335 research outputs found

    Performance analysis of realistic optical time division multiplexed wavelength routed networks

    Get PDF
    Application of optical time division multiplexing (OTDM) in wavelength routed optical networks greatly enhances the flexibility of bandwidth assignment because OTDM provides time division sub-channels in a wavelength to match the processing speed of electronic devices. Different types of such OTDM wavelength-routed (OTDM-WR) networks, assuming different levels of sophistication of the OTDM technology, have been proposed. The performance of these OTDM-WR networks improves with the time-slot routing capability of the intermediate nodes of the network. However, as the transmission rate increases up to hundreds of gigabits per wavelength channel, electronic processing of the time slots limits the achievable performance of the OTDM-WR networks. All-optical signal processing can overcome the electronics bottleneck, but the available all-optical signal processing capability is rather limited and cannot yet utilize the full potential of time-slot routing. Even with such limitations, current technologies, such as fast wavelength converters and micro-electromechanical system (MEMS) optical switches, can significantly enhance the performance of existing wavelength-routed networks by adding the OTDM capability, albeit limited. We develop time-slot routing schemes that require fast wavelength converters only and study the performance of these schemes by simulations on Manhattan street networks and a network with the topology of the AT&T North America OC-48 fiber network.published_or_final_versio

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    Spatial-spectral flexible optical networking:enabling switching solutions for a simplified and efficient SDM network platform

    Get PDF
    The traffic carried by core optical networks grows at a steady but remarkable pace of 30-40% year-over-year. Optical transmissions and networking advancements continue to satisfy the traffic requirements by delivering the content over the network infrastructure in a cost and energy efficient manner. Such core optical networks serve the information traffic demands in a dynamic way, in response to requirements for shifting of traffics demands, both temporally (day/night) and spatially (business district/residential). However as we are approaching fundamental spectral efficiency limits of singlemode fibers, the scientific community is pursuing recently the development of an innovative, all-optical network architecture introducing the spatial degree of freedom when designing/operating future transport networks. Spacedivision- multiplexing through the use of bundled single mode fibers, and/or multi-core fibers and/or few-mode fibers can offer up to 100-fold capacity increase in future optical networks. The EU INSPACE project is working on the development of a complete spatial-spectral flexible optical networking solution, offering the network ultra-high capacity, flexibility and energy efficiency required to meet the challenges of delivering exponentially growing traffic demands in the internet over the next twenty years. In this paper we will present the motivation and main research activities of the INSPACE consortium towards the realization of the overall project solution

    Traffic grooming and wavelength conversion in optical networks

    Get PDF
    Wavelength Division Multiplexing (WDM) using wavelength routing has emerged as the dominant technology for use in wide area and metropolitan area networks. Traffic demands in networks today are characterized by dynamic, heterogeneous flows. While each wavelength has transmission capacity at gigabit per second rates, users require connections at rates that are lower than the full wavelength capacity. In this thesis, we explore network design and operation methodologies to improve the network utilization and blocking performance of wavelength routing networks which employ a layered architecture with electronic and optical switching. First we provide an introduction to first generation SONET/SDH networks and wavelength routing networks, which employ optical crossconnects. We explain the need and role of wavelength conversion in optical networks and present an algorithm to optimally place wavelength conversion devices at the network nodes so as to optimize blocking performance. Our algorithm offers significant savings in computation time when compared to the exhaustive method.;To make the network viable and cost-effective, it must be able to offer sub-wavelength services and be able to pack these services efficiently onto wavelengths. The act of multiplexing, demultiplexing and switching of sub-wavelength services onto wavelengths is defined as traffic grooming. Constrained grooming networks perform grooming only at the network edge. Sparse grooming networks perform grooming at the network edge and the core. We study and compare the effect of traffic grooming on blocking performance in such networks through simulations and analyses. We also study the issue of capacity fairness in such networks and develop a connection admission control (CAC) algorithm to improve the fairness among connections with different capacities. We finally address the issues involved in dynamic routing and wavelength assignment in survivable WDM grooming networks. We develop two schemes for grooming primary and backup traffic streams onto wavelengths: Mixed Primary-Backup Grooming Policy (MGP) and Segregated Primary-Backup Grooming Policy (SGP). MGP is useful in topologies such as ring, characterized by low connectivity and high load correlation and SGP is useful in topologies, such as mesh-torus, with good connectivity and a significant amount of traffic switching and mixing at the nodes

    Online traffic grooming using timing information in WDM–TDM networks

    Get PDF
    AbstractIn this paper, the effect of holding time awareness on the process of time slot assignment in WDM–TDM is considered. Use has been made of Markov model in order to predict the wavelength congestion. A routing algorithm is developed based on the Markov modeling. The results are compared with existing algorithms—ASP, WSP and OTGA. Validation results have shown that the performance of the system is significantly improved in terms of bandwidth blocking ratio, network utilization and fairness

    Effective fiber bandwidth utilization in TDM WDM optical networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Computation of Dispersion Penalty for the Analysis of WDM Link Quality

    Get PDF
    The provisioning of light path over WDM/DWDM network is a challenging factor, which depends on various physical layer impairments such as dispersion in fiber. We proposed a light path provisioning mechanism by considering the effect of dispersion in fiber termed as dispersion penalty, which is the prominent effect at high speed WDM network. In the case of non-ideal filter, light path provisioning without considering the physical layer impairments does not satisfy the signal quality guaranteed transmission. In this algorithm, Quality of Service is described in terms of dispersion penalty values with an assumption that the entire client has a requirement of penalty less than 2 Db. Here we have analyzed the degradation in bit rate due to the effect of dispersion. The maximum possible length of fiber is also reduced due to high dispersion in fiber. Dispersion penalty is the increment in the received power to eliminate the effect of some undesirable distortion in optical fiber. Dispersion penalty is calculated in terms of bit rate and band width for each data path. The proposal of dispersion penalty budgeting is to ensure that the optical power reaching the receiver is adequate under all circumstances. The proposed algorithm defines a mechanism for effective light path provisioning by comparing the requirement of client and the available resources of the network

    Priority based dynamic lightpath allocation in WDM networks.

    Get PDF
    Internet development generates new bandwidth requirement every day. Optical networks employing WDM (wavelength division multiplexing) technology can provide high capacity, low error rate and low delay. They are considered to be future backbone networks. Since WDM networks usually operate in a high speed, network failure (such as fiber cut), even for a short term, can cause huge data lost. So design robust WDM network to survive faults is a crucial issue in WDM networks. This thesis introduces a new and efficient MILP (Mixed Integer Linear Programming) formulation to solve dynamic lightpath allocation problem in survivable WDM networks, using both shared and dedicated path protection. The formulation defines multiple levels of service to further improve resource utilization. Dijkstra\u27s shortest path algorithm is used to pre-compute up to 3 alternative routes between any node pair, so as to limit the lightpath routing problem within up to 3 routes instead of whole network-wide. This way can shorten the solution time of MILP formulation; make it acceptable for practical size network. Extensive experiments carried out on a number of networks show this new MILP formulation can improve performance and is feasible for real-life network. Source: Masters Abstracts International, Volume: 43-01, page: 0249. Adviser: Arunita Jaekel. Thesis (M.Sc.)--University of Windsor (Canada), 2004
    corecore