293 research outputs found

    A Hamiltonian Krylov-Schur-type method based on the symplectic Lanczos process

    Get PDF
    We discuss a Krylov-Schur like restarting technique applied within the symplectic Lanczos algorithm for the Hamiltonian eigenvalue problem. This allows to easily implement a purging and locking strategy in order to improve the convergence properties of the symplectic Lanczos algorithm. The Krylov-Schur-like restarting is based on the SR algorithm. Some ingredients of the latter need to be adapted to the structure of the symplectic Lanczos recursion. We demonstrate the efficiency of the new method for several Hamiltonian eigenproblems

    Algorithm-Based Fault Tolerance for Two-Sided Dense Matrix Factorizations

    Get PDF
    The mean time between failure (MTBF) of large supercomputers is decreasing, and future exascale computers are expected to have a MTBF of around 30 minutes. Therefore, it is urgent to prepare important algorithms for future machines with such a short MTBF. Eigenvalue problems (EVP) and singular value problems (SVP) are common in engineering and scientific research. Solving EVP and SVP numerically involves two-sided matrix factorizations: the Hessenberg reduction, the tridiagonal reduction, and the bidiagonal reduction. These three factorizations are computation intensive, and have long running times. They are prone to suffer from computer failures. We designed algorithm-based fault tolerant (ABFT) algorithms for the parallel Hessenberg reduction and the parallel tridiagonal reduction. The ABFT algorithms target fail-stop errors. These two fault tolerant algorithms use a combination of ABFT and diskless checkpointing. ABFT is used to protect frequently modified data . We carefully design the ABFT algorithm so the checksums are valid at the end of each iterative cycle. Diskless checkpointing is used for rarely modified data. These checkpoints are in the form of checksums, which are small in size, so the time and storage cost to store them in main memory is small. Also, there are intermediate results which need to be protected for a short time window. We store a copy of this data on the neighboring process in the process grid. We also designed algorithm-based fault tolerant algorithms for the CPU-GPU hybrid Hessenberg reduction algorithm and the CPU-GPU hybrid bidiagonal reduction algorithm. These two fault tolerant algorithms target silent errors. Our design employs both ABFT and diskless checkpointing to provide data redundancy. The low cost error detection uses two dot products and an equality test. The recovery protocol uses reverse computation to roll back the state of the matrix to a point where it is easy to locate and correct errors. We provided theoretical analysis and experimental verification on the correctness and efficiency of our fault tolerant algorithm design. We also provided mathematical proof on the numerical stability of the factorization results after fault recovery. Experimental results corroborate with the mathematical proof that the impact is mild

    Computing matrix symmetrizers. Part 2: new methods using eigendata and linear means; a comparison

    Get PDF
    Over any field F every square matrix A can be factored into the product of two symmetric matrices as A = S1 . S2 with S_i = S_i^T ∈ F^(n,n) and either factor can be chosen nonsingular, as was discovered by Frobenius in 1910. Frobenius’ symmetric matrix factorization has been lying almost dormant for a century. The first successful method for computing matrix symmetrizers, i.e., symmetric matrices S such that SA is symmetric, was inspired by an iterative linear systems algorithm of Huang and Nong (2010) in 2013 [29, 30]. The resulting iterative algorithm has solved this computational problem over R and C, but at high computational cost. This paper develops and tests another linear equations solver, as well as eigen- and principal vector or Schur Normal Form based algorithms for solving the matrix symmetrizer problem numerically. Four new eigendata based algorithms use, respectively, SVD based principal vector chain constructions, Gram-Schmidt orthogonalization techniques, the Arnoldi method, or the Schur Normal Form of A in their formulations. They are helped by Datta’s 1973 method that symmetrizes unreduced Hessenberg matrices directly. The eigendata based methods work well and quickly for generic matrices A and create well conditioned matrix symmetrizers through eigenvector dyad accumulation. But all of the eigen based methods have differing deficiencies with matrices A that have ill-conditioned or complicated eigen structures with nontrivial Jordan normal forms. Our symmetrizer studies for matrices with ill-conditioned eigensystems lead to two open problems of matrix optimization.This research was partially supported by the Ministerio de Economía y Competitividad of Spain through the research grant MTM2012-32542.Publicad

    HAMEV and SQRED: Fortran 77 Subroutines for Computing the Eigenvalues of Hamiltonian Matrices Using Van Loanss Square Reduced Method

    Get PDF
    This paper describes LAPACK-based Fortran 77 subroutines for the reduction of a Hamiltonian matrix to square-reduced form and the approximation of all its eigenvalues using the implicit version of Van Loan's method. The transformation of the Hamilto- nian matrix to a square-reduced Hamiltonian uses only orthogonal symplectic similarity transformations. The eigenvalues can then be determined by applying the Hessenberg QR iteration to a matrix of half the order of the Hamiltonian matrix and taking the square roots of the computed values. Using scaling strategies similar to those suggested for algebraic Riccati equations can in some cases improve the accuracy of the computed eigenvalues. We demonstrate the performance of the subroutines for several examples and show how they can be used to solve some control-theoretic problems

    Solving SDGE Models: A New Algorithm for the Sylvester Equation

    Get PDF
    This paper presents a new numerical algorithm for solving the Sylvester equation involved in higher-order perturbation methods developed for solving stochastic dynamic general equilibrium models. The new algorithm surpasses other methods used so far (including the very popular doubling algorithm) in terms of computational time, memory consumption, and numerical stability.Dynamic general equilibrium, doubling algorithm, perturbation approach, recursive algorithm.

    Randomized block Gram-Schmidt process for solution of linear systems and eigenvalue problems

    Full text link
    We propose a block version of the randomized Gram-Schmidt process for computing a QR factorization of a matrix. Our algorithm inherits the major properties of its single-vector analogue from [Balabanov and Grigori, 2020] such as higher efficiency than the classical Gram-Schmidt algorithm and stability of the modified Gram-Schmidt algorithm, which can be refined even further by using multi-precision arithmetic. As in [Balabanov and Grigori, 2020], our algorithm has an advantage of performing standard high-dimensional operations, that define the overall computational cost, with a unit roundoff independent of the dominant dimension of the matrix. This unique feature makes the methodology especially useful for large-scale problems computed on low-precision arithmetic architectures. Block algorithms are advantageous in terms of performance as they are mainly based on cache-friendly matrix-wise operations, and can reduce communication cost in high-performance computing. The block Gram-Schmidt orthogonalization is the key element in the block Arnoldi procedure for the construction of Krylov basis, which in its turn is used in GMRES and Rayleigh-Ritz methods for the solution of linear systems and clustered eigenvalue problems. In this article, we develop randomized versions of these methods, based on the proposed randomized Gram-Schmidt algorithm, and validate them on nontrivial numerical examples
    corecore