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Abstract

Descriptor systems consisting of a large number of differential-algebraic equations (DAEs) usually arise from the discretization
of partial differential-algebraic equations. This paper presents an efficient algorithm for solving the coupled Sylvester equation
that arises in converting a system of linear DAEs to ordinary differential equations. A significant computational advantage is
obtained by exploiting the structure of the involved matrices. The proposed algorithm removes the need to solve a standard
Sylvester equation or to invert a matrix. The improved performance of this new method over existing techniques is demonstrated
by comparing the number of floating-point operations and via numerical examples.
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1 Introduction

Descriptor systems, also known as singular systems, im-
plicit systems or generalized state-space systems, emerge
in many engineering applications (Dai 1989, Kunkel
& Mehrmann 2006). For example, in fluid mechanical
systems, a descriptor system is produced by the dis-
cretization of Navier-Stokes equations (Jones, Kerrigan
& Morrison 2009). Descriptor systems typically consist
of coupled differential and algebraic equations. As a
consequence, the control of descriptor systems is less
well-understood than that for conventional state-space
systems. However, it is often possible, via a sequence
of transformations (Gerdin 2006), to completely decou-
ple the differential and algebraic parts of a descriptor
system, thus enabling the application of standard state-
space control theory to this class of system.

There are three major steps in the transformation:
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a generalized Schur decomposition, also known as
Weierstrass-Schur form; solving a coupled Sylvester
equation, also called a generalized Sylvester equa-
tion; construction of appropriately-defined transfor-
mation matrices (Gerdin, Schön, Glad, Gustafsson &
Ljung 2007). The first step is extensively well-studied
in the field of numerical linear algebra (Kågström &
Wiberg 2000, Golub & Van Loan 1996). Various existing
methods for transforming a matrix into a Jordan-Schur
form and a matrix pencil into a Weiestrass-Schur form
are compared by Kågström & Wiberg (2000). Further-
more, these methods are extended to extracting the
partial information corresponding to dominant eigen-
values from large scale matrices and matrix pencils.
The solution and perturbation analysis of a coupled
Sylvester equation is presented in Kågström (1994) and
Kågström & Westin (1989). In Kågström & Westin
(1989) the Schur method (Bartels & Stewart 1972)
and the Hessenberg-Schur method (Golub, Nash &
Van Loan 1979), which are used in solving a standard
Sylvester equation, are extended for a coupled Sylvester
equation. In Jones et al. (2009), the coupled Sylvester
equation is transformed into a standard Sylvester equa-
tion and then standard techniques for solving a Sylvester
equation are used.

This paper focuses on the efficient solution of the cou-
pled Sylvester equation. The computational advantage
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over existing methods is obtained by exploiting the spe-
cial structure of the matrices involved in the transfor-
mation of a DAE. The main contribution of this paper is
to present a new algorithm for the solution of the above-
mentioned coupled Sylvester equation, which is not only
computationally more efficient than existing techniques,
but also possesses the following important characteris-
tics:

• no need to take an inverse of a matrix,
• no matrix by matrix multiplication, and
• no need to solve a standard Sylvester equation.

2 Problem formulation

Consider a linear differential-algebraic equation (DAE)
of the form

Eẋ(t) = Fx(t) +Gu(t), x(t0) = x0, (1)

where E,F ∈ Cn×n, G ∈ Cn×m, x(t) is the state vec-
tor and u(t) is the input. Solving (1) for x(t) with given
initial condition x0 and u(·) when E is non-singular is
straightforward. In this paper, we assume that E is sin-
gular. Therefore, (1) cannot be solved by a standard lin-
ear ordinary differential equation (ODE) solver. To over-
come this problem, we have adopted the procedure of
Gerdin (2006), which transforms (1) into the following
set of linear ODEs and a set of algebraic equations:

ż1(t) =Az1(t) +B1u(t), (2a)

z2(t) =−
k−1∑

i=0

N iB2

diu(t)

dti
, (2b)

where A ∈ Cp×p, B1 ∈ Cp×m, B2 ∈ Cq×m, N ∈ Cq×q is
a nilpotent matrix of index k i.e. Nk = 0, and n = p+ q.
Note that z1(t) and z2(t) are decoupled. Let us call (2)
the standard form of (1). The theoretical background
and the procedure to compute the matrices involved in
this standard form are described next.

Definition 1 (Golub & Van Loan 1996) Let E,F ∈
Cn×n be two matrices. A matrix pencil is a set of all
matrices of the form F−λE with λ ∈ C. The eigenvalues
of this matrix pencil are defined by λ(F,E) := {s ∈ C :
det(F − sE) = 0}.

Definition 2 (Kunkel & Mehrmann 2006) A matrix
pencil F − λE is called regular if there exists an s ∈ C

such that det(F−sE) 6= 0, or equivalently, λ(F,E) 6= C.

The regularity of a matrix pencil F − λE is equivalent
to the existence and uniqueness of the solution for sys-
tem (1) (Dai 1989).

Lemma 1 (Gerdin 2006, Lemma 2.1) Consider a sys-
tem (1). If the matrix pencil F−λE is regular, then there
exist non-singular matrices P1 and Q1 such that

P1EQ1 =

[

E1 E2

0 E3

]

and P1FQ1 =

[

F1 F2

0 F3

]

, (3)

where E1 ∈ Cp×p is non-singular, E3 ∈ Cq×q is upper
triangular with all diagonal elements zero, F3 ∈ Cq×q is
non-singular and upper triangular, E2, F2 ∈ Cp×q, and
F1 ∈ Cp×p.

The generalized Schur decomposition (3) and the subse-
quent reordering of the diagonal elements of E1 can be
done using Matlab’s qz and ordqz functions, respec-
tively. These functions call Lapack routines zgges and
ztgsen for complex matrices.

Remark 1 The decomposition of the matrix pencil
F − λE by Matlab’s qz function produces upper tri-
angular matrices. Therefore, E1 and F1 would be upper
triangular.

There are three main steps in computing the standard
state-space form of (1), which are listed below:

(1) Compute the generalized Schur decomposition of
the matrix pencil F − λE as

P1(F − λE)Q1 =

[

F1 F2

0 F3

]

− λ

[

E1 E2

0 E3

]

. (4)

(2) Solve the following coupled Sylvester equation for L
and R:

E1R+ LE3 =−E2, (5a)

F1R+ LF3 =−F2, (5b)

where L,R ∈ Cp×q.
(3) According to Lemma 1, if the matrix pencil F −λE

in (1) is regular, there exist nonsingular matrices P
and Q such that the transformation:

PEQQ−1ẋ(t) = PFQQ−1x(t) + PGu(t) (6)

gives the system in standard form (2), where

P :=

[

E−1

1
0

0 F−1

3

][

I L

0 I

]

P1, (7a)

Q := Q1

[

I R

0 I

]

, N := F−1

3
E3, A := E−1

1
F1, (7b)

[

B1

B2

]

:= PG, x(t) = Q

[

z1(t)

z2(t)

]

. (7c)
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Algorithm 1 Solution of a coupled Sylvester equation

Input: E1, E2, E3, F1, F2, F3

Output: R,L.
Algorithm:

1: for i = 1 to q do

2: Solve E1ri = −e2i −
∑i−1

k=1
e3kilk for ri using back-

ward substitution.

3: Compute li = − 1

f3

ii

(

f2
i + F1ri +

∑i−1

k=1
f3

kilk

)

4: end for

3 Solution of the coupled Sylvester equation

In this section, we propose a new and efficient algorithm
for the solution of the coupled Sylvester equation (5)
for R and L. This is done by exploiting the structure of
the given matrices. From (5), we get

E1R+ L













0 e3
12

e3
13

· · · e3
1,q

0 0 e3
22

· · · e3
2,q

...
...

...
. . .

...

0 0 0 · · · e3q−1,q

0 0 0 · · · 0













=−E2, (8a)

F1R + L










f3
11

f3
12

· · · f3
1,q

0 f3
22

· · · f3
2,q

...
...

. . .
...

0 0 · · · f3
q,q










=−F2, (8b)

where ekij denotes the (i, j)th element of matrix Ek.

The ith column of R,L,E2, and F2 is denoted by
ri, li, e

2

i , and f2

i respectively. By comparing the first
column of both sides of (8a), we get E1r1 = −e21.
Since E1 is upper triangular, the above equation
can be solved for r1 using backward substitution.
By comparing the first column of both sides of (8b),
we get l1 = − 1

f3

11

(
f2
1
+ F1r1

)
if f3

11
6= 0. Since

F3 is non-singular and upper-triangular, f3

ii 6= 0
for each i. Similarly, by comparing the ith col-

umn of (8a), we get E1ri = −e2i −
∑i−1

k=1
e3kilk

and by comparing the ith column of (8b) we get

li = − 1

f3

ii

(

f2

i + F1ri +
∑i−1

k=1
f3

kilk

)

if f3

ii 6= 0. The

complete algorithm is described in Algorithm 1. Algo-
rithm 1 is well-defined for q ≥ 1, which is proven next.

Proposition 1 Consider Lemma 1. If rank(E) = n− r
for r ≥ 1, then q ≥ 1.

Proof. Let Ẽ := P1EQ1, where P1 and Q1 are non-
singular matrices defined in Lemma 1, hence rank(P1) =

rank(Q1) = n.

rank(Ẽ) = rank(P1EQ1)

≤min {rank(P1), rank(E), rank(Q1)} = n− r

This means that Ẽ is rank deficient and at least r eigen-
values of Ẽ would be zero. Since E1 ∈ Cp×p is non-
singular and upper triangular and E3 ∈ C

q×q is upper
triangular with all diagonal elements zero, it follows from
the above definition of Ẽ with (3) that Ẽ has p non-zero
eigenvalues and q zero eigenvalues. Hence q ≥ r ≥ 1. 2

4 Computational Complexity Analysis

In this section we will first present an overview of exist-
ing techniques used to compute the solution of a coupled
Sylvester equation. A computational complexity analy-
sis of these methods, followed by our proposed method,
is then presented. The existing methods used in the lit-
erature for the solution of coupled Sylvester equation are
listed below:

(1) Solving (5) is equivalent to solving the following
linear system of equations (Kågström 1994):

[

Iq ⊗ E1 ET
3 ⊗ Ip

Iq ⊗ F1 FT
3 ⊗ Ip

]

︸ ︷︷ ︸

H

[

vec(R)

vec(L)

]

=

[

−vec(E2)

−vec(F2)

]

,

(9)
where⊗ denotes theKronecker product, and vec(L)
denotes an ordered stack of the columns of the ma-
trix L from left to right, starting with the first col-
umn. Note that ET

3
denotes the transpose of E3,

but not the complex conjugate transpose.
(2) Solve the following discrete-time Sylvester equation

for L (Jones et al. 2009):

AsLBs − L+ Cs = 0, (10)

where As := F1E
−1

1
, Bs := E3F

−1

3
, and Cs :=

−(F2 − F1E
−1

1
E2)F

−1

3
. Substitute L in the follow-

ing equation to get R:

R = −E−1

1
(E2 − LE3). (11)

An apparent drawback in the arguments As, Bs and Cs

of the discrete-time Sylvester equation (10) is the inclu-
sion of the inverses of E1 and F3. This can be eradicated
by using an alternative form of these arguments, which
is

As =
(
(ET

1 )
−1FT

1

)T
, Bs =

(
(FT

3 )−1ET
3

)T
, (12a)

Cs = −
(
(FT

3 )−1(F2 −AsE2)
T
)T

. (12b)

3



Table 1
Computational cost of solving a coupled Sylvester equation

Method Flops Flops

p = q = n

2

LU 16

3
p3q3 0.08n6

(Golub & Van Loan 1996)

Sylvester 8

3
p3 + 11q3+ 2.65n3

(Jones et al. 2009) 6p2q + 3

2
pq2

New 2p2q + 2pq2 0.5n3

Since E1 and F3 are upper-triangular matrices, the ma-
trices in (12) can be computed by forward substitution.

Computational complexity of each method will be mea-
sured in terms of floating-point operations (flops). A flop
is defined as one addition, subtraction, multiplication
or division of two floating-point numbers (Golub & Van
Loan 1996). For simplicity of presentation, all matrices
are considered to be real, and only higher order terms
that contribute themost towards the computational cost
of an algorithm are presented in this section.

The computational cost of calculating the generalized
Schur decomposition (4) by the qz routine is 66n3

flops (Golub & Van Loan 1996). The computational cost
of calculating all matrices in (7) is 3mn2 + 1

3
(p3 + q3)

flops.

LU factorization can be used to solve (9), and its compu-
tational cost is given in Table 1. The computational cost
of forming the Sylvester equation is p3 + p2q+ q3 − pq2,
and solving this Sylvester equation by the Hessenberg-
Schur algorithm (Golub et al. 1979) is 5

3
p3+10q3+5p2q+

5

2
pq2. The total cost of this method is given in Table 1

and named Sylvester. The computational cost of solv-
ing a coupled Sylvester equation by generalized Schur
method is 15p3+15q3+5p2q+5pq2+97/4pq and by gen-
eralized Hessenburg-Schur method is (5 + 35/12q)p3 +
15q3+19/2p2q+6pq2 (Kågström&Westin 1989), which
is not better than the Sylvester method. The computa-
tional cost of our proposed method is named New and
given in Table 1.

To see the computational cost in terms of the number of
states n, we define p := αn for 0 < α < 1. Since n = p+q,
this implies that q = (1 − α)n. For a typical case when
α = 0.5, the computational cost of these methods is
shown in the last column of Table 1.

5 Effect of rounding errors

In this section, we briefly describe the effect of finite pre-
cision arithmetic in the solution of a coupled Sylvester
equation. We know from linear system sensitivity the-
ory that if H is ill-conditioned, then small changes in

E1, E3, F1 and F3 can induce large changes in the solu-
tion of (9). From (10), we have

(BT
s ⊗As − Ipq)

︸ ︷︷ ︸

Hs

vec(L) = −vec(Cs). (13)

The condition number is generally used as a measure of
sensitivity; for large condition numbers we may expect
large rounding errors due to finite precision effects com-
pared to small condition numbers. To compare the effect
of rounding errors of our proposed method over exist-
ing methods, we compare the condition number of E1

with H and Hs. For a detailed error analysis of the so-
lution to a coupled Sylvester equation, see Kågström &
Westin (1989) and Kågström (1994), for the solution to
a Sylvester equation see Golub et al. (1979) and Higham
(2002, Chapter 16), and for the solution to a triangular
system see Higham (2002, Chapter 8).

6 Numerical Results

To compare the performance of our proposed method
(Algorithm 1) with existing methods (9) and (10), we
applied these algorithms on two examples.

6.1 Example 1

Consider an example from fluid mechanics, namely
plane Poiseuille flow. A number of linear DAEs of the
form (1) of different state dimensions are obtained by the
discretization of linearized Navier-Stokes equations by
changing the number of grid points (Jones et al. 2009).

All three algorithms to solve the coupled Sylvester equa-
tion described in the previous section have been imple-
mented in Matlab

1 . Sparse LU factorization is used
to solve (9) via Matlab’s mldivide routine. (10) is a
discrete-time Sylvester equation, and its solution is com-
puted using the dlyap routine, which implements Sli-

cot routine SB04QD. The computational time taken by
each method is measured by Matlab’s tic and toc

functions and is shown in Fig. 1(a). It is obvious that
our proposedmethod is better in terms of computational
time and conditioning than the sparse LU factorization
and Sylvester method. The error in the solution of the
coupled Sylvester equation is defined as

ǫ := ‖E1R + LE3 + E2‖2 + ‖F1R+ LF3 + F2‖2, (14)

and is shown in Fig. 1(b). It is evident from Fig. 1(b)
that the error in the solution of our proposed scheme is
comparable to other techniques. The second important
factor in the solution of the coupled Sylvester equation

1 All computations are performed on a 2.83GHz Quad Core
Intel CPU machine in Matlab 7.6.0 (R2008a) using IEEE
double precision.
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Fig. 1. (a) Time to compute the solution of a coupled
Sylvester equation with variable system order n, (b) Error
in the solution of a coupled Sylvester equation with vari-
able system order n, (c) Condition number of H,Hs and E1

with variable system order n, (d) Ratio of the time taken
by the Sylvester method to our proposed method when solv-
ing a coupled Sylvester equation, where α = p/(p+ q). The
simulation results are computed with fixed number of states
n = 200.

.

is the condition number of the matrices that need to be
inverted. Fig. 1(c) shows how the condition number of
matrixH , which appears in the LU factorization,Hs as-
sociated with (13), and E1 increases with the system or-
der n. In Algorithm 1 at line 2 the solution of a linear sys-
tem with upper triangular matrix E1 is determined with
back substitution only, therefore the condition number
of E1 can be considered as the condition number of our
method. This shows that our proposed method is bet-
ter in terms of conditioning than LU factorization of (9)
and the Sylvester method.

6.2 Example 2

In this example a number of DAEs of the form (1) are
generated randomly by varying the rank of E and keep-
ing the number of states fixed. The (2, 2) block matrix
of E of size q × q is taken as zero while F and other
block matrices of E are generated randomly byMatlab

command sprandsym. This command gives us a sparse
symmetric random matrix whose elements are normally
distributed with mean zero and variance one. The gener-
alized Schur decomposition of each matrix pencil F−λE
gives us a coupled Sylvester equation with different di-
mension variables p and q. This set of coupled Sylvester
equations is solved by the method used by Jones et al.
(2009), called the Sylvester method, and our proposed
one in Matlab. To see the gain of our method over
the Sylvester method, the ratio of the computational
time of the Sylvester method to our method against

α = p/(p+ q) is plotted in Fig. 1(d). It shows that our
method is at least 2.5 times faster than the Sylvester
method. The gain is even more at lower and higher val-
ues of α, which is consistent with the results of Table 1.

7 Conclusions

This paper was motivated by the fact that the discretiza-
tion of partial differential-algebraic equations leads to a
large number of differential-algebraic equations, and the
solution time of DAEs grows with the number of states.
An attempt has been made in this technical note to re-
duce the computational time of the coupled Sylvester
equation, which is one part in computing the solution
of a differential-algebraic system. It was shown that the
proposed algorithm is not only computationally more
efficient than existing techniques, but also numerically
better conditioned. It is shown numerically that our al-
gorithm is at least 2.5 times faster than the method used
in Jones et al. (2009).
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