole Detection Algorithm Based on Traversal Time and Hop Count Analysis

    Get PDF
    As demand increases for ubiquitous network facilities, infrastructure-less and self-configuring systems like Mobile Ad hoc Networks (MANET) are gaining popularity. MANET routing security however, is one of the most significant challenges to wide scale adoption, with wormhole attacks being an especially severe MANET routing threat. This is because wormholes are able to disrupt a major component of network traffic, while concomitantly being extremely difficult to detect. This paper introduces a new wormhole detection paradigm based upon Traversal Time and Hop Count Analysis (TTHCA), which in comparison to existing algorithms, consistently affords superior detection performance, allied with low false positive rates for all wormhole variants. Simulation results confirm that the TTHCA model exhibits robust wormhole route detection in various network scenarios, while incurring only a small network overhead. This feature makes TTHCA an attractive choice for MANET environments which generally comprise devices, such as wireless sensors, which possess a limited processing capability

    FAR: Face-Aware Routing for Mobicast in Large-Scale Sensor Networks

    Get PDF
    This paper presents FAR, a Face-Aware Routing protocol for mobicast, a spatiotemporal variant of multicast tailored for sensor networks with environmental mobility. FAR features face-routing and timed-forwarding for delivering a message to a mobile delivery zone. Both analytical and statistical results show that, FAR achieves reliable and just-in-time mes-sage delivery with only moderate communication and memory overhead. This paper also presents a novel distributed algorithm for spatial neighborhood discovery for FAR boot-strapping. The spatiotemporal performance and reliability of FAR are demonstrated via ns-2 simulations

    Constant memory routing in quasi-planar and quasi-polyhedral graphs

    Get PDF
    AbstractWe address the problem of online route discovery for a class of graphs that can be embedded either in two or in three-dimensional space. In two dimensions we propose the class of quasi-planar graphs and in three dimensions the class of quasi-polyhedral graphs. In the former case such graphs are geometrically embedded in R2 and have an underlying backbone that is planar with convex faces; however within each face arbitrary edges (with arbitrary crossings) are allowed. In the latter case, these graphs are geometrically embedded in R3 and consist of a backbone of convex polyhedra and arbitrary edges within each polyhedron. In both cases we provide a routing algorithm that guarantees delivery. Our algorithms need only “remember” the source and destination nodes and one (respectively, two) reference nodes used to store information about the underlying face (respectively, polyhedron) currently being traversed. The existence of the backbone is used only in proofs of correctness of the routing algorithm; the particular choice is irrelevant and does not affect the behaviour of the algorithm

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    ASGR: An Artificial Spider-Web-Based Geographic Routing in Heterogeneous Vehicular Networks

    Get PDF
    Recently, vehicular ad hoc networks (VANETs) have been attracting significant attention for their potential for guaranteeing road safety and improving traffic comfort. Due to high mobility and frequent link disconnections, it becomes quite challenging to establish a reliable route for delivering packets in VANETs. To deal with these challenges, an artificial spider geographic routing in urban VAENTs (ASGR) is proposed in this paper. First, from the point of bionic view, we construct the spider web based on the network topology to initially select the feasible paths to the destination using artificial spiders. Next, the connection-quality model and transmission-latency model are established to generate the routing selection metric to choose the best route from all the feasible paths. At last, a selective forwarding scheme is presented to effectively forward the packets in the selected route, by taking into account the nodal movement and signal propagation characteristics. Finally, we implement our protocol on NS2 with different complexity maps and simulation parameters. Numerical results demonstrate that, compared with the existing schemes, when the packets generate speed, the number of vehicles and number of connections are varying, our proposed ASGR still performs best in terms of packet delivery ratio and average transmission delay with an up to 15% and 94% improvement, respectively

    Efficient collection of sensor data via a new accelerated random walk

    Get PDF
    Motivated by the problem of efficiently collecting data from wireless sensor networks via a mobile sink, we present an accelerated random walk on random geometric graphs (RGG). Random walks in wireless sensor networks can serve as fully local, lightweight strategies for sink motion that significantly reduce energy dissipation but introduce higher latency in the data collection process. In most cases, random walks are studied on graphs like Gn,p and grid. Instead, we here choose the RGG model, which abstracts more accurately spatial proximity in a wireless sensor network. We first evaluate an adaptive walk (the random walk with inertia) on the RGG model; its performance proved to be poor and led us to define and experimentally evaluate a novel random walk that we call γ-stretched random walk. Its basic idea is to favour visiting distant neighbours of the current node towards reducing node overlap and accelerate the cover time. We also define a new performance metric called proximity cover time that, along with other metrics such as visit overlap statistics and proximity variation, we use to evaluate the performance properties and features of the various walks
    corecore