Available online at www.sciencedirect.com

i i DISCRETE
ScienceDirect APPLIED
MATHEMATICS

ELSEVIER Discrete Applied Mathematics 156 (2008) 3430-3442

www.elsevier.com/locate/dam

Constant memory routing in
quasi-planar and quasi-polyhedral graphs™

Evangelos Kranakis?, Tim Mott?, Ladislav Stacho?-*

4 School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
bDepartment of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 156

Received 13 October 2006; received in revised form 20 January 2008; accepted 24 January 2008
Available online 14 March 2008

Abstract

‘We address the problem of online route discovery for a class of graphs that can be embedded either in two or in three-dimensional
space. In two dimensions we propose the class of quasi-planar graphs and in three dimensions the class of quasi-polyhedral graphs.
In the former case such graphs are geometrically embedded in R2 and have an underlying backbone that is planar with convex faces;
however within each face arbitrary edges (with arbitrary crossings) are allowed. In the latter case, these graphs are geometrically
embedded in R3 and consist of a backbone of convex polyhedra and arbitrary edges within each polyhedron. In both cases we
provide a routing algorithm that guarantees delivery. Our algorithms need only “remember” the source and destination nodes and
one (respectively, two) reference nodes used to store information about the underlying face (respectively, polyhedron) currently
being traversed. The existence of the backbone is used only in proofs of correctness of the routing algorithm; the particular choice
is irrelevant and does not affect the behaviour of the algorithm.

Crown Copyright (© 2008 Published by Elsevier B.V. All rights reserved.

Keywords: Ad hoc network; Routing; Planar graph; Local algorithm

1. Introduction

Ad hoc networks are widely being adopted today in many sectors of the economy in order to enhance
communication and sensor capabilities. A particular case in point is that of sensor networks which are employed
in many sectors (such as transportation, agriculture, personal and institutional security, radiology, medicine, and
manufacturing) that benefit greatly from increased surveillance. Given that the nodes of such a network are expected
to spontaneously create an impromptu connected system that dynamically adapts to device failure and degradation,
manages movement of nodes, and may even react to changes in task and network requirements, it is not surprising
that a predefined topological structure is not feasible.

Formally, the ad hoc network is represented as a unit disk graph (whereby two nodes are adjacent if and only if
they are within distance one). Since it is usually difficult to attain the required communication efficiency with such a

* This is an expanded version of a paper that was presented at the 2nd IEEE PerCom Workshop on Pervasive Wireless Networking (PWN 2006).
* Corresponding author. Tel.: +1 604 2914816; fax: +1 604 291 4947.
E-mail address: 1stacho@sfu.ca (L. Stacho).

0166-218X/$ - see front matter Crown Copyright (©) 2008 Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2008.01.027

https://core.ac.uk/display/82237108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
mailto:lstacho@sfu.ca
http://dx.doi.org/10.1016/j.dam.2008.01.027

E. Kranakis et al. / Discrete Applied Mathematics 156 (2008) 3430-3442 3431

network representation, it is useful to work with a simplified topological structure within the ad hoc network. Such
a structure must not only span the entire network but also maintain a sufficient number of the old links in order to
sustain connectivity. A model typically adapted for this purpose is a planar (i.e., without crossings) spanner of the
ad hoc network. To be useful for our purposes it must be possible to construct the spanner from the original network
locally and in a distributed manner.

The most efficient way to accomplish communication exchange efficiently between a given pair of nodes of an ad
hoc network is to discover a route (i.e., a path) between them. Path finding, or routing, is a fundamental problem in the
field of ad hoc communication networks. The inherent mobility of the nodes of an ad hoc network and the lack of a
predesigned topology imply that packets must navigate the network using only local information and constant memory.
Moreover, it is vital that route discovery strategies use only local information and are easily adaptable to network
changes. This means that at a vertex v, a routing algorithm must base its next move on v, its neighbourhood N (v),
and a small number of bits (typically O (logn)) of stored information. Such an algorithm is said to be local, or online.

An important technique for discovering routes between two nodes in an ad hoc network involves application of a
face routing algorithm on a planar spanner of the wireless network [11,5]. There has been extensive literature related
to discovering routes in position-based, wireless ad hoc networks when the underlying graph is an undirected planar
geometric network, e.g., see [5,11,2,8,13,14,3]. In such algorithms the emphasis is not on minimising the number
of hops but rather on guaranteeing packet delivery. Recent research has concentrated on extending these ideas from
planar networks to more complex networks. In particular, [6] addresses the problem in directed planar networks,
while [12] provides a general survey. We also note that related to routing is traversal which is addressed in several
papers by Avis and Fukuda [1], Bose and Morin [4], Chavez et al. [7], Czyczowicz et al. [9], Gold et al. [10], Peuquet
and Marble [15,16]. However, traversal is less efficient than routing for message delivery.

1.1. Results and contribution of the paper

In this paper we represent a network as a geometric graph, that is, a graph G with vertices V in R? or R3, where
each vertex is aware of its coordinates. Edges in G are line segments with (distinct) endpoints in V.

We address the problem of online route discovery in a class of graphs that is richer than planar. In two dimensions
the class of these graphs is a subclass of quasi-planar graphs defined in [7]. We will continue using the same name
for the subclass. Intuitively speaking, such graphs are geometrically embedded into R? and have underlying planar
backbones with convex faces. However, within each face, arbitrary edges are allowed. The superclass of quasi-planar
graphs from [7] contains graphs with not necessarily convex backbone and arbitrary graphs within each face. In three
dimensions we define a new class of graphs, quasi-polyhedral graphs, which extends the notion of quasi-planar graphs
into R3. The backbones of these graphs are collections of convex polyhedra, and arbitrary edges are allowed within
each polyhedron. It is important to note that for the purposes of our algorithms only the existence of a backbone
is essential. In contrast to the techniques described in the introduction, our algorithms do not explicitly know or
determine which edges belong to the backbone; its existence is used only in proofs of correctness of the algorithms.

We will extend the well-known right-hand rule routing algorithm [11,5] for planar graphs to quasi-planar.
Furthermore we extend our techniques to a routing algorithm for quasi-polyhedral graphs. Our algorithm for quasi-
planar graphs needs only remember the source and destination vertices and one reference vertex used to store
information about the underlying face currently being traversed. Our algorithm for quasi-polyhedral graphs requires
enough memory to store the source and destination vertices, and two reference vertices. If not all polyhedra have
triangular faces, the algorithm also requires memory to store the normal to a given plane.

In addition to using very little memory, our quasi-planar routing algorithm is also robust: at each node, it constructs
a set of candidates for its next local destination, and can use any rule or heuristic to choose from this set. This provides
more flexibility than, for example, the standard Greedy algorithm, which has only one option from any node.

2. Quasi-planar routing in R2

Let G = (V, E, F) be a planar graph with vertex set V, edge set E, and face set F'. A convex embedding of G is a
straight-line embedding into the plane such that the boundary of every face is a convex polygon; we will associate G
with its convex embedding. Note that not every planar graph has a convex embedding. For the remainder of the paper
we assume that such a graph G has no three collinear vertices. This assumption will be used in our algorithms.

3432 E. Kranakis et al. / Discrete Applied Mathematics 156 (2008) 3430-3442

Fig. 1. A quasi-planar graph and one of its underlying planar graphs (shown with solid lines).

Let G = (V, E, F) be a convex embedding, and construct a new graph Q by adding chords to the faces of G
except for the outer face fo. Thatis Q = (V, E U E’), where each edge ¢ € E’ joins two vertices of some face
f € F\{fo}. We call such a graph Q a quasi-planar graph: there may be many crossing edges, but a facial structure
remains. Fig. 1 illustrates an example of a quasi-planar graph.

We refer to G as an underlying planar graph of Q, and say that the faces f; € F of G are underlying faces of Q.
Note that an underlying planar graph is not necessarily unique for a given quasi-planar graph. For the purposes of our
routing algorithm it is enough to know that such a graph G exists; the particular choice of G is irrelevant and will
not affect the behaviour of the algorithm. The existence of the graph G is used only in proofs of correctness of the
algorithm.

For vertices u, v, and w, we denote by Zuvw the counterclockwise angle from u to w about v. Similarly,
cone(u, v, w) denotes the cone with apex v and supporting lines through u# and w, with interior angle Zuvw. For
both Zuvw and cone(u, v, w) we require that v does not coincide with u or w.

Define cw(u, v) to be the first clockwise neighbour of u starting from the direction uv. Note that uv is not required
to be an edge. Similarly, cew(u, v) is the first counterclockwise neighbour of u starting from the direction uv. These
two functions can be computed locally, as long as uv € E or the location of v is known.

The edges uvy and uv; are radially adjacent if v = ew(u, vy) or vo = cew(u, v1). Observe thatif uvy, uv, € E are
radially adjacent edges then some underlying face f contains u, v, and v,. Depending on the choice of the underlying
planar graph G, the edges uv; may be outer edges or chords of f, but again, this distinction is not important.

Let u, v, wy, wa,...,wp € V. Then wy, wo, ..., w, form a clockwise sequence around u from v if they are the
first p consecutive clockwise neighbours of u starting from the direction determined by v. Note that v is not necessarily
adjacent to u. A counterclockwise sequence is defined analogously.

We denote by uv the line segment through vertices # and v; it will be clear from context whether uv refers to an
edge or a line segment. The line segment s¢ separates the vertex set into two subsets V4 and Vp that we can think
of as containing vertices “above” and “below” st, respectively. Specifically, V4 = {v € V : 0 < /tsv < 7} and
Vg={veV:m < /[tsv <2}, and V = {s,1} U V4 U V. Since G is represented by a convex embedding and
using the assumption that st ¢ E, it follows that both V4 and Vp are non-empty. If a vertex v knows the geometric
locations of s and ¢, it is a fast local computation to determine whether v € V4 or v € V3. Finally, for any vertex v of
G, N (v) denotes the set of neighbours of G.

Lemma 2.1. Let Q be a quasi-planar graph with s, t € V given, and let v € V4. If N(v) N V4 = @ then vs, vt € E.
Similarly, for a vertex v € Vp, if N(v) N Vg = 0 then vs, vt € E.

Proof. We argue by contradiction: suppose there exists a vertex v € V4 such that Nw) N V4 = @, and vs ¢ E.
Index the neighbours uy, us, ..., u, of v such that Zujvus < Zujvuz < --- < Lujvu,. By convexity of the outer
underlying face, it follows that no vertex lies outside cone(uy, v, u). Therefore, s is contained within the convex hull
of {v, u;, u;jy1} for some i. But v, u;, and u;4 are all on the same underlying face, which, being convex, must have
an empty interior. This shows that v must be adjacent to s; similarly, vt € E.

The same argument applies to a vertex in Vp. W

! The definitions of V4 and Vp depend on the choice of s, t; however, their reference will be omitted as they can easily be understood in context.

E. Kranakis et al. / Discrete Applied Mathematics 156 (2008) 3430-3442 3433

2.1. The QUASI-PLANAR algorithm

We now describe an O (1)-memory routing algorithm that guarantees delivery on quasi-planar graphs. We will omit
reference to the choice of underlying planar graph for a given quasi-planar graph; the results hold for any such choice.
The QUASI-PLANAR algorithm traverses vertices within the underlying faces intersecting sz, alternately using the left-
and right-hand rules (i.e., using the functions ccw and ¢w) when v € V4 and v € Vp, respectively; see Algorithm 1.

Algorithm 1 Quasi-Planar Routing
1: procedure QUASI-PLANAR(Q, s,t, R)

2 v — cew(s, t)
3: T — cw(s, t)
4: while vt ¢ E do
53 if v € V4 then
6: Find the counterclockwise sequence by, by, . . ., by, a around v from z, where p > 0,
a€Vyandb; € VB,lgcgp
7: if R(v,z) = a then
8: b, >ifp=0,weleth, =z
9: ve—a
10: else > in this case R(v,z) = by forsome k, 1<k <p
11: T —v
12: v« by
13: end if
14: else velVp
15: Find the clockwise sequence ay, as, . . ., a,, baround v from x, where ¢ > 0,b € Vp
anda; € Vy, 1 <i <q.
16: if R(v,z) = b then
17: T — ag >ifg=0,weleta, ==
18: v b
19: else > in this case R(v,z) = a; forsome k, 1<k<g
20: =
21: v — ay
22: end if
23: end if
24: end while
25; vt

26: end procedure

Routing from s to ¢ is trivial when s = ¢ or st € E; we therefore assume that s and ¢ are distinct and non-adjacent,
and for brevity in the following algorithm we refrain from explicitly checking for the trivial cases.

As is typical of other algorithms using the face routing technique, the QUASI-PLANAR algorithm only requires
enough memory to remember s, #, and one other reference vertex x; this latter vertex is used to store information
about the current underlying face. Whenever the current vertex v is in V4, x will be in Vp, and vice versa.

Finally, QUASI-PLANAR requires a rule R that will determine the next vertex from the neighbours of the current
vertex v. First suppose v € V4, and hence x € Vp. Let by = x, and let by, by, ..., by, a be a counterclockwise
sequence around v from x, where p > 0, b; € Vg, and a € V4. Although the set {b1, by, ..., by} may be empty (that
is, p = 0 is possible), Lemma 2.1 guarantees the existence of a. We require that the function R (v, x) evaluate to an
element from the (non-empty) set {b1, b2, ..., by, a}; see Fig. 2.

For sake of simplicity, we abuse notation and also refer to R(v,x) when v € Vp and x € Vj. That is,
R, x) € {a1,az,...,aq4,b} where ay, ay, ..., aq, b is a clockwise sequence around v from x, g > 0, a; € V4,
and b € Vp. We again let ag = x.

As we will prove shortly, the particular choice of R does not affect the correctness of the algorithm on quasi-
planar graphs. Incidentally, observe that by choosing R(v, x) = a for all (v, x), the algorithm can emulate standard
face routing on the underlying planar graph having the maximum number of faces. A more effective rule for most
applications is naturally to choose the vertex from {b1, ..., b, a} closest in Euclidean distance to the destination z.

3434 E. Kranakis et al. / Discrete Applied Mathematics 156 (2008) 3430-3442

o
T 173

by

Fig. 2. The current vertex is v; candidates for the next vertex are {bq, ..., b P ajl.

More complex rules are possible if the algorithm has access to other (non-geometric) information at each node, such
as network load.

Theorem 2.2. Given a quasi-planar graph Q and distinct, non-adjacent vertices s,t € V(Q), the QUASI-
PLANAR algorithm successfully routes from s to t.

Proof. We will show that v and x are on the same underlying face during the execution of QUASI-PLANAR.
Furthermore, let /;, denote the point of intersection of vx with st after the kth iteration of the while loop. We will also

show that if v # r after the kth iteration, then [exists and s = [y < --- < [y < t where < is the natural ordering
along st.
The intersection points /; are determined by pairs of distinct vertices in Q, so the sequence Iy, 1, ... has at most

(‘g‘) terms. The while loop iterates as long as vt ¢ E, resulting in a new intersection point with each iteration.

Therefore, since this sequence of points is finite, it follows that after some iteration, vt € E. The while loop then
terminates and v reaches ¢ at step 25.

Thus, it remains to prove the above two claims (Claims 1 and 4 in what follows). We proceed by induction on &,
the number of iterations of the while loop in steps 4-24.

Claim 1. Vertices v and x are on the same underlying face.

Proof. This is certainly true after steps 2 and 3. For k > 1, first suppose v € V4. If R(v, x) = a, then the argument
is as follows. The vertex a is the first neighbour of v counterclockwise from vb,, so after the updates x < b, and
v < a, the vertices v and x will be on the same underlying face. If R(v, x) = bx, 1 < k < p, then after the update, v
and x will be adjacent and hence must be on the same underlying face.

If v € Vp the argument is similar. W

Claim 2. If v € Vy, then for every 0 < i < p, the vertices v, b;, bjy| are on the same underlying face. Moreover,
the vertices v, by, a are on the same underlying face. Similarly if v € Vp, then for every 0 < i < q, the vertices
v, a;, aj 11 are on the same underlying face, and the vertices v, ag, b are on the same underlying face.

Proof. We only consider the case v € V4 in detail; the other case is similar. For i > 1 the statement follows since
b; 41 is the first neighbour of v counterclockwise from vb;. Thus, suppose i = 0, so we must show that v, x, and b; are
on the same underlying face. If vx € E, the argument is the same as above: vx and vb; are radially adjacent edges.
On the other hand, if vx ¢ E, let u = ew(v, b1). Then the vertices v, by, u lie on the same underlying face f. Now,
since x is contained in cone(u, v, by), and from Claim 1, it follows that x also lies on f.

The same reasoning shows that v, b, and a are on the same underlying face. W

Claim 3. If v € Vg, then /svx < [svt, and similarly if v € Vp, then /xvs < [tvs. That is, the line segments vx
and st intersect.

Proof. First, when k = 0, note that from the assumptions that st ¢ E and no three vertices are collinear, it follows
from the convexity of the underlying faces that v € V4 and x € Vp exist and are well-defined after the initialisation
(steps 2-3). By choice of v and x, it is clear that v = ccw(s, x), so s, v, and x all lie on a common underlying face f.
If /svx > /svt, there are two possibilities: either 7 < Zxsv < 27, or ¢ is in the convex hull of s, v, and x. Because

E. Kranakis et al. / Discrete Applied Mathematics 156 (2008) 3430-3442 3435

v

T

Fig. 3. Invalid position for t when R (v, x) = a.

v

bj bj+1

Fig. 4. Invalid position for when R (v, x) = b;.

f is convex and the angle Zxsv is an interior angle, 0 < /xsv < m, eliminating the first case. On the other hand, ¢
cannot be in the interior of f, so ¢ is not in the convex hull of s, v, and x. Therefore Zsvx < /Zsvt, establishing the
basis of the induction.

Now assume that after k iterations of the while loop, the desired property holds. By symmetry, we may without
loss of generality assume that currently v € V4, and consequently x € Vp.

During the (k + 1)th iteration, first suppose that R (v, x) = a. Then v and x will be assigned a and b, respectively,
so we must show that Zsab, < /sat. Towards a contradiction, suppose that Zsat < /sab,. Then ¢ lies within the
convex hull of v, b;, and b; 1 for some 0 < i < p, or within the convex hull of v, b, and a; see Fig. 3. But each of
these triples lies on an underlying face, by Claim 2, which by convexity cannot contain #, a contradiction.

If, on the other hand, R(v, x) = b; for some i > 0, then v and x will be assigned b; and v, respectively, and
we must show that /th;v < /tb;s. To this end, suppose that /tb;s < /tb;v. Then either 1 < /xvt < 27 or
0 < Zxvt < xvb;. The first case contradicts the induction step, so suppose that 0 < Zxvt < xvb;. Then for some
0 < j < i, t lies within the convex hull of the vertices v, bj, b1, as shown in Fig. 4. However, by Claim 2, this is
impossible. W

Claim 4. Suppose v #t. Thens = lg < --- <l < t where < is the natural ordering along st.

Proof. It follows from Claim 3 that /; is well-defined (i.e., the intersection of vx with st exists) and that s < [; < ¢
forall 0 < j < k. We now assume for some 0 < j < k that v € V4; the case v € Vp is similar.

Since all underlying faces are convex, the angle between any radially adjacent edges is less than . Therefore, the
point of intersection of st with vb; precedes that of st with vb; 1 for all 0 <i < p, and the point of intersection of st
with vb,, precedes that of st with b,a. Regardless of the choice of R (v, x), we must then have /; </; ;. W

This concludes the proof of Theorem 2.2. W

Observe that QUASI-PLANAR runs in polynomial time since there are at most ("z/l) intersections [;. Moreover,
the algorithm only uses those underlying faces crossing the line segment sz.

3436 E. Kranakis et al. / Discrete Applied Mathematics 156 (2008) 3430-3442

x

a

z

Fig. 5. The pairwise adjacent vertices a, b, ¢ compose a 3-cycle, but not a face. There are six polyhedra in the graph: the tetrahedra with vertex
sets {a, b, x, y}, {b, ¢, x, y}, {c,a, x, ¥}, {a, b, y, 2}, {b, ¢, y, z}, and {c, a, y, z}. The polyhedron {c, a, x, y} is shaded in the figure.

3. Quasi-polyhedral routing in R3

In this section we extend the notion of quasi-planar graphs to quasi-polyhedral graphs in R?, and describe a routing
algorithm on these graphs. It is theoretically interesting that we can guarantee delivery in R? with an online algorithm,
since the geometry becomes much more subtle — compare, for example, the (trivial) problem of traversing a polygon
in R? to traversing a polyhedron in R3.

3.1. Quasi-polyhedral graphs

Let V be a set of vertices in R3, not all coplanar, and let Pp be the convex hull of V. Consider a geometric graph
G = (V, E). If the edges of G determine a set of convex polyhedra such that any two polyhedra are either disjoint or
intersect in exactly one vertex, edge, or face, and if moreover their union is Pg, then we say G is a polyhedral graph.
We use P to denote the set of these polyhedra along with Pp, and call Py the outer polyhedron of G. Note that P is
not necessarily uniquely determined by (V, E), but this is not important for our purposes.

Let F be the set of all faces determined by P. We say f € F is a face of the polyhedron P ¢ Pif fNP = f. A
polyhedral graph G may now be described by the 4-tuple (V, E, F, P).

For three distinct, not necessarily adjacent vertices a, b, ¢ € V, denote by Aabc the triangle with vertices a, b, c.
A 3-cycle abc is a triple of pairwise adjacent vertices a, b,c € V.

As in the previous section, we will assume that no three vertices are collinear. To simplify the presentation of the
routing algorithm, we now also assume that no four vertices are coplanar, so that every face in F is a triangle. Note,
however, that not every 3-cycle is a face; e.g., see Fig. 5. It is straightforward to extend the routing procedure for a
more general case where coplanar vertices are allowed if they constitute a face of a polyhedron. This is accomplished
by storing the normal of the plane through three given vertices so that further vertices in that plane can be detected.

As an analogue of quasi-planar graphs, we now add chords to a polyhedral graph, so long as the chords join vertices
on the same polyhedron (except the outer polyhedron Pp). That is, for some polyhedral graph G = (V, E, F,P),
construct Q = (V, E U E’, F, P), where each edge in E’ joins two vertices of a polyhedron P € P\ {Po}. We say
that Q is a quasi-polyhedral graph, and that G is an underlying polyhedral graph of Q (G is not necessarily unique
for Q). For brevity, we will usually use the term polyhedron rather than the more formal underlying polyhedron.

3.2. The QUASI-POLYHEDRAL algorithm

Similarly to the planar face routing algorithms, QUASI-POLYHEDRAL travels only through polyhedra intersecting
the line segment s¢. Whereas QUASI-PLANAR uses only one reference vertex x, QUASI-POLYHEDRAL stores two
reference vertices x and y, maintaining the properties that v, x, y are on the same polyhedron P, and that Avxy
intersects st.

E. Kranakis et al. / Discrete Applied Mathematics 156 (2008) 3430-3442 3437

Fig. 6. Candidates for the next vertex include a and b, which are feasible and forward. The other neighbours of v are not candidates since they are
infeasible (e.g., ¢, f) or backward (e.g., d, e, f). The diagram also depicts the plane through Avxy. The dashed vertices are feasible.

We will call a neighbour u of v feasible if there exists a polyhedron P € P whose vertices include v, x, y, and u;
otherwise u is infeasible. A feasible face is a face whose vertices are all feasible; a face with at least one infeasible
vertex is an infeasible face. Note that a feasible vertex can be incident to many infeasible faces. A vertex u € N(v) is
said to be a forward vertex if u is separated from s by the plane through Avxy. Otherwise, u is a backward vertex. An
example illustrating these definitions is depicted in Fig. 6. To determine the first move from s (i.e., the first location
of vertex v) and the initial reference vertices x and y, QUASI-POLYHEDRAL uses a subroutine FIND FEASIBLE
INITIALISATION (FFINIT). Then QUASI-POLYHEDRAL progresses towards ¢ in each iteration, using a subroutine
FIND FORWARD FEASIBLE NEIGHBOUR (FFF) to choose the next vertex from the feasible forward neighbours of the
current vertex v. These subroutines are similar to the corresponding computations in QUASI-PLANAR; in particular,
FFINIT is analogous to steps 2-3 and FFF to steps 6 and 15. However, there is a subtle geometric complication that
requires some explanation, so we delay the descriptions of these subroutines until Section 3.3.

Assuming the correctness of FFF and FFINIT for now, we prove that QUASI-POLYHEDRAL (Algorithm 2)
successfully routes on quasi-polyhedral graphs.

Algorithm 2 Quasi-Polyhedral Routing
1: procedure QUASI-POLYHEDRAL(Q, 5,t,R)

2: {v,z,y} — FFINIT(Q, 5,t)

3: while vf ¢ E do

4 w «— FFF(Q, s,t,v,2,y)
5: if Awzxy intersects st then
6: Ve—w

7: else if Avwy intersects st then
8: T —1y

9; Yy

10: ve—w

11: else Awvzrw intersects st
12: Yy—x

13: T v

14: Ve w

15: end if

16: end while

17: vt

18: end procedure

Theorem 3.1. Given a quasi-polyhedral graph Q and distinct, non-adjacent vertices s,t € V(Q), the QUASI-
POLYHEDRAL algorithm successfully routes from s to t.

3438 E. Kranakis et al. / Discrete Applied Mathematics 156 (2008) 3430-3442

Fig. 7. The cone Cyy.

Proof. The proof is structured analogously to the proof of Theorem 2.2. We will show that v, x, and y are on the
same underlying polyhedron during the execution of QUASI-POLYHEDRAL. Furthermore, let /; denote the point of
intersection of Avxy with st after the kth iteration of the while loop. We will also show that if v # ¢ after the kth
iteration, then /i exists and s = [y < - -- < [< t where < is the natural ordering along s¢.

The intersection points ;. are determined by triples of distinct vertices in Q, so the sequence Iy, /1, . .. has at most

‘g‘) terms. The while loop iterates as long as vt ¢ E, resulting in a new intersection point with each iteration.

Therefore, since this sequence of points is finite, it follows that after some iteration, vt € E. The while loop then
terminates and v reaches ¢ at step 17.

Therefore, it remains to prove the above two statements (Claims 5 and 7 in what follows). We proceed by induction
on k, the number of iterations of the while loop in steps 3—16.

Claim 5. Vertices v, x, and y are on the same underlying polyhedron.

Proof. For k = 0, this follows from the choice of x and y from FFINIT in step 2. For k¥ > 1, FFF finds a feasible
vertex w in step 4. By definition, w is on the same polyhedron as v, x, and y. Steps 5—15 only permute the vertices
v, x, and y, and one of them is assigned w. This maintains the desired property. W

Claim 6. The intersection point Iy is well-defined, i.e., the triangle Avxy intersects the line segment st.

Proof. Let ¢ be the line through s¢z. We will first prove that Avxy intersects £, then use this to show that the point of
intersection lies on the line segment s7.

When £k = 0, Avxy intersects £ at s since v = s. For k > 0, suppose that Avxy intersected ¢ after the k — 1st
iteration of the while loop. Let w be the vertex chosen by FFF in step 4 during the kth iteration of the while loop.
We will show that at least one of the triangles Awxy, Avwy, Avxw intersects £.

Project V onto a plane § perpendicular to ¢, denoting the image of a vertex u by u. Then the line £ is projected
onto one point §. The images v, X, and y are distinct since Avxy intersects £, and no four vertices are coplanar.

Let C,, be the reflection of cone(X, §, y) through its axis of symmetry across §, as shown in Fig. 7. Forany u € V,
it is clear that Auxy intersects st if and only if Cy, contains i.

Define Cy, and C,, similarly. Then Cyy U C, U Cyy = S, so at least one of Awxy, Adwy, ADXw contains 5.
Finally, a triangle intersects £ in the original graph if and only if its projection onto S contains §.

It follows from steps 5—15 that Avxy intersects £ at the end of the kth iteration; call the point of intersection /. We
now show that /; must lie on the line segment st.

Since [y = s, we can assume that k > 0 and that /;_| lies on s¢. Let w be the vertex chosen by FFF in step 4. Then,
since w is a forward feasible neighbour of v, the vertices v, x, y, and w lie on a polyhedron P; also, w and ¢ are on
the same side of the plane through Avxy. Therefore, if /; does not lie on s¢, t must be contained in P, a contradiction.
It follows that one of Awxy, Avwy, Avxw intersects st, so w will replace one of v, x, y in steps 5—15 such that the
desired property is maintained. W

E. Kranakis et al. / Discrete Applied Mathematics 156 (2008) 3430-3442 3439

Fig. 8. S is an oriented plane through v, and intersecting ab; u is a point on S. The angle on S from vu to the 3-cycle vab is § = Zuvm where
m=abNS§.

by

az

by a

b

Fig. 9. (a) The edge yz of the 3-cycle ayz intersects the triangle Aabc. (b) The 3-cycle vajar dominates vbb;.

Claim 7. Suppose v #t. Thens = ly < --- < [y <t where < is the natural ordering along st.

Proof. It follows from Claim 6 that /; is well-defined (i.e., the intersection of Avxy with st exists) and thats < /; < ¢
forall0 < j <k.

Since all underlying polyhedra are convex, the angle between Awxy and Avxy is less than 7. The same holds with
respect to Avxy for triangles Avwy and Avxw. Therefore,[; < /1 forall0 < j <k. W

This concludes the proof of Theorem 3.1. WM
3.3. The FFINIT and FFF subroutines

In this section we describe both the FIND FEASIBLE INITIALISATION (FFINIT) and FIND FEASIBLE FORWARD
NEIGHBOUR (FFF) algorithms and prove their correctness. First we need some definitions.

An oriented plane in R? is a plane S along with two spanning vectors a and b that play the roles of the standard unit
vectors [10]7 and [01]7, respectively, in R2. We say that S has orientation (a, b). The orientation makes it possible to
measure clockwise and counterclockwise angles on S.

Let C = vab be a 3-cycle, and let S be an oriented plane through v intersecting ab at some point m. Let u be a
point (not necessarily a vertex) on S. Then ZsuvC denotes the counterclockwise angle Zuvm from u to m around v,
as measured on S; similarly ZgCvu denotes the angle Zmvu. See Fig. 8.

This naturally suggests functions cews (v, #) and ewg (v, u) that return the 3-cycle C minimising the non-zero
angle /suvC, respectively /sCuvu, such that ab intersects S. Note that C is not necessarily unique; for our purposes
it is enough to choose a 3-cycle with minimal angle.

We will use these functions in FFINIT and FFF to find initial vertices v, x, y, and candidates for the next vertex,
respectively. However, there is one issue to consider before implementing them. Recall Fig. 5, which showed a non-
facial 3-cycle. Observe that in this example, yz intersects Aabc, while no edge intersects Aayz, as shown in Fig. 9(a).
This indicates a means of identifying some of the “bad” 3-cycles in the graph.

3440 E. Kranakis et al. / Discrete Applied Mathematics 156 (2008) 3430-3442

Fig. 10. The five faces vajay, ..., vasay are cap faces. The portions of the faces on the forward side of the plane through Avxy are lightly shaded,
and the forward portions of the edges are bold.

Let C, = vaja; and Cp, = vb1b; be 3-cycles, with ay, az, by, by distinct. Suppose that the line segment bb>
intersects Avajay; see Fig. 9(b). Then we say C, dominates Cjp. If a 3-cycle C dominates another 3-cycle, then C is
a dominating 3-cycle.

We will call the feasible faces incident to v cap faces; see Fig. 10. As we show in Lemma 3.2, it is impossible for
a cap face to dominate another 3-cycle through v. This allows us to safely ignore all dominating 3-cycles.

Lemma 3.2. Let f = vajay be a face. Then f does not dominate any other 3-cycle through v.

Proof. Let f be a face of some polyhedron P € P. Towards a contradiction suppose f dominates a 3-cycle vb1b;.
Then b1b, intersects f. Therefore b1b, intersects P, and by convexity of the polyhedra and definition of quasi-
polyhedral graphs, at least one of the b;, say by, is contained in P. But since b1b; intersects f, b, must be outside P.
Since P is convex and b1 b; intersects f, biby € E U E’, a contradiction. W

3.3.1. FIND FEASIBLE INITIALISATION (FFINIT)

The FFINIT subroutine proceeds as follows. First, it chooses an arbitrary oriented plane S through sz. Then, by
repeated application of cewy, it finds the first non-dominating 3-cycle saja; counterclockwise from ¢ around s. It then
finds the first non-dominating 3-cycle sb1b; clockwise from ¢ around s. The vertices ay, az, b1, by lie on the same
polyhedron, and three of them must form a triangle intersecting s¢. These three will be the initial assignments to v, x,
and y.

Algorithm 3 Find Feasible Initialisation
1: procedure FFINIT(Q, s, 1)
Let S be an oriented plane through st.
l—t
repeat
sajay — cewg(s, 1)
[— aiaq ns
until sa;as is not a dominating cycle
l—1
repeat
10: sbiby — ews(s,1)
11 [— blbg n S
12: until sb, b is not a dominating cycle
13: return three of {a;, az, by, b2} that form a triangle intersecting st.
14: end procedure

oo R ik WK

Theorem 3.3. Let P be the polyhedron through s that intersects st \ s. The FFINIT algorithm returns three vertices
lying on P, and the triangle formed by these vertices intersects st.

Proof. Let S be an oriented plane through s¢. For simplicity, we may assume that S passes through no vertices other
than s and ¢, so that there are exactly two cap faces of P that intersect S \ s. Call these cap faces f, and f;, where
0</stsfy <mand 0 < Lgfpst <.

E. Kranakis et al. / Discrete Applied Mathematics 156 (2008) 3430-3442 3441

By Lemma 3.2, f, and f; do not dominate any 3-cycle through s, so both repeat loops terminate.

Let C = sajay be the first non-dominating 3-cycle counterclockwise from ¢ around s, i.e., the final 3-cycle
determined by the repeat loop in steps 4—7. We will show that a; and a; lie on P.

If C is a cap face, we are done; therefore, suppose that C is not a cap face. It follows that 0 < ZstsC < Lgtsf,.
Then, since P intersects sz \ s and f, \ s, and P is convex, P intersects AC \ s. Now, towards a contradiction, suppose
that a; does not lie on P. Since P intersects AC \ s, and a; is not on P and lies on C, AC \ s must intersect some
cap face f. By Lemma 3.2, f does not dominate C, so C must dominate f. But this is impossible by choice of C.
Therefore a; must lie on P. The same reasoning shows that a,, b and b; lie on P.

We now show that (at least) one of the four triangles Aajazb1, Aajaxby, Aa1b1bs, Aayb1b; intersects st. Project
V onto a plane T perpendicular to st, denotlng the image of a vertex u by i. Then st is projected onto one point §, and
the plane S is prOJected onto a line S. Both dyd> and by b, intersect S, and the pomts of intersection lie on different
sides of S. Therefore s 1s 1n the 1nter10r of the quadrllateral with vertices dj, da, b1 bz, so one of the four triangles
Aa1a2b1 Aalazbz, Aalblbz, Aazblbg contains §. Since P is convex and intersects st \ s, the corresponding vertices
in V form a triangle intersecting the line through s¢, and in particular, the point of intersection must lie on the line
segment st. W

3.3.2. FIND FEASIBLE FORWARD NEIGHBOUR (FFF)

Suppose v, x, and y are on the same polyhedron P, and that Avxy intersects st. To find a feasible forward
neighbour of v, FFF uses the same technique as FFINIT: it finds the first non-dominating 3-cycle through v
counterclockwise from Avxy and returns one of the endpoints.

Algorithm 4 Find Forward Feasible Neighbour
1: procedure FFF(Q), s,t, v, x,y)
2 Letl = Avzy N st.
3 Let S be the plane through v, [, and ¢, with orientation (It, (v).
4 repeat
5: vajas — cewg(v,l)
6
7
8
9

l—ajaan S
until va, a, is not a dominating cycle
return a forward vertex from {a;,as}.
: end procedure

Theorem 3.4. The FFF algorithm finds a forward feasible neighbour of v.

Proof. First, the point of intersection / = Avxy N st is well-defined by the above assumption on the vertices v, x, y.
Let P be the polyhedron through v, x, and y; if these vertices lie on two polyhedra, then consider P to be the one
whose intersection with st is closer to . We can therefore imagine ccwg to be sweeping through the interior of P to
find successive 3-cycles.

The repeat loop in steps 4-7 terminates, since a cap face of P is valid by Lemma 3.2. Let C = vaja; be the
3-cycle determined by the repeat loop. The same methods as in the proof of Theorem 3.3 show that a; and a, must
lieon P.

Finally, by convexity of P and the choice of orientation of S, 0 < Z5/vC < 7, so (C \ v) N S lies in the forward
region, i.e., every point of (C \ v) N S is separated from s by Avxy. Therefore, since ajax C (C \ v), a1 and ap cannot
both be backward vertices. W

Note that both FFINIT and FFF run in polynomial time, and only use v, x, y, s, and ¢ for their computations. Thus,
QUASI-POLYHEDRAL runs in polynomial time; also, the algorithm visits only those vertices on underlying polyhedra
properly intersecting st.

Acknowledgements

Many thanks to the Morelia group for numerous inspiring conversations. The first and third authors research were
supported in part by NSERC (Natural Science and Engineering Research Council of Canada) grant. The first author’s
research was also supported in part by MITACS (Mathematics of Information Technology and Complex Systems)
grant.

3442 E. Kranakis et al. / Discrete Applied Mathematics 156 (2008) 3430-3442
References

[1] D. Avis, K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra, in: Proc. of 7th Annu.
ACM Sympos. Comput. Geom., 1991, pp. 98-104.

[2] P.Boone, E. Chavez, E. Gleitzky, E. Kranakis, J. Opatrny, G. Salazar, J. Urrutia, Morelia test: Improving the efficiency of the Gabriel test and
face routing in ad hoc networks, in: SIROCCO, in: LNCS, vol. 3104, Springer, 2004.

[3] P. Bose, A. Brodnik, S. Carlsson, E. Demaine, R. Fleischer, A. Lopez, P. Morin, I. Munro, Online routing in convex subdivisions,
in: International Symposium on Algorithms and Computation, ISAAC, in: LNCS, Springer, 2000, pp. 47-59.

[4] P.Bose, P. Morin, An improved algorithm for subdivision traversal without extra storage, in: Proceedings of Annual International Symposium
on Algorithms and Computation (Taipei, 2000), International Journal of Computational Geometry & Applications 12 (4) (2002) 297-308.

[5] P. Bose, P. Morin, 1. Stojmenovic, J. Urrutia, Routing with guaranteed delivery in ad hoc wireless networks, Wireless Networks 7 (2001)
609-616.

[6] E. Chavez, S. Dobrev, E. Kranakis, J. Opatrny, L. Stacho, J. Urrutia, Route discovery with constant memory in oriented planar geometric
networks, in: Algosensors, in: LNCS, vol. 3121, Springer, 2004, pp. 147-156.

[7] E. Chavez, S. Dobrev, E. Kranakis, J. Opatrny, L. Stacho, J. Urrutia, Traversal of a quasi-planar subdivision without using mark bits, in:
4th International Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks, WMAN’04, Santa Fe, New Mexico, 2004,
Journal of Interconnection Networks 5 (4) (2004) 395-408.

[8] E. Chavez, S. Dobreyv, E. Kranakis, J. Opatrny, L. Stacho, J. Urrutia, Local construction of planar spanners in unit disk graphs with irregular
transmission ranges, in: 7th Latin American Theoretical Informatics Symposium, LATIN’06, March 2006, Valdivia, Chile.

[9] J. Czyczowicz, E. Kranakis, N. Santoro, J. Urrutia, Traversal of geometric planar networks using a mobile agent with constant memory
(in preparation).

[10] C. Gold, U. Maydell, J. Ramsden, Automated contour mapping using triangular element data structures and an interpolant over each irregular
triangular domain, Computer Graphic 11 (2) (1977) 170-175.

[11] E. Kranakis, H. Singh, J. Urrutia, Compass routing on geometric networks, in: Proc. of 11th Canadian Conference on Computational
Geometry, August 1999, pp. 51-54.

[12] E. Kranakis, L. Stacho, Routing and traversal via location awareness in ad-hoc networks, in: A. Boukerche (Ed.), Handbook of Algorithms
for Wireless and Mobile Computing, CRC Press, 2006.

[13] F. Kuhn, R. Wattenhofer, Y. Zhang, A. Zollinger, Geometric ad hoc routing: Of theory and practice, in: Proc. of the 22nd ACM Symposium
on the Principles of Distributed Computing, PODC, July 2003.

[14] F. Kuhn, R. Wattenhofer, A. Zollinger, Worst-case optimal and average-case efficient geometric ad hoc routing, in: Proc. of the 4th ACM
International Symposium on Mobile Ad Hoc Networking and Computing, MOBIHOC, June 2003.

[15] D. Peuquet, D. Marble, Arc/info: An example of a contemporary geographic information system, in: Introductory Readings in Geographic
Information Systems, Taylor & Francis, 1990, pp. 90-99.

[16] D. Peuquet, D. Marble, Technical description of the dime system, in: Introductory Readings in Geographic Information Systems, Taylor &
Francis, 1990, pp. 100-111.

	Constant memory routing in quasi-planar and quasi-polyhedral graphs
	Introduction
	Results and contribution of the paper

	Quasi-planar routing in R2
	The Quasi-Planar algorithm

	Quasi-polyhedral routing in R3
	Quasi-polyhedral graphs
	The Quasi-Polyhedral algorithm
	The FFInit and FFF subroutines
	Find feasible initialisation (FFInit)
	Find feasible forward neighbour (FFF)

	Acknowledgements
	References

