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Abstract

Internet development generates new bandwidth requirement every day. Optical networks 

employing WDM (wavelength division multiplexing) technology can provide high 

capacity, low error rate and low delay. They are considered to be future backbone 

networks. Since WDM networks usually operate in a high speed, network failure (such 

as fiber cut), even for a short term, can cause huge data lost. So design robust WDM 

network to survive faults is a crucial issue in WDM networks.

This thesis introduces a new and efficient MILP (Mixed Integer Linear Programming) 

formulation to solve dynamic lightpath allocation problem in survivable WDM networks, 

using both shared and dedicated path protection. The formulation defines multiple levels 

o f service to further improve resource utilization. Dijkstra's shortest path algorithm is 

used to pre-compute up to 3 alternative routes between any node pair, so as to limit the 

lightpath routing problem within up to 3 routes instead of whole network-wide. This way 

can shorten the solution time of MILP formulation; make it acceptable for practical size 

network. Extensive experiments carried out on a number of networks show this new 

MILP formulation can improve performance and is feasible for real-life network.

Keywords: WDM, Wavelength Routed Network, lightpath, physical topology, logical 

topology. Routing and Wavelength Assignment (RWA), protection, restoration, shared 

path protection, dedicated path protection, MILP, CPLEX, priority, wavelength-link

111
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Chapter 1

Introduction

With the explosive growth o f Internet as well as Internet related services, there is a 

growing requirement for huge bandwidth. According to recent research, the Internet 

traffic has approximately doubled every four to six months [COOl]. Fiber optic 

technology has many advantages such as huge bandwidth, low signal attenuation, small 

space requirement, and low cost [Muk97]. Therefore fiber optical networks have been 

employed in main infrastructures to provide services for business, government, military, 

research as well as other fields. WDM (Wavelength Division Multiplexing) divides the 

tremendous bandwidth o f a fiber (up to 50 Terabits per second) into many non­

overlapping wavelengths (WDM channels) [Muk97]. Each channel can transmit 

different data at any desirable speed, up to 10 Gigabit per second. A single fiber can 

carry 100 or more wavelengths [AQOO]. The aggregate capacity o f a fiber is the number 

o f channels times the rate o f each channel. WDM networks are considered to be the 

future wide-area backbone networks.

However, the huge amount o f traffic in a single fiber link also results in tremendous data 

loss in case o f network fault. The most frequent cause for WDM network failure is a 

fiber cut. Fault tolerant WDM network design has received considerable attention in the 

last decade. There are two kinds o f fault management schemes; Protection and

1
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Restoration. Protection is a predetermined recovery method. In protection, a link disjoint 

backup lightpath and wavelength are reserved for each primary lightpath during the 

cormection setup phase. In the absence of failures, communication uses the primary 

lightpath, also called working path. When there is a failure due to a fiber cut, all primary 

lightpaths using the failed fiber are affected. The affected traffic is rerouted to 

corresponding backup lightpaths immediately. Protection based strategies can provide 

quick and guaranteed recovery. But since backup lightpath and wavelength need to be 

reserved, utilization o f network resources is inefficient. Shared path protection scheme, 

in which resources can be shared among several backup paths, can increase resource 

utilization. Restoration techniques do not require resources to be reserved in advance. An 

alternate route and wavelength is found dynamically for each affected lightpath when a 

failure is detected. Restoration increases network resources utilization, but cannot provide 

any guarantees on recovery. How to provide efficient fault management strategies is a 

challenging issue in survivable WDM network design.

1.1 WDM Network Design

WDM network design usually is divided into two sub-problems: network design and 

Routing and Wavelength Assignment (RWA) problem [XY02].

Network design involves physical topology and configuration design [XY02]. The 

physical topology o f a WDM network consists o f Network Access Stations, Optical 

Cross Connects (OXC), and fiber links. Each access station is equipped with transmitters 

and receivers to transmit data from or receive data to multiple data sources such as 

terminal equipment, or local subnetworks. An OXC can route the optical signal coming
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in on a wavelength o f an input fiber link to the same or different wavelength in an output 

fiber link. Since transmitters, receivers, and OXCs are expensive, each network access 

station may be equipped with only limited amount o f these devices. Physical topology 

design is to determine the number o f Optical Cross Connects (OXC), transmitters and 

receivers and their interconnectivity in order to provide low-cost and efficient networks.

Logical topology o f WDM network is the topology viewed by higher layers such as 

SONET, ATM, IP [HAOO]. Logical topology consists o f network nodes and lightpaths. 

A lightpath is a logical all-optical connection established to satisfy data communication 

requests between a source node and a destination node. A lightpath consists o f a route 

over the physical network and a wavelength (channel) assigned to the lightpath on each 

link (edge) o f that route. In WDM networks without wavelength converters, a lightpath 

must be assigned same wavelength along all the fiber links it traverses. This is known as 

wavelength continuity constraint. A lightpath provides a single hop communication 

between a source and a destination node. In an n-node network, if  each node is equipped 

with n-1 transmitters and receivers and if  there are enough wavelengths on all fiber links, 

then every node pair can be connected directly by an all-optical ligthpath [Muk97]. 

However, as mentioned earlier, transmitters and receivers are expensive, also the number 

of wavelengths available in a fiber link is limited, and only a limited number o f lightpaths 

can be set up on the network. The logical topology design problem is to determine how 

to set up lightpaths to accommodate all traffic demand while make optimal use o f 

network resources.
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Once the logical topology (for a given physical network and traffic demand) is fixed, we 

need to map the lightpaths to physical topology and assign wavelengths to them. This is 

referred to as the Routing and Wavelength Assignment (RWA) problem. RWA will be 

discussed in detail in Chapter 2.

1.2 Motivations

WDM networks can provide large capacity to satisfy the growing bandwidth demand for 

many different applications. In the last decade, WDM networks have been traditionally 

used for long haul, backbone networks. All the lightpaths in the network are known and 

set up a priori and remain unchanged over relatively long periods o f time. However, with 

the rapid advances in WDM technology, short term or leased lightpaths have become 

possible. More and more individuals or companies need to lease lightpaths to transmit 

crucial traffic. Therefore, dynamic lightpath allocation is becoming increasingly 

important for the future. This thesis focuses on dynamic lightpath allocation in WDM 

networks. We address the following problems in this thesis:

• Set up lightpaths upon requests dynamically

• Provide backup lightpaths for critical, high priority connections.

• Utilize the idle resources in backup lightpaths

• Make optimal use o f resources

• Get solutions in a feasible time for practical sized networks
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1.3 Solution Summary and Contributions

In this thesis, we propose a new approach for dynamic lightpath allocation based on path 

protection, for single fiber fault. We have made two major contributions in the state of 

the art in this area: (1) we improve the resource utilization efficiency o f protection 

method. (2) We shorten the solution time, making the approach suitable to real life 

networks.

In order to increase resource utilization, we have introduced 3 different levels o f service 

in our approach. For high priority service (level 2), we reserve a link disjoint backup 

lightpath and wavelength for each primary lightpath. In case o f  failure affecting the 

primary lightpaths, the crucial traffic transmitted on these lightpaths will be rerouted to 

the corresponding pre-assigned backup lightpath immediately. This guarantees the quick 

recovery o f high priority traffic. For the next level o f service (level 1), we need not 

reserve a backup. The lowest level o f service (level 0) also does not have a pre-assigned 

backup lightpath. Moreover, the primary lightpath can share ‘idle’ resources assigned to 

backup lightpaths o f high priority services'. This means that under fault free conditions, 

the idle resources allocated to backup lightpath can be used to transmit low priority 

traffic. This helps to improve network resource utilization efficiency. However, it also 

means that these low priority communications may be pre-empted if  the associated 

backup lightpath need to be used.

In order to set up primary and backup lightpaths, we need to find a route for the 

lightpaths and assign wavelengths to them. This is the typical RWA problem. RWA
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problem can be formulated as an integer-programming (IP) problem with the objective o f 

optimizing a performance metric o f interest [17]. This IP problem has been shown to be 

NP-hard [17], and very time consuming. The crucial part that affects computation time 

of an IP problem is the number o f integer variables and the number o f constraints, which 

usually grows rapidly with the size o f network. In this thesis we have formulated a 

Mixed Integer Program (MILP) which reduces the number o f integer variables by 

expressing them in terms o f continuous variables whenever possible. This minimizes the 

number o f integer variables and makes our formulation feasible for practical sized 

networks.

1.4 Thesis Organization

The rest o f the thesis is organized as follows:

We first present a general review o f related background material in Chapter 2. This 

includes WDM networks. Routing and Wavelength Assignment problem and fault 

management schemes in optical networks. We also provide a brief introduction of Mixed 

Integer Linear Program (MILP) and the mathematic tool -CPLEX. Our approach for 

dynamic lightpath allocation is presented in Chapter 3 and details o f the implementation 

and experimental results are given in chapter 4. Chapter 5 discusses concludes the thesis 

and gives some directions for future work.
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Chapter 2

Background Review

In this chapter, we present a brief review on terminologies and teehniques related to the 

remainder o f this thesis. WDM networks, wavelength routed networks, logical topology 

design and network survivability are introduced in this chapter. Section 2.1 gives the 

general introduction to WDM networks. Section 2.2 introduces the routing and 

wavelength assignment (RWA) problem. Section 2.3 discusses different fault 

management strategies, protection and restoration. Mixed Integer Linear Program 

(MIL?) and the mathematic tool -CPLEX are introduced in Section 2.4.

2.1 WDM Networks

Wavelength Division Multiplexing (WDM) ean utilize the tremendous bandwidth 

available in a fiber by dividing it into many non-overlapping wavelength channels (WDM 

channel). Each channel ean earry different data at any desirable speed, from 2.5 Gigabits 

to 10 Gigabits per second. The number o f distinet channels that can be supported in a 

fiber depends on fiber eharacteristics and other teehnological constraints such as optical 

components, effeet o f cross talk on fibers [Muk97]. Now, with the dramatic development 

o f optical technology, 100 or more wavelengths in a fiber is possible [AQOO]. WDM 

networks can merge data from multiple data sources into a single fiber link so that 

different data can be transmitted over the same fiber simultaneously. The aggregate 

network capacity is the number o f channels times the rate o f each channel. Therefore,

7

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



WDM allows us to take full advantages o f the fiber’s huge bandwidth. This sort of 

WDM network is mainly deployed as a backbone network for large area, e.g., for 

nationwide or worldwide coverage. End-users can only notice the significantly improved 

response time and need not know the architecture and operation o f the backbone network. 

Fig.2.1 is an example WDM network. Here, an end-user (Network Access Station) does 

not need not be terminal equipment, but the aggregate activity from a collection o f 

terminals-including those that may possibly be feeding in from other regional and/or local 

sub-networks [Muk97].

LAN

LAN LAN

NAS

NAS

NAS

NAS

NAS

NAS

Woric-
Station

Optical Ethernet

Super­
computer

Multimedia
terminalMultimedia

terminal

Fig.2.1 WDM network
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2.1.1 Physical Topology

The physical topology o f WDM network consists o f Network Access Stations (NAS), 

Optical Cross Connects (OXC), and fiber links. As shown in Fig 2.1, access stations 

connect to OXCs. There are transmitters and receivers in each access station. Access 

stations transmit signals fi*om different sources (work station, LAN) on different 

wavelengths. The signals are merged into the fiber by wavelength multiplexers. Access 

stations also provide optical-to-electronic conversion and vice versa to interface the 

optical network with conventional electronic equipment [SH02]. OXCs are 

intercormected by fiber links. Each OXC can route the optical incoming signal on a 

wavelength o f an input port to the same wavelength in an output port. An example OXC 

is shown in Fig 2.2. If an OXC is equipped with converters, it can switch the optical 

signal on an incoming wavelength o f an input port to any wavelength on an output port.

Opdca]

M m '

Fibers

Ctagiit 
p it I

pat2

Onqjut
;p«l3

Fig.2.2 OXC
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2.1.2 Lightpath

A lightpath [R98], in a WDM network is a end-to end optical communication channel 

between a source node 5 and a destination node c? [SJ04]. A lightpath can be viewed as a 

pipeline between two communicating end nodes with a particular wavelength associated 

with it. A lightpath may span multiple fiber links [Muk97], If optical cross connects 

(OXC) in the WDM network are equipped wavelength converters, a lightpath can use 

different wavelengths in each fiber link it traverses, otherwise, same wavelength have to 

be used in all fiber links on the route. This is the well-known wavelength continuity 

constraint. Since wavelength converters are expensive, many works done in the 

literature, as well as most commercially available WDM networks follow the wavelength 

continuity constraint. We also consider WDM networks without wavelength converters 

in this thesis.

Two lightpaths sharing a fiber link should be assigned different wavelength to avoid 

signal interference with each other. Two or more lightpaths can use the same wavelength 

as long these lightpaths are link-disjoint. This is called spatial reuse o f wavelengths 

[Muk97]. With spatial reuse o f wavelength, although the number o f wavelengths 

available may be limited, the number o f lightpaths that can be set up is typically much 

larger. For example in Fig 2.3, lightpath between node 5 and node 4 spans three fiber 

links: 5 ->S2, S 2 ^ S 1 , Sl->4. Following the wavelength continuity constraint, it uses the 

same wavelength A,i on all three links. Since lightpath (5->4) and lightpath (5-> l) share 

fiber link (S2->S1), they have to assigned different wavelengths -  one uses wavelength

10

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



A,i, another uses wavelength X,2. Lightpath (3 ^ 2 )  is link-disjoint with lightpath (5 ^ 4 ) , so 

X,i is reused in lightpath (3 ^ 2 ) .

A ll-op tical

portion

Fig.2.3 A wavelength routed WDM network

2.1.3 Logical Topology

Logical topology [Muk97] o f a WDM network, also called virtual topology, is the 

topology viewed by higher layers. Logical topology consists o f network nodes and 

lightpaths. Fig 2.4 (b) is the logical topology corresponding to the physical topology in 

Fig 2.4 (a). In Fig. 2.4 (b), nodes correspond to actual physical network nodes as in 

Fig.2.4 (a), while edges are logical edges, which correspond to lightpaths. Logical 

topology design looks at the problem of determining how lightpaths should be setup in

11
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order to make optimum use o f limited network resources. Logical topology design 

problems have been studied extensively in [MN01][SH02][SB00][ HABJ02].

|~ | end-node 

0  optical router

Fig.2.4 (a) Wavelength Routed WDM network (Physical Topology)

I I end-node 

— ► ligh^ath

Fig.2.4 (b) Wavelength Routed WDM network (Logical Topology)

2.1.4 Wavelength Routing WDM Network

The commonly used architectural form for WDM networks is Wavelength Routed 

Networks (WRN) [Muk97], which route signals to the destination based on their 

wavelengths. In wavelength routing WDM networks, signals are routed in the optical 

domain, avoiding opto-electronic conversion and processing at intermediate nodes. 

Therefore, wavelength routing WDM networks avoid the optical-electrical speed

12

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



mismatch; taking foil advantages o f a fiber link’s huge bandwidth. Fig. 2.3 shows a 

wavelength routed network containing two WDM optical cross connects (s i, s2) [RM98] 

and five access stations (1 to 5). The optical cross connects (OXC) route incoming 

signals to the destination based on their wavelengths and input fiber links. For example, 

when signal from node 3 on wavelength A,i is transmitted to router S2, it will be routed to 

destination 2 automatically. However, if  the signal is from node 5 on wavelength it 

will be routed to destination 4.

2.2 Routing and Wavelength Assignment (RWA)

The Routing and Wavelength Assignment (RWA) problem deals with finding routes for 

lightpaths in physical topology and assigning wavelengths to the lightpaths 

[CB98][MS98][MNT01][SH02][SB00]. There are two kinds of RWA problems based on 

the traffic characteristics. Static traffic has these characters:

• A set o f lightpath requests are known in advance

• Lightpaths are set up in advance

• Logical topology remains stable over relatively long periods o f time

Static RWA problems find routes and assign wavelengths for the set o f given lightpath 

requests simultaneously. The logical topology usually will not change once decided. 

This is usually the situation in long haul networks. In dynamic traffic,

• Lightpath requests arrive at and depart from the network randomly

• Lightpath is set up when the request arrives

• Lightpath is destroyed and resources allocated to the lightpath are released 

after communication is over
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Dynamic RWA problems deal with how to dynamically allocate available resources to 

communication requests so as to satisfy as many as possible communication requests. A 

lightpath may not be able to setup due to lack o f resources, i.e., the lightpath request is 

blocked. The main goals o f dynamic RWA problem are to minimize the blocking 

probability o f the network, and set up lightpaths efficiently within a reasonable amount o f 

time.

RWA problem is typically an optimization problem. There are mainly two kinds of 

methods to solve RWA problems: heuristic methods and Linear Programming (LP) 

methods. Heuristic methods usually return sub-optimal solutions requiring a limited 

computation effort. In many cases, such solutions may be acceptable. Linear 

Programming (LP) methods are computationally intensive and do not scale well with the 

network size. Sometimes, the computation time is impractical even with a small network. 

However, since the LP method can generate absolute optimal solutions, they play a 

fundamental role either as direct planning tools or as benchmarks to validate and test 

heuristic methods.

RWA problems have been studied extensively with different goals depending on different 

limited network resources [ZMOO]: (1) satisfy all data communication requests using 

minimum number o f wavelengths (2) create all communication requests using minimum 

number of fiber links, (3) maximize the number o f lightpaths established subject to a 

constraint on the number o f available wavelength and/or path length [Hu03].
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2.3 Fault Management Schemes in WDM

There are many sources o f WDM network fault, such as fiber cut, noise introduced by 

optical components, or even cable inside a site getting disconnected. All these are very 

common reasons that can cause network fault. According to a recent report, Hermes, a 

consortium of pan-European carriers, estimates an average of one cable cut every four 

days on their network [XY02]. 136 fiber cuts were reported by various United States 

carriers to the Federal Communications Commission in 1997 alone [FP98]. A single 

lightpath usually carries a large amount o f traffic (up to 10 Giga bits per seconds), and a 

fiber can support maybe many lightpaths. Therefore, a single component or cable failure, 

even for a short duration, will result in much larger data losses than in traditional 

networks. That is why survivability is always a critical challenge in design and 

management o f WDM networks. Survivable WDM network, also called reliable WDM 

network, refers to a network that can be resilient to fault, i.e., can still provide the service 

upon failure occurrences using proper fault management methods. Two main recovery 

schemes are typically employed: protection and restoration [W92] [W95] [098].

2.3.1 Protection

Protection is a proactive procedure in which spare resources are reserved during 

connection setup. Protection techniques can be classified into path protection versus link 

protection based on rerouting type, or dedicated protection versus shared protection based 

on resource sharing.

• Path Protection
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The lightpath carrying traffic under fault-free conditions is called primary lightpath. In 

path protection, during the primary lightpath setup, a link-disjoint backup lightpath is 

statically reserved between the source and destination nodes. In case o f failure 

occurrence, the affected traffic carried in the primary lightpath will be transferred to the 

backup lightpath path.

• Link Protection

In link protection, the backup lightpath and wavelength are reserved around each link of 

the primary lightpath. When a certain link fails, the traffic carried in the primary 

lightpath is rerouted around the failed link only. Source and destination nodes need not 

be notified o f the rerouting. Fig.2.5 shows the difference between path and link 

protection. Research in [RSM03] shows generally path protection methods are more 

efficient than link protection methods. We use path protection scheme in this thesis.

Primary path

Backup path

Path protection
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Primary path

Backup path

Link protecition 

Fig.2.5 Path protection & Link protection

• Dedicated Path Protection

Depending on whether the resources allocated to backup paths are shared within several 

primary lightpaths or not, path protection can be further divided into shared path 

protection and dedicated path protection. In dedicated path protection, the backup 

lightpath is reserved for a single primary lightpath; it cannot be used or shared by any 

other lightpath. It is also referred to as 1+1 path protection [LCCOl]. Fig.2.6 is an 

example o f dedicated path protection. In dedicated path protection, backup paths B l, B2 

must use different channels. In shared path protection (Fig.2.7.a), they can share same 

channel ?i2 when corresponding primary paths are edge disjoint.

P2

B2

Fig.2.6 Dedicated path protection
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• Share Path Protection

Capacity utilization o f dedicated path protection is very low because 100% redundant 

resources have to be reserved and will be idle when there is no fault in the network. In 

order to increase capacity utilization, shared path protection was proposed. Shared path 

protection uses multiplexing techniques. There are mainly two kinds o f multiplexing 

techniques:

i) Backup multiplexing

ii) Primary-backup multiplexing [MMSOl]

The backup multiplexing technique allows two or more backup lightpaths to share a 

wavelength channel if  their corresponding primary lightpaths are link-disjoint. Fig.2.7a 

shows a shared path protection example using backup multiplexing technique. In 

Fig.2.7.a, primary lightpaths PI and P2 are link-disjoint (do not have common fiber 

links). In the single failure scenario, PI and P2 cannot both fail at the same time. So 

their backup lightpaths never need to be used simultaneously. Therefore, the 

corresponding backup lightpaths B l and B2 can share same wavelength in their common 

fiber link 4-^5. It is clear, shared path protection methods increase resource utilization.

PI

P2

B2

B l

A,i

Fig.2.7 (a) Share path protection using backup multiplexing technique
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Primary-backup multiplexing technique allows a primary lightpath and one or more 

backup lightpaths to share a wavelength channel. Primary-backup multiplexing technique 

utilizes the 'idle' resources assigned to backup paths, which decrease the resources 

redundancy in protection method. The trade off is reduced restoration guarantee on 

backup lightpath availability for all the failed lightpaths. But once the primary path, 

which is multiplexed with other backup path, terminates, the backup path will be 

available immediately. So, primary-backup multiplexing is useful in case o f dynamic 

traffic where lightpaths are short-lived [MMSOl]. Fig.2.7 (b) illustrates a shared path 

protection using primary-backup multiplexing technique. It shows two primary path PI 

and P2 and their respective backup paths B l, B2 on a same wavelength charmel. The 

primary path PI shares the charmel on link 4 --> 1 with B2. Channel on link 0 —> 1 is 

shared by primary path P2 and backup path B l. In this case, both primary path PI and P2 

are nonrecoverable (since their corresponding backup paths are not available). However, 

if  one o f them terminates, the other one will be recoverable immediately. Both dedicated 

and shared path protection are considered in this thesis and both types o f multiplexing 

techniques are used.
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Bl

P2

B2

PI

Fig.2.7 (b) share path protection using primary-backup multiplexing technique 

2.3.2 Restoration

According to ITU-T (International Telecommunication Union- Telecommunication) 

Standardization Sector Recommendation G.872 [R99], the technique that reroutes the 

affected traffic after failure occurrence by using available capacity is referred to as 

restoration. Unlike protection methods reserving resources in advance, restoration 

methods dynamically search for available resources after the event o f a failure. 

Restoration methods usually have better capacity utilization than protection methods. The 

trade off is the recovery guarantee. Affected traffic may be dropped due to no resources 

being available to establish a backup lightpath. Same as protection technique, restoration 

can also classified as link-based and path-based.

2.4 Mixed Integer Linear Programming (MILP) & CPLEX

As mentioned earlier, the RWA problem is typically an optimization problem. Integer 

Linear Programs (ILPs) are often used to solve the RWA problem. ILP formulations are
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typically too time-and-space-intensive [ZOM03]. The cracial factor that affects the 

computation time o f ILP problem is the number o f variables, especially number o f integer 

variables. In this thesis, we develop a MILP formulation to solve the RWA problem. In 

contrast to ILP, in which all variables are integer, in MILP, some variables are 

continuous variables and some are integers. By reducing the number o f integer variables 

as much as possible, we can greatly shorten the computing time.

2.4.1 MILP

The MILP framework is given below:

Objective Function:

Maximize: (or Minimize)

Z =  Cl + ...+  Cn X„

Constraints:

Subject to: + ... + a,„x,„ ~

^ 21^21 ~  ^ 2

Cl X  Cl X  ^  Mm l m l ^  mn mn m

Bounds:

l i < = X i < = U i

In Xn Un

where ~ can be <==, >== or =, and the upper bounds u, and lower bounds 1, maybe positive 

infinity, negative infinity, or any real number.

The data the user provides as input for this LP is:
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Objective function coefficients c i , ... ,c„ 

Constraint coefficients a n , ... ,amn 

Right_hand sides b i , ... ,bm 

Upper and lower bounds u i , ... ,Un and h , ... ,1„

2.4.2 CPLEX

CPLEX is an optimization mathematical software tool for large-scale, mission-critical 

applications. It can offer high-performance, flexible optimizers for solving linear, mixed- 

integer and quadratic programming [IL03]. One o f its abstracting characters is that CPLEX can 

solved problems with millions o f constraints and variables with very good performance, which 

is just what we need to solve our MILP problem. Another advantage of CPLEX optimizers is 

it can be embedded into applications written in Visual Basic, C, Java, and FORTRAN through 

the CPLEX Callable Library [IL03].

When used to solve the MILP problem described in 2.4.1, CPLEX will return the optimal 

solution and the values of every variable Xi ... xn. In this thesis, we use ILOG CPLEX 

8.1[IL03] to solve our MILP problem. Details o f our MILP formulations and notations will be 

discussed in chapter 3.
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Chapter 3

Priority Based Dynamic Lightpath Allocation

This thesis focuses on dynamic lightpath allocation. In this chapter we will introduce a 

new and efficient mixed-integer linear program (MILP) formulation for dynamic 

lightpath allocation in survivable WDM networks, using both shared and dedicated path 

protection. The formulation can handle multiple levels o f service and traditional shared 

and dedicated path protection schemes can be treated simply as a special case o f the 

formulation. Our objective is to minimize the amount o f additional optical resources 

(wavelength-links) needed for the new connection. We use wavelength-links to represent 

network resources. This is discussed in detail in section 3.3. We simplify our 

formulation to shorten the solution time and make it suitable for practical size network 

by:

• Using Dijkstra's shortest path algorithm to pre-compute up to 3 shortest link- 

disjoint altemative routes for each node pair

• Defining multiple levels o f service

3.1 Pre-compute 3 Link-disjoint Shortest Routes

Assuming a given physical network G (N, E) (N is the set o f nodes, E is the set o f edges) 

and a set o f available wavelengths K  on each fiber link, we model our dynamic lightpath 

allocation problem as a Mixed Integer Linear Program (MILP) with the objective of
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minimizing the additional amount o f network resources (wavelength-links) needed for the 

new connection. The number o f constraints in general formulations usually grows 

exponentially with the size o f network, which makes the solution time o f middle size 

network too long to acceptable. In order to make our approach practical for real-life 

networks, we use Dijkstra's shortest path algorithm to pre-eompute up to 3 shortest link- 

disjoint altemative routes for each node pair. Then we can select a route for new 

cormection from within these 3 routes, instead of searching the whole network. This 

greatly limits the number o f constraints; therefore shortens the MILP formulation 

solution time. Two lightpaths are said to be link-disjoint if  they do not share any 

common fiber links in the network. In order to make sure the 3 altemative routes are 

link-disjoint, we set the edges used in the selected routes as unusable, so these edges will 

not be used again in the next route for same source-destination pair. Below is the 

flowchart for creating 3 shortest link-disjoint routes for a given source-destination pair.
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Start

No

for ( int s=0; s < NumOfNode;
S + + )

for ( int d = 0; d <NumOfNode; 
d++)

s != d

Yes

find shortest route r for s->d

r

set all edges us( 
save r, Numof R(

;d in r unusable; 
lutes ++;

r

Is NumofRoutes
< -3 ?

Fig.3.1 Flowchart o f find 3 shortest link-disjoint routes
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3.2 Define Three Priorities

Protection scheme can provide fast and guaranteed recovery upon network failure, but 

resources for backup ligbtpatb are redundant under fault-free conditions. In order to 

fiirtber improve resource utilization, we introduce three different levels o f service in this 

thesis:

• Level 0: This represents the lowest level o f service. No backup lightpaths are

provided for this class o f primary lightpaths. In addition, resources assigned to

these primary lightpaths may also be allocated to (idle) backup lightpaths o f

higher priority connections, using the same fiber. That means in absence o f fault, 

the idle channels o f backup lightpaths o f higher priority connections can be used 

to carry lower priority traffic. The trade off is traffic carried in the level 0 

primary lightpath will be dropped when the backup lightpath need to be used, due 

to a fault.

• Level 1: This represents the second level o f service. The primary lightpaths of

level 1 connections do not share any resources with higher priority backup paths.

Therefore, these connections cannot be preempted. However, there is no backup 

path provided beforehand to handle faults with the primary path. So, restoration 

techniques need to be used to search for a new route and available channel on that 

route, once a fault is detected.

• Level 2: This represents the highest level o f service. At the time o f call setup a 

primary path and an edge-disjoint backup path is determined for each connection. 

If a fault occurs on a primary path the traffic is automatically switched to the 

backup path.
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We note that the level 0 service traffic will be dropped only when the following three 

events occur simultaneously: 1) a link fails during the period o f level 0 service 

connection existence; 2) A channel is shared by this level 0 connection and a backup 

path; and 3) the backup path's corresponding primary path is affected by the failed 

link. In practice, the chances o f this happening are quite small [MMSOl]. So, the 

rate o f level 0 service connection being preempted will not be very high.

By defining 3 levels o f service, we can use both backup lightpath multiplexing and 

primary-backup multiplexing [MMSOl] in setting up new lightpaths. Backup- 

multiplexing technology can be used between two level 2 backup lightpaths when 

their corresponding primary lightpaths are link-disjoint. Primary-backup 

multiplexing technology can be used between level 0 primary lightpath and level 2 

backup lightpath.

3.3 Wavelength-Link

In this thesis, we use wavelength-Iink to represent network resources. To establish a 

new connection, we need to find a route between the source and destination nodes 

and an associated channel on that route. It is clear that the network resources needed 

for the new eonneetion are the fiber links and channel used on the fiber links. When a 

wavelength is used on a fiber link, this is one wavelength-link. Fig.3.2 shows an 

example o f how to count wavelength-links and how network resource utilization can 

be further improved by using 3 levels o f service. In this example, P3 (5 - >  3) is a
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primary lightpath o f level 0, using channel A,i. PI (0—>l-->2—>3) is a primary 

lightpath o f level 2, with B l (0->4->5-->3) as the backup path, both using channel 

A,i. We notice P3 uses the same fiber link 5-->3 with B l. Since P3 is a primary path 

o f level 0 service, so it can share channel with B l. The idle channel assigned to 

backup lightpath B l now can be used to transmit low priority traffic. Primary-backup 

multiplexing is used between P3 and B l. P2 (0—>1—>4) is a primary lightpath of 

level 1 service, using channel la- There is no pre-assigned backup path for P2. P4 (4— 

>2) is another primary path o f level 2 service, using channel la, with B4 (4 —>5 —> 2) 

as its backup lightpath. Since PI and P4 are link-disjoint, their backup lightpaths Bl

and B4 can share the same channel A,i in their common fiber link 4-> 5 . The

wavelength links used in this network are:

PI uses Xi in fiber link 0—>1,1—>2, 2—>3, wavelength link = 3,

B l uses A-i in fiber link 0—>4,4—>5, 5—>3, wavelength link = 3 

P2 use A,2in fiber link 0—>1,1—>4, wavelength link = 2,

P3 use in fiber link 5—>3, wavelength link = 1,

P4 use A-ain fiber link 4—>2, wavelength link = 1,

B4 (4—>5—>2) shares with B l in 4—>5, only one additional 

wavelength-link is needed on fiber link 5->2. So, wavelength link = 1 

(we save one wavelength link).

The total number o f wavelength links used in this example is 11.
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P 1:L :2

Xi

B l - X

Fig.3.2 Three levels o f service (level 0, level 1, level 2)

3.4 MILP Formulations

The MILP formulation given below attempts to find a route and available wavelength for 

the primary (and if  needed the backup) path for the new connection request, when there 

are Pmax existing communications currently in progress, each with their own primary (and 

possibly backup) paths already established. It will be possible to successfully set up the 

new lightpath if:

i) there exists a route for the primary path and an unused wavelength on that route

ii) there exists (if needed) an available wavelength and a route for a backup path 

which is edge-disjoint with respect to the primary path for the new connection.

Two lightpaths are said to share a channel on link e, if  and only if

i) both lightpaths traverse link e and

ii) both lightpaths the same wavelength (or channel).

Two lightpaths are said to be channel-disjoint, i f  they do not share a channel on any link 

in the network.
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In this section we will first give the notations and variables used in our formulations for 

dynamic lightpath allocation. Formulations for i) dedicated path protection ii) shared 

path protection will be presented in section 3.5 and 3.6.

3.4.1 Notations

The information below is given:

• Physical topology o f a fiber network G (N,E) with |N| = n nodes and |E| = m edges.

• The number o f channels K  that each edge e e E  can accommodate

• The percentage o f level 2,levell, level 0 connections 

Below are all the notations used in our MIL? formulation:

• G [N,E] represents a physical optical network with |N| =n nodes and a set o f |El = m 

edges.

• A set o f channels K  (with |K | = k) that each edge e e E  can accommodate.

• A set P o f existing connections in the network with |P| =

• P* represents a list o f primary lighpaths that already established, where P'^ is the p'* 

primary path

• P^ represents a list o f backup lighpaths that already established, where P^ is the p'* 

backup path

• A = ( a f ) is the primary edge-path incidence matrix with:

1, if  only if  the p* existing connection uses edge e on its primary path 

0, otherwise
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B = (b g ) is the backup edge-path incidence matrix with:

b f
1, if  only if  the p* existing connection uses edge e on its backup path 

0, otherwise

= 1, if  and only if  the r route between source s and destination d  uses edge e.

k f  ( k f ) is the wavelength assigned to p'* primary (backup) lightpath, for all p, 1<

= {0,1, 2}, represents the level o f service o f the p'* existing path 

Q new ~ {0>U2}, represents the level o f service o f the new connection request

3.4.2 Binary Variables

In this section, we define the binary (0-1 integer) variables that are used in our MILP 

formulation. For each new connection request, we define two types o f binary variables: 

the route assignment variables Xr, and yr and the channel assignment variables Wk, and Zk. 

The route assignment variables determine the how the new lightpaths are routed over the 

physical topology and the channel assignment variables assign a single wavelength 

channel to each new lightpath. The variables are defined below.

X .
1, if  only if  the new connection use the r * route to establish the primary path

0, otherwise

1, if  only if  the new connection use the r* route to establish its backup path 

0, otherwise
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Here 0 < r < R , R i s  the number o f pre-computed altemative routes between any node pair 

(s,d), in this thesis i? is 3.

1, if  channel k is assigned to primary path

0, otherwise

1, if  charmel k is assigned to backup path 

0, otherwise

We note that if  ^  2, then no backup lightpath is needed and yr = 0, for all r, 0 < r  < i?

and Zk -  0, for all k, \ < k < K .

3.4.3 Continuous Variables

As discussed in Chapter 1, the cmcial part that affects computation time o f an IP problem 

is the number o f  integer variables. Therefore, we try to minimize the number o f integer 

variables and use continuous variables instead, whenever possible. Even though we 

define continuous variables for computational advantage, the values o f these continuous 

variables are still restricted to be 0 or 1. In this section, we will list all continuous 

variables used in our formulation.

1, if  only if  new primary path uses edge e.

0, otherwise

f 1, if  only if  new backup path uses edge e. 

r [0, Otherwise

This means that Xe (ye) will have a value o f 1 if  the new primary (backup) lightpath, fi^om 

source s to destination d, uses the r*** route and edge e is on the r*** route. In other words, 

Xe=l  (ye = I) i f  and only if  the new primary (backup) lightpath uses edge e.
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m —e ,p

c =

1, if  only if  new backup path multiplexed with p* backup path on edge e.

0, otherwise

1, if  only if  the new backup path is multiplexed with p* backup path

0, otherwise

1, if  new backup path is multiplexed with another backup path on edge e

0, otherwise

Countinuos variables 5 ^ , and c^ are only needed in shared path protection and 

discussed in detail in section 3.6.

3.5 Dedicated Path Protection

In this section, we will describe all physical constraints that have to be satisfied in order 

to build a new connection using dedicated path protection scheme. The goal is to 

accommodate the new connection request, using a minimum amount o f resources. In our 

case, this means the minimum number o f wavelength links. Since there is no sharing of 

resources, the number o f wavelength links used is obtained simply by adding the number 

o f  edges in the primary and backup lightpaths. The MILP formulation for dedicated path 

protection is given below.

3.5.1 Objective Function

Minimize:

M in 2 (^ .+ > '.)  (3-1)

Our objective is to minimize the amount o f network resources needed in establishing a 

new lightpath. represents total wavelength-links needed for the new primary path.
e
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is the total wavelength-links needed for the new backup path. Backup
e

multiplexing technique is not allowed in dedicated path protection. So, the amount of 

resources needed to setup a new connection is the sum of resources needed by primary 

path and resources needed by backup path.

3.5.2 Route and Wavelength Assignment Constraints

X x ,  =1  (3.2)
r=0

r=0

1. iTQ„ew=2

0, irQ„ew=o,i
(3.3)

X , + y ^ < l ,  r = 0 ,1 ...R -1  (3.4)

Equation (3.2) shows among all the pre-computed altemative routes, only one route can 

be selected as primary lightpath. Equation (3.3) shows among all the altemative routes, 

only one route can be used as the new backup path when necessary. When the service 

level o f new lightpath is level 0 or level 1, backup path need not to be assigned. So,

= 0 . Equation (3.4) guarantees that the primary and backup lightpath are link-
r=0

disjoint. Therefore, primary path indicator x^ and backup path indicator y ̂  cannot be 1 

for a given route r at the same time.

X w . - 1  (3.5)

= 1 . (3-6a)
k=0
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k - \

I z ,  = 0 , i f Q .„  =0,1 (3.6b)
t=0

In a WDM network without wavelength converters, wavelength assignment should 

follow Wavelength Continuity Constraint. Equations (3.5), (3.6a) ensure that only one 

channel be assigned to the primary (backup) path. Equation (3.6b) applies to cases in 

which a backup path is not needed ( level is 0 or 1 connections).

3.5.3 Primary and Backup Path Link Disjoint Constraints

+ w <1, \ f e 3 a ^  = l , V p e  P  (3.7a)/C]

X, + < 1,Ve3bP = l y p ^ Q ^ =  2 , =  1,2 (3.7b)

Constraint (3.7a) ensures that the primary path for the new connection is channel-disjoint 

with all other existing primary lightpaths. According to this constraint, x® and w^,.

cannot be 1 at the same time. If  the new primary path is assigned the same channel with 

existing p"' backup path, i.e., w ,„ = 1, then x® has to be 0, i.e., it cannot pass the same

edge e with p'* backup path; vise visa. Similarly, constraint (3.7b) ensures that the new 

primary lightpath is channel-disjoint with all existing backup lightpaths. Clearly, this is 

only needed if  the new connection is level 1 or level 2 (i.e. Q„ew = 1, or 2), since level 0 

connections are allowed to share resources with existing (idle) backup paths. Also, this 

constraint is only applicable if  the existing (p*) connection under consideration is a level 

2 connection (i.e. Qp -  2) and has an associated backup lightpath. 

y ,  + < 1,Ve 3 aP = 1, Vp 3 = 1 , 2 , = 2  (3.8a)
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<\ye^b^=\ , \ !p^Qp=2,Q^^^=2  (3.8b)

Similar to constraints (3.7a), constraints (3.8a) guarantees a new backup path to be 

channel-disjoint with existing level 1 and 2 primary paths since new backup path can 

only share channel with level 0 primary path. (3.8b) ensures that the backup path o f new 

connection is channel-disjoint with all existing backup paths. These constraints are used 

only if  Qnew = 2 since when Q = 0 or 1, no backup path needed, = 0, constraints are

always satisfied. Constraint (8b) is needed because we are considering dedicated path 

protection, and backup multiplexing is not allowed. This constraint will be removed in 

the next section, when we consider shared path protection and some new constraints will 

be added.

3.6 Shared Path Protection

In shared path protection, backup lightpaths are allowed to share resources, if  the 

corresponding primary lightpaths are edge-disjoint. In this section, we will modify our 

formulation for dedication path protection to handle backup multiplexing. Constraints 

(3.2) -  (3.8a) developed in the earlier section for dedicated path protection, can be 

applied directly for shared path protection. Constraint (3.8b) is replaced by constraints 

(3.9a) -  (3.12c). Clearly, this is needed only if  the new connection request is level 2 (Qnew 

= 2) and the existing cormection (p) being considered is also level 2 (Qp = 2).
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3.6.1 Backup Multiplexing Constraints

m g = 1 implies that the new backup lightpath is allocated the same channel with the p 

existing backup lightpath on a shared edge e. m ^ , together with variable c^, indicate if 

additional resources needed for the current backup path on edge e.

1, if  new backup path is multiplexed with another backup path on edge e 

0, otherwise

The value o f c  ̂ indicates whether the new backup lightpath needs additional network 

resources on edge e. If c  ̂ = 1, no additional resources needed on edge e. Clearly, if  the 

new backup lightpath is multiplexed with an existing backup lightpath in edge e, then no 

new network resources needed to be allocated for the new backup lightpath on edge e, 

i.e., when m f = 1, c must be 1.

1, if  only if  the new backup path is multiplexed with p* backup path 

0, otherwise

This variable implies whether the new baekup lightpath is allocated the same channel 

with the p'* existing backup lightpath on one or more edges. It is used in constraints 

(3.11) to ensure that if  the current backup lightpath is multiplexed with the p'* existing 

backup lightpath, then the corresponding primary lightpaths are link-disjoint.

ye  +  ~  ^  f  V e 3 6 /  = l , V p ^ Q p =  2, Q „^  = 2  ( 3 .9 a )

<0,Ve3bP =l ,Vp^Qp= 2, =  2 (3.9b)

f ê,p - y e ^ o y e ^ h P  = 1,Vp 3 Cp = 2 , =2 (3.9c)
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Constraints (3.9a) -  (3.9c) are used to define variable ^ ^  is a continuous variable,

which is set to 1 if  and only if  the new backup lightpath is allocated the same channel as 

the existing backup lightpath on a shared edge e. Using m^p, constraints (3.10a) -

(3.10c) define the variable dp such that Sp=l i f  and only if  the new backup lightpath and

t h e e x i s t i n g  backup lightpath share the same channel on one or more edges.

m,^p-5p<Q,\^e^bP =\,'^p3Qp =2,Q„^=2 (3.10a)

S p < \ y p 3 Q p ^ 2  (3.10b)

^ p -  ' ^ ' ^e .p^^yP^Qp='2  (3.10c)

If dp=l,  then we must ensure that the corresponding primary paths are edge-disjoint. 

This requirement is stated by constraint (3.11).

x,+Sp <l,Ve3flf =iyp3Qp -2,Q„^=2  (3.11)

Constraints (3.9a) - (3.9c) and (3.11) together ensure the backup multiplexing constraints. 

The example in Fig.3.3 (a), Fig.3.3 (b) explains backup multiplexing constraints. In 

Fig.3.3 (a), the new backup path uses the same edge (0 --> 4) as existing backup

path B l, and shares the same wavelength ^2. So, = 1. According to (3.11), has to be 

0 for all edges that the primary path PI uses, which means that the new primary path 

cannot use same edge with P I. But as showing in Fig.3.3 (a), uses the same

edge (0 ~> 1) with P I, which clearly violates constraint (3.11). In this case, if  fiber link 

0 —> 1 get cut, both primary paths PI and will be affected. Their corresponding

backup paths B l and will be needed to be used at the same time. So the channel

they shared in edge 0 ^ 4  will be needed simultaneously. This causes network resource
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conflict. Therefore, these backup paths multiplexing must use separate channels as 

showing in Fig.3.3 (b).

P l : ^ ;

Pnew

Bnew: X-
B l: X:

êw: 3

Bnew: Xi S_
B1:X,;

Fig.3.3 (a) Violate backup multiplexing constraint Fig.3.3 (b) Satisfy backup multiplexing constraint

3.6.2 Objective Function

For shared path protection, we also need to modify the objective fimction so that 

resources that are shared with existing backup paths do not contribute to the cost more 

than once. In order to do this, we introduce variable in the objective function. 

Constraints (3.12a) -  (3.12c) are used to d e f i n e :

- c ,  < 0 ,Ve 9 bP = 1, Vp 3 = 2 , = 2  (3.12a)

(3.12b) 

(3.12c)

Cg < l,V e

P 3 Q p = 2

3 9
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We notice, when m^p=\,  which means the new backup path is multiplexing with p'* 

existing backup path on edge e, then c ̂  must be 1. So no additional resource needed for

the new backup path on edge e.

The new objective function can now be stated as:

Minimize:

Min - C e )  (3-13)

4 0
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Chapter 4

Experiments and Results

In this chapter, we will describe our implementation to simulate the priority based 

dynamic lightpath allocation approach described in chapter 3. We have carried out 

extensive experiments with networks o f different size and topology, using several 

different approaches for dynamic lightpath allocation. A detailed comparison and 

analysis of the results are presented and used to evaluate the effectiveness o f the different 

approaches.

4.1 MILP Formulation Implementation

In this section, we will describe how we convert the general mathematic equations given 

in chapter 3 into an appropriate CPLEX recognized format. This is then used by CPLEX 

to obtain a solution. An example is given to illustrate our approach.

We introduced the MILP formulation for our priority based dynamic lightpath allocation

approach in chapter 3. In order to solve the MILP formulation, we have used CPLEX8.1

[1L03], the well-known and efficient optimizers for solving linear, mixed-integer

programming. However, CPLEX cannot read the general formulation given in chapter 3.

The input file formats CPLEX can read include MPS (Mathematical Programming

System) files, CPLEX LP files, and binary files [1L03]. For our experiments, we have

used the LP format, which include an objective, a set o f variables and a set o f constraints.
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The nvimber o f  constraints in the LP format file, for a particular network, depends on a 

variety o f parameters such as network size, available wavelengths each fiber link can 

carry, etc. It can be o f the order o f several thousands or even several tens o f thousands for 

large networks. Clearly, it is not feasible to generate LP format file manually. Therefore, 

we have to implement a program to generate the LP format file automatically. We use C 

programming language, for our implementation. After generating the LP format file, we 

call CPLEX functions to solve the MILP problem through the CPLEX Callable Library. 

The main steps in the implementation are given below:

Step I. From an input file, read in the following network specifications:

• The set o f nodes

• The set o f edges

• The number o f wavelengths each fiber link can carry

• The percentage o f connections which are o f level 2, level 1 and level

0 respectively

Step II. Pre-compute up to R shortest link-disjoint routes for each source-destination 

pair o f the network. Save the route in a 4 dimension array. We use /? = 3 

Step III. Generate a dynamic connection request by randomly generating the following 

variables:

• Source node s

• Destination node ^/(must be different firom source node)

• Level o f service (generating according to percentage o f level 2, level

1, and level 0 connections)

4 2
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step IV. For each compsite constraint given in chapter 3 (from 3.1 - 3.13), generate 

the corresponding individual constraints and write into a LP format file - 

"out_to_cplex". The out_to_cplex file will include:

• Objective function

• All constraints

• Bounds o f all variables

StepV. Using "out_to_cplex" as the input file, call CPLEX to solve this MILP 

problem. The solution includes optimal objective value and values o f all 

variables:

• X; = 1 indicates that route is used as the primary lightpath for the 

new connection between s-d

• y j  =1 indicates that y'* route is used as the backup lightpath for the 

new connection between s-d  (if level o f service = 2)

• Wjt = 1 indicates that channel k is assigned to the primary lightpath of 

new connection

• ^/ = 1 indicates that channel 1 is assigned to the backup path (if 

necessary)

• == 1 implies the cost o f the backup path is saved on edge e (not 

suitable for the first lightpath)

• m^ = 1 implies the backup path is multiplexing with p'* backup path 

on edge e (not suitable for first lightpath)

4 3
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Step VI. Update the logical topology o f the network, by adding this connection to the 

set o f existing connections and repeat step III - VI 

Step VII. This procedure ends when;

• either the maximum number (given as an initial constant) o f lightpaths 

have been establishes successfully

• Or number o f failures is great than 2, which implies network is 

becoming congested

4.1.1 An Example

In this section, we give an example to solve dynamic lightpath allocation problem in a 3- 

node network (Fig.4.1) using shared path protection approach.

Fig. 4.1 Input 3-node network topology

Step I. Input parameters. The input file includes 3 lines: 

3 3 4  

60 20 20 

0 1 0 2 1 2

4 4
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First line indicates this is a network with 3 nodes and 3 (bi-directional) edges; 

each edge can carry 4 channels. The second line is the percentage o f the 3 

service levels, level 2 is 60%, level 1 is 20%, and level 0 is 20%. The third 

line indicates the physical topology o f this network, i.e, there are edges 

between nodes 0 and 1, 0 and 2, 1 and 2. The edges in the network are bi­

directional, i.e., each edge consists o f two separate fiber links in opposite 

directions. So, there are 6 unidirectional edges in the input network. The 

edges are numbered as follows: 

edgeO: 0 —> 1 

edgel: 1 —> 0 

edgc2: 0 --> 2 

edgc3: 2 —> 0 

edgc4: 1 —> 2 

edges: 2 —>1.

Step II. Compute up to 3 shortest routes between each node pair and save them in 

array variable raMte[source][destination][route#][edge]. For example. Route 0 

from node 0 to node 1 uses edge 0 (0-->l), the corresponding entries in the 

array are:

route [0][1][0][0] = 1 

route [0][1][0][1]=0 

route [0][1][0][2]=0 

route [0][1][0][3] -  0 

route [0][1][0][4]=0 

route [0][1][0][5]=0

4 5
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Step III. Randomly generate connection 0: from nodel to node 2, with service level=2.

Step IV. Produce the LP format file corresponding to the formulation in chapter 3.

Step V. Call CPLEX to solve the problem. The following solution is generated:

• Objective value = 3.000000 - which is the minimum cost (wavelength 

links) for building the new primary path and backup path from 1 —> 2.

• xO = 1, indicates route 0 between 1 —>2, which passes though edge 4 (1 —

>2) is used as primary path. So, the cost for primary path is 1.

• y l = 1, indicates route 1 between 1 -> 2 , which passes though edge 1 (1 -

>0) and edge 2 (0 —>2), is used as backup path. The cost for backup path 

is 2. So, total cost for path 0 equals 3- objective value.

• wO = 1, channel 0 is assigned to primary path PO

• zO == 1, channel 0 is assigned to backup path BO

Step VI. After establishing the first path pO and its backup path bO, the logical

topology o f the original network has changed. Now, in the network, there is a

primary path and a backup path, both use charmel 0 showing in Fig.4.2.

p O : A,]

Fig.4.2. topology after setting up 1 level 2 service connection (1—>0)
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Similarly a second connection request is generated from nodeO to nodel, with service 

level 2. After creating the LP format file and solving with CPLEX, the following 

solution is generated:

• Objective value = 2, the minimum cost (wavelength links) for building the 

new primary path and backup path from 0 --> 1.

• xO = 1, route 0 between 0 -->1, which passes edge 0 (0 - >  1) is used as 

primary path. The cost for primary path is 1.

• y l -  1, route 1 between 0 --> 1, which passes though edge 2 (0 —> 2) and 

edge 5(2 --> 1) is used as backup path.

• c2 = 1, indicates the cost for backup path on edge 2 (0 - >  2) can be saved.

• w l = 1, channel 1 is assigned to primary path PI.

• zO = 1, channel 0 is assigned to backup path B 1.

• m2_0 = 1, implies that the new backup path B1 is multiplexing with 0'^

backup path BO on edge 2 (0 2), so the cost o f backup path B1 on edge 2 is

saved.

Fig.4.3 shows the topology after setting up the lightpaths corresponding to the

above two connection requests. PO and p i are link disjoint, so their backup paths

share same channel 0 on link 0 ^ 2 ,  backup multiplexing technique is used to

save one wavelength channel.

4 7
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bO :X ,i

b l  :X]

Fig.4.3 Topology after setting up two level 2 connections 

4.2 Experiments

We have tested our formulation on a large number o f networks under different 

conditions. The experiments were designed to test:

i) if  the performance (solution time) is acceptable even when dealing with larger 

networks

ii) if  introducing multiple levels o f service significantly improves resource utilization in 

the network.

All experiments were carried out on a 350 MHz Sun Solaris server with 14 processors, 

using CPLEX 8.1 [IL03]. The network sizes range fi*om 6 nodes to 53 nodes. These 

include the well-known 14-node NSFNET [SSS02], 20-node ARPANET [IMG98] and 

other networks used in the literature [IMG98]. Topologies of the tested networks are 

shown in appendix B.

4 8
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4.2.1 Testing Strategies

We use 5 approaches in our experiments: 1) Shared 3 levels o f service; 2) Shared single 

level o f  service; 3) Dedicated 3 levels o f service; 4) Dedicated single level o f service and 

5) Shared without pre-computed routes [Hu03]. Approach (1) and (2) are based on 

shared path protection scheme. Backup multiplexing and primary-backup multiplexing 

techniques are used in shared approach. Approach (1) considers 3 levels o f service 

level2, levell, and level 0. Approach (2) is the traditional shared path protection scheme, 

which has single level o f service, and can be treated as a special case o f approach (1), 

Approach (3) and (4) are dedicated approaches without resource sharing in backup 

lightpaths. One is with 3 levels o f service; the other is traditional dedicated approach 

with single level o f service. Approach 5 is proposed in [Hu03]. In this approach, the 

routes for primary lightpath or backup path o f new cormections are searched in the whole 

network instead o f within 3 pre-computed routes. We pre-define two constraints MAX- 

LP and MAX-FAILURE. When a coimection request fails MAX-FAILURE times, we 

assume the network is getting congested and terminate the program; otherwise, the 

program will be terminated when MAX-LP number o f connections are established. In our 

experiments we have used MAX-LP = 2000 and MAX-FAILURE = 2.

4.2.2 Experiment Results

Tables 4.1 - table 4.6 show the number o f suecessful connections, average wavelength 

link, wavelength link utilization, active wavelength link utilization, and solution time for 

each approach on different networks.

4 9
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Approach Number of 
wavelength

Number o f 
successful 

connections

Average
wavelength

link

Wavelength
link

utilization
(%)

Active
wavelength

link

Active
wavelength

link
utilization

(%)

Average 
solution 
time (s)

Share, 3 
levels o f 
service

4 14 2.61 57.7 1.73 38.8 0.0288

8 33 2.72 67 1.76 43.4 0.0374

16 65 2.67 67.8 1.68 42.9 0.0635

32 141 2.64 72.5 1.69 46.4 0.1397

64 301 2.6 76.6 1.62 47.7 0.3915

Share, 
single 

level of 
service

4 12 3.49 57.2 1.86 32 0.0406

8 23 3.54 61.3 1.84 31.7 0.0514

16 46 3.54 63.7 1.87 33.7 0.1003

32 99 3.36 65.1 1.8 34.8 0.2473

64 224 3.3 72.3 1.72 37.6 0.906

Dedicate, 
3 levels of 

service

4 13 2.82 57.2 1.7 35.2 0.027

8 25 3.08 60.4 1.68 33.1 0.0258

16 57 2.97 66.4 1.65 37 0.0279

32 119 2.98 69.6 1.61 37.7 0.0365

64 258 3 75.6 1.55 39.1 0.067

Dedicate, 
single 

level of 
service

4 8 3.92 46.6 1.9 23 0.0293

8 18 4.07 56.6 1.78 24.8 0.0273

16 39 4.06 61.9 1.72 26.3 0.0287

32 83 3.93 63.2 1.66 26.7 0.0389

64 188 3.9 71.6 1.62 29.8 0.081

Shared,
without
pre­
computed
routes

4 16 2.74 66.6 0.0462

8 33 2.79 69.8 0.0671

16 69 2.67 71.3 0.1118

32 148 2.53 72.9 0.2504

Table 4.1 Experiment results in 6-node network
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Approach Number of 
wavelength

Number of 
successful 

connections

Average
wavelength

link

Wavelength
link

utilization
(%)

Active
wavelength

link

Active
wavelength

link
utilization

(%)

Average 
solution 
time (s)

Share, 3 
levels o f 
service

4 46 2.48 64.4 1.74 45.2 0.0402

8 108 2.34 71.6 1.73 52.8 0.0898

16 260 2.16 79.6 1.68 61.9 0.2729

32 523 2.15 80 1.7 63.1 0.9348

64 1111 2.09 82.6 1.67 66.1 2.703

Share, 
single 

level o f 
service

4 36 2.96 59.8 1.88 38 0.0553

8 80 2.78 62.5 1.84 41.4 0.1707

16 186 2.58 68 1.78 46.8 0.634

32 387 2.54 69 1.81 49.7 2.165

64 811 2.44 70.2 1.77 50.1 6.677

Dedicate, 
3 levels of 

service

4 37 2.78 57.6 1.89 39.2 0.0271

8 74 2.92 61.1 1.93 40.5 0.0295

16 169 2.86 68.7 1.8 45.5 0.0327

32 351 2.91 72.4 1.9 47.2 0.0381

64 694 2.96 72.8 1.93 48 0.039

Dedicate, 
single 

level of 
service

4 22 3.79 46.1 2.25 27.4 0.0259

8 49 3.81 52.9 2.21 30.7 0.0307

16 114 3.76 60.6 2.17 35.1 0.0341

32 242 3.78 65 2.16 37.2 0.0393

64 513 3.73 67.9 2.08 38 0.0415

Shared,
without
pre­
computed
routes

4 58 2.38 78.4 0.1033

8 130 2.22 82.1 0.2864

16 301 2.06 88 0.967

32 621 2.05 90.5 3.6

Table 4.2 Experiment results in 10-node network
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Approach Number o f 
wavelength

Number of 
successful 

connections

Average
wavelength

link

Wavelength
link

utilization
(%)

Active
wavelength

link

Active
wavelength

link
utilization

(%)

Average 
solution 
time (s)

Share, 3 
levels o f 
service

4 26 3.69 55.4 2.5 37.7 0.048

8 65 3.46 63.3 2.42 44 0.0955

16 155 3.18 70 2.33 51.2 0.314

32 329 3.15 73.1 2.35 54.8 1.437

64 700 3.07 76.4 2.32 57.8 4.273

Share, 
single 

level o f 
service

4 21 4.5 54.1 2.72 34.1 0.058

8 50 4.17 59.5 2.77 36.9 0.191

16 113 3.84 61.6 2.44 41.1 0.97

32 261 3.63 66.5 2.38 43.6 2.111

64 511 3.71 67.3 2.52 45.7 9.823

Dedicate, 
3 levels of 

service

4 20 4.24 46.8 2.48 29.5 0.0216

8 49 4.16 57.4 2.41 35.2 0.0345

16 103 4.18 60.9 2.44 37.4 0.037

32 206 4.21 62.4 2.76 40.9 0.047

64 463 4.23 69.2 2.66 43.7 0.049

Dedicate, 
single 

level of 
service

4 15 5.1 45.5 3.49 29.3 0.033

8 32 5.54 49.5 3.39 30.1 0.034

16 67 5.55 52.9 3.42 32.7 0.038

32 160 5.21 57.7 3.2 35.8 0.046

64 294 5.6 62.7 3.27 37 0.047

Shared,
without
pre­
computed
routes

4 34 3.53 67.8 0.12

8 77 3.3 72.3 0.359

16 170 3.17 76.8 1.152

32 379 3 80.6 3.437

Table 4.3 Experiment results in 14-node NSFNET
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Approach Number o f 
wavelength

Number of 
successful 

connections

Average
wavelength

link

Wavelength
link

utilization
(%)

Active
wavelength

link

Active
wavelength

link
utilization

(%)

Average
solution

time
(ms)

Share, 3 
levels o f 
service

4 26 4.98 52.9 3.3 34.6 30

8 54 4.9 53.9 3.33 36.3 63.1

16 116 4.83 56.5 3.31 38.7 189

32 257 4.62 59.9 3.21 41.5 682

64 443 4.59 61 3.19 45 2549

Share, 
single 

level of 
service

4 20 6.19 49.9 3.34 27.4 49.9

8 40 6.09 51.6 3.58 30.4 132

16 86 5.93 51.7 3.47 30.4 429

32 190 5.83 53.4 3.46 31.7 1539

64 373 5.8 54.5 3.4 32 6988

Dedicate, 
3 levels o f 

service

4 21 5.43 46 3.43 29 20.5

8 44 5.47 47.8 3.43 30 20.7

16 92 5.48 50.8 3.45 31 22.3

32 182 5.7 52.2 3.5 32 27

64 362 5.8 52.9 3.53 32.3 59

Dedicate, 
single 

level of 
service

4 14 7 39 3.67 20.7 21.6

8 26 7.55 39.9 4.1 21 21.7

16 65 6.2 40 3.26 21.3 23

32 111 7.28 40.7 3.82 21.4 29

64 222 7.32 41 3.82 21.8 63

Shared,
w ith o u t
pre­
computed
routes

4 33 4.06 62.9 162

8 70 3.98 65.2 454

16 156 3.92 69.1 1527

32 323 3.75 70.4 4467

Table 4.4 Experiment results in 20-node ARPANET
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Approach Number of 
wavelength

Number of 
successful 

connections

Average
wavelength

link

Wavelength
link

utilization
(%)

Active
wavelength

link

Active
wavelength

link
utilization

(%)

Average
solution

time
(ms)

Share, 3 
levels o f 
service

4 34 5.27 37.4 3.52 24.9 41.2

8 81 4.8 40.9 3.3 28.1 83.9

16 171 4.67 42.4 3.32 30.1 274

32 407 4.5 48.4 3.32 35.7 799

64 916 4.44 53.9 3.34 40.5 3161

Share, 
single 

level of 
service

4 29 6.28 38.6 3.66 22.5 60.5

8 65 5.63 38.4 3.36 23 171

16 137 5.5 39.8 3.45 25 642

32 325 5.39 46.4 3.51 30.3 2099

64 565 4.95 37 3.31 24.8 8004

Dedicate, 
3 levels o f 

service

4 28 5.6 33 3.6 21.6 24.9

8 60 5.4 34.3 3.43 21.8 31.4

16 129 5.51 37.8 3.49 24 35.9

32 259 5.61 38.5 3.55 24.3 42

64 576 5.56 0.424 3.38 25.8 62

Dedicate, 
single 

level o f 
service

4 18 7.4 27.8 4.06 15.3 27.7

8 43 6.86 31 3.76 17 31.9

16 87 7.07 32.6 3.84 17.8 36.8

32 191 7.15 36.2 3.84 19.4 42

64 346 7.06 32.4 3.71 17 61

Shared,
without
pre­
computed
routes

4 58 4.78 58.4 351

8 140 4.46 66.2 1709

16 305 4.29 69.2 6975

32 484 3.84 49.2 345000

Table 4.5 Experiment results in 30-node network
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Approach Number o f 
wavelength

Number of 
successful 

connections

Average
wavelength

link

Wavelength
link

utilization
(%)

Active
wavelength

link

Active
wavelength

link
utilization

(%)

Average
solution

time
(ms)

Share, 3 
levels of 
service

4 15 9.49 21.1 5.83 13.1 39.6

8 32 9.46 23.3 5.88 14.5 56.7

16 67 9.25 24.2 5.83 15.3 112

32 156 9.36 28.5 5.76 17.6 438

64 358 9.16 32 5.68 19.8 1415

Share, 
single 

level o f 
service

4 11 12.72 22 6.5 11.3 51.8

8 25 12.19 23.5 6.29 12.2 95

16 51 12.44 24.7 6.34 12.6 244

32 125 11.98 29.2 6.56 16 786

64 268 11.67 30.5 6.12 16 2271

Dedicate, 
3 levels o f 

service

4 13 9.9 19.6 5.9 11.4 30.1

8 28 10.3 22.3 5.65 12.3 30.2

16 60 9.96 23.2 5.59 13.1 33.5

32 115 10.5 23.7 5.73 12.9 34

64 294 12.1 28.9 5.6 16.2 67

Dedicate, 
single 

level of 
service

4 9 13.39 18 6.03 7.99 30.0

8 20 13.95 21.2 5.77 8.75 32.5

16 42 13.56 22 5.57 9.03 36

32 87 13.6 23.1 5.45 9.2 36

64 189 14.05 25.3 5.73 10.1 80

Shared,
without
pre­
computed
routes

4 22 9.31 33.3 333

8 45 9.35 32.8 1369

16 97 9.04 34.2 4120

32 200 8.74 34.1 10241

Table 4.6 Experiment results in 53-node network
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4.2.3 Experimental Results Analysis

1) Number o f connections
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Results from experiments carried out on all networks show that there is a significant 

decrease in the number o f blocked connections when we introduce multiple levels of 

service. This is expected, since idle backup resources can be utilized by level 0 

connections. Also, as expected, the blocking probability is less for shared path protection 

scheme than for dedicated path protection. We also see that the shared path protection 

schemes (both with single and multiple service levels) perform significantly better than 

the corresponding dedicated path protection schemes. Fig. 4.6 shows the results for the 

14-node NSFNET network. In this case, we see that having multiple priority levels 

allows 40% more connections to be established, than using shared single priority level 

path protection and 50% more connections, than using dedicated path protection.

All the figures also show that shared path protection without pre-computed route 

establish more connections than pre-computed 3 alternative routes. This is because pre- 

computing up to 3 alternative routes limits the search space.

Our experiments clearly show that having multiple service levels improves performance 

and that shared path protection performs significantly better than dedicated path 

protection. However, the amount o f improvement varies with the size and connectivity o f 

the network.

2) Solution Time
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Fig.4.10 -  Fig.4.15 show the average solution times for dedicated and shared path 

protection, for multiple and single level o f service, for different networks. Our 

experiments indicate that the solution time for dedicated path protection is much shorter 

than that for shared path protection and is also much less sensitive to the problem size. 

This is expected, since dedicated protection has a much smaller search space. We also see 

that for a given network the solution time increases with the number o f wavelengths, 

since this increases the number o f variables and constraints in the formulation.

Results from experiments carried out on all networks show that by pre-computing 3 

alternative routes, the solution time of our shared path protection is much shorter than 

that o f shared without pre-compute routes approach proposed in [Hu03] and is also much 

less sensitive to the problem size. For example, as showed in Table 4.5, the solution time 

for 30-node network is 41.2 ms using shared approach with pre-computing 3 routes, 351 

ms using shared without pre-compute routes approach when the number o f wavelength is 

4. It increases to 799 ms and 34500 ms respectively when the number o f wavelength 

increases to 32. It is clear, shared with pre-computing routes approach greatly shortens 

the solution time, and is especially useful for larger size network.

For a given network, with a specific number o f wavelengths, the solution time is always 

less when we have multiple levels o f service. This is because, when we have a single 

level o f service, we assume all connections require level 2 service. Therefore, we always 

have to search for both a primary and backup lightpath. The solution times shown in all 

solution time vs. wavelengths figures are averaged over all experiments carried out on
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each network. A more detailed analysis indicates that the solution time varies greatly with 

the network load and is significantly shorter under low load conditions.

3) Resource Utilization
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In order to measure resource utilization, we define two parameters. The total 

wavelength-link utilization is the number of wavelength links allocated to both primary 

and backup paths, expressed as a percentage o f the number o f available wavelength links 

in the network. The active wavelength-link utilization is the number o f wavelength links
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actually carrying data (i.e. allocated to primary lightpaths), expressed as a percentage of 

the number o f available wavelength links in the network.

We see from Fig. 4.16 -  Fig.4.21 that shared path protection with multiple services levels 

has higher resource utilization than both dedicated path protection and shared protection 

with a single service level. From Fig.4.18, we also see that for 64 wavelengths, the 

utilization for dedicated path protection (with multiple service levels) becomes higher 

than that for shared path protection (single service level), even though shared path 

protection accommodates more connections (Fig. 4.6). This demonstrates that our 

formulation for shared path protection is able to use resources much more efficiently.

In fig.4.20, the total wavelength-link utilization o f both shared and dedicated path 

protection with single service level become lower when the number o f wavelength = 64. 

That is because, when the number o f wavelength doubled, the available resources are 

doubled. However, due to the connectivity o f the network, it is not possible to increase 

the number o f connections simply by adding more wavelengths. So, the utilization drops.
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Fig. 4.22- Fig.4.27 show the active wavelength-link utilization for the four schemes in 

each network. In this case, the active wavelength-link utilization o f shared path protection 

with multiple services levels is much higher than that o f shared protection with single 

service level and dedicated schemes. From Fig.4.25, we can see that shared protection 

with multiple levels o f service use active resources more than 50% efficient than other
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schemes when the number o f wavelength = 64. These results eonfirm that by introducing 

multiple priority levels, we ean greatly improve resouree utilization effieiency over 

traditional protection schemes.
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Chapter 5

Conclusions and Future Work

Wavelength Division Multiplexing (WDM) technology can utilize the huge capacity 

available in an optical fiber (in the order o f terabits per seconds). Optical networks 

employing WDM technology provide very high data transmission rates, low error rates, 

and low delay. These networks offer suitable solutions to meet the bandwidth demand 

arising fi-om several emerging applications such as Internet and web browsing, graphics 

and visualization, and multimedia conferencing [CP99]. Currently, WDM networks 

mainly act as long haul backbone networks. The lightpaths in such network are known 

and setup in advance and do not change firequently. Recent advances in WDM 

techniques, makes short term leasing o f lightpaths, to transmit crucial data possible and 

this trend is becoming more popular. Dynamic lightpath allocation is necessary in order 

to satisfy such connection requests.

5.1 Conclusions

In this paper we have presented a new and efficient formulation for dynamic lightpath 

allocation, using both shared and dedicated path protection. Our formulation can handle 

multiple levels o f service and we have investigated how this affects the performance o f 

the networks. Traditional shared and dedicated path protection schemes (in which all 

primary lightpaths are required to have a backup path) can be treated simply as a special 

case o f our formulation, where all connections are level 2 connections. Our MILP
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formulations have three novel features: (1) we introduce different QoS to further improve 

network resources utilization (2) we pre-computed up to 3 altemative routes to shorten 

solution time (3) we use as many as possible continuous variables instead o f integer 

variables to simply MILP formulation, so as to shorten solution time. We have carried 

out extensive experiments on 6 different network including well-known networks: 

NSFNET and ARPANET and some large networks with more than 30 nodes. The results 

show that allowing multiple service levels leads to more efficient resource utilization and 

an increase in the number o f connections that can be set up. This is true for both shared 

and dedicated path protection. We also see that dedicated path protection can provide 

very quick solutions, but it does not utilize resources as efficiently as shared path 

protection. Under low load conditions, dedicated path protection will likely provide 

satisfactory solutions. As network traffic increases, the shared path protection scheme 

will be able to establish connections, which would otherwise be dropped, if  only 

dedicated protection is used.

We note that for many proposed MILP formulations reported in literature the complexity 

grows very quickly with network size. The result is that it usually takes several hours (for 

shared path protection) to obtain an optimal solution for realistic problems [RSM03]. In 

our formulation, the number o f integer variables is significantly less than other 

formulations. Therefore, the solution times, even for the larger networks, are reasonable 

and allow us to obtain optimal solutions for practical networks.
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5.2 Future work

The work presented in this thesis can be extended in a number o f ways. Given below are

some possible enhancements.

• Consider wavelength conversion: In this thesis, we consider WDM networks without 

wavelength conversion. This limits the number o f available lightpaths and adds 

more constraints. A MILP formulation capable o f handling wavelength conversion 

will likely allow more lightpaths to be setup with available resources. O f course, the 

cost o f such networks will be more expensive.

• Use different algorithms to pre-compute altemative routes: We have used Dijkstra’s 

algorithm to pre-compute up to 3 shortest altemative routes for any node pair in this 

thesis. From our experiments, we found that sometimes, finding shortest route will 

limit the number o f available routes. This, in tum, reduces the maximum number o f 

connections that can be established. This is the case with the 30 and 53 node 

networks in section 4.2.3. Different algorithms for pre-computing altemative routes 

can be tried.
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Appendix A: Glossary

ARPANET -  Advanced Research Projects Agency Network 

CPLEX -  C Programming Language + simplex 

ILP -  Integer Linear Programming

ITU-T -  Intemational telecommunications Union on Telecommunications

LP -  Linear Programming

MILP -  Mixed Integer Linear Programming

NSFNET -  National Science Foundation Network

OXC -  Optical Cross-Connect

RWA -  Routing & Wavelength Assignment

SDH -  Synchronous Digital Hierarchy

SONET -  Synchronous Optical Network

WDM -  Wavelength Division Multiplexing
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Appendix B: Topology of Testing Networks

1.Topology of network! - 6 nodes, 8 edges

2.Topology o f netw ork2-10 nodes, 22 edges
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3. Topology of NSFNET-14 nodes, 21 edges

4. Topology o f ARPANET- 20 nodes, 31 edges
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5. Topology of testing networks [IMG98] -  30 nodes, 59 edges
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6. Topology of testing network4 [IMG98] -  53 nodes, 80 edges
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