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ABSTRACT
Motivated by the problem of efficiently collecting data from
wireless sensor networks via a mobile sink, we present an ac-
celerated random walk on Random Geometric Graphs. Ran-
dom walks in wireless sensor networks can serve as fully lo-
cal, lightweight strategies for sink motion that significantly
reduce energy dissipation but introduce higher latency in
the data collection process. In most cases random walks
are studied on graphs like Gn,p and Grid. Instead, we here
choose the Random Geometric Graphs model (RGG), which
abstracts more accurately spatial proximity in a wireless sen-
sor network. We first evaluate an adaptive walk (the Ran-
dom Walk with Inertia) on the RGG model; its performance
proved to be poor and led us to define and experimentally
evaluate a novel random walk which we call γ-stretched ran-
dom walk. Its basic idea is to favour visiting distant neigh-
bours of the current node towards reducing node overlap and
accelerate the cover time. We also define a new performance
metric called Proximity Cover Time which, along with other
metrics such as visit overlap statistics and proximity vari-
ation, we use to evaluate the performance properties and
features of the various walks.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed
networks, Network topology, Wireless communication

Keywords
Wireless Sensor Networks, Random Walks, Data Collection,
Sink Mobility

1. INTRODUCTION
Wireless Sensor Networks are envisioned as large ad-hoc col-
lections of very small autonomous devices, that can sense
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environmental conditions in their immediate surroundings
while having limited processing, communication capabilities
and energy reserves (see e.g. [3] for a comprehensive cover-
age of the fundamental algorithms and protocols for wireless
sensor networks). The collected sensory data is usually dis-
seminated to a static control center (called data sink) in the
network, using node to node multi-hop data propagation.
Such settings have increased implementation complexity and
sensor devices consume significant amounts of energy. This
is due to the fact that multi-hop data propagation proto-
cols in sensor networks, where the sink is static, leads the
sensor devices to consume significant amounts of energy in
operations other than sensing (e.g. inter-node communi-
cation for synchronisation purposes, exploratory messages,
etc). Moreover, the data exchanged are used as input to sev-
eral complex distributed algorithms and protocols (such as
localization) run by the sensor devices. Even though those
algorithms are designed so as to consume as less resources
as possible (e.g. [5][16]) the problem still exists. Further-
more, in the area around the control center, nodes need to
heavily relay the data from the entire network, thus a bottle-
neck of increased energy consumption emerges and failures
due to strained energy resources of these nodes leads to an
early disconnected and dysfunctional network (see e.g. [11]).
One of the approaches for more efficient data-centric rout-
ing in wireless sensor networks is provided in [4] where an
energy aware distributed heuristic builds a special rooted
broadcast tree with many leaves that facilitates the routing.
An Energy Balancing Protocol is presented in [7] where the
presented algorithm decides in each step of the transmission
whether to propagate data one-hop towards the sink, or to
send data directly to the sink.

Sink mobility can be used as a simple and energy efficient
alternative for data collection. The sink is lifting the bur-
den of inter-node coordination by traversing the network
itself. A mobile sink may also substitute connectivity as it
is capable of bypassing obstacles and reaching disconnected
components of the network. Sensor motes maintain a rather
passive role, in terms of data propagation, by simply wait-
ing to contact the sink. When contact is established they
deliver data via cheap (energy wise) one-hop transmissions.

Apparently, in such data collection schemes, new critical is-
sues emerge regarding the pattern of movement to be adopted
by the sink. The network has to be traversed in a timely
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and efficient manner. Also, the mobility pattern of the sink
should guarantee that the entire network area, or at least
the vast part of it, will eventually be visited.

In the light of the above discussion, random walks in wire-
less sensor networks can serve as fully local, very simple, dis-
tributed strategies for sink motion that significantly reduce
energy dissipation and also probabilistically guarantee that
eventually the entire network area will be covered. Several
real life applications exploit sink mobility for more efficient
data collection, e.g. robots that move inside a building that
needs to be evacuated or foresters moving through a forest
where sensors have been deployed.

In this study, we choose to model wireless sensor networks
via Random Geometric Graphs (RGG). We choose this model
instead of other graph models (e.g. Gn,p and Grid), that are
well established in random walk studies, as RGG better cap-
ture certain relevant characteristics of real WSN’s such as
link existence dependencies of neighbouring nodes due to
geometric proximity.

Our goal is mainly to accelerate the random walk coverage
of the network via reducing the node overlaps. Also, to
improve other (network related) features of the walk, such
as how fast it gets close to the network nodes.

A preliminary version of this research has appeared in [1].

2. RELATED WORK AND COMPARISON
Random Walks have been extensively studied in the past
decades in the context of several disciplines. However, de-
spite their numerous applications in ad hoc, vanets (see
e.g. [6][12]) and overlay networks, not much research has
been done on how they can be particularly applied in sen-
sor networks with mobile entities, in a way that addresses
the peculiarities of such networks (such as severe computing
and communication constraints, the small memory and con-
strained battery, as well as the time-criticality of important
applications).

A comparison of different random walk strategies for ad hoc
networks is performed in [9]. The authors investigate the
effectiveness of each strategy in terms of the expected hop
count and the occurrence of deadlocks. In our work, we pro-
pose a new random walk strategy and compare two varia-
tions of it with two known walks. We study the performance
of the strategies in terms of cover time, approximate cover
time, proximity variation and a new metric that we define
here, proximity cover time.

In [13] the problem of data gathering in a large-scale wire-
less sensor network with static nodes and a mobile patrol
node is formulated as a classical random walk on a random
geometric graph. The authors derive analytical bounds for
the performance of the random walk in terms of node cover-
age. In order to improve this performance they propose an
algorithm to constrain the random walk using the available
side information, such as the awareness of previously visited
sites. We also use some information (just the information of
geometric distance) in order to speed up the network traver-
sal and our new walks are different.

In [18] authors investigate the Random Waypoint Model,
which is widely used in the simulation studies of mobile ad
hoc networks and show that it fails to provide a steady state
in that the average nodal speed consistently decreases over
time; therefore it should not be directly used for simulation.
They also propose a simple fix of the problem and discuss
a few alternatives. In our study, the moving element of the
network (the sink) is visiting the nodes in a sequential way.
Therefore we abstract its motion by considering that it is
moving on the edges of a Random Geometric Graph, that
models a wireless sensor network.

Nice research has also been conducted for deterministic sink
mobility, such as in [14, 15] where authors address the prob-
lem of maximising the network lifetime. In [14] authors sug-
gest that the base station can be mobile and conclude that
the best mobility strategy consists in following the periph-
ery of the network (assuming that the sensors are deployed
within a circle). In [15] authors investigate the approach
that makes use of a mobile sink for balancing the traffic
load and in turn improving network lifetime. They engineer
a routing protocol that effectively supports sink mobility
and through intensive simulations they prove the feasibility
of their mobile sink approach.

3. THE NEW RANDOM WALK AND PER-
FORMANCE METRICS

3.1 The network model
Sensor networks comprise of a vast number of ultra-small ho-
mogeneous sensor devices (which we also refer to as sensors),
whose purpose is to monitor local environmental conditions.
Each sensor is a fully-autonomous computing and commu-
nication device, characterized mainly by its available power
supply (battery), its transmission range r, the energy cost of
data transmission and the (limited) processing and memory
capabilities. Sensors (in our model here) do not move. The
positions of sensors within the network area are random and
follow a uniform distribution. We focus on data collection
methods, so we assume that initially all sensors have some
data to deliver to the sink. For clarity, we also assume that
no data is generated during the network traversal. That is
if a node is called “visited”, then it has no data to send to
the sink.

There is a special node within the network region, which
we call the sink S, that represents a control center where
data should be collected. Here, we assume that the sink
is mobile. The sink is not resource constrained i.e. it is
assumed to be powerful in terms of computing, memory and
energy supplies.

We consider that the random uniform placement of the sen-
sors inside the network area is abstracted by a Random Ge-
ometric Graph. Random Geometric Graphs are formed by
n vertices that are placed uniformly at random in the [0,1]2

square. An edge (u, v) exists iff the Euclidean distance of
vertices u and v is at most r, where r corresponds to the
wireless communication radius r of the sensors. This holds
assuming a disc radio model; two sensors can communicate
with each other iff each one lies inside the communication
range of the other. Random Geometric Graphs also have an
important nice property: unlike other random graphs, like



Gn,p, edges are not statistically independent of each other.
That is, the existence of an edge (u, v) is not independent
of the existence of edges (u,w) and (w, v). This property
makes RGG a quite realistic model for wireless sensor net-
works that captures to a great extent the communication
structure of real WSNs (at least their spatial aspects).

More strictly, consider an area A ⊂ R2 in two dimensional
space. An instance of the random geometric graphs model
G(Xn; r) is constructed as follows: select n points Xn uni-
formly at random in A. The set V = Xn is the set of vertices
of the graph and we connect two vertices if their euclidean
distance is at most r. For any vertex v ∈ V we will denote by
N(v) the set of neighbours of v and by deg(v) = |N(v)| its
degree. Furthermore, we will denote by ‖u−v‖ the euclidean
distance between the points corresponding to vertices v, u.

In [10, 17] it is shown that the connectivity threshold for

G(Xn; r) is rc =
√

lnn
πn

. In this paper we will consider ran-

dom instances of G(Xn; r) of varying density, by selecting

r =
√

c lnn
πn

, for different values of c > 1, which guarantees

that the produced random instance is connected with high
probability.

Besides the information about the set of neighbours of each
vertex v ∈ V , an instance G(Xn; r) of the random geometric
graphs model also contains extra information about the ex-
act euclidean distance between v and any of its neighbours.
We used this information in order to define a new random
walk, namely the the γ-stretched random walk on G(Xn; r),
which is described below. This random walk aims to accel-
erate the data collection process while keeping the memory
requirements restricted. The basic idea is that “more dis-
tant” neighbours of the current vertex (state of the walk)
are favoured in a probabilistic manner. Therefore, our new
walk is in fact a biased transitions random walk (see e.g. [2]
for a nice discussion of several types of random walks based
on the assumptions they made).

3.2 The γ-Stretched Random Walk
Let G(Xn; r) be a random instance of the random geometric
graphs model with vertex set V = Xn, where |V | = n. Con-
sider a particle moving on the vertices of the graph G(Xn; r).
Given that it occupies a specific vertex v ∈ V at time t ≥ 0,
it decides where to move at time t+ 1 by choosing a vertex
u ∈ V with probability

pu,v =

{
‖u−v‖γ∑

w∈N(v) ‖w−v‖γ
if u ∈ N(v)

0 otherwise.
(1)

The Markov chain describing the above process will be called
γ-stretched random walk on G(Xn; r) and will be denoted by

W(γ)

G(Xn;r). Furthermore, we will denote byWγ
v (t) the state of

the walk that begins at v at time t. More formally, the state
space of the γ-stretched random walk is the set of vertices
V = Xn of the graph and its transition probability matrix
is given by P = [pu,v]u,v∈V .

This new random walk has minimum memory requirements,

since every step is decided only by using information of the
current state. Notice also that the larger γ is, the more
distant neighbours are favoured over neighbours that are
close by. In the simulation, we will often set γ = r

rc
, so that

the bias to visit distant neighbours is stronger as the density
of G(Xn; r) increases. The special case γ = 1 will be referred
to simply as stretched random walk.

3.3 Random Walk with Inertia
In the heuristic Random Walk with Inertia the walk tries
to maintain the same direction while traversing the graph
G(Xn; r). Let v denote the current state of the walk, i.e.
the current vertex. Let Sv denote the set of vertices that
are 1-hop neighbours of v. Finally, let vprevious denote the
previous state of the walk. At the beginning of the walk
given its current state, the next hop is chosen uniformly at
random among the neighbouring nodes and vprevious is not
defined. From the second hop and so forth the next state of
the walk is chosen among the vertices of the set Sv/vprevious
according to the following probability distribution function:

P{next state == i} =

{
φvi∑

j∈Sv φ
v
j

if i ∈ Sv

0 otherwise

where φvj is the angle defined by vertices v, vprevious and j
and 0 ≤ φvj ≤ π.

Intuitively, this walk tries to change the subregions of the
graph it visits frequently by favouring the vertices lying to-
wards the same direction of its motion. The choice of the
next vertex is probabilistic, in an effort to reduce overlaps
by avoiding to move on the same path.

We note that this walk has light-weight requirements. It
assumes zero knowledge of the network and is relatively
simple with low computational complexity. Furthermore,
it requires a small, constant sized memory since the next
step of the walk depends solely on the previous one. By
favouring vertices lying towards the same direction, the sink
makes long paths and traverses many different sub-regions of
the network area very quickly, thus avoiding early overlaps.
However, after most of the network area has been covered,
there exist small unvisited sub-regions that are hard for the
walk to discover. The fact that many different sub-regions
are visited very soon makes this walk suitable for time crit-
ical applications, such as reactive event detection.

3.4 Known Random Walks
In this section we present two known random walks.

3.4.1 Blind Random Walk
This is the usual random walk model. The blind random
walk on a random instanceG(Xn; r) of the random geometric
graphs model is the simplest of all possible sink mobility
patterns, since the next move of the sink is stochastically
independent to the previous ones. Furthermore, given that
the current vertex is v ∈ V , the probability of moving to
any neighbouring vertex u ∈ N(v) is pv,u = 1

deg(v)
. This

method is very robust, since it probabilistically guarantees
that eventually all network regions and nodes will be visited
and thus all data will be collected given that the network



is connected. However, in some network structures it may
become inefficient, mostly with respect to high latency, since
the sink uses no memory of the past movements in order to
select the next one and thus overlaps (i.e. visits to already
visited vertices) occur.

3.4.2 Random Walk with Memory
The performance of the blind random walk can be improved
using some memory of past visits. In random walk with
memory K, the sink maintains a first-in-first-out (FIFO)
list M which contains the last K nodes visited during the
random walk, i.e M = {c1, c2, ..., cK}. The next hop is cho-
sen uniformly at random among the neighbours of the node
that are not in the memory list M. The use of memory
eliminates the possibility of short loops in random walks.
Setting K = 0, we simply get the blind random walk. In
this study the random walk with memory 1 will be used
for comparison purposes. Note that this walk has stronger
memory requirements and overhead than both the blind and
the γ-stretched random walk.

3.5 Metrics
In this section we define and discuss the metrics that will
be used in the evaluation of our new random walk, when
compared to the blind random walk and the random walk
with memory 1. In the following, let W denote any random
walk model defined on a random instance G(Xn; r) of the
random geometric graphs model.

3.5.1 Cover time and approximate cover time
Consider the random walk Wv that begins on vertex v of
a random instance of the random geometric graphs model

G(Xn; r). Define Tv
def
= inf{t|∀u ∈ V, ∃t′ ≤ t : Wv(t′) = u}

to be the time needed until Wv has visited all the vertices
in the graph. The cover time C of G(Xn; r) is defined as
C = maxv∈V E[Tv], where E denotes the expected value of
the random variable Tv. It was shown in [8] that when r =√

c lnn
πn

, for c > 1, the cover time of G(Xn; r) for the blind

random walk is asymptotically c ln
(

c
c−1

)
n lnn.

For ε ∈ (0, 1) define also the ε-approximate cover time as
the mean number of steps that W needs in order to visit a

fraction 1 − ε of the vertices. More formally, define T
(ε)
v to

be the time needed until Wv has visited (1 − ε)n vertices.
The ε-approximate cover time C of G(Xn; r) is defined as

C(ε) = maxv∈V E[T
(ε)
v ].

These cover times are related to latency, as they capture
the time the sink needs to collect the sensory data from the
entire network. The approximate cover time metric is of
great interest as the majority of overlaps occur while the
sink tries to locate the last few unvisited sub-regions that
are scattered in the network area; however, in most sensor
network applications it is sufficient to collect a vast percent-
age of the total sensory data, so this metric is relevant and
informative.

3.5.2 A new metric: Proximity Cover Time
In real-life sensor networks, the sink is capable of collect-
ing data not only from the currently visited node, but also

from all nodes that are inside the communication range r
(via a single-hop data transmission). Therefore, there is
strong motivation from real-life WSN to consider as visited
not only the vertex of the current state of the walk, but also
all neighbouring vertices. Following is the formal definition
of the corresponding metric, Proximity Cover Time.

Denote by D(v, ρ) the disc of radius ρ > 0, centered at v.
Consider the random walk Wv that begins on vertex v of
a random instance of the random geometric graphs model
G(Xn; r). We will say that Wv is within distance ρ to ver-
tex u at time t if Wv(t) ∈ D(u, ρ), i.e. the random walk
started at v occupies a vertex that lies in D(v, ρ) at time t.

Let Tv(ρ)
def
= inf{t|∀u ∈ V, ∃t′ ≤ t : Wv(t′) ∈ D(u, ρ)} be

the time needed until Wv has come within distance ρ to all
vertices of the graph. We define the ρ-proximity cover time
of G(Xn; r) as C(ρ) = maxv∈V E[Tv(ρ)].

A similar but different metric is presented in [2] where each
time the random walk visits an already visited vertex, then
u.a.r. picks an unvisited neighbour (if one exists), marks
it as visited and then continues the random walk from its
current vertex (i.e. it does not make a transition to the
marked neighbour).

3.5.3 Proximity Variation
For a vertex v ∈ V and time t0 ≥ 0 let

dist(v, t0) = min
0≤t≤t0

‖W(t)− v‖

be the function that returns the minimum distance between
the random walk W up to time t0 and node v. Then the
proximity variation PV (t0) at time t0, is given by

PV (t0) =

∑
v∈V dist(v, t0)

n

where n is the total number of nodes.

The rationale behind this metric is the following: In a real
network, if the PV metric converges to zero quickly with
t, this means that the sink gets close to all sensors quite
soon and data collection progresses fast; this is especially
relevant in case when the role of sensors is not completely
passive but includes some limited multi-hop propagation of
data to accelerate data propagation at a reasonable energy
cost. On the contrary, when the PV converges slowly to
zero, it means that the network traversal is performed in a
way that some areas may stay unvisited for long time.

3.5.4 Visit overlap statistics
Other metrics that will be used in order to further charac-
terize each walk’s evolution include the number of visits to a
specific vertex v, as well as the distribution of the number of
visits for every vertex in the graph. These overlap statistics
will provide an insight on how exactly each walk traverses
the graph, how different components of the graph are visited
and in what rate.

4. PERFORMANCE EVALUATION
4.1 Simulation Set-up



We conducted our experimental evaluation using Matlab
R2009a as our simulation environment. We evaluate the
walks on several instances of the Random Geometric Graphs
model in order to address its random nature. More partic-
ularly, we construct Random Geometric Graphs consisting
of n = 2000 nodes placed in a 100 × 100 square area. For
such RGG graphs, the connectivity threshold is computed to

be of radius r = 100
√

ln 2000
π2000

= 3.47. For our performance

evaluation we use three characteristic values for r: r1 = 5,
r2 = 7, r3 = 10, corresponding to sparse, average and denser
graphs respectively. For every value of r, we construct 50
RGG instances on which we evaluate all walks for 100 itera-
tions per instance. We consider these randomly constructed
RGG instances to be representative of the RGG space.

For the performance evaluation of the protocols we used two
network topologies. At the first topology sensor nodes are
deployed uniformly at random over the planar area. This
topology constitutes the base of our performance evaluation
study by providing a first insight on the performance of each
protocol. At the second network topology a portion of the
sensors (in our experiments 60%) is deployed uniformly at
random in order to establish connectivity. The rest of the
sensors are deployed over the network area following the
normal distribution with mean value µ = 50 (i.e. half the
dimension of the network area) and standard deviation σ =
7 for the x and y co-ordinates (independently of each other)
of each sensor. This set-up leads to a heterogeneous network
deployment in which a high concentration of sensor nodes is
located around the center of the network area.

4.2 Simulation Findings
We first experimentally evaluate the performance of the Ran-
dom Walk with Inertia on the Random Geometric Graph
and compare it with the Blind Random Walk (only in the
uniform topology). Then we compare four random walks;
the well known Blind Random Walk; two versions of our
newly proposed walk: the Stretched Walk where γ = 1 and
the γ-Stretched Walk, where γ = r

rc
, in order to investigate

the impact of γ; the Random Walk with Memory 1, that
somehow represents an upper bound in terms of memory
usage and therefore is considered to be more powerful than
the rest of the walks.

4.2.1 Uniform Topology
Figure 1 presents the comparison between the Random Walk
with Inertia and the Blind Random Walk. Although the
Random Walk with Inertia on the Grid performs better than
the Blind, however the RGG model causes the Inertia to
present a really weak performance. This result led us to the
design of the newly proposed random walk, the so called
γ-Streched Random Walk.

Figure 2 depicts the mean number of hops each walk needs
in order to visit all the nodes of the network for three repre-
sentative values of the communication range r. For all the
random walks we observe that as the density of the graph in-
creases, the total cover time is reduced even by nearly 50%.
This is due to the fact that in a dense network the walk
has more edges to traverse on, and therefore there is higher
probability to visit any given vertex. In other words, a ran-
dom walk reaches its stationary distribution much faster.
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Figure 1: Cover Time of the Blind Random Walk
and the Inertia Random Walk
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Figure 2: Cover Time of the Blind Random Walk,
Stretched Walk, γ−Stretched Walk and Walk with
Memory 1

We also observe that for all graph densities, the Blind Ran-
dom Walk has the biggest cover time, while the impact of
the fixed-sized memory of the Walk with Memory declines as
the density of the graph increases. In fact, in sparse graphs,
where the available options are limited, avoiding 1-hop over-
laps by not visiting the last position significantly reduces the
cover time. In our Stretched Walks, on the contrary, the im-
pact of the γ factor is proportional to the number of neigh-
bouring nodes as the graph density increases. This is why
for small values of radius r the performance of the Stretched
Walks is very similar. However, in more dense graphs, bias-
ing the walk towards the more distant neighbours seems to
have a well noticeable effect on the speed the random walk
traverses the graph.

Figures 3 and 4 depict the rate at which each walk discov-
ers unvisited nodes inside the network area for range r = 5
and r = 10 respectively. For sparse networks (r = 5) we
note that the Stretched Walk outperforms even Random
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(a) Nodes’ Discovery Rate for r = 5
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(b) Nodes’ Discovery Rate for r = 5 (zoom-in)

Figure 3: Percentage of discovered nodes over num-
ber of hops with range r = 5 and uniform distribu-
tion

Walk with Memory. The Random Walk with Memory, while
avoiding its previous position, may move towards a neigh-
bouring node that geometrically is very approximate; thus
allowing a high probability for early overlaps. On the other
hand, the Stretched Walk, by favouring the more distant
neighbours, quickly changes the subregions of the networks
it traverses. This way it avoids early overlaps, thus dis-
covering unvisited nodes much faster. However, in sparse
networks, if the bias factor towards distant neighbours is
very crude it may have an opposite effect. As seen in the
performance of the γ-Stretched Walk, a crude bias factor
may narrow the available options for the next step down to
the point the walk is forced to make long cycles during its
traversal, thus visiting already visited nodes.

In dense networks (r = 10) the rate at which unvisited
nodes are discovered is accelerated for all walks. However,
γ-Stretched Walk performs slightly better as the bias factor
strongly favours distant nodes over geometrically approxi-
mate ones. We note that for all walks while they all discover
relatively quick the 95% of the total number of vertices in
the graph, they spend nearly half of the cover time in or-
der to visit the last 5% of the vertices, thus creating a long
convergence tail at the end of the traversal.

As discussed in subsection 3.5.2, there is strong motivation
from real-life wireless sensor networks to consider as visited
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(a) Hops Rate for r = 10
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(b) Hops Rate for r = 10 (zoom-in)

Figure 4: Percentage of discovered nodes over num-
ber of hops with range r = 10 and uniform distribu-
tion
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Figure 5: Proximity Cover Time

not only the vertex of the current state of the walk, but
also all neighbouring vertices in the RGG network. Figure 5
depicts the performance evaluation of all walks in RGG for
the Proximity Cover Time metric. Intuitively, the dominant
factor for this metric is the dislocation attribute of the mo-
tion (i.e. the mean geometric distance the sink covers per



hop). In sparse networks the use of memory by the Random
Walk with Memory slightly improves the Proximity Cover
Time of the Blind Random Walk. The Stretched Walk with
γ = 1 shows the best performance from all other walks. The
γ-Stretched Walk is outperformed due to the crude way it
is biased towards the few distant neighbours. However, for
higher network densities this factor aids the walk to outper-
form even the Walk with Memory. In a network consisting of
2000 nodes, in less than 2000 hops the sink has been inside
the communication radius of every node in the network.
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(a) Overlaps distribution for r = 5
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(b) Overlaps distribution for r = 7
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(c) Overlaps distribution for r = 10

Figure 6: Overlaps distribution over the nodes of
the graph for the random uniform topology.

Figure 6 depicts the overlaps distribution over the nodes of
the graph. That is what percentage of the total number of
the nodes has been visited i times by the sink during the en-
tire network traversal process. In sparse graphs the Random
Walk with Memory outperforms the two Stretched Walks,
that is more nodes of the network have been visited fewer
times (i.e. the curve corresponding to Walk with Memory
is above and to the left than the rest). At first glance this
contradicts the fact that the Stretched Walk is discovering
unvisited nodes in sparse networks at a higher rate than the
Walk with Memory (Fig. 2). We note however that the

Stretched Walk avoids early overlaps, while it needs more
time to cover the entire network (Fig. 2). This leads to the
conclusion that most of the overlaps occur towards the end
of the network traversal process, thus the converging tails in
Fig. 2.

For more dense networks the impact of the bias factor of
γ-Stretched Walk is increasing along with the value of r,
thus eventually demonstrating the best performance for this
metric. Also, as the network graph density increases, the
number of revisits for the majority of the nodes is more or
less the same (10-15 revisits). However, the total number
of revisits is increased significantly, as the last few unvisited
nodes are hard to find in a dense network.
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(a) Proximity Variation for r = 5
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(b) Proximity Variation for r = 5 (zoom-in)

Figure 7: The Proximity Variation Metric for r = 5
and uniform topology

There lies a different intuition behind each walk on how the
network area is traversed, regardless of the total number of
hops needed. For example the strategy of avoiding previous
positions is getting less effective when the density of the
network increases, while the γ factor in Stretched walks is
allowing the sink to visit many different network subregions
very early in the traversal process. The proximity variance
metric captures these differences. In Fig. 6 we note that
the two walks which perform better in sparse graphs are the
Stretched Walk (where γ = 1) and the Random Walk with
Memory. As there are relatively few neighbouring nodes
slightly favouring distant nodes or just avoiding previous
position seems to suffice. On the other hand, the γ-Stretched
Walk (where γ = r

rc
) favours distant nodes in a more crude



manner (for r = 5 and rc ≈ 2.3, γ ≈ 2). This way, the walk
is left with very few available options, forced to make several
cycles during its traversal process.
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(a) Proximity Variation for r = 10
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(b) Proximity Variation for r = 10 (zoom-in)

Figure 8: The Proximity Variation Metric for r = 10
and uniform topology

In dense networks, where there are many available options
for the next step of the walk, this crude selection of the
distant nodes allows the walk not to get attracted by ap-
proximate neighbours. Therefore, in Fig 8 the γ-Stretched
Walk is the one converging to zero at a higher rate.

4.2.2 Normal Distribution
Figure 9 depicts the cover time of each walk for a specific
characteristic communication range r. As shown in the fig-
ure, the γ-Stretched Random Walk performs better than
the Blind Random Walk. The γ biased factor allows the
Stretched Walk not to get trapped inside dense areas of the
network, contrary to the Blind Walk. On the other hand, the
simple Stretched Random Walk has the worst performance.

A better insight on the performance of our two proposed
walks for the normal distribution can be obtained by analysing
their performance over the uniform network topology shown
in figure 2. We notice that in sparse areas both walks have
similar performance regarding their cover time and the im-
pact of the γ factor is negligible. This is due to the fact that
in sparse areas both walks have few alternatives for their
next move. On the contrary, in dense areas the γ factor al-
lows the γ-Stretched Walk to quickly traverse the network
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Figure 9: Cover Time for heterogeneous topology

area by favouring the more distant neighbours resulting in
better performance. As a result, in the case of a heteroge-
neous topology, the γ-Stretched Walk behaves similarly in
the sparse areas of the network, but much better in the more
dense areas, yielding a better overall performance.

Figure 10 presents the rate at which each walk discovers
unvisited nodes inside the network area. We note that the
γ-Stretched Random Walk outperforms even the Random
Walk with Memory. As in the uniform topology, the Stretched
Walk, by favouring the more distant neighbours, quickly
changes the subregions of the networks it traverses, this
way avoiding early overlaps and discovering unvisited nodes
much faster.

Figure 11 depicts the overlaps distribution over the nodes
of the graph. That is what percentage of the total num-
ber of the nodes has been visited i times by the sink during
the entire network traversal process. One can see that the
Random Walk with Memory outperforms the two Stretched
Walks, that is more nodes of the network have been visited
fewer times. This does not contradict the fact that the γ-
Stretched Walk discovers unvisited nodes at a higher rate
than the Walk with Memory. We note however that the
Stretched Walk avoids early overlaps, while it needs more
time to cover the entire network. Actually, most of the over-
laps occur towards the end of the network traversal process,
especially in this heterogeneous topology, since it is more
difficult for the Stretched Walks to discover the nodes of the
dense area thus leading to multiple overlaps.

Finally, figure 12 depicts the proximity variation metric for
each walk. As shown in the figure, the Stretched Random
Walk (γ = 1) has the best performance, since it favours
distant neighbours, but is not that biased as the γ-Stretched,
thus succeeding to visit many different network subregions,
both in the sparse but also in the dense areas of the network.
On the other hand, the γ-Stretched Walk (where γ = r

rc
)

favours distant nodes in a more crude manner (for r = 7
and rc ≈ 3.5, γ ≈ 2). This way, the walk is left with very
few available options, forced to make several cycles during



(a) Hops rate for r = 7

(b) Hops rate for r = 7 (zoom-in)

Figure 10: The Hops rate for r = 7 and heteroge-
neous topology

its traversal process.

5. CONCLUSIONS
In this work we address the problem of efficient data col-
lection in wireless sensor networks via a mobile sink. We
model the data collection process by random walks on Ran-
dom Geometric Graphs as they better capture the geometric
dependencies that characterise inter-node wireless commu-
nication in WSN’s. We use random walks as local, simple
motion strategies for the sink that have very low compu-
tational and a priori knowledge requirements. We define a
new walk called Stretched Walk and evaluate two variations
of it. The basic idea of the new walk is to favour distant
neighbours of the current node towards avoiding visit over-
laps. Also, motivated by real-life WSN’s, we define a new
metric called Proximity Cover Time; this captures collecting
data from all neighbour nodes of a currently visited node.

Findings show that the use of constant sized memory in
order to accelerate the data collection process has limited
results, particularly when the network density increases. In-
stead, walks that use local (immediate neighbour) informa-
tion in a smart manner can demonstrate significantly better
results. However, their use should be wise as they may lead
to opposite results (e.g. strong bias factor in sparse networks
leads to bigger cover times).

Figure 11: The overlaps distribution for r = 7 and
heterogeneous topology

(a) Proximity Variation for r = 7

(b) Proximity Variation for r = 7 (zoom-in)

Figure 12: The Proximity Variation for r = 7 and
heterogeneous topology
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