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Abstract

The mean time between failure (MTBF) of large supercomputers is decreasing, and

future exascale computers are expected to have a MTBF of around 30 minutes.

Therefore, it is urgent to prepare important algorithms for future machines with

such a short MTBF. Eigenvalue problems (EVP) and singular value problems (SVP)

are common in engineering and scientific research. Solving EVP and SVP numerically

involves two-sided matrix factorizations: the Hessenberg reduction, the tridiagonal

reduction, and the bidiagonal reduction. These three factorizations are computation

intensive, and have long running times. They are prone to suffer from computer

failures.

We designed algorithm-based fault tolerant (ABFT) algorithms for the parallel

Hessenberg reduction and the parallel tridiagonal reduction. The ABFT algorithms

target fail-stop errors. These two fault tolerant algorithms use a combination of

ABFT and diskless checkpointing. ABFT is used to protect frequently modified data

. We carefully design the ABFT algorithm so the checksums are valid at the end of

each iterative cycle. Diskless checkpointing is used for rarely modified data. These

checkpoints are in the form of checksums, which are small in size, so the time and

storage cost to store them in main memory is small. Also, there are intermediate

results which need to be protected for a short time window. We store a copy of this

data on the neighboring process in the process grid.

We also designed algorithm-based fault tolerant algorithms for the CPU-GPU

vii



hybrid Hessenberg reduction algorithm and the CPU-GPU hybrid bidiagonal reduc-

tion algorithm. These two fault tolerant algorithms target silent errors. Our design

employs both ABFT and diskless checkpointing to provide data redundancy. The low

cost error detection uses two dot products and an equality test. The recovery protocol

uses reverse computation to roll back the state of the matrix to a point where it is

easy to locate and correct errors.

We provided theoretical analysis and experimental verification on the correctness

and efficiency of our fault tolerant algorithm design. We also provided mathematical

proof on the numerical stability of the factorization results after fault recovery.

Experimental results corroborate with the mathematical proof that the impact is

mild.
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Chapter 1

Introduction

Mainstream supercomputers are well into the peta-scale era, with the number of

components sharply increasing in recent years. Early supercomputers relied on a

small number of specially designed powerful processors, and the first supercomputer,

the CDC 6600, had only one CPU. As the designer of CDC 6600 put it, “If you were

plowing a field, which would you rather use: Two strong oxen or 1024 chickens?”

That configuration was typical and lasted into the 1990s, when massively parallel

supercomputers became dominant. Massively parallel supercomputers usually contain

tens of thousands of commodity microprocessors. These thousands of processors are

connected by fast interconnects for data communication. Modern supercomputers are

now also equipped with accelerators, which are specialized in data parallel work loads.

Tianhe-2 (at National Supercomputer Center, Guangzhou, China), the number one

machine on the June 2015 TOP500 list [69], has 3,120,000 cores at its disposal. The

increase in the number of components is likely to continue [31], in which case even

the most optimistic predictions about the failure rate of a particular component, in

terms of tens of years, depicts a gloomy future. A future where the Mean Time To

Interrupt (MTTI) of the entire machine falls under a few hours, drastically affecting

individual applications running on the system [80], with a lasting impact, not only

on the scientific throughput, but directly on the cost of the scientific simulations.
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Various techniques to recover from a process failure exist, encompassing com-

pletely automatic solutions such as Checkpoint/Restart (C/R) and algorithm-level

techniques such as Algorithm Based Fault Tolerance (ABFT). All of these methods are

applicable to linear algebra computations, and each has its advantages and drawbacks.

The major advantage of the C/R approach is the generality: it can be applied to a

wide range of applications — not just linear algebra software. The major drawback

of C/R is its relatively high overhead. The advantage of the ABFT techniques is

the potential lower overheads, in exchange for algorithmic alterations. The major

disadvantage of the ABFT technique is that it can only be applied to protect numerical

software.

In this dissertation, we explore methods to provide fault resilience for two-sided

dense matrix factorizations, namely the Hessenberg reduction, tridiagonal reduction,

and bidiagonal reduction. The Hessenberg reduction [85] is an important step in

calculating the eigenvalues and/or eigenvectors of a dense non-symmetric matrix or

for solving the regular generalized eigenvalue problem. The tridiagonal reduction is

used in solving the eigenvalue problem of a dense symmetric matrix. The bidiagonal

reduction is used in solving the singular value problem of a general dense matrix.

The common characteristics of these three factorizations are that their computation

complexity is high, and they are rich in level 2 BLAS operations. These two

characteristics result in long running times. The longer the running time is, the

more likely a component will fail during the execution. Once a failure strikes, the

application cannot continue because of data loss. The application has to start over

from the beginning, and all associated cost (machine time and electricity) is wasted.

We developed algorithms to enable fault resilience for these two-sided dense matrix

factorization algorithms. Our goal is to achieve fault tolerance with less overhead than

the widely used C/R approach. We also envision a version for soft error resilience of

the two-side matrix factorizations for CPU-GPU hybrid version.
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1.1 Problem Statement

In this dissertation we consider two different kinds of errors in two-sided dense matrix

factorizations: hard errors and soft errors. We define hard errors as process failures.

When a hard error occurs a process is lost, the associate data is also gone. The

factorization cannot continue in the case of hard errors because the data is incomplete.

Soft errors are bit-flips in the factorization data. When a soft error occurs, a bit in

the factorization data is flipped, and the factorization keeps running only to produce

wrong results. Soft errors are more dangerous because if the application does not

actively detect them and correct them, they will not be noticed.

1.2 Contribution

The contribution of this dissertation consists of two major parts: fault tolerance

algorithms for hard errors and fault tolerance algorithms for soft errors. We designed

the fault tolerance algorithms which combine the advantages of ABFT and disckless

checkpointing. ABFT is used to protect the frequently modified data, which greatly

reduces the overhead when compared to checkpointing. For the part of the data that

is rarely modified, we use diskless checkpointing to provide protection.

1.2.1 Hard Errors

• Pseudo column checksums for the panel. Data in the original input matrix

is protected by checksums. The checksum blocks at the bottom of the global

matrix are called pseudo column checksums. If the global matrix is distributed

over a P × Q process grid in a 2D block cyclic fashion, these checksum blocks

on the bottom are calculated assuming the block column is distributed over

Q processors instead of P processors. This is why the column checksums are

called “pseudo” checksums. Pseudo checksums are needed in order to maintain

the validity of the checksum blocks on the right side of the global input matrix.
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The checksum blocks on the right side are the data redundancy used to recover

from a failure later on.

• Diskless checkpointing for the panel factorization result. In the

two-sided matrix factorizations, the intermediate matrices resulting from the

panel factorization cannot be recomputed as they are in the one-sided matrix

factorizations. The reason is that the panel factorization has data dependency

on the trailing matrix. Any changes in the trailing matrix after the panel

factorization will make it impossible to recompute the panel factorization. We

use diskless checkpointing to protect the panel factorization results. Diskless

checkpoints are stored in the neighboring process to the right.

• Use the built in data redundancy in the parallel tridiagonal reduction.

The parallel tridiagonal reduction algorithm takes advantage of the symmetry

of the matrix to save floating point operations by only performing updates on

the lower triangular part of the trailing matrix. The upper triangular part of the

global matrix is not accessed throughout the factorization, but the checksums

on the right side of the global matrix encodes the full matrix. Once a failure

occurs, we fill the necessary matrix blocks in the upper triangular part using

matrix blocks from the lower triangular part. We are able to do this because of

the symmetry of the trailing matrix.

• Formal and experimental performance analysis. We provide a thorough

examination of the theoretical computation complexity of the fault tolerant

algorithms. We calculate the number of extra floating point operations

(FLOPS) incurred by the fault tolerant algorithms, and we compare the

extra FLOPS with the FLOPS of the original algorithms. We also verify

the theoretical analysis through experiments. We also evaluate the numerical

stability of our fault tolerant algorithms.
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1.2.2 Soft Errors

• Low cost error detection. We append a row of column checksums at the

bottom of the input matrix, and a column of row checksums at the right

side of the input matrix. The checksum row and the checksum column are

maintained through computation, so they are valid at the end of each iteration.

The mathematical operations required to maintain the checksums are the same

operations used in updating the trailing matrix, and they can be combined to

take advantage of the optimized computation kernels. Error detection can be

achieved by comparing the sum of the checksum row elements and the sum of

the checksum column elements at the end of each iteration. The extra FLOPS

needed by the error check is O(n) in each iteration, whereas the computation

complexity of the original algorithm is O(n3).

• Reverse computation. After an error is detected, our algorithm reverses the

computation to the state at the end of the last iteration. The state at the end of

the last iteration is a clean state which means the checksums on the right of the

matrix and the checksums on the bottom of the matrix are valid checksums. At

this state we can use the checksums to locate and correct the error. Rolling back

the application data through computation is preferable because computation is

much faster than using checkpoints.

• Modified panel factorization kernel. The panel factorization kernel takes

a block column as input, factorizes the block column to the desired form

(tridiagonal, bidiagonal, or Hessenberg form), and then returns the Householder

vectors used in the factorization. The group of Householder vectors are used to

update the trailing matrix. In order to maintain the validity of the checksums

on the right, we need checksums of the Householder vectors. These checksums

can be generated separately after the panel factorization has finished, but this

adds more tasks on the critical path of the algorithm, and will have more effects

in slowing down the factorization. We fuse the checksum generation with the
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panel factorization so that minimum time penalty is incurred due to generating

these checksums.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows:

Chapter 2 introduces the background and related work on different types of fault

tolerance technologies. This chapter also presents related fault tolerance work on

dense linear algebra, and two-sided dense matrix factorizations in particular. Chap-

ter 3 presents the hard error resilient parallel Hessenberg reduction algorithm. The

fault tolerant algorithm combines the strengths of ABFT and diskless checkpointing

to achieve fault tolerance against hard errors with low performance penalty. Chapter 4

describes the hard error resilient parallel tridiagonal reduction algorithm. This fault

tolerant algorithm also uses diskless checkpointing and ABFT to protect the matrix

data. In addition, this fault tolerant algorithm uses the symmetry of the matrix to

retrieve data from the lower triangular part of the matrix in the recovery protocol.

Chapter 5 describes the fault tolerant Hessenberg reduction algorithm for soft errors

on CPU-GPU hybrid platforms. Chapter 6 describes the fault tolerant bidiagonal

reduction algorithm for soft errors on CPU-GPU hybrid platforms. Finally Chapter 7

concludes the dissertation and outlines future directions.
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Chapter 2

Background

In this chapter we review studies on the impact of faults in high performance

computing and common technologies to mitigate the impact of faults on applications.

2.1 Impact of Faults

Faults and component failures have been unavoidable since the birth of computers.

The impact of computer faults is so significant that companies exist that focus

solely on manufacturing fault-tolerant computers. Avizienis and Laprie [3] proposed

taxonomy in an effort to facilitate easy communication on dependable computing.

They define failure/error as the deviation of the actual service state from the correct

service state. The cause of a failure/error is called a fault.

Faults can be rooted in hardware malfunctions or software issues. Hardware may

have hidden defects that are not detected in the manufacturing process, and these

defects or bugs manifest as faults after installation. Hardware faults can also be

caused by aging of components. Another source of hardware faults is cosmic rays.

In fact, cosmic rays were shown to be the most prevalent sources of transient errors.

Transient errors may happen at different levels in the hardware hierarchy, such as

communication links or digital logic, but transient errors occur most commonly in

the semiconductor storage. Software faults, on the other hand, can be caused by
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bugs. As much as programmers want to write their software correctly, there are

always bugs left behind. Parallel software is especially difficult to debug. If the bug

is in system software and the bug causes the system to provide incorrect service to

application codes, these bugs are considered as faults.

Faults can be categorized as hard faults and soft faults based on their effects. If

the fault causes the program to abort or hang, this fault is called a fail-stop fault, or

hard fault. If a fault is transient and goes unrecognized by the runtime, this fault is

called a fail-continue fault, or transient fault/soft fault. Hard faults can cause huge

waste of computing resources on peta-scale machines or future exa-scale machines.

If an application has been running on a large portion of a peta-scale machine for a

prolonged time period, then a hard fault could trash all the computation leading up

to the fault, resulting in the aforementioned waste. Hard faults can also prevent large

applications from ever completing their tasks on future exa-scale machines. The mean

time between failure (MTBF) of an exa-scale machine is expected to be around 30

minutes, which means jobs which take more than 30 minutes to complete may never

actually finish. Compared to hard errors, soft errors are more dangerous and more

catastrophic, because soft errors can cause incorrect numerical results and there is

no way to confirm the correctness of the results if the results fall within the allowed

range. Soft errors could also corrupt memory address pointers and control flow of

applications, which in turn cause the application to crash or hang.

2.2 Existing technologies

Significant research efforts have been leveraged towards overcoming the impact of

faults in high end computing. Several practical fault-tolerance technologies have

been developed and provide satisfactory results on current peta-scale supercomputers.

Some of these fault tolerance technologies tackle the problem using a hardware

approach, and some tackle the problem using a software approach.
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2.2.1 Hardware Duplication

A natural way to tolerate hardware failures is to use hardware redundancy. Hardware

redundancy can be divided into two categories: passive hardware redundancy and

active hardware redundancy (also known as dynamic hardware redundancy). Passive

hardware redundancy is also called static hardware redundancy. Examples of passive

hardware redundancy include NMR (N-Modular Redundancy) and TMR (Triple

Modular Redundancy). TMR is a special case of NMR. In TMR, the same program

is executed by three independent modules. Once every module obtains the result,

they carry out a vote, the majority wins, and the final result is obtained. TMR

was first implemented in the SAPO computer in Czechoslovakia [78, p.97]. TMR

circuits were also used in the Launch Vehicle Digital Computer in the Saturn IB

and Saturn V boosters. In Active hardware redundancy, only one unit of all the

redundant units is running. If the running unit fails, a backup will take over and the

faulty unit stops running. STAR (Self Testing And Repair), designed by Avizienis,

is one example of a computer based on active hardware redundancy [78, p.97].

STAR implements hardware redundancy in a different way. Every component in

STAR has several backup units, and at any given time only one unit is powered

and working. STAR executes each piece of program twice to detect component

failures; if a failure is detected, then the failed component is replaced by a backup

component. Once swapped out, the failed component is powered off to save energy.

This is desirable because STAR is designed for spacecraft where electricity is a scarce

resource. Hardware replication is an effective method to increase the MTBF (mean

time between failure) of the entire system, but the financial cost of the system also

increases proportionally with the number of backup units. This makes the hardware

redundancy approach impractical even for current peta-scale machines. Current top

end supercomputers typically have tens of thousands of compute nodes, and hundreds

of thousands of processors, which requires a huge financial investment, and using TMR

for fault tolerance would triple the already high cost of the machines. Therefore, TMR
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is typically used in small or special purpose computers such as the computer systems

on spacecraft as mentioned before.

2.2.2 ECC

ECC (Error Correcting Code) is a method to protect data read from the memory or

transmission bus. After data are written into memory, several factors can flip bits in

the data. This kind of bit flip often occurs in main memory which is made of DRAM

(Dynamic random-access memory). DRAM stores every bit in a capacitor, which itself

has two states: charged or discharged. These two states can be used to represent the

only two values in the binary computer world. Moore’s law also applies to DRAM.

As technology advances, the density of capacitors on the DRAM die becomes higher

and higher, while at the same time the feature size of the capacitors becomes smaller

and smaller. The charge capacity of individual capacitors therefore decreases, which

makes it easier for external charges to change the state of the capacitors. As a result,

measures must be taken to protect data stored in DRAM from being corrupted.

This is where ECC comes into the play. ECC works by using some extra bits to

provide data redundancy for individual words. These extra bits are calculated using

a coding algorithm. The most common error correcting code is SECDED (single-error

correction and double-error detection) Hamming code. As the name indicates, this

code is able to correct a single bit corruption and detect a double-bit corruption.

Another common SECDED code is the Hsiao code [53]. When data are written to

the DRAM, ECC calculates the redundant bits and stores them also in the DRAM.

When data stored in the DRAM are requested, the redundant bits are calculated

again, and the newly generated bits are compared to the redundant bits stored in

the DRAM. If there is a mismatch between these two copies of redundant bits, there

are corrupted bits in the codeword, which is the requested data. ECC can continue

to correct the error if there is only one bit corrupted. More advanced forms of ECC

exists. Chipkill [29] is IBM’s trademarked ECC technology. Chipkill uses a RAID-like
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approach to protect data stored in main memory. In Chipkill, the redundant bits are

not calculated based on a codeword on a single chip, but instead Chipkill references

bits from different DRAM chips. If a bit in one DRAM chip gets corrupted, only

one bit in the ECC codeword is corrupted. ECC is able to recover from this error.

In a much worse scenario, if an entire DRAM chip is corrupted, we get a group of

corrupted ECC codewords, but still only one bit in every ECC codeword is corrupted.

ECC is still be able to recover from this DRAM chip failure. Sun Microsystems has a

similar technology called Extended ECC, and HP also has a similar technology named

Advanced ECC. In rare cases, ECC is used to protect the data bus [2].

2.2.3 Software Duplication

Software duplication is another natural way to provide resilience to failures. In

software duplication, the program being executed is duplicated. In practice there

are various ways to implement software duplication. The most naive approach is to

run two instances of the same program without any modification to the code. When

one instance fails, the other one will hopefully run to completion. This approach

requires the least effort from the programmer, and is applicable to any existing code.

However, this approach clearly only tolerates one fail-stop error. If the running time of

the application is longer than twice of the MTBF of the machine, the application still

will not be able to run to completion. More advanced forms of software duplication

include process level duplication and thread level duplication. Both of these two

approaches require modifications to existing legacy codes. Process level duplication

runs two instances of each process in the application. If one process fails due to an

external influence, the application can keep running because the remaining instance

of the same process has all the necessary data. Moreover, the failed instance can be

recovered by cloning the remaining live process. Now that redundancy is resumed, the

application can tolerate the next fail-stop failure. Besides fail-stop failures, process

level duplication can be used to detect soft errors. Since there are two instances of
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the same process running, two copies of data exist in these two instances. These

two copies of data can be compared periodically, and mismatches between the two

copies of data indicate that soft errors have occurred. For this soft error detection

functionality to work, the application has to be bitwise reproducible. RedMPI [44]

is a library that performs duplicate executions of MPI applications transparently

to the programmer. RedMPI is a layer between the MPI application and the MPI

library. MPI calls made in the application are intercepted and handled by RedMPI.

RedMPI duplicates the call and then calls functions in the MPI library to carry out

the actual MPI operations. RedMPI can detect soft errors by comparing the two

copies of messages. By doing this all soft errors in the transmitted messages can be

caught, and presumably soft errors in the application data can be caught because soft

errors in the data owned by the MPI process will eventually manifest themselves in

the MPI messages.

2.2.4 Checkpoint Restart

While other methods for fail/stop errors exist, checkpoint restart is still the most

mature and reliable choice for production computer systems. The general idea of

Checkpoint/Restart is to store the application state to stable memory at a time

interval. The time interval is a parameter supplied by the user. In case of a

fail stop error, the data stored on reliable memory persists. The application can

restart itself, read its last saved state from reliable memory, and continue from there.

Checkpoint/Restart can be implemented at different levels in the software stack.

System level checkpointing [42] is performed at the operating system level, where the

operating system periodically saves the application states to reliable memory. The

operating system is oblivious to the progress of the application, so the points at which

the checkpoints are saved may not be optimal in that the amount of data saved may

exceed the amount necessary to recover from a failure. The advantage of system level

checkpointing is that it is transparent to users, meaning that it requires no effort from
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the programmer. If system level checkpointing is enabled, any code running on the

system will be protected by Checkpoint/Restart automatically. However, most of the

time system level Checkpoint/Restart is not optimal since the operating system does

not have knowledge of the application state. The operating system cannot choose

the best time point to save the application data to reliable memory. Examples of

system level Checkpoint/Restart include BLCR (Berkeley Lab Checkpoint Restart)

by Lawrence Berkeley National Laboratory, the IRIX operating system by SGI,

and Cray’s UNICOS/CLE operating system. Application level checkpoint, on the

other hand, wins in the performance and efficiency aspects. In application level

Checkpoint/Restart, the application calls utility functions to save its own state to

reliable memory. It is the programmer’s responsibility to decide when and what to

save to reliable memory. The programmer has intimate knowledge of the application,

so he or she can choose the optimal point in time to write checkpoints to reliable

memory. Optimal time point means that the data saved to reliable memory is as

small as possible – just enguoth data to recover from the fault. Often times, the

optimal time point is the end of the iterative loop in the application. When less data

has to be written to reliable memory, less burden is placed on the I/O stack. This

is particularly important since I/O is the bottleneck of the computer system, and in

particular the bottleneck of the Checkpoint/Restart method. As a result, application

level Checkpoint/Restart is much more efficient than the system level approach. The

difficult part of application level C/R is that it requires a non-trivial amount of

effort on the part of the programmer. The programmer has to write checkpointing

code for each individual application, and the coding effort is not portable across

applications, nor across platforms. Application level Checkpoint/Restart provides

better efficiency than system level Checkpoint/Restart, but it still suffers from the

inherent performance bottleneck of C/R; that is the I/O traffic needed for writing

checkpoints to reliable memory, which is usually hard drives. Even in application

level Checkpoint/Restart, frequent disk access with large amounts of data is costly.

Checkpointing a large scale application could take hours to finish. Research efforts
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have been made to optimize the amount of data needed to save to disk. One notable

trend is multi-level checkpointing. Multi-level checkpointing provides different levels

of reliability by writing checkpoints to different storage at different frequencies. Local

memory such as RAM and local disk has higher bandwidth and small latency, and

checkpoints can be written to this fast storage at higher frequency. Remote storage

and the parallel file systems are expensive to access, but they are more reliable than

faster local storage. Checkpoints can be written to this slow and more reliable storage

at lower frequencies. Multi-level checkpointing can provide better efficiency than

single level checkpointing. Examples of multi-level checkpointing are FTI (Fault

Tolerance Interface) [5] and SCR (Scalable Checkpoint/Restart) )[71].

2.2.5 Algorithm Based Fault Tolerance

ABFT techniques are highly efficient when applied to appropriate numerical algo-

rithms. The basic idea of algorithm-based fault tolerance is to add data redundancy

to the original data in the numerical algorithm. The redundant data is usually in the

form of checksums. Then the programmer needs to study the numerical algorithm

carefully and design methods to update the checksums to make sure they are the

correct checksums for the data in the original algorithm. When applicable, algorithm

based fault tolerance techniques provide resilience with very low overheads. The

very first work to employ the algorithm based approach in numerical algorithms

was by Huang and Abraham [54] on matrix-matrix multiply and addition, scalar

product, and LU factorization matrix transposition. Their work focuses on dealing

with soft errors in those matrix operations, but the method can be extended to

provide fault tolerance to many numerical algorithms whose core operations are

basic matrix operations. In addition to protection against soft errors, the algorithm

based fault tolerance approach can be used to provide provide protection against

hard errors. The original work deals with algorithms running on systolic arrays,

which are similar to today’s single node machines in that the address space is shared
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by the processing elements in the systolic arrays. Researchers have also designed

algorithm based fault tolerant algorithms on distributed memory machines. The

ABFT techniques that work on distributed memory machines focus on one-sided dense

matrix factorizations [36, 26, 28, 95]. Algorithm based fault tolerance algorithms for

two-sided dense matrix factorizations are rarely studied. The only literature we have

found relating to algorithm based fault tolerance for two-sided matrix factorizations is

by Chen and Abraham [25]. Their work explored algorithm based methods to detect

soft errors in the Hessenberg reduction, the QR algorithm, and the singular value

problem.
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Chapter 3

Parallel Reduction to Hessenberg

Form with Algorithm-Based Fault

Tolerance

This chapter studies the resilience of a two-sided factorization and presents a generic

algorithm-based approach capable of making two-sided factorizations resilient. We

establish the theoretical proof of the correctness and the numerical stability of the

approach in the context of a Hessenberg Reduction (HR) and present the scalability

and performance results of a practical implementation. Our method is a hybrid

algorithm combining an Algorithm Based Fault Tolerance (ABFT) technique with

diskless checkpointing to fully protect the data. We protect the trailing and the

initial part of the matrix with checksums, and protect finished panels in the panel

scope with diskless checkpoints. Compared with the original HR (the ScaLAPACK

PDGEHRD routine) our fault-tolerant algorithm introduces very little overhead,

and maintains the same level of scalability. We prove that the overhead shows a

decreasing trend as the size of the matrix or the size of the process grid increases.

16



3.1 Introduction

Mainstream supercomputers are well into the peta-scale era, with the number of

components on a sharp increase over the years. Only one year ago, Jaguar, hosted at

the Oak Ridge National Laboratory, included 224,162 cores. During its 537 days of

operation, an average of 2.33 failures per day [68] occured, or on average less than 10

continuous hours of operation. Already today, the new configuration of Jaguar, called

Titan, has a remarkable 299,008 Opteron cores, over 18,688 compute nodes, without

taking into account the number of computing units on the accelerators, which would

put the count in millions. This sharp increase in the number of components is likely

to continue [31], in which case even the most optimistic predictions about the failure

rate of a particular component, in terms of tens of years, depict a gloomy future. A

future where the Mean Time To Interrupt (MTTI) of the entire machine falls under

a few hours, drastically affecting individual applications running on the system [80],

with a lasting impact, not only on the scientific throughput, but directly on the cost

of the scientific simulations.

Numerical libraries are an important category of large scale applications which can

easily utilize hundreds of thousands of cores and run for a prolonged period of time

as building blocks of even longer running applications. Any node failure will render

the time already spent running the application useless. Existing numerical libraries

for high performance computers were designed and implemented when the size of

the systems were modest and component failures were not yet a concern. Altering

these numerical libraries and algorithms by adding reliability capabilities is critical

to enabling them to become suitable for the future architectures with million-way

parallelism. This process will directly benefit all applications built on top of these

basic building blocks.

Libraries with eigenvalue solvers are the method of choice for spectral clustering

of graphs [91] and eigenvector centrality and its widely known form: the PageRank [6,

17, 19, 62]. Hessenberg form is a common intermediate representation for eigenvalue
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calculations.

The Hessenberg reduction [85] is an important step in calculating the eigenvalues

and/or eigenvectors of a dense non-symmetric matrix or for solving the regular

generalized eigenvalue problem. The orthogonal transformations are commonly used

for this reduction for their guaranteed stability even though their accumulated cost

becomes high in terms of both: computation and communication. One of the most

common algorithms that stably computes eigenvalues of a dense matrix is the QR

algorithm [85, 47]. There are two steps in the QR algorithm. In the first step, the

matrix A is reduced to Hessenberg form H by a sequence of similarity transformations:

A = QHQ>. A Hessenberg form, H, is a square matrix in which all the entries

below the first subdiagonal are 0. The second step further reduces H to an upper

triangular form T . The elements on the diagonal of T are the eigenvalues of matrix

A. A Hessenberg matrix is also required for obtaining Hessenberg triangular form

of the matrix pair (A,B) of the regular generalized eigenvalue problem of the form

(A − λB)x = 0 when using the QZ algorithm that originated from the implicitly

shifted QR algorithm [45, 46]. More recent work involves efficient implementations

of various QR iteration methods on modern multicore and distributed memory

systems [58, 16, 49, 59, 50].

The Hessenberg reduction routine is provided in virtually all major numerical

libraries, both for shared and distributed memory architectures. LAPACK [1]

contains the routine DGEHRD for Hessenberg reduction. ScaLAPACK [8] is the

open source linear algebra library providing LAPACK equivalent functionalities for

distributed memory machines, its Hessenberg reduction routine is PDGEHRD.

Commercial numerical libraries often provide optimized implementations of LAPACK

and ScaLAPACK for specific architectures (such as LibSci for Cray XT architectures).

The high arithmetic complexity overall and low arithmetic intensity of its building

blocks make the Hessenberg reduction a rather costly operation. In spite its high

computational complexity of O(10
3
n3), the Hessenberg reduction only achieves a

fraction of the theoretical machine peak performance (unlike one-sided factorizations
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such as LU and QR). While its long running time makes the Hessenberg reduction

routine more exposed to fail-stop failures, with few exceptions, no algorithmic

solutions to tolerate fail-stop failures have been proposed. Common fault tolerant

techniques such as checkpointing and algorithm based fault tolerance (ABFT)

have limitations when applied to the Hessenberg reduction. Checkpointing stores

application data to stable memory at certain time intervals. In Hessenberg reduction,

the whole trailing matrix, which accounts for a significant portion of application data,

is modified very frequently, annihilating even the potential benefits of incremental

checkpointing. Moreover, the checkpointing technique introduces too much overhead

due to frequent write-to-memory accesses (either hard disk or remote main memory).

Similarly, the usual ABFT techniques cannot provide protection for the lower left

part of the matrix during the reduction.

The focus of this chapter is to investigate the possibility and effectiveness of ABFT

techniques in the context of the Hessenberg reduction, to make the algorithm resilient

to process failures. The fault tolerant algorithm we propose is a hybrid approach.

We add row checksums to the right hand side of the matrix, and column checksums

at the bottom of the matrix, which is similar to classic ABFT. We prove that the

checksum relationship between the row checksums on the right hand side and the data

matrix is invariant thus it provides protection to the trailing matrix during the whole

factorization process. Any process failure and data loss in the trailing matrix can

be recovered using the row checksums. The finished part of the matrix is protected

with another group of row checksums. This group of checksums is computed only

once for a group of column blocks upon their completion, thus the cost is very low.

The group of panels currently being factorized are protected with a checkpoint. Due

to the data dependencies of the Hessenberg reduction algorithm, this checkpointing

procedure cannot be avoided. However, there is only one block column that needs

to be checkpointed at any given time, and the overhead caused by this checkpoint

is modest still. Our algorithm can tolerant more than one process failures at a time

assuming that there is at most one failure in one processor row.
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The rest of the chapter is organized as follows: Section 3.2 presents previous

research work in fault tolerance for matrix computations. Section 3.3 introduces the

Hessenberg reduction algorithm and its implementation, and highlights the challenges

in applying ABFT to the Hessenberg reduction. Sections 3.4 and 3.5, describe the

encoding used to provide the redundancy on the input matrix and the algorithm

to maintain it through the computation. Section 3.6 provides a formal analysis of

the overhead and costs, while Section 3.7 experimentally validates them. Section 3.8

summarizes the results of this chapter and presents future work.

3.2 Related Work

Diverse techniques to recover from a process failure exist, encompassing completely

automatic solutions such as Checkpoint/Restart (C/R) and algorithm-level tech-

niques such as Algorithm Based Fault Tolerance (ABFT). All these methods are

applicable to linear algebra computations and each has its advantages and drawbacks.

The major advantage of the C/R approach is the generality: it can be applied to

a wide range of applications not only linear algebra software. In the C/R technique,

consistent snapshots of program data in main memory are saved to stable storage

(usually a disk drive) at certain time intervals. Once a failure happens, the entire

application rolls back to the latest snapshot and computation resumes from that point

on (we ignore the complexity related to the consistent view of the entire application

in terms of message or file accesses). In a distributed environment the major cost of

this method comes from obtaining the consistent snapshots and disk access to write

the snapshots, which highlights the major drawback of such approaches, the relatively

high overhead. Langou and Dongarra [61] investigated several checkpoint/recovery

techniques and a checkpoint-free lossy fault tolerant technique for parallel iterative

methods. Robert and Vivien [13, 15] presented a unified model for several common

checkpoint/restart protocols, extended in [21] to cover process replication. Diskless

checkpointing [75, 48, 63] stores checkpoints in main memory to avoid disk accesses.
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The advantage of the ABFT techniques is the potential lower overheads, in

exchange for algorithmic alterations. The algorithm based approach considers the

mathematical operations carried out in the algorithm, and it takes advantage of

the mathematical relationship between different parts of the data to recover from

erroneous data. Algorithm-based techniques do not require disk accesses. The extra

cost entailed is a requirement of a small amount of local memory storage and some

floating point operations. Since CPU speed is orders of magnitude faster than disk

accesses on modern computers, an algorithm based approach has a much smaller

overhead compared against the C/R approach.

Huang and Abraham [54] proposed a system-level method to tolerate errors in

matrix computations in the context of systolic arrays. The matrix is encoded and

operations are carried out on the encoded data. A single failure can be corrected

during the computation. This technique has been successfully applied to matrix

addition and multiplication, scalar product and the LU decomposition. Later, Luk

and Park [64] extended Huang’s method to make it more efficient to correct transient

errors in Gaussian elimination and QR decomposition on systolic arrays. They

proposed methods to compute checksums of the original matrix. Their method does

not need a rollback in order to correct the error. Kim and Plank [60] presented a

technique based on checksum and reverse computation to tolerate process failures in

matrix operations. Chen and Dongarra [26] designed and implemented an algorithm

based fault tolerance algorithm to tolerate process failures in the ScaLAPACK

PDGEMM routine. Bosilca and Langou [14] also designed and implemented an

algorithm based fault tolerance algorithm for the ScaLAPACK PDGEMM routine

and developed performance models to predict its overhead. Hakkarinen and Chen [51]

implemented an algorithm based fault tolerance algorithm for Cholesky factorization,

an algorithm tolerating a single process failure at a time. Du and Dongarra et al. [36]

designed algorithm based fault tolerance algorithms for LU and QR factorizations

and implemented them in the ScaLAPACK framework. Their methods have a low

overhead and scale well with the increase of matrix size and process grid size. Davies
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et al. [28] also applied the ABFT technique to HPL [74, 32] which is a highly optimized

right-looking LU factorization. Yao and Wang [95] proposed a non-stop algorithm

based fault tolerant scheme to recover the solution vector from fail-stop process

failures in HPL 2.0. Bland et al. [10, 9] proposed a checkpoint-on-Failure protocol for

fault recovery in dense linear algebra.

3.3 ScaLAPACK Hessenberg Reduction

ScaLAPACK uses a 2D block cyclic data distribution to achieve good load balancing.

The Hessenberg reduction routine PDGEHRD in ScaLAPACK also distributes data

in this way. The ScaLAPACK implementation of the Hessenberg reduction is a

blocked algorithm. It first reduces a panel of columns using Householder reflections

and accumulates the Householder reflectors along the way. Later it applies the group

of reflectors all at once to the trailing matrix.

3.3.1 2D Block Cyclic Data Distribution

There are several possible ways to distribute a matrix across distributed memory

machines. Among them, the 2D block cyclic distribution was chosen for ScaLAPACK

based on its good scalability properties and the ability to use Level 3 BLAS routines.

Figure 3.1 illustrates the 2D block cyclic data distribution with an example. A matrix

is partitioned into small nb×nb square blocks. nb is called the blocking factor. These

blocks are mapped to a 2× 3 process grid. If a data block is mapped to a process it

means the data block is physically stored in the local memory associated with that

process. All the data blocks assigned to the same process are stored contiguously.

Figure 3.1(a) shows the global matrix from a logical point of view. Each of the six

colors represents a process. Data blocks are assigned to the processes in a round-robin

fashion in both horizontal and vertical directions. Figure 3.1(b) is the processes’ view

of the distribution. Same as in Figure 3.1(a), each color represents a process. Each
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(a) Matrix View (b) Process View

Figure 3.1: A matrix mapped to a 2× 3 process grid.

process’s own part of the matrix is stored contiguously in its local memory in column

major. Each process is assigned roughly the same amount of data, which means they

are responsible for roughly the same amount of total floating point operations. Block

algorithms in ScaLAPACK proceed from left to right. As the algorithm continues,

each process has roughly the same amount of work load left. This avoids prolonged

idle time and keeps all the processes busy most of the time.

In this 2D block cyclic distribution, each process’s data correspond to blocks

scattered across the entire global matrix. When a process fails during the Hessenberg

reduction, we get corrupted data blocks in every part of the global matrix.

3.3.2 Failure Model Under 2D Block Cyclic Data Distribu-

tion

In this work, we consider process failures. When a process fails in the process grid

the data resident on that process will be all gone. Figure 3.2 shows the status of

the matrix when a process failure happens. The colored squares are the data blocks

owned by the live processes. The blank squares with question marks are the data

blocks owned by the failed process. After we have recovered the process grid, the

replacement process contains invalid data. These invalid data blocks need to be

recovered to their state before the failure happened. If we continue the Hessenberg

reduction without recovering the lost data the final result will be completely wrong.
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Figure 3.2: Global view of the matrix when a process fails.

3.3.3 Non-blocked Hessenberg Reduction

The Hessenberg reduction takes a general nonsymmetric square matrix A ∈ Rn×n and

decomposes it: A = UHU>. U is an orthogonal matrix, H is a Hessenberg matrix.

The non-blocked Hessenberg reduction is an iterative process, n − 1 Householder

transformations are applied to the matrix A from left and right

Hn−1Hn−2 . . . H2H1AH
>
1 H

>
2 . . . H

>
n−2H

>
n−1 = H. The orthogonal matrix U is

U = H1H2 . . . Hn−2Hn−1. A Householder transformation Hi can be generated

efficiently [85, page 83]. The non-blocked version uses Level 2 BLAS operations which

have a low flop/transfer ratio and are slow. ScaLAPACK uses a blocked Hessenberg

reduction algorithm which has a larger number of efficient Level 3 BLAS operations.

3.3.4 Blocked Hessenberg Reduction

In the blocked Hessenberg reduction [35] nb (the blocking factor in the 2D block

cyclic distribution) Householder reflectors are accumulated and applied to the trailing

matrix together using Level 3 BLAS. Using the WY representation [7, 79] the

reduction can be written as:

H>nb · · ·H>1 AH1 · · ·Hnb = A− VW − Y V > (3.1)

where V is the matrix formed by the nb Householder vectors used to reduce the first

nb columns, T is an nb × nb upper triangular matrix, W = T>V >A, Y = AV >

Algorithm 1 is the pseudo code for PDGEHRD. The function call PDLAHRD
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Algorithm 1 PDGEHRD

1: for every panel do
2: PDLAHRD on the panel, return V, T, Y
3: PDGEMM: trail(A) = trail(A)− Y V >
4: PDLARFB: trail(A) = trail(A)− V T>V > · trail(A)
5: end for

reduces a panel with a sequence of Householder transformations. It takes the trailing

submatrix, reduces the first panel of nb columns, and overwrites the bottom part of

the panel with the Householder reflectors. Although this panel factorization routine

only modifies the panel, it has a data dependency on the trailing matrix. In other

words, once the trailing matrix is modified and we lose data inside the panel, the

panel factorization cannot be repeated. This poses a challenge for our fault tolerant

algorithm design as explained in later sections.

Figure 3.3 illustrates one iteration of the ScaLAPACK Hessenberg reduction

algorithm. In Figure 3.3(a) the yellow part is part of the final result of the Hessenberg

matrix. This part will not be touched once they have been computed. Columns in

the green part are the Householder reflectors used to transform the matrix. The

red part is the trailing matrix which will be reduced in future iterations. As other

factorizations in ScaLAPACK, PDGEHRD is an iterative algorithm. In each

iteration, PDLAHRD reduces the first block column which is called the panel. This

call produces the final result of the desired Hessenberg matrix (the yellow upper

trapezoid in Figure 3.3(b)) and nb Householder reflectors (the green lower trapezoid

in Figure 3.3(b)). This call also generates intermediate matrices V and Y which are

used by the PDGEMM and PDLARFB immediately following the panel reduction

to update the trailing submatrix. When this iteration finishes, we get a smaller trailing

submatrix: the red part on the right in Figure 3.3(e). In the next iteration, the same

process is repeated on the shrunk trailing submatrix which further reduces it to a

smaller size. This algorithm is a right-looking algorithm, in that, the updates only

access data to the right of the current panel. Matrix entries to the left of the current

panel are never touched again after the panel computation proceeded to the right.
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(a) Beginning of iter-
ation

PDLAHRD

(b) Factorize the
panel

PDLAHRD

PDGEMM

(c) Right update

PDLAHRD

PDLARFB

(d) Left update

(e) End of iteration

Figure 3.3: One iteration of PDGEHRD

3.4 Encoding The Input Matrix

The essential part of ABFT technique is to expand the original matrix data with

redundant data and maintain the relationship between the original matrix and the

redundant data through computation. In our fault tolerant Hessenberg reduction

algorithm, we chose to append the matrix with row checksums to the right of the

original matrix. We show the checksum scheme with an example in Figure 3.4. A

matrix of N×N blocks is mapped to a P×Q process grid in the 2D block cyclic fashion

(here N = 8, P = 2, Q = 3). Each process will be assigned at most dN/P e× dN/Qe

data blocks. We add dN/Qe×2 block columns to the right as checksum blocks. Data

blocks in the same position of different processes of the same process row are added

together element-wise to form a checksum block. This checksum block is duplicated

and stored next to itself. The details are shown in Figure 3.4(a).

We also expand the original matrix with checksum blocks at the bottom. Only the

storage is allocated, the actual checksums are not actually calculated in the beginning.

The extra storage at the bottom will be used for pseudo checksums of the V matrix
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copy

(a) Matrix View (b) Process View

Figure 3.4: An encoded matrix mapped to a 2× 3 process grid.

which contains the block Householder reflectors. The number of pseudo checksum

block rows at the bottom is the same as the number of checksum block columns to

the right of the matrix. And each pseudo checksum block is calculated in this way:

pretend the matrix is distributed over a Q×Q process grid (despite that it is actually

distributed over a P × Q grid), then we sum corresponding data blocks in different

processes in the same process column element-wise and obtain a pseudo checksum

block. The summing relationship is also shown in Figure 3.4(a). In this figure, the

pseudo checksum block is the sum of the first three blocks, because had we distributed

the matrix over a 3 × 3 process grid, the first three data blocks would be the first

blocks in the three processes in the their respective local matrices.

These checksum blocks are treated as normal matrix data and distributed across

the process grid. Figure 3.4(b) shows each process’s local matrix containing the

checksum blocks. Each black box represents a process. The white blocks are the

checksum blocks. Note that the example in Figure 3.4 uses a small process grid, the

checksum data are relatively large compared to the original input matrix. But in

practice the process grid is rarely this small. The checksum data only accounts for a

small portion of the input matrix when the size of the process grid increases.
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3.5 The Algorithm

Algorithm 2 ABFT Hessenberg Reduction (non-delayed)

1: Compute the row checksum of matrix A, get Ae

2: for each i in Ne iterations do
3: if i ≡ 0 mod Q then
4: Take a snapshot of the panel scope.
5: end if
6: PDLAHRD on the panel, return V, T, Y
7: Calculate column pseudo checksum of V , get Ve
8: Send V to the next process column.
9: The process column owning the ith panel make a copy of its Y and T , send

Y, T to the next process column.
10: PDGEMM: trail(Ae) = trail(Ae)− Y (Ve)

>

11: PDLARFB:
trail(Ae) = trail(Ae)− V T>V > · trail(Ae)

12: Recover from failure if there is any.
13: end for

3.5.1 Maintaining Data Redundancy in the Factorization

Two versions of ABFT Hessenberg reduction algorithms are shown in Algorithm 2

and Algorithm 3. These two versions are mathematically equivalent, but their actual

implementations have different performance characteristics due to the behavior of

PBLAS routines. We use Algorithm 2 to explain how the method works. In iteration

i, we refer to the Q block columns starting from bi/Qc to di/Qe (inclusive) as the

panel scope. N is the dimension of the original matrix, nb is the blocking factor.

Algorithm 2 first calculates row checksums for each block row in line 1. This

is achieved with a reduction operation on each block row. Calculating this global

checksum for the entire matrix requires many reduction operations and large

communication volume. But this checksum is computed only once at the beginning

of the algorithm. The cost is not high compared to the time cost of the actual

Hessenberg reduction.
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In line 4, the algorithm takes a snapshot of the panel scope before starting the

factorization of the block columns in the panel scope. The final Hessenberg matrix

contains zeros in its lower part, below the first subdiagonal. In order to save storage,

the ScaLAPACK Hessenberg reduction algorithm stores the Householder reflectors

in the lower part of the matrix. Because the zero entries are overwritten with the

Householder reflectors, the row checksum relationship between the current panel scope

and its checksum no longer holds. Once a process failure causes data loss in the

trailing matrix part of the current panel, we can retrieve the pre-update data from

the snapshot and reapply all updates from the beginning of the current panel scope.

By so doing, we can restore the lost data to their state right before the failure.

Lines 8 and 9 record the state of the panel scope after each panel factorization.

These two lines also record the state of Y and T which are the results of panel

factorization. Y and T are stored in a separate workspace apart from A. The newly

calculated Householder reflectors are stored in-place in the lower portion of A. These

reflectors do not have any protection mechanism. Unlike a recent implementation

of QR factorization [36], the panel factorization in the Hessenberg reduction has a

data dependence on the trailing submatrix. The PDLAHRD routine needs the

unmodified trailing submatrix to factorize the panel. This means that the panel

factorization result has to be protected right away after it is obtained. We do not

delay the recording of the state of the panel result (V , Y and T ) till either the

PDGEMM call or the PDLARFB call. This is because in the case of a process

failure, data loss would occur in the panel result. This is possible for a failure that

happens after the panel factorization and after the start of the trailing matrix update.

The panel result cannot be recovered in that case by a rollback of the panel and re-

factorizing it despite the fact that we can manage to recover the panel data right

before its factorization. It is possible to reverse the effect of the trailing matrix

update if we store the V , Y and T matrices which were used to update the trailing

matrix. But they are not available since these three matrices are exactly what are

supposed to be recovered.
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Line 12 recovers data that were lost due to a process failure. The details of the

recovery procedure are explained in section 3.5.3.

The following theorem shows how the correctness of the checksum is maintained

throughout the algorithm.

Theorem 1. The row checksums for block columns after the current panel scope are

valid at the end of each iteration.

Proof. We proceed by showing that the checksum remains correct after each step.

Suppose A is of size m× n, e is a column vector of 1’s of length n. For simplicity, in

the following proof we assume the block size nb is 1, and the process grid is m×n, so

each process takes one entry of the matrix but the proof holds true for any nb value

and process grid size.

1. Before the for loop all the row checksums are just calculated, no data has been

modified. Thus the checksums are valid.

2. In the first iteration, after the PDLAHRD, the checksum for the first panel

scope is destroyed. But the checksums for the block columns after the first panel

scope are still valid, because both the original matrix data and the checksums

haven’t been modified.

3. In the first iteration, after the PDGEMM, the checksums for the block columns

after the first panel scope are still valid.

Ae − Y (Ve)
> =

[
A Ae

]
− Y

 V

e>V

>

=
[
A Ae

]
− Y

[
V > (e>V )>

]
=

[
A Ae

]
− Y

[
V > V >e

]
=

[
A Ae

]
−
[
Y V > Y V >e

]
=

[
A− Y V > Ae− Y V >e

]
=

[
A− Y V > (A− Y V >)e

]
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4. In the first iteration, after the PDLARFB, the checksums for the block

columns after the first panel scope are still valid.

Ae − V T>V >Ae

= (I − V T>V >)Ae

= (I − V T>V >)
[
A Ae

]
=

[
(I − V T>V >)A (I − V T>V >)Ae

]
=

[
(A− V T>V >A) (A− V T>V >A)e

]

By mathematical induction, the row checksums for block columns after the current

panel scope are valid at the end of each iteration.

3.5.2 Checksum Duplication

We protect the row checksums appended to the right of the matrix by maintaining

two copies of exactly the same checksums. Because the checksums are distributed

as normal matrix data over the process grid, any process failure will also cause loss

of the checksums resident on the failed process. To solve this problem we maintain

two copies of the checksums as in [36]. Both are kept valid through updating them

independently. These two copies are stored next to each other so they are distributed

to different process columns. Since only one process could fail, we always have one

valid copy and can use this copy to recover the other copy. This approach does not

need dedicated checksum processes, and does not have to assume that the checksum

processes never fail. This approach also has good load balancing property. These

traits are preferable because it does not require users of the ScaLAPACK library to

change their application or the way they run their application. It is also easier to

implement since the code has clear logic. The update of the checksum data does

not need special treatment, the only thing needed is to change the dimensions of the

trailing matrix during the update step of the original ScaLAPACK code.
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Algorithm 3 ABFT Hessenberg Reduction (delayed)

1: Compute the row checksum of matrix A, get Ae

2: for each i in 1 to dN/nbe iterations do
3: if i ≡ 0 mod Q then
4: Take a snapshot of the panel scope.
5: end if
6: PDLAHRD on the panel, return V, T, Y
7: if a process owns parts of V, T, Y then
8: Store V, T, Y in its neighbor in the next process column.
9: end if
10: if i ≡ 0 mod Q then
11: Calculate column checksums of V from the last Q block columns, get Ve
12: end if
13: PDGEMM: trail(Ae) = trail(Ae)− Y (Ve)

>

14: PDLARFB:
trail(Ae) = trail(Ae)− V T>V > · trail(Ae)

15: if i ≡ 0 mod Q then
16: Update the row checksums at the right side of the original matrix using the

V, Y, T matrices from the last Q panel factorizations.
17: end if
18: if a failure happens then
19: Compute column checksums of V from the already factorized panels in the

current panel scope, get Ve.
20: Update the row checksums at the right side of the original matrix.
21: Recover from failure.
22: end if
23: end for
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Area 2 Area 3 Area 4 Area 1

Figure 3.5: Partitions of the matrix. The dotted block column in area 3 has just been
factorized. Area 1 (red) is the trailing matrix after the current panel scope. Area 2
(blue) is the finished part of the matrix. Area 3 (yellow) is the block columns in the
current panel scope that have been factorized. Area 4 (green) is part of the current
panel scope which belongs to the trailing matrix.

3.5.3 Recovery

When the Hessenberg factorization is in progress, the matrix can be divided into

different areas based on the status of the data as shown in Figure 3.5. Different areas

of the matrix data need different methods to recover.

The recovery process:

1. Recover the runtime system. Replace the lost process and restore the process

grid.

2. Recover lost checksums using the duplication.

3. Recover lost data in area 1 and 2 using the row checksum on the right and the

data on the live processes. First calculate the sum of data blocks on different

processes in the same process row, then subtract this partial sum from the

checksum to get the lost data blocks. Send the recovered data blocks to the

replacement process.

4. Recover the lost data in area 3 using the checkpoint.
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5. Recover the lost data in area 4. First retrieve the backup data from the

snapshot, then apply all the left updates and right updates since the last

snapshot.

6. Resume computation as usual. Ready to recover from the next failure.

3.6 Performance Analysis

In this section we use N to refer to the dimension of the global matrix.

There are several sources where the overhead of the fault tolerant Hessenberg

reduction comes from. Firstly, it carries out more floating point operations than

the ScaLAPACK version. Secondly, we need to perform bookkeeping for the panel

results. Thirdly, we need to generate vertical pseudo checksums for V after the panels

are factorized.

Global row checksums have to be calculated at the beginning of the factorization.

On a P × Q process grid, every process row calculates the checksums inside the

process row using reduction operations. Every process row performs the reductions

in parallel with other process rows. Hence the total time cost is the same as the time

cost in any one process row. There are N/ (nb ·Q) block columns in one process, for

every one block column there is one reduction operation. Let TQ be the time cost

of one reduction operation among Q processes, the overhead incurred by the global

checksum calculation at the beginning of the fault tolerance Hessenberg reduction

algorithm is:

TQ
N

nb ·Q

This part of the overhead is a one time cost. The Hessenberg reduction is computation

intensive, and the total floating point operation count is O(10
3
N3). As the size of

the matrix N increases, the operation count increases quickly, this initial one-time
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checksum cost becomes insignificantly small very quickly compared to the total cost

of the original ScaLAPACK Hessenberg reduction routine.

Extra floating point operations are needed to maintain the correct global checksum

on the right side of the matrix. The panel factorization will stop at the end of the

original matrix, so no panel factorization has to be done on the checksum block

columns. The trailing matrix updates have to be performed on the checksums.

In every iteration there is a right update which is a PDGEMM, and there is

a left update which is a PDLARFB. The PDLARFB contains three steps: a

PDGEMM, a PDTRMM and another PDGEMM. For the right updates, the

number of checksum block columns decreases as the factorization proceeds. The

reason is that the block columns to the left of the current panel and in the current

panel scope are not protected by the right side checksum, and we do not need to

update these not used checksums anymore. For the left updates on the checksums,

not only does the number of columns of the checksums decrease, but also the number

of rows decreases.

The amount of extra floating point operations caused by the right update

(PDGEMM) is:

FLOPpdgemm =
N/nb−1∑

i=1

2N (2nb) nb ·Q

= 2N3

Q
− 2N2nb

The amount of floating point operations introduced by the left update (PDLARFB)
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is:

FLOPpdlarfb

=

N
nb
−1∑

I=1

[
2nbQ (2nb · I) (2nb · I + 2) + (2nb · I) nb2

]
Q

=
8

3

N3

Q
− 4N2nb + 4N2 +

N2nb

Q
+

4

3
NQnb2

− 4NQ · nb −Nnb2

The total amount of extra floating point operations by maintaining the checksum is

FLOPExtra =

N/nb−1∑
i=1

[FLOPpdgemm + FLOPpdlarfb]

The total count of floating point operations of the original ScaLAPACK Hessen-

berg reduction routine is:

FLOPOrig ≈
10

3
N3

So the overhead introduced by maintaining the checksums is given by:

Overhead =
FLOPExtra

FLOPOrig

=
FLOPpdgemm + FLOPpdlarfb

FLOPOrig

=
3

10

(
2

3

1

Q
− 6nb

N
+

4

N
+

nb

NQ
+

4

3

Qnb2

N2

− 4Qnb

N2
− nb2

N2

)

These extra floating point operations are all in matrix matrix multiplies which are

efficiently implemented, so the overhead in terms of floating point operation count can

also be interpreted as overhead in terms of running time. From the formula above,

we observe that as the size of the matrix is big enough, N tends to infinity, and the
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terms containing N in the denominator tend to 0:

lim
N→∞

Overhead =
1

5Q
(3.2)

which means that the theoretical lower bound of the overhead introduced by

maintaining the checksums is 1/(5Q). By “theoretical” we mean the ideal case where

there is no time cost for memory accesses, and no time cost for communications

between processes. When we keep the blocking factor nb unchanged and keep

increasing the matrix size N , the least amount of overhead we have to pay is 1/(5Q) of

the ScaLAPACK Hessenberg reduction routine. In practice it is not possible to access

memory and transfer data between processes without time costs. The actual observed

overhead introduced by these extra floating point operations should be higher than

the above theoretical lower bound.

The second part of the overhead comes from bookkeeping the panel factorization

results after panels are factorized. The bookkeeping is done by sending the matrices

to the neighboring process in the next process column and storing them there. There

are three matrices which have to be saved: the panel itself, Y and T . Let Tsr be

the time cost to perform a Send-Receive operation between two processes, the total

overhead incurred by bookkeeping the panel factorization results is:

Tsr
N

nb

The value of Tsr varies depending on the MPI implementation and the network

between processes.

Also there is the overhead of computing the vertical pseudo checksum of V . Every

pseudo checksum block calculation involves a reduction operation, and this pseudo

checksum has to be calculated in every iteration. Let TP denote the time cost

to perform a reduction among P processes, the total time cost of calculating this
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checksum is given by:

TP
N

nb ·Q

Storage overhead. Extra storage is necessary for the checksums and for

bookkeeping the panel factorization results. We keep two copies of the row checksums

on the right of the original matrix. The amount of memory needed for this is:

2N
N

Q

We also need the same amount of storage for the pseudo checksum of V . This

makes the total amount of checksum memory:

4N
N

Q

The amount of memory needed to store the snapshot of the panel scope is

N (N/Q+ 2nb), the amount of memory needed by checkpointing Y and T is:

N (N/Q) + nb (N/Q)

Adding them all together, the total amount of storage overhead is:

4
N2

Q
+ (N + nb) (N/Q)

3.7 Experiments

In this section we evaluate the performance of our fault tolerant Hessenberg reduction

algorithm through experiments. We used DOE’s Titan as our test platform.

Titan is a hybrid supercomputing system located at Oak Ridge National

Laboratory. It is the fastest parallel computer on the current TOP500 list (Nov.,
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2012). Since we are only using the traditional CPU section of the machine,

information about NVIDIA GPUs on Titan is not reported. Titan is composed of

18,688 nodes with 299,008 cores, for a CPU peak performance in double precision of

2.63 PFlop/s.

3.7.1 Overhead Without Failure

Figure 3.6(a) and Figure 3.6(b) shows the overhead of our fault tolerant Hessenberg

reduction on Titan when no failure happens in the factorization. The overhead

measured in the percentage of performance penalty drops as the problem size

increases. The performance of Hessenberg reduction is not as high as the one-sided

factorizations (LU, QR and Cholesky) on both distributed memory machines and

shared memory machines. The reason is that Hessenberg reduction is rich in Level

2 BLAS (GEMV). Level 2 BLAS routines have a 1-to-1 flop to word ratio. These

routines are memory bound and hence their performance is limited by the bandwidth

of the memory. In terms of performance, our fault tolerant algorithm has a small

overhead. The overhead with a matrix of size 6000 on a 6×6 process grid is 7.6%. The

overhead keeps decreasing as the matrix size increases and the process grid increases.

The overhead drops to 1.8% for a matrix of size 96000 (process grid 96 × 96). This

overhead includes the overhead of calculating the initial checksum, the computation

overhead incurred by updating the checksum, the overhead of calculating the vertical

pseudo checksum of V after each panel factorization, and the overhead of the recovery

process. Equation 3.2 states that the overhead caused by extra computation on the

checksums asymptotically decreases to 1/(5Q). It accounts for a decreasing portion of

the total overhead as the problem size and process grid become large. The overhead

caused by saving the results of the panel factorization (PDLAHRD) becomes the

major contributor of the total overhead. Over the course of the factorization, the

total communication volume of this saving process is roughly two times the global

matrix data volume. Depending on the network bandwidth between the processes,
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this part of the overhead can account for different percentages of the total overhead.

Generally, this part of the overhead tends to a small constant percentage when the

problem size increases.

Figure 3.7(b) shows the overhead of Algorithm 3 on Titan. We see that the

performance overhead keeps dropping in the beginning, but it starts to go up again

at grid size 96× 96. There are three main reasons which cause the overhead increase.

Firstly, when we delay the updates of the global checksums at the end of each panel

scope, these updates resulting from each panel factorization are applied sequentially.

When the process grid size increases, the number of panels in the panel scope also

becomes larger. The sequence of updates to the global checksums takes longer to

finish. Secondly, when updating the checksums separately from the trailing matrix,

the updates (PDLARFB and PDGEMM) are applied to a tall and skinny matrix.

These two routines perform best when applied to more rectangular matrices. Also,

splitting the calls to these routines disrupts their internal communication pipeline

that hides latency and creates additional synchronization points upon exit and then

entry into these routines. Thirdly, updating the checksums separately causes extra

communication between processes owning V and processes owning the checksums.

These overheads are critical in the context of an already communication-rich operation

such as the Hessenberg reduction, and they inhibit scalability as the Figure 3.7(b)

indicates.

3.7.2 Overhead With Failure

Figure 3.6(c) and Figure 3.6(d) shows the performance and performance overhead

of our fault tolerant Hessenberg reduction algorithm on Titan when one failure

happens in the factorization. Compared with Figure 3.6(a) and Figure 3.6(b)and

the performance overhead shown in the Figure 3.6(c) and Figure 3.6(d) include one

more factor: the recovery overhead. The recovery process involves a global row-wise

reduction operation on the entire global matrix. Before this global reduction the data
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Figure 3.6: Overhead of FT-Hess without failures and with one failure. Platform:
Titan, NB = 80, Algorithm 2

on the replacement process are set to zero. This global reduction operation calculates

a new global checksum. The lost data belonging to Area 1 and Area 2 in Figure 3.5

are recovered using the new checksum and the old checksum that we have been

maintaining along with the factorization. The cost of this global reduction depends

on the bandwidth of the link between the processes. This cost accounts for a small

portion of the total running time of the Hessenberg reduction. Figure 3.6(d) shows

that, even with the recovery cost included, the total overhead of our fault tolerant

Hessenberg reduction algorithm is still very low and it decreases as the problem

increases. It is down to 4.03% for the matrix of size 96000 (process grid dimension:

96× 96).
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Figure 3.7: Overhead of FT-Hess without failures. Platform: Titan, NB = 80,
Algorithm 3

3.7.3 Numerical Stability After Recovery From a Failure

In this subsection, we show how our fault tolerant Hessenberg reduction algorithm

maintains the same level of numerical stability as the original ScaLAPACK algorithm.

Floating point numbers are represented in IEEE 754 format in modern computers,

floating point operations are not carried out in exact arithmetic. Standard error

analysis for the reduction of a general matrix A to Hessenberg form H by means of

similarity transformations shows the process to be backward stable [92, page 363]. In

particular, the process reduces a nearby problem Â = A + E into Ĥ with a set of

similarity transformations U and at the end we get:

Ĥ = U>ÂU (3.3)

The bound on the residual error E [92, page 351] is

‖E‖F/‖A‖F ≤ φ(N)ε (3.4)

where φ is a low degree polynomial [92, page 351, Table 1] and ε is the unit roundoff

(machine precision). This is an expected result since the transformation only employs

orthogonal transformations and therefore does not introduce rounding errors larger
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than those already existing in the data. In fact, its backward error analysis has been

used in a scheme that detects soft errors in linear algebra operations at runtime [11].

The ScaLAPACK PDGEHRD routine uses the following factorization residual

to verify the factorization result

r∞ =
‖A− UHU>‖∞
‖A‖∞Nε

where r∞ is a slowly growing function of N . For practical purposes r∞ may be checked

against a constant threshold rt. We consider the reduction correct if the residual r∞

is smaller than the threshold rt = 3.

To show backward stability of the recovery process, we use the technique of

projecting the error (resulting from a fault) back into the original matrix A [64]. We

then exploit the fact that the backward error analysis already involves a perturbation

to A and the reduction is shown to provide a solution to a nearby problem Â with a

satisfactory bound on the perturbing error. Then, using a standard dot-product error

analysis [22], we show that the numerical stability is not affected by the recovery from

the fault. The dot-product analysis applies to our checksum procedure with only a

slight modification.

There are three sources of errors in addition to the error existing in the original

algorithm after the recovery:

• from the initial encoding of the input matrix,

• from updating the global checksum,

• from recovering the lost data in the case of a failure.

Errors from encoding the input matrix. The initial checksums are calculated

through a simple summation operation. On a P × Q process grid, each checksum

element involves at most Q− 1 addition operations . The rounding error (denoted by
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E1) introduced by encoding the input matrix is bounded by

E1 ≤ (Q− 1) ε (3.5)

This upper bound is reached in the worst case scenario when rounding errors happen

in every element and all have the same sign. In reality, rounding errors do not happen

for every operation and/or do not all have the same sign. A pair of rounding errors

with opposite signs will cancel each other out. The actual error is much smaller

than the upper bound – the suggested approximation is the square root of quantities

dependent on the problem size [93].

Errors from updating the global checksum. The global checksums on

the right hand side of the input matrix are updated by two routines PDGEMM

and PDLARFB, both of them perform matrix-matrix multiplications. These two

routines are numerically stable which means the rounding error of the input data does

not grow after the calculation.

Errors from recovering the lost data in the case of a failure. During

recovery we calculate a new checksum of the data on the still live processes. In the

worst case scenario the rounding error (denoted by E2) could be

E2 ≤ (Q− 1) ε (3.6)

In the worst case, E2 has the opposite sign to E1, which gives the worst case error in

the recovered data compared against the lost data

E3 = E1 + E2 ≤ 2 (Q− 1) ε (3.7)

If the failure happens in the i-th iteration, denote the accumulated transformations
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so far by U(i), we have

r̂∞ =
‖A−

(
UHU> + U(i)E3U

>
(i)

)
‖∞

‖A‖∞Nε

=
‖
(
A− U(i)E3U

>
(i)

)
− UHU>‖∞

‖A‖∞Nε

=
‖
(
A− U(i)E3U

>
(i)

)
− UHU>‖∞

‖A− U(i)E3U>(i)‖∞Nε
×
‖A− U(i)E3U

>
(i)‖∞

‖A‖∞

= c×
‖
(
A− U(i)E3U

>
(i)

)
− UHU>‖∞

‖A− U(i)E3U>(i)‖∞Nε

where

c =
‖A− U(i)E3U

>
(i)‖∞

‖A‖∞

≤
‖A‖∞ + ‖U(i)E3U

>
(i)‖∞

‖A‖∞

= 1 +
‖U(i)E3U

>
(i)‖∞

‖A‖∞
≤ 1 +N/P × 2(Q− 1)ε

Again, this is the theoretical upper bound assuming the worst possible cases. In

reality rounding errors are mostly likely random, so they will cancel each other out.

The recovery process will not cause observable extra backward errors.

Table 3.1 shows a comparison of the residual r obtained in our fault tolerant

algorithm when a failure happens and the residual obtained in the fault-free

ScaLAPACK routine. We can see that our fault tolerant algorithm computes answers

on the same order of magnitude as the original ScaLAPACK algorithms, with minor

differences due to the randomness of the initial matrix and the lack of bitwise

reproducibility of the algorithm. Overall, our fault tolerant Hessenberg reduction

algorithm is as backward stable as the ScaLAPACK version.
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Table 3.1: Residual Comparison

Grid Size FT-Hess ScaLAPACK Hess

6× 6 5.208026×10−3 5.014403×10−3

12× 12 3.099298×10−3 2.348654×10−3

24× 24 2.166615×10−3 1.174153×10−3

48× 48 1.361631×10−3 6.350293×10−4

96× 96 1.038104×10−3 3.379741×10−4

3.8 Conclusions and Future Work

This chapter describes a hybrid fault tolerant Hessenberg reduction algorithm

combining diskless checkpointing and algorithm based fault tolerance techniques

under the fail/stop failure model, capable to recover from one process failure at

a time. After the successful recovery, the computation is resumed and ready to

progress and to tolerate the next process failure. We use algorithm based fault

tolerance techniques to protect the trailing matrix, and checksums to protect the left

part of the Hessenberg matrix, while the panel scope is protected through diskless

checkpointing. We confirmed the low overhead and good scalability of our approach

both from a theoretical standpoint and through experiments on various scales. The

overhead decreases when the matrix size or the process grid size increases, making

this approach a good candidate for large scale environments. Future work would

include exploring methods to tolerate multiple simultaneous failures and designing

fault tolerant algorithms for other two-sided factorizations in large scale parallel

computing environments.
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Chapter 4

Parallel Reduction to Tridiagonal

Form with Algorithm-Based Fault

Tolerance

4.1 Introduction

Today’s massively parallel computer systems are more vulnerable to failures than ever

before. Supercomputers in the early days only had a few processors. Over time the

increasing demand for computational power and the development computer hardware

impacted the design of supercomputers, as as result supercomputers containing tens

of thousands of commodity processors become the norm. A large processor count

provides high computational power, meanwhile it also brings lower reliability of the

entire system. A study in 2007 on the failure rates of LANL systems show that the

failure rate reached 1100 failures per year [80]. That is the system can run without

interrupt for 12 hours. The 2011 version of the Oak Ridge National Lab’s ten-year

exascale road map projected that in year 2020, the total core count of the machine

will be on the order of O(billion), and the Mean Time to Interrupt will be 22 -

120 minutes [43]. When High performance computing enters the exascale era, the
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reliability of high performance computing systems become a practical concern for

large scale, long running applications.

Over the years, many techniques have been proposed to provide resilience for appli-

cations/restart. The most successful technique among them is checkpointing/restart.

Checkpointing is a general purpose resilience technique which stores the application

state into reliable storage from time to time. When a failure strikes and some process

loses its data, the application reads the last checkpoint and restarts from that point.

Usually checkpoints are taken periodically. The checkpoint interval is a optimization

parameter. More frequent checkpointing incurs higher bottom line overhead, which

is the overhead no matter failures occurs or not. Checkpointing/restart can be

implemented at the system level or the user level. In system level checkpointing, the

operating system provides the checkpointing functionality, the user is not required to

put any effort to obtain resilience for the application. An example of system level

checkpoint/restart implementation is the Berkeley Lab Checkpoint/Restart (BLCR)

for LINUX [41]. User level checkpointing calls for more user effort. It is the user’s

responsibility to decide when to checkpoint and what content to checkpoint. In order

to do this the user need to understand the code and modify the code to gain fault

tolerance.

The checkpointing technique works well on a broad range of applications, but for

certain class of codes, we can do better using algorithm based fault tolerance (ABFT).

Algorithm based fault tolerance was brought forward by Huang and Abraham [55] and

later gained interest from more researchers. Like the checkpoint/restart technique, the

ABFT technique also keeps redundant data for error correction. There are two main

differences between checkpoint/restart and ABFT. Firstly, unlike checkpoint/restart

which stores redundant data (checkpoints) to stable storage (slow), ABFT stores

redundant data in main memory (fast). The average access time of hard drives

is 200 times slower than the average DRAM. Secondly, the redundant data in

ABFT are mathematically computed from the application data, and the mathematical

relationship between the redundant data and the application data is kept an invariant
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through modest computation. The size of redundant data is small. Whereas

the redundant data in checkpoint/restart are simply a copy of the application

data. ABFT is naturally suitable for numerical software whose main operations are

mathematical operations.

Matrix factorizations are critical building blocks of many scientific codes. They

often run for a prolonged period of time, hence are easily exposed to interrupts.

Researchers have been trying to incorporate ABFT into parallel matrix factorizations.

ABFT enabled versions of the three most important one-sided matrix factorization

algorithms (LU, QR, Cholesky) have been developed. Compared with one-sided

factorizations, it is harder to protect two-sided factorizations (Hessenberg, tridiagonal,

bidiagonal) with ABFT because two-sided factorization algorithms are more complex

and more effort is needed to capture the algorithm properties in order to use ABFT

to provide resilience for them.

In this chapter we present a fault tolerant parallel tridiagonal reduction algorithm

with ABFT. The tridiagonal reduction of a dense matrix is the first step in solving

the symmetric eigenvalue problem. The eigenvalue problem is encountered very

often in structural mechanics and electrodynamics. The eigenvalues are related to

the resonance frequencies of systems, the eigenvectors are related to the invariant

probability measures of stochastic processes [24, 12]. The tridiagonal reduction

algorithm for real matrices is implemented as DSYTRD in LAPACK [1], as

PDSYTRD in ScaLAPACK [8]. The tridiagonal reduction stage is the most

time consuming step in solving the symmetric eigenvalue problem. Providing fault

tolerance to the tridiagonal reduction stage can greatly improve the chance of

completing the symmetric eigenvalue problem on large scale computers.

The main contribution of this chapter is a ABFT enabled parallel tridiagonal

reduction algorithm as implemented in ScaLAPACK. The tridiagonal reduction

algorithm proceeds in a panel factorization–trailing matrix update loop. We protect

the factorization using checksums. Checksums are appended to the right side of the

original matrix and are updated the same way as the trailing matrix update in the
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non-ABFT tridiagonal reduction algorithm. We prove that the appended checksums

remain valid at the end of each loop iteration. When a process failure strikes, we

subtract matrix elements from the corresponding checksum, this way data on the

failed process are recovered. In ScaLAPACK the upper (or lower, depending on user

preference) is not accessed in order to save computation and data movement, so the

upper (or lower) half of the matrix contains invalid data after the factorization starts.

However, the checksums are valid assuming both the upper and lower triangle of the

matrix contain valid data. Before we recover the lost data, we fill up the necessary

part in the upper triangle using data from the lower triangle. We can do this because

the trailing matrix is always symmetric.

The rest of the chapter is organized as follows: we give a description of algorithm

based fault tolerance and its integration in linear algebra software in section 4.2.

In Section 4.3 we list our contributions. In Section 4.4 we explain the tridiagonal

reduction algorithm as implemented in ScaLAPACK, the data distribution pattern

in ScaLAPACK and the type of failure our fault tolerant algorithm is meant to

deal with. Section 4.5 is devoted to the ABFT enabled fault tolerant tridiagonal

reduction algorithm. In Section 4.6 we analyze the asymptotic computation overhead

and storage overhead of the fault tolerant algorithm.

4.2 Related Work

ScaLAPACK [8] is a widely used software package which contains distributed dense

linear algebra routines. ScaLAPACK is available on virtually all distributed memory

high performance computers. The reference implementation of ScaLAPACK is

available on netlib. Major computer vendors usually offer optimized versions of

ScaLAPACK for their own machines. For example, Cray’s scientific computing

package libsci contains a version of ScaLAPACK optimized for Cray machines.

There has been very few work to protect the tridiagonal reduction algorithm.

Early work on the fault tolerant symmetric eigenvalue problem focused on systolic
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arrays [25]. A systolic array is a group of data processing units connected together

through a mesh network. Each data processing unit performs some operation on one

data element at a time. Data flow through the network of processing units much

like the pulsing blood flow in the human body driven by the heart, hence the name

systolic array. Systolic array is an interesting architecture, but it is not commonly

seen nowadays.

Later, in the 1990s, Kim et. al. [60] designed a fault tolerant scheme for the

Hessenberg reduction which is the first step of solving the nonsymmetric eigenvalue

problem. Their scheme works in a distributed memory environment. The algorithm

takes a checkpoint of the matrix at the end of each iteration. The checkpoint is in

the form of the sum of data blocks on different nodes, this sum is called a checksum.

Upon a failure, the algorithm rolls back to the end of the previous iteration using

reverse computation, then uses the checksum to recover the failure. The advantage

of their method is that they uses checksums as a in-memory checkpoint which not

only reduces the size of the data to bookkeep but also saves frequent disk accesses.

The drawback is that in their method the checksums need to be recalculated in every

iteration. This brings extra synchronization cost and data transfer cost.

The regular checkpoint/restart technique can also be applied to the tridiagonal

reduction algorithm, but no implementation has been done.

The Algorithm Based Fault Tolerance (ABFT) technique is a narrow spectrum

fault tolerance method. When applicable ABFT can provide failure protection for the

target algorithm at extremely low cost. Huang and Abraham [55] first used ABFT

to protect matrix-matrix multiply. The basic idea is to encode the input matrices A,

B and C with checksums, the checksums are appended to the input matrices to form

extended input matrices. The matrix-matrix multiply is carried out as usual on the

extended input matrices. Based on the proof in their chapter, the checksums in the

resulting extended matrix are still valid checksums. Based on this valid checksum

relationship, faults can be detected and corrected. Later the ABFT technique for

LU, QR and Cholesky factorizations have been developed for soft errors on systolic
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arrays. It is hard to capture the algorithm characteristics in matrix factorizations to

design algorithm based fault tolerant algorithms for them.

In recent years the ABFT technique is revisited and ABFT enabled matrix

factorizations are designed for large scale distributed supercomputers. Many of these

new ABFT algorithms are based on the ScaLAPACK package. Unlike systolic arrays,

large scale supercomputers have much more processors and each processor operates

on a data set instead of a single element as in systolic arrays. This complexity calls for

a new design of the ABFT scheme. All of the three one-sided matrix factorizations

are protected against process failures: Du [36] designed ABFT based LU and QR

factorizations, Chen [51] designed ABFT based Cholesky factorization.

4.3 Contribution

We proved the checksum relationship, designed a fault tolerant algorithm, imple-

mented our design, and gave an analysis on the overhead of our algorithm:

• Invariant checksum relationship We proved the invariant checksum rela-

tionship throughout the factorization.

• ABFT based tridiagonal reductoin algorithm We designed a fault tolerant

tridiagonal reduction algorithm fully based on ABFT. The panel scope is also

protected by checksums.

• Overhead analysis We provided a thorough analysis on the overhead of

our fault tolerant tridiagonal reduction algorithm. The analysis shows the

asymptotic performance overhead and asymptotic storage overhead approach

0.
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4.4 Background

Before we explain our fault tolerant tridiagonal reduction algorithm, it is important to

understand how the non-fault tolerant version of the algorithm works in ScaLAPACK.

4.4.1 2D block cyclic data distribution

ScaLAPACK operates on dense matrices on distributed memory machines. Data are

stored on different processors in a two dimensional block cyclic fashion. Processors

are arranged into a two dimensional P × Q grid (P rows and Q columns). Matrices

are partitioned into blocks, these blocks are then distributed to the P ×Q processor

grid in a 2D block cyclic manor as shown in Figure 4.1. In this example the available

processors are arranged into a 2 × 3 processor grid, each color represents a different

processor. Figure 4.1(a) shows the global view of the matrix when it is distributed

over a 2× 3 process grid. Figure 4.1(b) shows each process’s view of the data. Data

blocks owned by one processor are assembled to a local matrix, this local matrix is

stored contiguously in each process’s memory. Each process stores a matrix descriptor,

based on this descriptor a process can compute the global position of a local data block

given its local position. Global position can be converted to local position based on

this descriptor. 2D block cyclic data distribution scheme has several advantages [8].

Firstly, it has good load balancing properties. Matrix data are distributed evenly

across all available processors. As the computation proceeds, data participating in the

computation are still evenly distributed. Secondly, this distribution scheme enables

the use of Level 3 BLAS on the local matrix. Level 3 BLAS operations are well

optimized and has the highest flop:word ratio. Lastly, this distribution scheme has

good scaling properties.
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(a) Matrix View (b) Process View

Figure 4.1: A matrix mapped to a 2× 3 process grid.

4.4.2 Tridiagonal Reduction

The tridiagonal reduction algorithm of a dense matrix is used in solving the symmetric

eigenvalue problem. Solving the symmetric eigenvalue problem Ax = λx (A is

symmetric) means to find the decomposition A = QΛQ−1 where Λ is diagonal with

Λii being the i-th eigenvalue of A, Q is composed of the eigenvectors of A with Q(:, i)

being the eigenvector associated with Λi. A = QΛQ−1 is also called the spectral

decomposition of A. The symmetric eigenvalue problem can be solved using the

power method or the QR algorithm. These two methods are usually too expensive in

practice. So instead, an adapted QR algorithm is commonly used. First the matrix A

is reduced to tridiagonal form using orthogonal similarity transformation UTAU = T .

Similarity transformations preserve eigenvalues, so T has the same eigenvalues as A.

The eigenvalues and eigenvectors of the tridiagonal form T can be found much more

easily than the eigenvalues and the eigenvectors of A [73, p. 119]. Then it is easy to

compute the eigenvectors of the original matrix A using U and the eigenvectors of T .

The reduction of matrix A to tridiagonal form can be achieved using Householder

reflections. We can find a Householder matrix U1 so that A1 = UT
1 AU1 is tridiagonal

in the first column and the first row. We continue this process and find a sequence

of Householder matrices U2, U3, . . . Un so that (U1U2U3 . . . Un)TA(U1U2U3 . . . Un) =

An = T is in tridiagonal form. Implementing this process on a computer yields

poor performance because it involves a lot of matrix-vector multiplies. Matrix-vector

multiply is a BLAS 2 operation which have low performance on computers with a
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hierarchical memory system. ScaLAPACK’s tridiagonal reduction routine PDSYTRD

implements a blocked version of the aforementioned Householder transformation

method.

4.4.3 Blocked tridiagonal reduction

ScaLAPACK implements blocked version of the tridiagonal reduction algorithm. The

blocked version is rich in BLAS 3 operations which have high flop:word ratios and

are highly optimized on common computer architectures. In the blocked version, the

input matrix A is partitioned into block columns of width nb. Householder reflectors

from nb columns are accumulated then applied to the trailing matrix all at once.

Algorithm 4 is the ScaLAPACK tridiagonal reduction algorithm. PDSYTRD

Algorithm 4 PDSYTRD

1: for every panel do
2: PDLATRD on the panel, return V and W
3: PDSYR2K: trail(A) = trail(A)− VW> −WV T

4: end for

reduces a panel of nb columns of A to tridiagonal form. PDSYR2K performes a rank

2 update on the trailing submatrix. Algorithm 5 shows the operations performed by

PDSYTRD. Figure 4.2 shows the memory footprint of one iteration of Algorithm 4.

Algorithm 5 PDLATRD

1: for the i-th column of the panel P (i from 1 to nb) do
2: Compute the Householder vector vi which annihilates P (i+ 2 : end, i)
3: Compute

xi = τ(A(1)vi −Wi−1(V
T
i−1vi)− Vi−1(W T

i−1vi))
4: Compute wi = xi − τvi(vTi xi)/2
5: If i < nb, update the i+ 1-th column of P
6: end for

Figure 4.2(a) is the beginning the iteration. PDSYTRD takes advantage of the

symmetry of A, only the lower triangular part of A is accessed and modified. The

strictly upper triangular part of A (light blue) is not accessed by PDSYTRD and
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remains unchanged through out the factorization. The green part is the factorized

part, the red part on the right is the trailing matrix to be factorized. Figure 4.2(b) is

the panel factorization. A panel of nb columns is reduced to tridiagonal form. The

green part inside the panel stores the Householder vectors. Figure 4.2(c) is the rank

2 update to the trailing matrix. Taking advantage of the symmetry of the trailing

matrix, only the lower triangular part is read and modified. Figure 4.2(d) is the state

of the matrix at end of the iteration. This state is similar to the state at the beginning

of the iteration, only that now the trailing matrix is nb columns smaller than that at

the beginning of the iteration.

(a) Beginning of iteration

PDSYTRD

(b) Factorize the panel

PDSYTRD

PDSYR2K

(c) Rank 2 update

(d) End of iteration

Figure 4.2: One iteration of PDSYTRD

4.4.4 Failure model

Failures encountered in computer systems can be caused by various sources. They

could be caused by hardware failures, software faults, cosmos rays or system

overheating. Regardless of the cause, based on the effect of the failure we divide
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? ? ?

? ? ?

? ? ?

? ? ?

Figure 4.3: Global view of the matrix when a process fails.

failures into two categories: hard errors and soft errors. If a failure is perment (process

crash, hardware malfunctional) and will be noticed by the system, we consider this

failure a hard error. If a failure is transient and goes unnoticed by the system, we

consider the failure a soft error. In this chapter we deal with hard errors.

In the case of PDSYTRD, a process failure will cause the data residing in that

process to be lost. Figure 4.3 shows the status of the matrix in Figure 4.1(a) when

one process fails. A White bloc with a question mark in it is a lost data block after

the process fails. At this point the runtime is notified that a process has been lost.

Measures have to be taken in order to proceed with the computation.

4.5 The Fault Tolerant Algorithm

In this section we describe our fault tolerant tridiagonal reduction algorithm. The

main idea of our algorithm is to append checksums to the original matrix. These

checksums can be updated through meaningful mathematical operations, so the

checksums can be maintained with very little overhead.

4.5.1 Initial checksum setup

In our algorithm we use two sets of checksums: column checksums at the bottom

and row checksums on the right. The checksums are appended to the input matrix

to form an extended matrix. The extended matrix is distributed over the original

process grid in the 2D block cyclic fashion. In this layout, the distribution of the
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original matrix data is exactly the same as in the case without the checksum data. In

other words, if a process is assigned some data blocks of the matrix data in the stock

ScaLAPACK PDSYTRD routine, this process will be assigned exactly the same

data blocks of the original matrix plus some checksum blocks in our fault tolerant

algorithm. Figure 4.4 shows the arrangement of the checksums of a matrix distributed

over a 2× 3 process grid. Colored blocks in the two graphs are data blocks belonging

to the original matrix, white blocks are checksums appended to the original matrix.

In Figure 4.4(a) is the global view of the extended matrix. In the global view the

checksum blocks are located to the right and at the bottom of the original matrix.

In this small example the number of checksum blocks seems relatively big comparing

with the number of data blocks in the original matrix. But we will explain later that

the proportion of the checksum blocks decreases to negligible when the process grid

increases. The way the row checksums are calculated is as following: the first data

block belonging to the same block row on each process are added together element-

wise to form a checksum block. This checksum block is duplicated and stored next to

itself. Since the checksum blocks are also distributed in the 2D block cyclic fashion,

keeping two copies of the same checksum block next to each other ensures that these

two checksum blocks will be assigned to two different processes. The benefit of this

is that if one copy of the checksum block is lost due to a process failure, we still have

another copy. Figure 4.4(b) shows the matrix from each process’s perspective. In

addition to the original matrix data (colored blocks), each process is assigned some

checksum blocks (white blocks). Again, in this small example the checksum blocks

seem a lot compared to the original blocks. But in reality when the process grid is

large and the input matrix is large, the proportion of the checksums becomes very

small.

58



sum copy

sum

copy

(a) Matrix View

(b) Process View

Figure 4.4: An encoded matrix mapped to a 2× 3 process grid.
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4.5.2 The fault tolerant algorithm

If a matrix is distributed over a process grid of size P ×Q where P is the number of

rows and Q is the number of columns of the process grid, and the current iteration

is factorizing the i-th block column, we define the panel scope as the group of Q

block columns from the b i
Q
c-th block column to the (b i

Q
c+Q− 1)-th block column.

Algorithm 6 shows our fault tolerant tridiagonal reduction algorithm. Line 1 computes

the initial row checksums and column checksums. Before the factorization starts, the

matrix is a symmetric matrix, the upper triangular part contains valid data. The

initial checksum calculation is based on the entire matrix. After the factorization

starts, the upper part of the matrix is not modified, it contains invalid data. But

the checksums are updated in such a way that the checksums still encodes the entire

symmetric matrix. That is to say if we replace the invalid upper triangular part of

the matrix with valid data then compute the checksums, the checksum will equal the

checksums we keep at the bottom of the matrix. Starting from line 2 the algorithm

enters the factorization-update loop. In line 3 each process which owns a block

column of the panel scope makes a local copy of that block column. This local

copy will be used to recover lost data blocks inside the panel scope. Line 4 calls

FT-PDLATRD to factorize the panel. FT-PDLATRD is a modified version of

the stock PDLATRD routine in ScaLAPACK. It does everthing PDLATRD does,

it also generates the checksums for the output V and W . We denote V and the

checksums of V together as Vc. Similarly we denote W and the checksums of W

together as Wc. Line 5 through line 7 recover from failures occurred during the panel

factorization. Line 8 calls FT-PDSYR2K to apply a rank-2 update to the trailing

matrix Ae. If a process failure occurs, line 9 through line 11 calls the routine Recover

to recover data lost due to the failure.

Algorithm 7 is our modified panel factorization routine. It is very similar to the

stock PDLATRD routine. The difference is that when computing the Householder

vectors, FT-PDLATRD also scales the checksum part of the column so that the
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resulting vi is checksum protected. The output W is also checksum protected when

FT-PDLATRD finishes. Notice that the checksums of V and W are updated

through mathematical operations (GEMV and vector scaling). This approach to

get the checksums is highly efficient comparing with performing a global reduction

on the current panel.

Algorithm 6 Fault Tolerant Tridiagonal Reduction

1: Calculate the column checksum of the input matrix A, get Ae

2: for each i in d N
nb
e iterations do

3: Each process which owns part of the current panel makes a local copy of its
own part of the panel

4: Call FT-PDLATRD on the panel, return Vc and Wc

5: if failure occurs then
6: Call Recover to recover from the failure
7: end if
8: Call FT-PDSYR2K, apply a block rank-2 update:

A
(i+1)
e = A

(i)
e − VcW T −WcV

T

9: if failure occurs then
10: Call Recover to recover from the failure
11: end if
12: end for

Algorithm 7 FT-PDLATRD

1: for the i-th column of the panel P (i from 1 to nb) do
2: Compute the Householder vector vi which annihilates P (i+ 2 : N, i)
3: Update the checksum of the i-th column P (N + 1 : end, i)
4: Compute

(xe)i =

τ(A
(1)
e vi − (We)i−1(V

T
i−1vi)− (Ve)i−1(W

T
i−1vi))

5: Compute (we)i = (xe)i − τ(ve)i(v
T
i xi)/2

6: If i < nb, update the i+ 1-th column of P
7: end for

4.5.3 The invariant checksum relationship

In this section we prove the invariant checksum relationship which is the foundation

of our ABFT algorithm.
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Theorem 2. The column checksums for block columns are valid at the end of each

iteration.

Proof. We use the phrase current panel to refer to the block column currently being

factorized in the iteration. Our proof is based on mathematical induction. The proof

uses Algorithm 6 as a reference. e is an all-one column vector (1, 1, . . . , 1).

1. Before the factorization the checksum blocks at the bottom of the original

matrix are valid, because they are newly computed.

2. Assume the checksum blocks are valid before Algorithm 6 enters the i-th

factorize-update loop, the checksum blocks are still valid before it enters the

(i+ 1)-th factorize-update loop.

(a) In the factorize-update loop, when the panel factorization is finished

(line 4), the checksum blocks at the bottom are valid. The checksum

blocks for the current panel have been updated to be valid according to

Algorithm 7. The checksum blocks at the bottom for the trailing matrix

have not been modified since the last iteration, so they are also valid.

(b) After the rank-2 update to the trailing matrix, the checksum blocks at the
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bottom of the trailing matrix are still valid.

A(i)
e − VcW T −WcV

T

=

 A(i)

eTA(i)

−
 V

eTV

 ·W T −

 W

eTW

V T

=

 A(i)

eTA(i)

−
 VW T

eTVW T

−
 WV T

eTWV T


=

 A(i) − VW T −WV T

eTA(i) − eTVW T − eTWV T


=

 A(i) − VW T −WV T

eT (A(i) − VW T −WV T )


=

 A(i+1)

eTA(i+1)


3. By mathematical induction the checksum blocks are valid at the end of each

factorize-update iteration.

4.5.4 Protecting the upper triangular matrix

In PDSYTRD the strictly upper triangular matrix is not accessed. On exit, the

upper triangular matrix contains the same data as on entrance. In our fault tolerant

algorithm we also maintain this behavior. This is where checksums on the right side

come into the play. Before the factorization starts, we compute row-wise checksum

blocks and store the checksum blocks on the right side of the original matrix. These

checksum blocks only encodes the strictly upper triangular part of the matrix, each

checksum block is duplicated and two copies of the same checksum block are stored

next to each other horizontally. These checksum blocks are not accessed or changed
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once they are computed. Once an failure occurs, a simple subtraction can recover the

lost data block in the input matrix.

4.5.5 Recovery

At the end of the i-th iteration the state of the data matrix and the state of the

checksum blocks are shown in Figure 4.6. Figure 4.6(a) is the state of the data matrix.

The green part is the factorized part, it contains the Householder vectors. The light

blue area is the untouched part. The red part is the trailing matrix. Figure 4.6(b)

shows the left part of the bottom checksum blocks. The gray area at the bottom

is the checksum blocks. The boxed gray area encodes the boxed green part. In

Figure 4.6(c) the boxed gray part mathematically encodes the boxed the red part. In

the ScaLAPACK implementation only the lower triangular of the boxed red part is

stored. Figure 4.6(d) shows the checksum blocks on the right of the matrix encoding

the upper triangular part of the data matrix. These checksum blocks are computed

and written once, they are never changed ever since.

We partition the matrix into three areas (see Fgure 4.5) based on the state of the

matrix. Each area needs to be treated differently in failure recovery. When a process

Area%1%

Area%2%

Area%3%

Figure 4.5: Partition for recovery

failure occurs, the Recovery procedure goes as follows:

1. Recover the runtime. Replace the dead process with a substitute process.
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2. If any checksum block is lost, recover it using the other copy of the lost checksum

block.

3. For area 1:

(a) If the failure occurred during the panel factorization, all processes who

own part of the current panel recover the lost blocks in the snapshot.

The snapshot is checksum protected, so the lost blocks can be recovered

using the checksums. Then copy the snapshot into the data matrix and

re-factorize the panel. Recover the rest of area 1 using the checksums on

the bottom.

(b) If the failure did not occurred during the panel factorization, recover lost

data blocks in area 1 using the checksums on the bottom.

4. For area 2, use the checksum blocks on the bottom to recover lost data blocks in

area 2. The checksums on the bottom of area 2 encodes area 2 and the transpose

of area 2. The algorithm retrieves data blocks from the lower triangular matrix

to fill in the data blocks in the upper triangular matrix (see Figure 4.7). Then

the checksums on the bottom can be used to recover the missing data block

(the white block in Figure 4.7(b)).

5. Fore area 3, use the checksum blocks on the right to recover lost data blocks

belonging to area 3.

When we say recover a lost data block using the checksum block, we mean to first

compute a new partial checksum of the data blocks on the live processes, then the lost

data blocks can be obtained by subtracting the partial checksum from the checksum

maintained during the factorization.
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(a) End of iteration (b) Checksums for V (c) Checksums for the
traling matrix

(d) Checksums for the upper
triangular part

Figure 4.6: State of the matrix after the i-th iteration

Area%2%

(a) One block lost in Area 2 (b) Copy blocks from the
lower triangle

Figure 4.7: Partition for recovery
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4.6 Complexity analysis

We analyze the complexity of the fault tolerant tridiagonal reduction algorithm

in three aspects: storage overhead, communication overhead, and computation

overhead.

In this section, N is the size of the input matrix. nb is the blocking factor in the

2D block cyclic data distribution. P is the number of rows in the processor grid, Q

is the number of columns in the process grid.

Storage cost comes from the space for the checksum blocks, the storage for the

snapshot of the current panel scope, and the storage for the buffer used in step 4 of

the Recovery process.

The amount of storage for the checksum blocks at the bottom is

2

⌈
N

nb

/
P

⌉
N

nb
nb2

The amount of storage on the right of the input matrix is

2

(
N

nb
+ 2

⌈
N

nb

/
P

⌉)⌈
N

nb
/Q

⌉
nb2

The amount of storage for the snapshot is at most

(
N + 2

⌈
N

nb

/
P

⌉
nb

)
Qnb

Adding them all together we have the total amount of extra storage:

2
N2

P
+ 2

N2

Q
+ 4

N2

PQ
+NQnb + 2

NQnb

P

If we compute the ratio between the extra storage needed by the fault tolerant
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algorithm and the storage needed by the non fault tolerant algorithm, we get:

2

P
+

2

Q
+

4

PQ
+
Qnb

N
+

2Qnb

NP

The blocking factor nb is a relatively small number (in the hundreds). The number

of rows P and the number of columns Q are close to each other, and they are smaller

than N by several orders of magnitude. So we can denote the storage overhead as:

O

(
1

P
+

1

Q
+

1

PQ
+
Q

N
+

1

N

)

The biggest term Q/N comes from the snapshot for the current panel scope. The

total asymptotic storage overhead is very small.

The sources of computation overhead comes including generating the initial

checksums, maintaining the checksums, and computation involved in the recovery

procedure.

The initial checksum generation costs

N2

P
(P − 1)

FLOPS. The additional FLOPS caused by updating the checksums during the panel

factorization is

dNP e−1∑
i=0

2

(
N

P
− bi/P c · nb

)
[2 (N − i · nb)− 1]

+ 2

dNP e−1∑
i=0

2

(
N

P
− bi/P c · nb

)
(2nb − 1)

=
4N3

3Pnb
+O(N2)

The additional computation needed to maintain the checksum blocks at the
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bottom is

2 ·
dNP e−1∑

i=0

2 · 2
(
N

P
− bi/P c · nb

)
[(N − i · nb)] nb

+

dNP e−1∑
i=0

2

(
N

P
− bi/P c · nb

)[
(N − i · nb)

]
=

(8nb + 2)N3

3Pnb
+O(N2)

Adding these two costs together we have the total computation cost to maintain the

checksum blocks at the bottom of the original matrix:

(8nb + 6)N3

3Pnb
+O(N2)

The additional FLOPS involved in recovering from a failure is N2.

The computation complexity of the original parallel tridiagonal reduction algo-

rithm is 4/3N3 FLOPS. So the computation overhead of the fault tolerant algorithm

is:

(2nb + 3)

2Pnb
+O

(
1

N

)
=

1

P
+

3

2Pnb
+O

(
1

N

)

As the number of process rows increases, the ratio of the computation overhead

diminishes.

The extra communication caused by the fault tolerant algorithm only contains two

components: communication during the initial checksum setup and communication

during the recovery from a failure. The amount of data transferred between processes

is N2, the entire matrix. Each process owns N/(nb · P ) block rows. Assuming the

time cost to perform a reduction operation on one block row among the P processes

in the same process column is TP , the total time cost to generate the initial checksums
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is

TP ·N
nb · P
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Chapter 5

Hessenberg Reduction with

Transient Error Resilience on

GPU-Based Hybrid Architectures

5.1 Introduction

A transient error is an error in a signal or data element which is temporary, and

caused by factors other than permanent component failures. Many phenomena have

been blamed for transient errors, ranging from alpha particles from package decay, to

cosmic rays and thermal neutrons. Cosmic rays were shown to be the most prevalent

source of transient errors among these sources [96]. While transient errors may happen

at different levels in the hardware hierarchy, such as communication links or digital

logic, the most common situation is in the semiconductor storage.

Both GPUs and traditional CPUs, and their associated memory, are prone to

transient errors. CPU designs increasingly scale the number of cores and the

memory hierarchies in order to provide more processing ability. Along with increasing

transistor density, newer CPU designs also adopt faster clock frequency and lower

voltage. More transistors per unit area means the size of each transistor gets
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smaller. A smaller feature size, combined with lower voltage to maintain transistor

states, makes the transistor state easier to change, and therefore more vulnerable

to external factors that might change the state. The critical charge Qcrit, which is

the lowest electron charge needed to change the logical level, decreases as the chip

feature size decreases. Higher transistor density also causes higher heat density which

brings more thermal neutrons which contribute to transient errors as well. General

Purpose Graphics Processing Units (GPGPUs) are gaining popularity in the scientific

computing community due to the sizable acceleration they provide to computation

intensive applications. A significant percentage of the acceleration is due to the

large amount of data processing transistors inside the GPGPUs, where the number

of transistors follow a even more drastic increase than in the CPU. As the evolution

of the conventional processors and accelerators follows similar trends, the presence

and frequency of transient errors have comparable progression and identical effect,

becoming a disturbance to application developers.

Transient errors are also becoming a challenge for the applications. Both CPU

main memory and GPU memory are DRAMs (Dynamic Random-access Memory).

The measurement unit of soft error rate (SER) is Failure in time (FIT), and one FIT

is one soft error in 109 device hours. Baumann [4] has reported that the SER of

DRAM is between 1k FIT/chip - 10K FIT/chip range, and stays at the same level

over 7 generations of DRAMs. Similarly, Jacob et al. [56] reported that at the 130

nm process SRAM memory exhibits a 100k FIT/chip. Michalak et al. [70] reported

that the ASC Q supercomputer at Los Alamos National Laboratory experienced an

average of 51.7 soft errors per week over a period of 7 weeks from September 2004

to October 2004. More recently, Haque et al. [52] assessed the probability of soft

errors in NVIDIA GPUs using a benchmark called MemtestG80. They ran the test

on 50000 GPUs and found that about 60% of the GPUs have a soft error probability

(per test iteration) higher than 1× 10−5.

Useful science is based on facts, on experiments that can be replicated and results

that can be trusted and verified. A single soft error can have a major impact on
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the outcome of any computation as it can drastically alter the results, and thus

the understanding of the analyzed phenomenon. In the extremely volatile execution

environments we will encounter in the very near future, it is critical that the pillar of

scientific applications, the notion of trust in the scientific outcome, is not undermined.

This requires the data and the result to be carefully validated to ensure it matches the

experiment, and it has not been altered during the computational phase. Ensuring

this property is a difficult task if we are bound to generic methodologies. Fortunately,

some of the most widely used algorithms have inherently properties that can be

advantageously exploited in fulfilling this need.

In this chapter, we design and implement a soft error resilient Hessenberg

reduction algorithm for GPU enabled hybrid architectures. We take advantage of

diskless checkpointing, ABFT, and reverse computation techniques to achieve soft

error resilience while introducing very little overhead compared to the non fault

tolerant Hessenberg reduction. We further minimize the overhead by carefully

overlapping workloads on the host side and the GPU side. Unlike the post-processing

scheme for LU and QR in [37, 38, 39], our algorithm detects soft errors at the end

of each iteration. Once detected, the errors are corrected right away, preventing

the errors from propagating and contaminating other matrix elements. While the

above mentioned post-processing scheme can only correct up to two soft errors total

during the course of the entire LU or QR factorization, our fault tolerant Hessenberg

algorithm can detect and correct more than one simultaneous soft error, assuming

that the error positions in the matrix do not form a rectangle. Once the algorithm

has corrected the simultaneous errors, it continues as normal and is ready to detect

and correct subsequent soft errors as they occur.

The remainder of the chapter is organized as follows: in Section 5.2 we survey

related work, then in Section 5.3 we explain the Hessenberg reduction algorithm and

its implementation in the MAGMA framework. Section 5.4 describes our soft error

resilient hybrid Hessenberg reduction algorithm in detail. Section 5.5 gives a formal

analysis on the performance overhead of the fault tolerant algorithm. Section 5.6
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presents the experiment results of the algorithm and provides a theoretical analysis

for the performance. Section 5.7 summarizes our work.

5.2 Related work

Plank et al. [60] presented a fault tolerant technique based on checksum and reverse

computation for matrix computations on networks of workstations (NOWs). Their

scheme tackles node failures instead of soft errors. A checksum of each processor’s

local matrix data is stored in main memory and regenerated periodically. When a

node failure happens, the live processors reverse the computations that occurred after

the failure so that the matrix data and the checksum are consistent with each other.

Then the lost data on the failed processor are recovered using the checksum and

the data on the live processors. Chen and Abraham [25] devised methods to detect

and locate faulty processors in the computation of eigenvalues and singular values on

systolic arrays. Their methods take the special properties of eigenvalue computation

and singular value computation into consideration to make the detection of errors

very efficient.

While the field of fault tolerance was dominated for years by solutions to address

hard errors, with the increase in the number of computing components, the impact of

soft errors has attracted significant attention, especially in linear algebra. Based on

the ABFT idea [54, 64, 65], Du et al. [37, 38] proposed an algorithm to tolerate soft

errors in the High Performance LINPACK Benchmark (HPL) [33]. Their approach

can compute the correct solution vector to Ax = b in the presence of one or two soft

errors over the course of the factorization. Du et al. [39] also designed a scheme to

tolerate soft errors in the QR factorization on hybrid systems with GPGPUs. At

most, one soft error can be tolerated in this fault tolerant hybrid QR algorithm.

Both the HPL fault tolerant scheme and QR fault tolerant scheme adopt a post

processing approach in which the erroneous result is corrected through post processing

after the regular factorization. Bronevetsky and Supinski [18] studied the impact of
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soft errors on iterative linear algebra methods. They found that iterative methods

are vulnerable to soft errors as well and exhibit poor soft error detection abilities.

In [81], Shantharam et al. analyzed the propagation pattern of soft errors in iterative

methods by modeling the iterative process with a sequence of sparse matrix-vector

multiplication (SpMV) operations. In [82], Shantharam et al. proposed a soft error

tolerant preconditioned conjugate gradient algorithm for sparse linear systems. Their

method adapted the algorithm based fault tolerance technique to sparse linear systems

and achieved an overhead of 11.3% when no soft error occurs. Chen and Abraham [25]

designed a concurrent error detection scheme for transient errors in the computation

of eigenvalues on systolic processor arrays using the QR algorithm [47, 85] (not to

be confused with the QR factorization). Cao et al. [20] designed a soft error resilient

task-based runtime with three options to achieve fault tolerance.

In [75] Plank et al. first introduced the idea of diskless checkpointing which

eliminates the disk access bottleneck in the traditional checkpointing technique. In

the traditional checkpointing technique, checkpoints are stored to secondary stable

memory, usually in the form of hard drives. Since disk accesses are very slow compared

to floating point computation, frequently writing checkpoints to disk incurs a big

overhead. With diskless checkpoint, the checkpoints are stored in main memory

instead of hard disk. Main memory access is much faster than hard drive access, so

diskless checkpointing can greatly reduce the memory access overhead.

Jia et al. proposed a fault tolerant algorithm for the parallel Hessenberg

reduction [57], dealing with fail-stop scenarios (hard errors) in the context of

distributed memory machines. Process failures can be tolerated using the ABFT

technique, encoding and replicating the checksums to allow for inter-process data

recovery. Our work is different from [57] in at least three major aspects. First, our

algorithm is designed to tolerate soft errors. Soft errors are silent, they change the

content of a memory location without triggering drastic responses from the OS. Unlike

hard errors, which will be reported by the execution environment and must be dealt

with in a more holistic way, soft errors need to be actively detected and prevented from
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propagating. Second, our algorithm works on CPU-GPU hybrid platforms instead of

distributed memory machines. Third, our algorithm uses reverse computation to roll

back the trailing matrix update, making the error recovery easier and faster.

The Matrix Algebra on GPU and Multicore Architectures project (MAGMA) [88]

is a dense linear algebra library for hybrid architectures with GPUs. The library

provides equivalent functionalities to LAPACK [1] and uses block algorithms similar

to those of LAPACK. By scheduling workloads with different characteristics to CPUs

and GPUs, the hybrid algorithms are able to take advantage of both computational

units and gain considerable acceleration over their LAPACK counterparts. The hybrid

Hessenberg reduction algorithm in MAGMA also utilizes both CPUs and GPUs in

a hybrid system. This hybrid algorithm is adapted from the LAPACK algorithm in

order to separate workloads which are more suitable for GPUs from workloads that

are suitable for CPUs. Details of this hybrid algorithm will be explained in the next

section.

5.3 Hessenberg reduction on GPU enabled hybrid

architectures

In this section we describe the Hessenberg reduction algorithm and its variation as

implemented in MAGMA.

5.3.1 The Unblocked Hessenberg Reduction

A square matrix H in which all entries below the first subdiagonal are zeros is said

to be in upper Hessenberg matrix form. Reduction of a square matrix A to the

Hessenberg form H is an important intermediate step in the Hessenberg QR algorithm

which is used to compute the eigenvalues of A. Given a square matrix A, we apply a

76



sequence of orthogonal similarity transformations Qi to A:

H = Q−1n Q−1n−1 · · ·Q−12 Q−11 AQ1Q2 · · ·Qn−1Qn

let Q = Q1Q2 · · ·Qn−1Qn, we have:

H = Q−1AQ = QTAQ.

Qi is chosen to be the Householder reflector, which eliminates the elements below the

first subdiagonal in the i-th column of Q−1i−1 · · ·Q−11 AQ1 · · ·Qi−1.

5.3.2 The Blocked Hessenberg Reduction

The speed of the unblocked Hessenberg reduction algorithm on modern computers is

constrained by the latency of memory accesses. The blocked Hessenberg reduction

algorithm [76] greatly increased the arithmetic intensity by grouping nb Householder

reflectors and applying the group to A at the same time.

U1 = Q1Q2 · · ·Qnb = I − V TV T

where I is the identity matrix, V is an N × nb matrix composed of the Householder

vectors, and T is an nb × nb upper triangular matrix. This representation of U1 is

called the compact WY representation [79]. This representation requires less storage

to store U1 and enables the use of matrix-matrix multiplications in the factorization.

Matrix-matrix multiplications are desirable because of their high arithmetic intensity

and efficient implementation on modern computers with hierarchical memory systems.

Algorithm 8 shows the blocked Hessenberg reduction algorithm as implemented in

the LAPACK DGEHRD routine. trail(A) means the trailing submatrix in that

iteration.
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Algorithm 8 Blocked Hessenberg Reduction

1: for i from 1 to dN
nb
e do

2: DLAHRD, return V, T and Y where Y = AV T
3: DGEMM: trail(A) = trail(A)− Y V >
4: DLARFB: trail(A) = trail(A)− V T>V >trail(A)
5: end for

5.3.3 Hessenberg Reduction in MAGMA

The hybrid Hessenberg reduction algorithm in MAGMA is an adapted version of

Algorithm 8. Algorithm 9 shows the pseudocode for the hybrid Hessenberg reduction

algorithm [89]. The input matrix A is stored in LAPACK layout, and matrix elements

are stored contiguously in column major format. The matrix is logically divided into

block columns, each block column is of size N × nb. Upon completion, the matrix

entries below the first subdiagonal are overwritten with the final Q matrix and the

upper part of the matrix is overwritten with the final H matrix. The hybrid algorithm

executes all the updates to the trailing matrix on the GPU. The panel factorization

is assigned to the CPU, and the next panel to be factorized is transfered back to the

host when both the right update and left update from the previous panel have been

applied to it. Line 6 is an asynchronous data transfer, and control is returned to

the CPU immediately after the data transfer is issued so that the CPU can initiate

the next computation kernel. GPUs are able to do computation in parallel with

communication, and using asynchronous data transfer hides the time cost to transfer

the upper part of the current panel back to the CPU when it is updated and will not

be modified again. The two lines in Algorithm 9, shown in red, are overlapped with

each other.

Figure 5.1 visually illustrates one iteration of Algorithm 9; the computation

routine called in each step and the data it operates on are pointed out with a black

box. Figure 5.1(a) shows the state at the beginning of this iteration. The matrix

elements in the yellow triangle and in the green trapezoid are the final results of the

Q matrix and the H matrix, and they reside on the host side and will not be modified
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again. The red rectangle is the trailing matrix which will be factorized and updated

in this iteration. The first nb columns of the red part are called a panel which will

be factorized next. Figure 5.1(b) shows the panel factorization DLAHRD which

factorizes the lower part of the current panel. The yellow upper triangular matrix

is updated and contains the final results of H. The green trapezoid contains the

Householder vectors which are the final results in the Q matrix. Upon completion of

DLAHRD, both the yellow triangle and the green trapezoid are on the host side.

Figure 5.1(c) shows the right update on M . M is the part of the matrix marked by

the black box which consists of the upper part of the current panel and the upper

part of the trailing matrix. This step corresponds to line 5 of Algorithm 9. Upon

completion of this step, the nb× nb square matrix in yellow contains the final results

of H, and it will not be modified again. This square matrix is sent back to the host

side with an asynchronous data transfer. Figure 5.1(d) shows the right update to G.

The G matrix is the lower part of the trailing matrix marked by the black box. In

figure 5.1(e) the left update to G is applied through the DLARFB call. After the

DLARFB call, the matrix A has a smaller trailing matrix to be factorized in the

next iteration. Figure 5.1(f) shows the state of the matrix at the end of this iteration.

The rectangular matrix in red is the trailing matrix.

Algorithm 9 Hybrid Hessenberg Reduction

1: Transfer matrix: A on the host → d A on the GPU
2: for i from 1 to dN

nb
e do

3: Send the lower part of the next panel P to the host.
4: MAGMA DLAHR2, return V, T and Y

where Y = [P,G]V T
5: DGEMM: M = M −MV TV >

6: Send the leftmost nb columns of M to the host asynchronously.
7: DGEMM: G = G− Y V >
8: DLARFB: trail(A) = trail(A)− V T>V >trail(A)
9: end for
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(a) Beginning of iter-
ation

DLAHRD

(b) Factorize the
panel P

DLAHRD

DGEMM

(c) Right update to
M

DLAHRD

DGEMM

(d) Right update to G

DLAHRD

DLARFB

(e) Left update to G (f) End of iteration

Figure 5.1: One iteration of DGEHRD

5.4 Soft error resilient Hessenberg reduction algo-

rithm

5.4.1 Failure Model

In this work we consider soft errors, which are temporary faults in the data matrix,

where the factorization is oblivious to the error and continues as usual. Without loss

of generality, we assume only one error happens at a single point in time.

In the MAGMA Hessenberg reduction algorithm, both the CPU and GPU carry

out computation. The CPU is responsible for the panel factorization, and the GPU is
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responsible for the trailing matrix update. Both the CPU memory and GPU memory

contain part of the final result or intermediate data that are used to compute the

final result. The lower triangular matrix to the left of the current panel on the host

side contains part of the final result of the Q matrix. The upper triangular matrix

to the left of the current panel on the host side contains the final result of the H

matrix. On the GPU, the rectangular matrix to the right of the current panel contains

intermediate data that will be used to compute Q and H. Soft errors in either one

of these parts will cause the factorization to give an incorrect result. We need to

detect and correct soft errors in both the CPU memory and the GPU memory. The

algorithm we propose in this work combines the advantage of the ABFT technique and

the diskless checkpointing technique. The algorithm also uses reverse computation to

roll back the program data to a previous state.

Depending on the location of the soft error, an error has different impacts on

the result of the factorization. Figure 5.2 shows the impact of a soft error when it

happens in three different locations. In this example, the matrix size N is set to 158,

and the block size is 32. In all three figures, the soft error is injected when the first

iteration has finished, and the second iteration has not yet started. Figure 5.2(a) is

the partitioning of the matrix. Each of the following three figures shows the heat map

of the difference matrix between the error-free result and the result when an error has

happened during the factorization. Black means the difference is 0. Other colors mean

the difference is bigger than 0, with each color representing a magnitude range. In

Figure 5.2(b), the error occurs at location (53, 16). This location is marked by an x in

region 3 on the left in Figure 5.2(a). This error does not propagate as the factorization

proceeds. We can see that in the final result of the factorization there is still only

one incorrect element (shown as the white dot in the upper left part of the matrix).

In Figure 5.2(c), the error happens at location (31, 127). This location is marked by

an x in region 1 shown in Figure 5.2(a). This soft error propagates row-wise, and

pollutes the entire row in H when the factorization completes. In Figure 5.2(d), the

error occurs at location (63, 127). This location is marked by an x in region 2, shown
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Figure 5.2: Propagation pattern of errors at different locations

in Figure 5.2(a). An error in this region causes the most damage among the three

scenarios. When the factorization completes, almost all the elements after column 32

in H are polluted, and many elements after column 32 in Q are polluted.

5.4.2 Encoding the Input Matrix

To recover from an error we need redundant information. We add redundancy to

the input matrix by appending an extra column at the right side of the matrix, and

an extra row at the bottom of the matrix. An element in the extra column is the

summation of all the elements in the same row in the input matrix. Similarly, an

element in the extra row is the summation of all the elements in the same column of

the original matrix. Figure 5.3 shows the initial state of the encoded input matrix.

We define the following notations: Ar chk is the column of row checksums on the

right side of the original matrix; Ac chk is the row of column checksums at the bottom
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Column of row checksums

Row of column checksums

Figure 5.3: The encoded initial matrix

of the original matrix. Are is the original matrix appended with Ar chk on the right

side (re for rowwise encoded). Ace is the original matrix appended with Ac chk at the

bottom (ce for columnwise encoded). Afe is the original matrix appended with both

Ar chk and Ac chk (fe for fully encoded).

5.4.3 The Fault Tolerant Algorithm

In this subsection we present and explain our soft error tolerant Hessenberg reduction

algorithm. e is an all one vector: e = (1, 1, · · · , 1, 1)>. Algorithm 10 is the pseudocode

for the fault tolerant algorithm.

The input matrix resides on the host side when the algorithm begins; in

Algorithm 10 line 1 sends the input matrix to the GPU. Line 2 encodes the input

matrix to obtain Afe. Starting from line 3 the algorithm enters a for loop, this for

loop iterates over the block columns of A. In each loop the algorithm first sends the

lower part (the part marked by the black box in Figure 5.4(b)) of the next panel to

the CPU from the GPU in line 4. In line 6 and line 7 the algorithm computes the

column checksums for matrix Y and matrix V . This procedure requires two GEMV

operations on the GPU. Line 8 applies the right update to matrix Mre. This line

corresponds to Figure 5.4(c), and matrix Mre is the matrix marked by the black box

in the figure. Line 9 and line 10 (in red text) overlap with each other. Line 10

applies the right update to matrix G. This corresponds to Figure 5.4(d). Line 11

applies the left update from the panel to matrix G, and this operation is illustrated
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Algorithm 10 Fault Tolerant Hybrid Hessenberg Reduction

1: Transfer matrix: A on the host → d A on the GPU
2: Encode the input matrix, expand it with a checksum column and a checksum

row.
3: for i from 1 to dN

nb
e do

4: Send the lower part of the next panel P to the host.
5: MAGMA DLAHR2, return V, T and Y

where Y = [P,G]V T
6: Obtain Yce by computing the column checksums of Y :

Ychk c = trail(A)chk c · V
7: Obtain Vce by computing the column checksums of V : Vchk c = e> · V
8: DGEMM: Mre = Mre −MV TV >ce
9: Send the leftmost nb columns of M to the host asynchronously.
10: DGEMM: Gfe = Gfe − YceV >ce
11: DLARFB: trail(A)fe = trail(A)fe − VceT>V >trail(A)
12: Compute Sre =

∑
Are(i) and Sce =

∑
Ace(i)

13: if |Sre − Sce| > threshold then
14: Reverse the last left update and right update.
15: Correct the error.
16: end if
17: end for

in Figure 5.4(e).

We prove that, after line 11 in Algorithm 10, the column of row checksums and

the row of column checksums are still valid for the yellow part and the red part in

Figure 5.4(f). The proof is presented in the next subsection.

Line 12 through line 16 check for the existence of a soft error. The algorithm

corrects the error if there is any. Line 12 computes the summations of the checksum

row and the checksum column. Since they contain checksums of the same matrix

data along different directions, the summation of each vector should equal each other.

Taking rounding errors into consideration, we check the difference against a threshold.

If the difference exceeds the threshold, we consider an error has happened. The

threshold should be big enough to tolerate roundoff errors, at the same time it should

be small enough to avoid false negatives. A proper choice of the threshold is a value

larger than the machine epsilon by 2 to 3 orders of magnitude. At this point the soft

error in the matrix element has propagated to both the checksum column and the
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Figure 5.4: One iteration of FT DGEHRD

checksum row, the checksums are not valid any more. Line 14 reverses the last left

update and the last right update so that the checksum column and the checksum row,

together with the matrix data, are restored to their states at the end of the previous

iteration. The checksum relationship is made valid again. The reverse computation

is possible because the intermediate data used to apply the last last left update and

right update are still available at the end of the iteration. They will not be destroyed

until the next panel factorization. The algorithm then enters the recovery procedure.
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5.4.4 The Checksum Relationship

In this subsection we prove the following theorem:

Theorem 3. The checksum column on the right of matrix A and the checksum row

at the bottom of matrix A are valid at the end of each iteration.

Proof. 1. The checksum column and the checksum row are valid after line 2 since

they are newly computed.

2. The checksum column and the checksum row are valid after the right update

to the trailing matrix.

Afe = Afe −

 A

e>A

V T
 V

e>V

>

=

 A Ae

e>A 0

−
 AV TV > AV TV >e

e>AV TV > e>AV TV >e


=

 (A− AV TV >) (A− AV TV >)e

e>(A− AV TV >) ∗


3. The checksum column and the checksum row are valid after the left update to

the checksum.

Afe = Afe −

 V

e>V

T>V > [A Ae
]

=

 A Ae

e>A 0

−
 V T>V >A V T>V >Ae

e>V T>V >A e>V T>V >Ae


=

 (A− V T>V >A) (A− V T>V >A)e

e>(A− V T>V >A) ∗



86



4. According to Mathematical Induction, the checksum row and the checksum

column are valid at the end of each iteration.

5.4.5 Protecting Q

The Q matrix contains the Householder vectors which were used to apply the

similarity transformations to A. These Householder vectors are not protected by the

checksums that encode the H matrix, we should provide protection for Q through

other schemes. These Householder vectors are generated on the host side and stay

there until the entire factorization finishes. They are not modified after they are

generated. Moreover, they are not even read after the iteration in which they were

generated finishes. Hence, it suffices to maintain a checksum for each row in order to

correct an error. But just like the situation in detecting a soft error in H, we need

both a checksum row and a checksum column to determine both the error column

index j and error row index i. We keep the checksums for Q on the host. Qr chk is

the rowwise checksum vector, and Qc chk is the columnwise checksum vector.

Figure 5.5 shows the process for generating and updating the checksums for the

Q matrix. The dashed line on the left of the matrix is the column of row checksums

for Q. When a new panel factorization is finished as the one shown in Figure 5.5, we

compute the row checksums for the newly finished panel. Then the partial checksums

for the panel are applied to the dashed line on the left so that the dashed line protects

the entire green part. The dashed line at the bottom of the matrix is the row of

column checksums for Q. This vector is computed segment by segment. When a new

panel factorization is done on an nb wide panel, an nb long segment of the column

checksums is also generated. The solid line segment at the bottom of the panel in

Figure 5.5 is the newly generated column checksum segment for Q. This segment is

never changed once generated.

Our algorithm overlaps the checksum generation for Q with the update to the
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DLAHRD

Figure 5.5: Maintaining the checksums for Q

trailing matrix on the GPU. The checksum generation involves two GEMV operations.

GEMV is a level 2 BLAS operation which is a memory bound operation. We choose to

perform the checksum generation on the CPU while the GPU is updating the trailing

matrix. The CPU is idle in the non-fault tolerant MAGMA Hessenberg reduction

algorithm, and our arrangement hides the time cost of the checksum generation.

5.4.6 Recovery

Once we have detected a soft error, we first determine the row index and the column

index of the soft error before we can correct the error. We recalculate a checksum

column A′r chk and a checksum row A′c chk of the current matrix (the yellow part and

the red part in Figure 5.4(f)). Then we compare A′r chk and Ar chk, and the error row

index i can be determined if A′r chk(i) 6= Ar chk(i). Similarly, the error column index j

can be determined by comparing A′c chk and Ac chk.

The erroneous element can be corrected using the formula A(i, j) = Ar chk(i) −∑k≤n,k 6=j
k=1 A(i, k) or the formula A(i, j) = Ac chk(j)−

∑k≤n,k 6=i
k=1 A(k, j).

Since a soft error in the Q matrix does not propagate, we only examine the

checksum relationship once, at the end of the factorization. The error detection

and correction scheme is similar to those for the H matrix, except that it is carried

out once at the end of the entire factorization instead of once per iteration.
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5.5 Performance Evaluation

In this section we give a formal analysis for the overhead of our fault tolerant

Hessenberg reduction algorithm. The fault tolerant Hessenberg reduction algorithm

performs extra floating point operations and extra data transfers between the host

and the GPU in addition to those in the original MAGMA Hessenberg reduction.

The fault tolerant algorithm also consumes extra storage to keep data redundancy.

So, we evaluate the overhead in terms of extra FLOPS, extra communication, and

extra storage. We denote the matrix dimension as N , the block size as nb, and the

amount of floating point operations as FLOP.

After the algorithm transfers the input matrix to the GPU, the algorithm

computes the global row checksums and the column checksums for the input matrix.

This involves two DGEMV operations on the GPU: Ar chk = Ae and Ac chk = e>A.

The amount of floating operations:

FLOPinit = 2N(N +N − 1) = 4N2 − 2N.

In every iteration, the algorithm computes column checksums for matrix V . In the

i-th iteration, the dimension of matrix V is (N −nb · i) · nb. The accumulated FLOP

count over the course of the factorization is:

FLOPchkV =

N/nb−1∑
i=0

nb · (N − nb · i+N − nb · i− 1)

= O(N2).
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The amount of floating point operations applied on the right hand side checksums is:

FLOPr chk =

N/nb−1∑
i=0

{(N − nb · i) · (nb + nb − 1)

+N · (nb + nb − 1) + nb · [(N − nb · i) + (N − nb · i)− 1]}

= O(N2).

The amount of floating point operations applied on the bottom checksums is:

FLOPc chk =

N/nb−1∑
i=0

[(N − nb · i)(nb + nb − 1)

+ (N − nb · i)(nb + nb − 1)] = O(N2).

The amount of floating point operations spent on intermediate results used by both

row and column checksums is:

FLOPcommon =

N/nb−1∑
i=0

nb · (nb + nb − 1) = O(N).

The computation cost to detect the error in Algorithm 10 requires two dot product

operations, one for the summation of the row checksums, and one for the summation

of the column checksums. The total cost is given by:

FLOPD =

N/nb−1∑
i=0

2(N +N − 1) = O(N2).

Adding all these together we get the total amount of extra floating point operations

performed by the fault tolerant algorithm:

FLOPextra = FLOPinit + FLOPchkV + FLOPr chk

+ FLOPc chk + FLOPcommon + FLOPD = O(N2).
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The computation complexity of the Hessenberg reduction is FLOPorig ∼ 10/3N3, so

when there is no errors, the overhead of the fault tolerant Hessenberg reduction in

terms of FLOP percentage is:

Overhead =
FLOPorig

FLOPextra

=
O(N2)

10/3N3
=

3

10
O(N−1).

When N increases the overhead tends to: 0.

In order to locate the error, a vector of new row checksums and a vector of new

column checksums need to be computed on the matrix consisting of the yellow part

and the red part in Figure 5.2(a). The cost is given by:

FLOPL = 2N(N +N − 1) = 4N2 − 2N.

To correct the error requires a dot product and a subtraction:

FLOPC = N − 2 + 1 = N − 1.

After an error has been detected, the algorithm performs a roll back by reverse

update, which includes a reverse left update and a reverse right update. Then the

pre-factorized panel is retrieved from the buffer, and the entire iteration is repeated

after the error correction. The amount of overhead is a function of the size of the

trailing matrix. Assume the error occurred in the j-th iteration, and we have:

FLOPredo = FLOPrepeat + FLOPpanel

≈ N · (N − j · nb)(2nb − 1)+

(N − j · nb) · (N − j · nb)(2nb − 1)

+ (N − j · nb) · nb · [(N − j · nb) + (N − j · nb)− 1]

+ (N − j · nb) · nb · (nb + nb − 1)

= O(N2).
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Table 5.1: Detailed specification of the test platform.
CPU GPU

Processor model Intel Xeon E5-2670 NVIDIA Tesla K40c
Clock frequency 2.6 GHz 745 MHz

Memory 62 GB 11519 MiB
Peak DP 10.4 Gflop/s 1.43 Tflop/s

BLAS/LAPACK Intel MKL 11.2 CUBLAS 7.0.28
OS CentOS 6.4 -

Compiler gcc 4.4.7 nvcc 7.0 V7.0.27

Compared with the computation cost of the original Hessenberg reduction, the

extra FLOP introduced by the fault tolerant algorithm is very low. It tends to 0

when n increases.

The storage requirement of the fault tolerant Hessenberg reduction algorithm

consists of a panel worth of work space for the intermediate result to update the

trailing matrix, and four columns worth of space for the checksums:

S = nb ·N + 4 ·N

5.6 Experiments

In this section we present the performance of our fault tolerant algorithm. Our testbed

consists of an Intel Sandy Bridge-EP CPU and an NVIDIA Kepler GPU. The detailed

specifications of the test platform are listed in Table 5.1.

5.6.1 Performance Study

As shown in Figure 5.2(a), during the factorization the matrix is partitioned in three

areas. We analyze the performance of our algorithm when the soft error occurs in

each of the different areas, at different moments of the factorization.

Figure 5.6(a) shows the performance overhead in the case where the soft error

occurs in area 1 (see Figure 5.2(a)). This overhead includes setting up and maintaining

the checksums, the reverse update to the trailing matrix, and the re-execution of
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Figure 5.6: Overhead of FT-Hess. The blue line is the overhead without failures,
while the gray area is the uncertainty interval when one single error is introduced in
a specific area (as described in Figure 5.2(a)).

the faulty iteration. Among all these costs, the most expensive step is the panel

factorization when re-executing the faulty iteration. When the error occurs early in

the factorization, the size of the panel which the algorithm re-factorizes is larger, and

the performance overhead is also larger. The gray area in the figure indicates the

range of the overhead depending on the moment when the single fault is introduced

in Area 1. We can see that the overhead range remains small for all matrix sizes

while the overhead exhibits a decreasing trend as the matrix size grows; at matrix

size 10112× 10112 the overhead is less than 4% when one error occurs in Area 1.

Figure 5.6(b) shows the performance overhead of the fault tolerant algorithm

when the soft error occurs in area 2 (see Figure 5.2(a)). Similar to Figure 5.6(a), the

overhead is dependent on the moment when the error occurs. It maintains the same

constant range and it exhibits the same decreasing trend as the matrix size grows.

The performance overhead is less than 4% at matrix size 10112× 10112.
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Table 5.2: Numerical Stability A1, A2, A3
Matrix Area 1 Area 2 Area 3

Size MAGMA Hess FT-Hess B FT-Hess M FT-Hess E FT-Hess B FT-Hess M FT-Hess E FT-Hess B/M/E

1024 6.2529× 10−18 6.2764× 10−18 6.2520× 10−18 6.2540× 10−18 6.2764× 10−18 6.2520× 10−18 6.2540× 10−18 3.9780× 10−16

2048 2.6291× 10−18 2.6552× 10−18 2.6502× 10−18 2.6276× 10−18 2.6552× 10−18 2.6502× 10−18 2.6276× 10−18 1.6047× 10−15

3072 8.0088× 10−18 8.0023× 10−18 7.9987× 10−18 8.0066× 10−18 8.0023× 10−18 7.9987× 10−18 8.0066× 10−18 1.9576× 10−15

4032 8.4784× 10−18 8.4697× 10−18 8.4747× 10−18 8.4790× 10−18 8.4697× 10−18 8.4747× 10−18 8.4790× 10−18 1.9473× 10−14

5184 1.2012× 10−17 1.2024× 10−17 1.2008× 10−17 1.2011× 10−17 1.2024× 10−17 1.2008× 10−17 1.2011× 10−17 2.5166× 10−15

6016 1.5892× 10−17 1.5881× 10−17 1.5891× 10−17 1.5892× 10−17 1.5881× 10−17 1.5891× 10−17 1.5892× 10−17 4.3368× 10−15

7040 1.9573× 10−17 1.9580× 10−17 1.9571× 10−17 1.9571× 10−17 1.9580× 10−17 1.9571× 10−17 1.9571× 10−17 2.6158× 10−14

8064 3.7656× 10−18 3.7575× 10−18 3.7690× 10−18 3.7656× 10−18 3.7575× 10−18 3.7690× 10−18 3.7656× 10−18 8.9874× 10−15

9088 6.3745× 10−18 6.3814× 10−18 6.3736× 10−18 6.3746× 10−18 6.3814× 10−18 6.3736× 10−18 6.3746× 10−18 2.2618× 10−14

10112 1.7536× 10−17 1.7531× 10−17 1.7535× 10−17 1.7536× 10−17 1.7531× 10−17 1.7535× 10−17 1.7536× 10−17 2.4302× 10−14

Figure 5.6(c) shows the performance overhead of the fault tolerant algorithm

when the soft error occurs in Area 3 (see Figure 5.2(a)). In this case we can see

that the performance overhead is smaller, closely following the overhead of the case

without failures. There are two reasons for this phenomenon: the error detection

and correction are only carried out once at the end of the factorization, and after an

error is detected, only a dot product is necessary to correct the error. In contrast, an

error in either area 1 or 2 requires a reverse update, a repeated panel factorization,

and a trailing matrix update. We also observe that the uncertainty interval of

the performance overhead is very small at all matrix sizes. No matter when the

error occurred during the factorization, they are treated at the end with the same

procedure, with the same minimalistic approach. Therefore they incur the same

amount of overhead. Overall, these results indicate that our approach is a practical

solution to ensure the correctness of the Hessenberg reduction with minimal overhead,

and that this overhead consistently decreases as the size of the matrix increases. Also,

these results are consistent with the results reported in [57].

5.6.2 Numerical Stability

In this subsection we investigate the numerical behavior of our fault tolerant

Hessenberg algorithm compared with the non-fault tolerant algorithm.

The block Hessenberg reduction algorithm implemented in MAGMA is backward
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stable. The following residual is used to verify the factorization result:

r =
‖A−QHQ>‖1

N‖A‖1

where A is the input matrix, and N is the matrix dimension. Table 5.2 shows the

comparison of the residuals as obtained from the original MAGMA non-fault tolerant

algorithm and our fault tolerant algorithm with one soft error.

The three main sections of the table indicate the location of the error, Area 1, Area

2, or Area 3. In each section the letter appended to the name of the column indicates

the moment when the error occurs, B for the beginning of the factorization, M for the

middle, and finally, E for the end of the factorization. Finally, in the case of Area 3,

all columns were collapsed into a single column as the residuals were identical. We can

see that for every matrix size the residuals from Area 1 and Area 2 are on the same

order of magnitude, with minimal variations, as the original MAGMA algorithm. In

some cases the fault tolerant algorithm even has a smaller residual than the fault free

original algorithm. When the error was introduced on the left part of the matrix (i.e.,

Q, in Area 3) the final residuals are higher than their counterparts in the MAGMA

routine, but they are still within the acceptable range. The extra amount of error

compared with the classic algorithm is introduced by the encoding/recovery process.

In the encoding phase, N elements (in a row or column) are added together to form

one checksum element. In the recovery phase, N−1 elements are subtracted from the

checksum element. Both phases are implemented as dot products. We refer interested

readers to [23] for a detailed discussion of rounding errors in dot products. Overall,

these results are evidence that our fault tolerant Hessenberg reduction algorithm

can successfully correct soft errors without degrading the stability of the original

algorithm.
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Table 5.3: Orthogonality of Q A1, A2, A3
Matrix Area 1 Area 2 Area 3

Size MAGMA Hess FT-Hess B FT-Hess M FT-Hess E FT-Hess B FT-Hess M FT-Hess E FT-Hess

1024 3.65× 10−17 3.80× 10−17 3.41× 10−17 3.36× 10−17 3.64× 10−17 3.46× 10−17 3.35× 10−17 6.84× 10−16

2048 3.72× 10−17 3.61× 10−17 3.71× 10−17 3.65× 10−17 3.53× 10−17 3.64× 10−17 3.64× 10−17 2.76× 10−15

3072 3.62× 10−17 3.40× 10−17 3.57× 10−17 3.63× 10−17 4.61× 10−17 3.63× 10−17 3.65× 10−17 3.31× 10−15

4032 3.75× 10−17 3.40× 10−17 3.75× 10−17 3.75× 10−17 3.98× 10−17 3.81× 10−17 3.77× 10−17 3.28× 10−14

5184 4.59× 10−17 3.78× 10−17 3.63× 10−17 3.61× 10−17 3.92× 10−17 3.62× 10−17 3.62× 10−17 4.19× 10−15

6016 3.74× 10−17 3.71× 10−17 3.63× 10−17 3.62× 10−17 3.89× 10−17 3.60× 10−17 3.62× 10−17 7.19× 10−15

7040 4.10× 10−17 4.44× 10−17 4.51× 10−17 4.50× 10−17 4.00× 10−17 4.52× 10−17 4.51× 10−17 4.35× 10−14

8064 3.64× 10−17 3.31× 10−17 3.74× 10−17 3.74× 10−17 3.58× 10−17 3.77× 10−17 3.74× 10−17 1.49× 10−14

9088 3.64× 10−17 3.75× 10−17 4.22× 10−17 4.22× 10−17 4.08× 10−17 4.18× 10−17 4.22× 10−17 3.71× 10−14

10112 4.36× 10−17 4.20× 10−17 4.32× 10−17 4.29× 10−17 4.15× 10−17 4.30× 10−17 4.29× 10−17 4.05× 10−14

5.6.3 Orthogonality of Q

In this subsection we verify the orthogonality of matrix Q generated by our fault

tolerant algorithm. As explained in Subsection 5.3.1, we have H = QTAQ. Q is an

orthogonal matrix. We use the following residual to examine the orthogonality of Q:

r =
‖QQ> − I‖1

N
.

I is the identity matrix, N is the matrix dimension. Table 5.3 shows the residuals

from the non-fault tolerant MAGMA algorithm and residuals from our fault tolerant

algorithm when one error occurs in different areas and different stages of the matrix.

When the soft-error occurs in Area 1 and Area 2, all residuals are on the order of

10−17, which is the same as the residuals from the MAGMA algorithm. When the

soft-error occurs in Area 3, the residual is higher but still comparable to the residuals

from MAGMA. So the orthogonality of Q is not damaged after the recovery from an

error.

5.7 Conclusion

In this chapter we presented the design and analysis of a soft error resilient hybrid

Hessenberg reduction algorithm, an algorithm capable of taking advantage of current
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and future hybrid architectures to ensure data correctness during an entire two-

sided factorization. This goal is achieved by an attentive combination of the

strengths of ABFT and diskless checkpointing to maintain data redundancy during

the factorization. From an algorithmic perspective, our algorithm detects the soft

errors on-line and corrects them before they have the opportunity to propagate to

the rest of the matrix data, minimizing the cost of the recovery process. In the case

of a soft error, our algorithm carries out a reverse computation to roll the program

data back to a consistent state and then correct the soft error. The overhead of

our approach is very low since it mainly utilizes extra computation to detect and

correct the error, and the amount of extra memory necessary for the checksum is

minimal. The performance overhead of our fault tolerant algorithm compared to

the non-fault tolerant MAGMA Hessenberg reduction reaches 1.45% when no errors

occur, and reaches 3.29% when one error occurs. Another important capability of our

fault tolerant algorithm is that it can detect and correct more than one consecutive

error, making it a potential candidate for highly volatile environments. Moreover,

the methodology highlighted in this chapter is generic enough to be applicable to the

entire spectrum of two-sided factorizations, as well as other similar algorithms. This

applicability is on our list of things to explore in the near term as we plan to provide

soft error resilience for the rest of the hybrid two-sided factorizations in MAGMA.
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Chapter 6

CPU-GPU Hybrid Bidiagonal

Reduction With Soft Error

Resilience

6.1 Introduction

Bidiagonalization of a general M × N matrix A is prerequisite to computing

the singular value decomposition (SVD) of A. The execution time of numerical

bidiagonalization on modern computers dominates the computation of SVD. Given

an M ×N real matrix A, the SVD decomposition computes A = UΣV > where U is

an M ×M orthogonal matrix, Σ is an M ×N diagonal matrix, and V > is an N ×N

orthogonal matrix. The diagonal entries of matrix Σ are called the singular values of

A. The numerical SVD decomposition of a matrix is usually performed in two steps.

In the first step, matrix A is reduced to bidiagonal form: A = QBP> where Q is an

M ×M orthogonal matrix, P is an N × N orthogonal matrix, and B is an M × N

bidiagonal matrix. In the second step, matrix B is further reduced to diagonal form.

The implementations of the steps are slow because they contain a lot of matrix-vector

multiplies (GEMV), which are Level 1 BLAS operations and have a low computation
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intensity. As a result of the above reasons, it is time consuming to calculate either of

the two stages.

Advances in Integrated Circuits (IC) manufacturing technology, described below,

bring forward higher probability of soft errors in computer systems due to decreased

feature size and increased complexity. A soft error is a temporary malfunction of a

chip element which causes a change in the program state without any notification

other than an incorrect result, but the chip element continues to function normally,

and the change in program state is unnoticed by either the hardware or the software.

Moore’s Law states that the number of transistors on integrated circuits doubles every

two years [72]. This increased transistor density on a unit silicon area provides every

more prominent possibility for soft error. Also, higher transistor density requires

smaller transistor feature size (the minimum size of a transistor or a wire on an IC),

and causes increased heat dissipation as the circuit consumes higher power. Smaller

transistors require lower voltage to operate at increasing frequencies, which makes it

easier to change the transistor state unpredictably. High heat dissipation generates

more thermal neutrons, which in turn cause more soft errors in the chip [94].

The computation needs to be protected so that there is no need to repeat the

computation in the presence of soft errors. There are a few challenges in tolerating

soft errors. First, it is difficult to detect them since a soft error changes the application

state without the hardware or software noticing it. There is no permanent physical

damage to the hardware, so the program proceeds normally in the presence of a soft

error (assuming that the soft error does not alter the control logic). Second, it is

difficult to pinpoint the error even when given the knowledge of the existence of an

error. There are a large number of transistors involved in a single computation, so

locating the error is analogous to finding a needle in a haystack. Third, suppose we

know an error exists, and we know the exact location of the error, it is still difficult

to restore the data to the correct value.

In this chapter, we propose an effective and efficient algorithm to detect, locate,

and correct soft errors in the numerical bidiagonal reduction of a real matrix.
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We employ the Algorithm Based Fault Tolerance (ABFT) technique and reverse

computation to achieve fault tolerance. Our fault tolerant bidiagonal reduction

algorithm is very efficient in that it introduces very low performance overhead

compared with the non-fault tolerant counterpart. The overhead tends asymptotically

to 0 as the matrix size scales up. We show the effectiveness and efficiency of

our algorithm through an implementation based on the MAGMA library [88, 90].

Experiments show that our algorithm has a low overhead of 0.354% at matrix size

about 10000. The overhead exhibits a decreasing trend as the matrix size increases.

The rest of this chapter is organized as follows: Section 6.2 reviews related work.

Section 6.3 introduces the block bidiagonal reduction algorithm as implemented in the

MAGMA project. Section 6.4 discusses the soft error propagation pattern. Section 6.5

explains our fault tolerant algorithm. Section 6.6 reports the experimental results.

Finally, section 6.7 presents our conclusions.

6.2 Related Work

Research and reports about the existence and impact of soft errors on GPUs show

that soft errors are a real problem for scientific applications [52, 84, 86, 77]. There

are efforts to tolerate these errors using both software-based approaches [67, 66, 30]

and hardware-based approaches [83, 87].

Du et al. [40] proposed a soft error resilient QR factorization algorithm using a

post processing approach. In their scheme, the input matrix is encoded with two

extra checksum columns. These two extra columns are maintained as the regular QR

factorization proceeds. After the factorization has finished, the two extra columns

are used to detect the existence of a soft error and locate the column index where the

error occurred. The error is then projected to a rank-1 perturbation of the original

input matrix. Then the correct factorization result is obtained using the QR update

technique [47]. This post-processing scheme can successfully tolerate, at most, one

soft error, no matter what point in time the error has occurred.
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Kim et al. [60] designed a general scheme for fault tolerant matrix operations

including matrix multiplication, Cholesky factorization, LU factorization, QR factor-

ization, and Hessenberg reduction. This scheme tackles hard errors (process failures).

The method uses a checksum to encode the input matrix, and the checksum is

generated at certain intervals and serves as a checkpoint of the application state.

In the case of a hard error, a roll back is performed to bring the program data back

to the state at which the last checksum was generated.

The MAGMA project [88] is an effort to take advantage of the latest development

of GPU accelerators to boost the performance of linear algebra operations. The

project redesigned the block algorithms in LAPACK [1] to better suit GPU-enabled

hybrid platforms. The methodology is called hybridization, by which computational

tasks are split according to their characteristics and scheduled to the CPUs and

GPUs accordingly. The magma dgebrd routine in MAGMA implements the hybrid

block bidiagonal reduction algorithm.

6.3 Block Bidiagonal Reduction in MAGMA

In order to understand our bidiagonal reduction algorithm with fault tolerant features,

it is essential to understand the non-fault tolerant algorithm first. In this section, we

describe the standard block bidiagonal reduction algorithm.

Suppose A is an M × N matrix, the block algorithm logically partitions A into

M × nb block columns and nb×N block rows. The reduction is an iterative process,

whereby every iteration reduces the leftmost nb matrix columns and the uppermost

nb matrix rows into the bidiagonal form. In every iteration, the following operation

is performed on the unreduced trailing matrix [34, 27]:

A(i+1) = A(i) − V Y > −XU>

where A(i) is the unreduced trailing matrix at the beginning of the i-th iteration,
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and A(i+1) is the resulting matrix of the i-th iteration (also the input for the (i+ 1)-

th iteration). V is an M × nb matrix which consists of the Householder vectors

to annihilate columns of A; this matrix is used to update the trailing matrix from

the left. U is the matrix used to transform the input matrix from the right; this

matrix contains the Householder vectors used to annihilate rows of A. Y and X are

intermediate matrices, and each of them is generated through an iterative process.

Denoting the k-th column of Y as yk, the k-th column of X as xk, the calculation of

Y and X are given by [34, 27]:

yk+1 = τvk+1
(A(i)>vk+1 − YkV >k vk+1 − UkX

>
k vk+1)

xk+1 = τuk+1
(A(i)uk+1 −XkU

>
k uk+1 − Vk+1Y

>
k+1uk+1)

In MAGMA, the bidiagonal reduction routine for a double precision real matrix

is magma dgehrd. In every iteration, the algorithm performs the following operations:

1. Call magma dlahrd gpu. This call reduces the i-th block column and the i-th

block row of A to bidiagonal form, and generates V , U , X, and Y . The two

largest tasks in this routine (two GEMVs) are offloaded to the GPU.

2. Call magma dgemm to compute A = A−V Y >. This matrix-matrix multiply and

the following one are offloaded to the GPU.

3. Call magma dgemm to compute A = A−XU>

Figure 6.1 shows one iteration of the magma dgehrd routine.

6.4 Error Propagation

In this work we target soft errors specifically (as opposed to hard errors). A single bit

flip is sufficient to completely invalidate the factorization result. Figure 6.2 shows the

impact of a soft error in the course of the factorization. This example uses a 158×158
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(a) Beginning of iter-
ation

DLABRD

(b) Factorize the
panel

DGEMM

(c) A = A− V Y >

DGEMM

(d) A = A−XU>

(e) End of iteration

Figure 6.1: One iteration of magma dgebrd

matrix with the block size nb = 32. The soft error occurs in the second iteration at

location (72, 79), which is marked by a cross in Figure 6.2(a). Figure 6.2(b) shows

the heat map of the difference matrix between the correct factorization result and the

factorization result affected by one soft error. Black color indicates that the difference

is 0, and any other color indicates a difference of a magnitude proportionate to the

color. We can observe that the rectangular matrix at the bottom right corner contains

wrong values.
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(a) Error location (72, 79).
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Figure 6.2: Propagation pattern of an error.
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6.5 Fault Tolerant DGEBRD

In this section, we describe the fault tolerant bidiagonal reduction algorithm. The

algorithm is inspired by the ABFT concept [54]. The basic idea is to add redundant

information to the original data. A soft error means that some information in the

original matrix is corrupted. After the detection of the soft error, the algorithm uses

the redundancy to recover the corrupted information. The redundant information of

the input matrix is provided by a checksum column and a checksum row. Algorithm 11

shows the details of our approach.

Algorithm 11 Fault Tolerant Hybrid Bidiagonal Reduction

1: Transfer matrix: A on the host → d A on the GPU
2: Encode the input matrix, expand it with a checksum column and a checksum

row.
3: for i from 1 to dN

nb
e do

4: Transfer the leftmost nb columns and uppermost nb rows of the trailing matrix
to the host.

5: FT MAGMA DLABRD GPU, return V, U,X and Y
6: Compute Xce, Yce, Vce, Uce

7: DGEMM: Afe = Afe − VceY >ce
8: DGEMM: Afe = Afe −XceU

>
ce

9: Compute Sre =
∑
Are(i) and Sce =

∑
Ace(i)

10: if |Sre − Sce| > threshold then
11: Reverse the last left update and right update.

Afe = Afe + VceY
>
ce

Afe = Afe +XceU
>
ce

12: Correct the error
13: end if
14: end for

Algorithm 12 Locate(i, j, k)

1: DGEMV: Âchk r = Atrail · e
2: IF
3: DGEMV: Âchk r = Atrail · e>
4: IF
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Algorithm 13 Recover(i, j, k)

1: Set A(i, j) to 0.
2: Compute Snew =

∑M
i=k+1A(i, j)

3: Â(i, j) = Ace(j)− Snew

6.5.1 Data Redundancy

The algorithm first encodes the input matrix with both row checksums and column

checksums. The row checksums form a column vector which is appended to the right

of the matrix, the column checksums form a row vector which is appended to the

bottom of the input matrix. This task is accomplished in line 2. The algorithm

enters the main loop in line 3. In every iteration, the next panel is transferred to

the CPU to be factorized there (in Line 5). The original magma dlabrd gpu routine

only computes part of X and part of Y . Assuming the trailing matrix is of size

m × n, we only need the lower n × nb part of Y and the lower m × nb part of X

are needed to update the trailing matrix. In our fault tolerant algorithm, we need

the entire X and Y to calculate their respective column checksums, so we modified

the magma dlabrd gpu routine to compute the complete X and Y . The new routine

is named ft magma dlabrd gpu. Line 7 and line 8 update the trailing matrix. The

row checksums and column checksums are also updated together with the trailing

matrix. After the update, the row checksums remain to be the row checksums of their

corresponding rows. The column checksums remain to be the column checksums of

their corresponding columns. In other words, the checksum relationship is preserved

throughout the algorithm.

6.5.2 Error Detection

Line 9 and line 10 carry out error detection. Error detection is achieved by comparing

the sum of the row checksums of the trailing matrix and the sum of the column

checksums of the trailing matrix. Because both checksum vectors protect the same

matrix data (the trailing matrix), their sums should be equal to each other. If the
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difference is higher than a certain threshold, we consider an error has occurred. The

comparison of the two sums is performed in line 10.

6.5.3 Error Location and Correction

If an error is detected at line 10, the algorithm initiates the procedure to locate and

correct the error. To achieve this, the algorithm first performs a reverse update on the

trailing matrix. This is accomplished in line 11. The reverse update brings the trailing

matrix back to the state at the beginning of the erroneous iteration. At this point,

the error only exists in one matrix entry, the contamination to other matrix entries

is reversed, and now we have the correct row checksums and column checksums. The

error location works as follows. We compute the new row checksums and column

checksums of the actual trailing matrix, and these new checksums will encode the

erroneous value. Moreover, there will be exactly one row checksum which differs from

its corresponding old row checksum, and there will be exactly one column checksum

which differs from its corresponding column checksum. The row index and column

index of the error can be identified by comparing the new checksums and the old

checksums.

Once the error location (i, j) has been determined, we can use the row checksums

and the column checksums as devices to recover the lost matrix element. First we set

A(i, j) to zero, then we compute the checksum chkr for the i-th row. The lost matrix

element can be recovered by A(i, j) = chkr − old chkr. old chkr is the row checksum

of the i-th row which the algorithm maintains since the beginning of the factorization.

The algorithm resumes its normal operations after the recovery. It continues to detect,

locate, and correct errors in subsequent iteration until the factorization completes.

6.5.4 Multiple Concurrent Errors

In previous subsections, we only considered the case in which only one soft error

happens in an iteration. In fact the fault tolerant algorithm can deal with more than
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one soft errors in one iteration. When more than one soft error occurs, the entire

trailing matrix will be contaminated as in the one-error case, so the existence of errors

can always be detected. Similar to the analysis by Huang et al. [54], when the faulty

elements form a rectangle, these four errors cannot be located. Other than such a

situation, multiple errors can be located and then corrected.

6.5.5 Range of Application

The fault tolerant algorithm stated above is for bit-flips in the data matrix. The

fault tolerant algorithm does not deal with soft errors in the control logic. It

does not consider persistent errors either. Persistent errors are usually caused by

malfunctioning hardware, this type of errors are outside of the range range covered

by this work.

6.6 Experiment Results

In this section, we present performance results of our fault tolerant bidiagonal

reduction algorithm.

The test platform we use is a machine at the University of Tennessee. This machine

has an Intel Xeon E5-2670 processor with a clock frequency of 2.6 GHz. It features

an NVIDIA Tesla K20c GPU (known also as Kepler) with the clock frequency of

the GPU at 705.5 MHz and the on-board memory of the GPU of 4799.6 MB. Te

machine has 62 GB of main memory. The operating system is Red Hat 4.4.6-4 and

the compiler is GCC 4.4.6 and NVCC 5.0 V0.2.1221.

Figure 6.3 shows the comparison of the performance of the fault tolerant bidiagonal

reduction and the performance of the MAGMA bidiagonal reduction. Figure 6.3(a)

shows the performance comparison when the fault tolerant bidiagonal reduction

suffers from one soft error. The error is injected in the third iteration in the panel

area. This is nearly the worst case scenario. The earlier the error occurs, the higher
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the cost of locating and correcting the error. The reason is that if the error occurs in

the early iterations of the factorization, we need to reverse the update of the trailing

matrix once we detect an error, and the trailing matrix is large in early iterations.

To locate the error, we need two DGEMV operations on the trailing matrix. In early

iterations the large trailing matrix also incurs higher costs in these two DGEMVs.

Figure 6.3(b) shows the performance comparison when the FT bidiagonal

reduction does not experience any errors. We can see that the performance overhead

also drops when the matrix size increases.
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Figure 6.3: Performance of the FT-BRD

6.7 Conclusion

In this chapter, we showed a design, implementation, and a performance evaluation of

a hybrid bidiagonal reduction algorithm based on the MAGMA framework equipped

with fault tolerant features. Our fault tolerant bidiagonal reduction algorithm

employs reverse computation and algorithm-based fault tolerance to detect, locate,

108



and correct soft errors in the bidiagonal reduction on CPU-GPU hybrid architectures.

Experimental results show that the performance overhead of our fault tolerant

algorithm is very low when the matrix size is small, and the performance overhead as

fraction of the overall computation time continues to drop as the matrix size increases.

At matrix sizes of about 10000, the overhead decreases to 1.085% when one soft error

occurs, and to 0.354% when no errors occur.
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Chapter 7

Conclusions and Future Directions

7.1 Conclusion

This research studied the algorithmic properties of two-sided dense matrix factoriza-

tions — namely the Hessenberg reduction, the tridiagonal reduction, the bidiagonal

reduction — and designed algorithm based fault tolerance algorithms for these dense

matrix reduction algorithms to provide resilience against hard errors and soft errors.

Theoretical analysis and experimental results both prove that our fault tolerant

algorithms are able to protect the factorizations against errors, are low-cost and are

scalable. We also showed that our fault tolerant algorithms do not degrade the

numerical stability of the original non-fault tolerant algorithms.

The major difficulty in designing fault tolerant algorithms for two-sided dense

matrix factorizations is finding a way to properly maintain the checksums. In

the one-sided dense matrix factorization algorithms, the ABFT version of those

algorithms only needs to extend the normal trailing matrix update operations to

include the checksums. Then the checksums will be automatically updated to the

correct checksums of the updated trailing matrix. Whereas in two-sided dense matrix

factorizations, the trailing matrix is updated from both the right side and the left

side. The left side update destroys the checksums that are appended to the right side
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of the original matrix data. In order to perform the left side update to the trailing

matrix without destroying the checksums, we calculate a set of column checksums

for the block column resulting from the panel factorization. On distributed memory

machines, this checksum calculation involves an MPI reduction operation on one

process column in the process grid, and is carried out once in every iterative cycle of

the algorithm. Since MPI reduction operations are costly, a big portion of the time

overhead of our ABFT algorithm is spent on this repetitive checksum calculation.

On shared memory machines, we modified the panel factorization routine so that the

column checksum calculation is fused with the panel factorization. No observable

overhead is shown due to the checksum calculation for the block column resulting

from the panel factorization.

For the fault tolerant parallel tridiagonal reduction algorithm, we take advantage

of the symmetry of the matrix to retrieve data blocks from the lower triangular part

of the matrix when needed. In the ScaLAPACK implementation of the tridiagonal

reduction algorithm, only the lower triangular part of the matrix is accessed and

updated. This is done to save floating point operations. But in order to be able to

update the checksums in our ABFT algorithm, we choose to let the checksum blocks

on the right side of the matrix encode the full matrix instead of only encoding the

lower triangular matrix. When recovering from a failure, we need all matrix blocks

on the block row where the failure strikes, but the matrix blocks residing in the upper

triangular part are invalid. Since the matrix is symmetric, we can find the locations

of the corresponding data blocks in the lower triangular part and retrieve data from

there.

For the fault tolerant algorithms on CPU-GPU hybrid platforms, we use a row of

column checksums and a column of row checksums to protect the matrix. At the end

of each iterative cycle of the algorithm, we compute the sum of the row of checksums

and the sum of the column of checksums. By comparing the equality of the two sums,

we can detect if errors have occurred. If errors are detected, we reverse the trailing

matrix updates performed in this iterative cycle, and the state of the matrix is rolled
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back to the end of the previous iterative cycle. Now, the errors can be located and

corrected using the row of checksums and the column of checksums.

7.2 Future Directions

This research addresses hard errors in the parallel Hessenberg reduction algorithm

and the parallel tridiagonal reduction algorithm. This work also addresses soft errors

in the Hessenberg reduction algorithm and the bidiagonal reduction algorithms on

CPU-GPU hybrid algorithms. If supercomputer development continues according to

current trends, then future exascale machines will be composed of compute nodes with

both general purpose CPUs and special purpose accelerators. That is, each compute

node will have a number of CPUs and a number of accelerators. Fault tolerant

algorithms for dense matrix factorizations which utilize both CPUs and accelerators

are a necessary future research topic.

In this work, every fault tolerant algorithm deals with a single type of error, either

hard errors or soft errors. When errors strike, there is no guarantee that only one

type of error will occur. So our future plan includes integrating protection against

both hard errors and soft errors for two sided dense matrix factorization algorithms

running on distributed memory machines.

In our fault tolerant algorithms, the checksums are generated using a simple

addition operation. When the matrix values are too big, the checksums may

overflow. When the difference between the values of matrix elements is large, the

numerical stability of the factorization algorithms may be severely degraded. A more

proper approach is to examine the matrix elements before generating the checksums.

Choosing a properly crafted generation matrix to generate the checksums will obtain

better numerical stability after the fault tolerant algorithms recover from errors. This

will be one other direction of our future work.
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