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HAMEV and SQRED 11 IntroductionThis paper describes LAPACK-based Fortran 77 subroutines for the reduction of a Hamil-tonian matrix to square-reduced form and the approximation of all its eigenvalues using theimplicit version of Van Loan's method. Many applications in linear quadratic and H1{controltheory require the computation of the eigenvalues of Hamiltonian matricesH = " A GQ �AT # (1)where A;G;Q 2 IRn�n and G, Q are symmetric. These include the computation of the H1{norm of transfer matrices, see, e.g., [17, 8, 7] and the references given therein, and the problemof calculating the real and complex stability radius of a matrix [14, 36]. Hamiltonian matricesalso have an intimate relationship to continuous-time algebraic Riccati equations (CARE) ofthe form 0 = Q+ ATX +XA�XGX (2)with A;G;Q as in (1) and X 2 IRn�n is the symmetric solution matrix. Often, a stabilizingsolution X̂ of (2) is required in the sense that all the eigenvalues of A� GX̂ are in the openleft half plane. If such a solution exists, these eigenvalues are exactly the stable eigenvalues(i.e., those with negative real part) of the Hamiltonian matrix H in (1). If the HamiltonianmatrixH has no eigenvalue with zero real part, then there exists an n-dimensional H-invariantsubspace corresponding to the n stable eigenvalues of H which is called the stable invariantsubspace of H . If this subspace is spanned by the columns of [V T ; WT ]T , V;W 2 IRn�n,and V is invertible, then a stabilizing solution X̂ of (2) is given by X̂ = �WV �1. For adetailed discussion of the relations of Hamiltonian matrices and continuous-time algebraicRiccati equations as well as properties of solutions of the CARE (2) we refer to [21].Knowledge of approximations to the eigenvalues of the corresponding Hamiltonian matrix iscrucial for some numerical solution methods for the CARE (2), e.g., for the multishift QR{likemethods proposed in [2, 3, 33] and the algorithm presented in [31]. As suggested in [34], theycan signi�cantly improve the convergence of the SR algorithm [10] when employed as shifts.Van Loan's method uses the square-reduced form of a Hamiltonian matrix which will beintroduced in Section 2. Square-reduced Hamiltonian matrices are used by themselves in theCARE solution methods given in [39, 40].A Hamiltonian matrix is de�ned by the property HJ = (HJ)T whereJ = " 0 In�In 0 # 2 IR2n�2n: (3)It is easy to see that matrices with these properties must have the form (1). The eigenval-ues of any matrix may be computed by the unsymmetric QR algorithm, see, e.g., [19]. ButHamiltonian matrices have a lot more structure than general unsymmetric matrices and itis desirable to exploit this structure in order to improve accuracy and to reduce computa-tional cost as well as the required work space. A sound numerical procedure to computethe eigenvalues of any structured matrix might use only similarity transformations that areorthogonal and structure-preserving. For Hamiltonian matrices, structure is preserved bysymplectic transformations. A matrix S 2 IR2n�2n is called symplectic i� STJS = J withJ as in (3). So far no algorithm has been found that computes the eigenvalues of a general



2 Benner, Byers, and BarthHamiltonian matrix by using only orthogonal symplectic similarity transformations. For thespecial case that rankG = 1 or rankQ = 1, a Hamiltonian QR algorithm was presented in[13]. A structure preserving QR-like algorithm using SR decompositions has been presentedin [10, 11, 34]. However, this algorithm su�ers from numerical instabilities since the used sym-plectic transformations are not bounded in norm. Recently, an orthogonal symplectic methodfor computing the eigenvalues of a Hamiltonian matrix has been proposed [6]. This methodis also based on the square-reduced form of a Hamiltonian matrix but uses non-similaritytransformations and does not compute this form explicitly. The method is numerically back-ward stable at the price of a higher computational cost and higher workspace requirementscompared to Van Loan's method.The method proposed by Van Loan [37] uses the properties of the square of a Hamiltonianmatrix. It is possible to reduce such a matrix to a Hessenberg-like form by structure-preservingsimilarity transformations. That is, the eigenvalues of the squared Hamiltonian matrix arecomputed by a strongly backward stable method. 1 Unfortunately, by taking the square rootsof the eigenvalues of the squared Hamiltonian matrix a loss of accuracy of O(p") is possiblefor tiny eigenvalues (if any). (Here, " denotes the machine precision.) In [37], it is shownthat the eigenvalues computed by this method are exact eigenvalues of a Hamiltonian matrixH + E where kEk � O(p")kHk.In the sequel, we will make use of the following notation. Let A 2 IRn�n. By �(A) we denotethe set of eigenvalues or spectrum of a matrix A. The spectral norm of a matrix is given bykAk2 = qmaxfj�j : � 2 �(ATA)gand the Frobenius norm of A is de�ned bykAkF =vuut nXi;j=1 a2ij :The notation C�, {IR, and C+, respectively, where { = p�1, corresponds to the partitioningof the complex plane into the open left half plane, the imaginary axis, and the open righthalf plane, respectively. The identity matrix of order n will be denoted by In and the kthunit vector is given by ek . Furthermore, we will make use of a notation also used in [19] forrefering to a block of a matrix, that is, Ak:`;p:q will denote the submatrix of A de�ned by itsentries aij , k � i � `, p � j � q.The outline of the paper is as follows. In the next section we review Van Loan's square reducedmethod and the necessary results for Hamiltonian matrices. In Section 3 we introduce somescaling strategies which can in some cases improve the accuracy of the computed eigenvaluesand describe the details of the implementation. Numerical examples demonstrating the per-formance of the method are presented in Section 4. In Section 5 we also demonstrate how touse our subroutines for solving two problems from control theory: the distance-to-instabilityproblem and computing the H1{norm of a transfer matrix. Conclusions are drawn in Sec-tion 6. In Appendices A and B, we describe the input/output parameters of the Fortran 77subroutines SQRED and HAMEV, give example programs, and in Appendix C, we show howto obtain the software.1A numerical algorithm is called (numerically) backward stable if the computed solution is the exact solutionfor slightly perturbed initial data. It is said to be strongly backward stable if it is backward stable and theperturbations have the same structure as the initial data [9].



HAMEV and SQRED 32 Van Loan's Square Reduced MethodAt �rst we state some well-known results about Hamiltonian matrices which form the basisfor Van Loan's method. These results can be found in [37]. We therefore omit the proofs.The spectrum of a Hamiltonian matrix has the following property.Proposition 1 Let � 2 �(H) where H is a Hamiltonian matrix. If � 2 IR or � 2 {IR, then�� 2 �(H). If � = � + {� 2 C and � 6= 0, � 6= 0, then ��; ��;��� 2 �(H).Therefore, the spectrum of any Hamiltonian matrix can be written as�(H) = f�1; : : : ; �n;��1; : : : ;��n g; (4)where Re (�i) � 0, i = 1; : : : ; n.In many applications, the presence of purely imaginary eigenvalues of Hamiltonian matricesor the lack thereof plays an important role.Theorem 2 Let H be a Hamiltonian matrix as in (1) and assume there exist full-rank fac-torizations G = BBT , Q = CTC. If (A;B) is stabilizable, i.e., rank [A � �In; B] = n for all� 2 C+ [ {IR, and (A;C) is detectable, i.e, (AT ; CT) stabilizable, thena) Re(�) 6= 0 for all � 2 �(H).b) The CARE (2) has a unique symmetric positive semide�nite stabilizing solution X̂.c) If �(H) is as in (4), then �(A� GX̂) = f��1; : : : ;��n g.In [27], the following condensed form of 2n� 2n matrices is derived:Theorem 3 If L 2 IR2n�2n, then there exists an orthogonal symplectic matrix U 2 IR2n�2nsuch that ~L = UTLU = " ~L11 ~L12~L21 ~L22 # = 264@@@ 375 ; (5)i.e., ~L11 is an upper Hessenberg matrix and ~L21 is an upper triangular matrix.In the sequel, we will refer to the form (5) of a matrix as Paige/Van Loan form or PVL form.Now consider the square of a Hamiltonian matrix H as in (1),K := H2 = " A2 + GQ AG� GATQA� ATQ (A2 + GQ)T # =: " K1 K2K3 KT1 # : (6)Since the lower left and the upper right block of K are obviously skew-symmetric, theirdiagonal is zero. Squared Hamiltonian matrices are skew Hamiltonian, i.e., satisfy (HJ)T =�(HJ)T . It is easy to see that the structure of skew-Hamiltonian matrices is also preservedby symplectic similarity transformations, i.e., if S 2 IR2n�2n is a symplectic matrix and H isHamiltonian, then S�1H2S is also a skew-Hamiltonian matrix. Therefore, using Theorem 3,the PVL form of a skew-Hamiltonian matrix K = H2 is given by~K = UTKU = " ~K1 ~K20 ~K1T # = 264@@ @@ 375 : (7)



4 Benner, Byers, and BarthThe eigenvalues of K can thus be computed by applying the QR iteration to ~K1. Hence,according to (4), �(H) can be obtained by taking the positive and negative square roots ofthe computed eigenvalues of ~K1.This gives rise to the following algorithm.Algorithm 4 (Square reduced method | explicit version)Input: A Hamiltonian matrix H = " A GQ �AT # 2 IR2n�2n.Output: �(H) = f�1; : : : ; �2n g, an orthogonal symplectic Matrix U such that UTH2Uhas the form (7).1. Compute K = H2 = " A2 + GQ AG� GATQA� ATQ (A2 + GQ)T #.2. Compute the PVL form of K, i.e., determine U 2 IR2n�2n orthogonal and symplecticsuch that UTKU = " ~K1 ~K20 ~K1T # = 264@@ @@ 375 :3. Compute �( ~K1) = f�1; : : : ; �n g using the Hessenberg QR algorithm.4. Set �i = p�i, �n+i = �p�i for i = 1; : : : ; n.ENDIf the algorithm is used to approximate the eigenvalues of H only, it is not necessary toaccumulate the similarity transformations. This is the case, for instance, in some H1{controlapplications [17, 8, 7] or the distance-to-instability problem [14, 36].If, for any reason, the Hamiltonian matrix cannot be overwritten by K, the algorithm requiresan additional workspace of size 2n2 + O(n). This is the case when the eigenvalues of theHamiltonian matrix are used as shifts in CARE solution methods as in [2, 3, 31, 33] sincethe original Hamiltonian matrix (or a similar Hamiltonian matrix) is needed in followingsteps of the algorithm. This additional workspace can be avoided using the implicit versionof the algorithm as given in [37]. That is, the orthogonal symplectic matrix U from Step2. of Algorithm 4 is computed without explicitly forming K and is applied to the originalHamiltonian matrix H using UTKU = (UTHU)2:The Hamiltonian matrix UTHU obtained in this way is said to be in square-reduced form. Inother words, a square-reduced Hamiltonian matrix H satis�esH2 = 264@@ @@ 375as in (7). Since UTHU is a Hamiltonian matrix similar to H , the abovementioned algorithmscan proceed with UTHU instead of H and thus need no additional workspace to save the



HAMEV and SQRED 5original Hamiltonian matrix. Using this approach, it is necessary to accumulate the orthogonalsymplectic similarity transformations. The workspace and computational cost for this canessentially be halved using the following proposition [27].Proposition 5 If U 2 IR2n�2n is orthogonal and symplectic, thenU = " U1 U2�U2 U1 #where Ui 2 IRn�n, i = 1; 2.It should further be noted that from Algorithm 4, the real Schur form of a skew-Hamiltonianmatrix can be computed. Applying the Hessenberg QR algorithm to ~K1 (Step 3. of Algorithm4), we obtain an orthogonal matrix ~V 2 IRn�n such that T1 = ~V T ~K1V is in real Schur form.Observing that the block diagonal matrixV = " ~V 00 ~V #is again orthogonal and symplectic, we obtain the skew-Hamiltonian Schur form byK̂ = V TUTKUV = " T1 T20 TT1 # : (8)The skew-Hamiltonian Schur form is used in the CARE solution methods proposed in [39, 40].Before stating the implicit version of Algorithm 4, we have to take a closer look at orthogonalsymplectic matrices. These can essentially be described by two classes of matrices, i.e.,symplectic Householder and symplectic Givens matrices2 [27]. These two matrix types canbe de�ned as follows. Let P = P (v) = In � 2vvTvTv , v 2 IRn, be a Householder matrix, then asymplectic Householder matrix is given byPs(v) = " P (v) 00 P (v) # : (9)A Givens rotation matrix is symplectic, i� the rotation is performed in planes k, n + k,1 � k � n. A symplectic Givens matrix is thus de�ned byGs(k; c; s) = " C �SS C # ; (10)where c; s 2 IR, c2 + s2 = 1, and C = In + (c� 1)ekeTk , S = sekeTk .Using the well-known abilities of Householder re
ections and Givens rotations to annihilate aspeci�c part of a vector (see, e.g., [19, 27]), and remembering Proposition 5, it is now possibleto state the implicit version of Van Loan's algorithm.2Note that this notation is somewhat misleading: whereas a symplectic Givens matrix is also a Givensrotation matrix in the classical sense, a symplectic Householder matrix is not a standard Householder matrixbut the direct sum of two n� n Householder matrices.



6 Benner, Byers, and BarthAlgorithm 6 (Square reduced method | implicit version)Input: A Hamiltonian matrix H = " A GQ �AT # 2 IR2n�2n and an orthogonal symplecticmatrix U = " U1 U2�U2 U1 #.Output: �(H), an orthogonal symplectic Matrix U transforming H to square-reduced form.H is overwritten by its square-reduced form UTHU .1. FOR k = 1; : : : ; n� 1(a) IF k � n � 2 THENw (QA�ATQ)k+1:n;kCompute a Householder re
ection P such that Pw = �kwk2e1.Update the Hamiltonian matrix viaA PAP , G PGP , Q PQP .Accumulate the re
ection (if required) viaU1  U1P , U2  U2P .END IF(b) x (A2 + GQ)k+1;k, y  (QA�ATQ)k+1;k.Compute a symplectic Givens rotation de�ned by c; s 2 IR such that" c s�s c # " xy # = " �px2 + y20 #and C = In + (c� 1)ekeTk , S = sekeTk . Update the Hamiltonian matrix viaA CAC + SQC + CGS � SATS,G CGC � SATS � CAS � SQS,Q CQC � SAC � SGS � CATS.Accumulate the rotation (if required) viaU1  U1C + U2S, U2  U2C � U1S.(c) IF k � n � 2 THENw (A2 +GQ)k+1:n;kCompute a Householder re
ection P such that Pw = �kwk2e1.Update the Hamiltonian matrix viaA PAP , G PGP , Q PQP .Accumulate the re
ection (if required) viaU1  U1P , U2  U2P .END IFEND FOR2. W  A2 +GQ3. Compute � (W ) = f�1; : : : ; �n g by Hessenberg QR iteration.4. �i  p�i for i = 1; : : : ; n and set � (H) = f�1; : : : ; �n; ��1; : : : ;��ngEND



HAMEV and SQRED 7The algorithm as stated above needs the following work space.2n2 + n for the Hamiltonian matrix H ,n2 as dummy work space for w and W ,2n2 for the orthogonal symplectic transformation matrix U .total 5n2 + nThe workspace for U is of course not required if only the eigenvalues of the Hamiltonianmatrix H are to be computed.As it is obvious from this formulation of the implicit SQRED algorithm, the symplecticHouseholder and Givens transformation matrices need not be computed explicitly. Updatingand accumulating is straightforward and uses well-known techniques, e.g., [19, 38].Using 
op3 counts and estimates from [19], we get the following estimate for the computationalcost of Algorithm 6.4n3 
ops for implicitly computing the columns of H2,3n2 + O(n) 
ops for generating Householder re
ections and Givens rotations,16n3 + O(n2) 
ops for updating the Hamiltonian matrix,8n3 + O(n2) 
ops for accumulating the orthogonal symplectic transformations,2n3 + O(n2) 
ops for forming W = A2 +GQ,7n3 + O(n2) 
ops for the Hamiltonian QR iteration,n 
ops for the square roots in Step 4.total 37n3 + O(n2) 
opsAs for the work space, the computational cost for accumulating the similarity transformationscan be saved if only eigenvalues are required. Thus, computing only the eigenvalues of theHamiltonian matrix requires about 29n3 
ops which is a little more than one third of thecomputational cost of about 80n3 
ops for the standard Hessenberg QR algorithm (as given,e.g., in [19]) applied to the Hamiltonian matrix H .Another important issue is the accuracy of the computed eigenvalues. Let � 2 �(H) and let~� be the analogue computed by either Algorithm 4 or Algorithm 6. Then Van Loan provesin [37] that ~� 2 � (H +E);where E 2 IR2n�2n satis�es kEk2 � cp"kHk2:Here, c is a small constant and " denotes the machine precision.Remark 7 The perturbation E can be considered as a structured perturbation, that is, if thealgorithm is implemented carefully, E is a Hamiltonian matrix.Using some heuristic, the following result for a simple eigenvalue computed by AlgorithmSQRED (implicit or explicit version) is derived in [37].j�� ~�j � min( "kHk22s(�)j�j; p"kHk2s(�) ) = "kHk2s(�) �min�kHk2j�j ; 1p"� (11)where s(�), the reciprocal condition number of �, is the cosine of the acute angle between theleft and right eigenvectors of H corresponding to �.3Following [19], we de�ne each 
oating point arithmetic operation together with the associated integerindexing as a 
op.



8 Benner, Byers, and BarthThe estimate (11) can be interpreted using the standard estimate for eigenvalues �QR com-puted by the Hessenberg QR iteration [38],j�� �QRj � "kHk2s(�) ;as follows:� If kHk2=� � 1, then ~� is as accurate as �QR,� If kHk2=j�j > 1, then the error in ~� can be up to 1=p" times larger than the error in�QR.Thus, if relatively small eigenvalues of a Hamiltonian matrix are required with high accuracy,it is not advisable to use Van Loan's method to compute the eigenvalues. However, if theapproximate eigenvalues are used, for example, as shifts, the highest possible accuracy is notthe matter. In the mentioned multishift and related algorithms [2, 3, 33, 31], more accurateeigenvalues can be obtained during the iteration. Sometimes, accurate shifts may even leadto forward instability, see [29]. For a discussion of the problem of eigenvalues close to theimaginary axis (including \small" eigenvalues) see Section 3.2.As it was observed in [14], it is safe to use Van Loan's square reduced method when computingthe stability radius of a real matrix. The same argument can also be applied for the applicationof Algorithm 6 to the H1{norm computation, see Section 5.



HAMEV and SQRED 93 ImplementationFor the actual implementation we chose the implicit version of the algorithm in order toavoid the need of explicitly computing the square of the Hamiltonian matrix. The subroutineSQRED implements the �rst step of Algorithm 6, i.e., computes the square-reduced Hamil-tonian and, if required, the orthogonal symplectic transformation matrix. The subroutineHAMEV performs steps 2.-4. of Algorithm 6 using subroutine SQRED. We chose to separatethese steps in order to make it possible to use the square-reduced Hamiltonian matrix itself.The implementation and documentation of all subroutines follow the standards proposed forthe Subroutine LIbrary in Control and Systems Theory SLICOT (see [25]). Besides thesubroutines described below we used the DOUBLE PRECISION versions of the BLAS (levels1 and 2) [23, 16] and LAPACK [4].We will now describe some implementation details and how the subroutines are used.3.1 ScalingIt is possible to scale or balance a matrix by a diagonal similarity transformation to make allrow norms and all columns (approximately) equal. Balancing tends to reduce the ill-e�ectsof rounding error in subsequent eigenvalue calculations [30, 26]. However, the balancingprocedure described in [30] destroys Hamiltonian structure. We need a strategy that usessymplectic similarity transformations only. Diagonal symplectic matrices take the formDs = " D 00 D�1 # (12)where D is diagonal. In this section we describe some balancing strategies.A simple strategy is to balance A using a diagonal matrix D = DA computed by a packaged,unstructured balancing subroutine like DGEBAL from LAPACK [4]. The diagonal similaritytransformations DA can then be extended to a symplectic diagonal similarity Ds as in (12).Of course, the choice of Ds ignores G and Q, so it is unlikely to be optimal.Another possibility is to use a scaling strategy known to improve the accuracy of solutionmethods for the CARE (2). Here, the diagonal matrix D in (12) is chosen as D� = In=p�for some scalar � 6= 0. This strategy results in a Hamiltonian matrix~H := " A ~G~Q �AT # := " D��1 00 D� # " A GQ �AT # " D� 00 D��1 # (13)where ~G = �G and ~Q = Q=�. It was observed in [32] that scaling H such that kAk = kGk =kQk is optimal in the sense that it minimizes the error bounds for the numerical solutionof the CARE (2). The choice � = pkQk=kGk gives k ~Gk = k ~Qk, but, in general, it is notpossible to choose � to achieve the \optimal" scaling kAk = k ~Gk = k ~Qk.Both ideas can be combined. We will refer to this two-step scaling as symplectic scalingsince the scaling is performed by a similarity transformation with a symplectic matrix. Theresulting Hamiltonian matrix is~H = " D�1A ADA �D�1A GD�1A1�DAQDA �DAATD�1A # (14)



10 Benner, Byers, and Barthwhere � = qkDAQDAk1=kD�1A GD�1A k1.Closely related to the above scaling via D = �I is the strategy proposed in [20, 28] forstabilizing the Schur vector method for the solution of CAREs (2). Consider the CARE0 = Q+ (1� A)T (�X) + (�X)(1�A)� (�X)( 1�2G)(�X):The corresponding Hamiltonian matrix isĤ = " Â ĜQ �ÂT #where Â = A=� , Ĝ = G=�2, and � 2 �(H) if and only if �̂ = �=� 2 �(Ĥ). This strategy isequivalent to scaling the Hamiltonian matrix H by the real scalar 1=� and then performinga symplectic similarity transformation with Ds from (12) where D = p�In. We will refer tothis scaling strategy as norm scaling.In order not to introduce rounding errors by scaling, we choose in both scaling strategies theparameters � and � among the set of numbers �� where � denotes the base of the 
oatingpoint number system and � is a signed integer. Note that the LAPACK subroutine DGEBALis not implemented in this fashion such that rounding errors may well be introduced whenscaling A in our symplectic scaling strategy.The special case in which Q is of small magnitude arises naturally during defect correction ofsolutions of the CARE [24]. In this case, Q tends to su�er from subtractive cancelation and isknown only to low relative error. The diagonal balancing strategy tends to exaggerate the ill-e�ect of the errors in a small magnitude, low accuracy Q. To avoid this the balancing strategiesbound � and � from below by 1 and from above to prevent over
ow in the computation of�G and � .In Step 3. of Algorithm 6, the usual balancing as proposed in [30] of a matrix can be appliedto W . This can be achieved, as mentioned above, using the LAPACK subroutine DGEBAL.This type of scaling will be called Hessenberg scaling since it is applied to the upper leftHessenberg block of the squared Hamiltonian matrix.When calling HAMEV, the following choices for the input parameter JOBSCL are possible:A { symplectic scaling and Hessenberg scaling,B { norm scaling and Hessenberg scaling,N { no scaling.For any other choice, only Hessenberg scaling is performed.3.2 Eigenvalues on or close to the imaginary axisAn important issue in many applications of the Hamiltonian eigenproblem are eigenvalues onor close to the imaginary axis. Algorithms for the computation of the H1{norm of transfermatrices [8, 7, 17] or the stability radius of real and complex matrices [14, 36] have to decidewhether there are eigenvalues on the imaginary axis or not. The knowledge of the spectrumof H also gives information about the solution of the CARE (2). Clearly, if the Hamiltonianmatrix corresponding to the CARE has eigenvalues on the imaginary axis, then no stabilizingsolution can exist. On the other hand, if all Jordan blocks corresponding to eigenvalues on the



HAMEV and SQRED 11imaginary axis have even size, then a real n{dimensional H{invariant Lagrangian4 subspacecorresponding to eigenvalues �, Re(�) � 0, exists and under additional assumptions, analmost stabilizing solution ~X of the CARE can be computed, that is, �(A�G ~X) � C� [ {IR.For a discussion of the relation of the spectra of Hamiltonian matrices to the existence anduniqueness of solutions of the CARE we refer to [21]. CARE Solution methods that requirean a priori knowledge of the spectrum of H can therefore use this information to decide if asolution of (2) exists before trying to compute it. This is the case, e.g., for the multishift andrelated algorithms [2, 3, 33, 31].The subroutine HAMEV can be used to decide if a Hamiltonian matrix has eigenvalues onthe imaginary axis in the following way. If the input argument ORDER is set to 'O' or 'o', thenall eigenvalues satisfying jRe(�)j � tol � j�j (15)(where tol is a user-de�ned tolerance) are placed at the end of f�1; : : : ; �ng. That is, if npi isthe number of computed eigenvalues satisfying condition (15), then this number is returnedby HAMEV and those eigenvalues within the given relative tolerance to the imaginary axisare returned as �n�npi+1; : : : ; �n (and ��n�npi+1; : : : ;��n, respectively). The �nal decisionwhich of these eigenvalues is considered to be purely imaginary is still left to the user. Thisdecision can, for instance, be made by the choice of tol. In Section 5 we will give an examplehow this can be used when computing the stability radius of a real matrix or the H1{normof a transfer matrix.As default tolerance we choose tol = p" where " is the machine precision. This is only usedif on input to HAMEV, we have for the corresponding argument TOL < 0. This tolerance isinspired by the error estimate given in (11). A worst case analysis shows that the real part ofthe computed analogue of a purely imaginary eigenvalue can have a real part of order O(p").3.3 UsageThe subroutine SQRED computes the square-reduced form of a Hamiltonian matrix, i.e., if~H is the Hamiltonian matrix returned by SQRED, then (in exact arithmetic)~H2 = " K1 K20 KT1 # = 264@@ @@ 375 :SQRED can be used by itself to reduce a Hamiltonian matrix H to square-reduced form andis also used by the subroutine HAMEV. The subroutine is called as follows:CALL SQRED(N, A, LDA, GP, QP, U, LDU, RWORK, COMPU, IERR)For a complete description of input and output arguments see Appendix A. The Hamiltonianmatrix is provided by its blocks A, G, and Q, where the symmetric matrices G and Q arestored in the arrays GP, QP using lower packed storage mode (see [4]). That is, only the lowertriangles of G and Q are stored columnwise.If required (as de�ned by COMPU), the orthogonal symplectic transformations are accumulatedin a matrix U . The argument U contains the �rst n rows of this matrix which completelyde�ne the orthogonal symplectic matrix U due to Proposition 5.4An n-dimensional subspace V � IR2n is called Lagrangian if xTJy = 0 for all x; y 2 V and J as in (3).



12 Benner, Byers, and BarthThe subroutine HAMEV computes the eigenvalues of the Hamiltonian matrix. It is possi-ble to obtain all 2n eigenvalues or the n eigenvalues with nonnegative real parts (unstableeigenvalues) or nonpositive real parts (stable eigenvalues).The calling sequence isCALL HAMEV(N, A, LDA, GP, QP, U, LDU, SCALE, NPI, WR, WI, RWORK,$ TOL, COMPU, JOBEV, JOBSCL, ORDER, IERR)For a complete description of input and output arguments see Appendix B. After a possi-ble symplectic or norm scaling as proposed in Section 3.1, the Hamiltonian matrix and theorthogonal symplectic transformations are treated exactly as in SQRED. That is, after re-turning from HAMEV, the Hamiltonian matrix is the square-reduced Hamiltonian computedby SQRED. The eigenvalues are returned in WR (real parts) and WI (imaginary parts). Thearguments NPI, TOL, and ORDER refer to the ordering of the eigenvalues as explained in Sec-tion 3.2 whereas JOBSCL de�nes which of the scaling strategies of Section 3.1 is used. Theargument SCALE provides all necessary scaling parameters to retrieve the Hamiltonian inputmatrix from the output matrix. Note that the eigenvalues of the Hamiltonian input matrixare returned. If norm scaling is performed, these are not the eigenvalues of the Hamilto-nian output matrix. In that case, the eigenvalues of the Hamiltonian output matrix Ĥ are�̂i = (WR(I) + {WI(I))=SCALE(1) and the Hamiltonian matrix corresponding to the returnedeigenvalues can be retrieved by setting H = SCALE(1)� Ĥ.3.4 Subroutine organizationThe basis for the subroutines SQRED and HAMEV are the BLAS and LAPACK [23, 16, 4].Table 1 shows the necessary functions and subroutines from these subroutine libraries.BLAS routines LAPACK routinesLevel 1 Level 2 auxiliary computationalDAXPY DGEMV DLABAD DLANSP DLASET DGEBALDCOPY DSPMV DLACPY DLANV2 DLASSQ DHSEQRDDOT DGER DLAHQR DLAPY2 DRSCLDNRM2 DSPR2 DLAE2 DLARFX ILAENVDROT DLAMCH DLARFG LSAMEDSCAL DLANGE DLARTG XERBLADSWAP DLANHS DLASCLIDAMAX Table 1: Necessary BLAS and LAPACK routinesBesides the BLAS and LAPACK routines, we need the following subroutines:CROOT : Computes the square root of a complex number using real arithmetic. The rootis chosen such that the real part is nonnegative. This subroutine was adaptedfrom the EISPACK [35] subroutine CSROOT.SYREF : Performs a similarity transformation of a symmetric matrix given in lowerpacked storage mode with a Householder matrix as proposed in [38].



HAMEV and SQRED 13HAMGIV : This subroutine performs a similarity transformation of a Hamiltonian matrixsupplied by its blocks A, G, and Q as described in Section 3.3 with a symplecticGivens rotation matrix Gs(k; c; s) as in (10).Givens rotations were generated by DLARTG and applied to H by HAMGIV whereas accu-mulating the orthogonal symplectic transformations uses DROT. Householder re
ections weregenerated by DLARFG and applied to A by DLARFX and to G, Q by SYREF. Accumulatingthe re
ections was done by DLARFX. Figure 1 shows the subroutine hierarchy.HAMEV SQREDCROOT SYREF HAMGIVmLAPACK BLAS 1,2HHHHHHHHHHHHY���������1 XXXXXXXXXXXXXXXy AAAAAAK ���������3@@@I������� @@@@@@I ��������������:������* HHHHHHYXXXXXXXXXXXXXXXy
Figure 1: Subroutine hierarchy



14 Benner, Byers, and Barth4 Numerical ExamplesWe tested our subroutines for all Hamiltonian matrices from the benchmark collection forcontinuous-time algebraic Riccati equations [5], the examples given in [37], and some ran-domly generated examples. Here, we present the most interesting results obtained by theseexperiments.The numerical tests were performed using IEEE double precision arithmetic with machineprecision " � 2:2204�10�16 on Hewlett Packard apollo series 700 workstations with operatingsystem HP-UX 9.0x (for several values of x) and on a SUN SPARCstation 10 with operatingsystem SunOS 4.1. The compilers were the HP-UX and SUN Fortran 77 compilers invokedby f77 and only low level optimization was allowed.We compared our subroutines with the LAPACK driver routine DGEEVX for computingthe eigenvalues of an unsymmetric matrix using the QR algorithm. In all given tables,HAMEV(X) denotes calling HAMEV with the scaling strategy X as given in Section 3.1.(Here, 'H' will denote Hessenberg scaling.)Example 1 [37, Example 2] LetA = diag(1; 10�2; 10�4; 10�6; 10�8 ):Then a Hamiltonian matrix H is obtained byH = UT " A 00 �AT #U;where U 2 IR2n�2n is an orthogonal symplectic matrix randomly generated by �ve sym-plectic rotations and �ve re
ectors. Thus, �(H) = f�1;�10�2;�10�4;�10�6;�10�8g. Ta-ble 2 shows the absolute errors in the eigenvalue approximations computed by HAMEV andDGEEVX. In this example, choosing the scaling parameters from the set of integer powersof the machine base results in scaling parameters all equal to one. Thus, the results for allscaling strategies in this example were the same.� HAMEV DGEEVX1 1:2 � 10�15 1:4 � 10�1510�2 1:0 � 10�17 2:9 � 10�1710�4 1:3 � 10�14 1:8 � 10�1810�6 1:7 � 10�14 1:7 � 10�1810�8 4:3 � 10�11 8:0 � 10�18Table 2: Example 1, absolute errors j�� ~�jHere, the loss of accuracy of order kHk2=j�j for Van Loan's method is obvious. DGEEVXcomputes all eigenvalues to full accuracy. Repeating the computations for several randomlychosen matrices U , the results for HAMEV varied by about one order of magnitude for thesmaller eigenvalues. The values given above can be considered as the geometrical mean of theabsolute errors for these test runs.



HAMEV and SQRED 15Example 2 [37, Example 3] The Frank matrix A 2 IRn�n is de�ned byA = 26666666666664 n n � 1 n� 2 : : : : : : 2 1n � 1 n� 1 n� 2 : : : : : : 2 10 n � 2 n� 2 : : : : : : 2 10 0 n� 3 . .. ... ...... ... . . . . . . ... ...... ... . . . 2 10 0 : : : 0 1 1 37777777777775 :All its eigenvalues are real and positive. The eigenvalue condition number becomes worsefor the smaller eigenvalues. A Hamiltonian matrix having the same eigenvalues as the Frankmatrix together with their negative counterparts is generated as in Example 1,H = UT " A 00 �AT #U;with U 2 IR2n�2n orthogonal symplectic randomly generated by n symplectic rotations andn re
ectors.We tested our subroutines for n = 12. Since exact eigenvalues are not known, we comparethe values computed by HAMEV with those obtained by DGEEVX (denoted by �QR). Theresults are given in Table 3 where only the results for the 5 eigenvalues of smallest absolutevalue (and worst condition number) are shown.� � s(�) HAMEV(A) HAMEV(B) HAMEV(H) HAMEV(N)0.2847 1:8 � 10�6 9:1 � 10�10 3:5 � 10�8 9:1 � 10�10 1:7 � 10�100.1436 1:8 � 10�6 5:8 � 10�9 1:0 � 10�6 5:8 � 10�9 6:7 � 10�80.0812 3:8 � 10�8 1:2 � 10�7 7:0 � 10�6 1:2 � 10�7 5:4 � 10�70.0495 2:6 � 10�8 3:9 � 10�7 1:4 � 10�5 3:9 � 10�7 1:4 � 10�60.0310 5:5 � 10�8 3:4 � 10�7 8:7 � 10�6 3:4 � 10�7 1:0 � 10�6Table 3: Example 2, j�HAMEV � �QRjHere, all scaling parameters for symplectic scaling are equal to one and thus, the results forHAMEV(A) are equal to those for HAMEV(H). Denoting the minimum singular values ofA� ~�I for the computed eigenvalues ~� by ~�min, we obtain ~�min � 10" for DGEEVX, whereasfor HAMEV(X) (X = A,H,N), ~�min is at most one order of magnitude larger whereas forHAMEV(B), ~�min is up to two orders of magnitude larger than for DGEEVX. This showsthat for very sensitive eigenvalues, norm scaling can decrease the accuracy of the computedeigenvalues.Example 3 [5, Eample 11] LetA = " 3 14 2 # ; G = " 1 11 1 # ; Q = " �11 �5�5 �2 # :



16 Benner, Byers, and BarthThe spectrum of H = " A GQ �AT # is f�jg with algebraic multiplicity two and geometricmultiplicity one. The computed eigenvalues are� for HAMEV with symplectic scaling,f+ :8407319236349208E� 08� :1000000000000000E+ 01i� :8407319236349208E� 08� :1000000000000000E+ 01i g,� for HAMEV with norm scaling,f 0� :9999999480808375E+ 00i;0� :1000000051919159E+ 01i g,� for HAMEV with Hessenberg scaling,f 0� :9999999913700510E+ 00i;0� :1000000008629949E+ 01i g,� for HAMEV without any scaling,f 0� :9999999913700510E+ 00i;0� :1000000008629949E+ 01i g,� for DGEEVX,f+ :3682987155528838E� 07� :1000000016020978E+ 01i;� :3682986875631206E� 07� :9999999839790201E+ 00i g.The di�erent scaling strategies for HAMEV result in di�erent perturbations of the eigenval-ues. For symplectic scaling, the imaginary part is computed correctly. For the other scalingstrategies, the computed eigenvalues have real part exactly zero whereas the imaginary partis perturbed. The QR algorithm as implemented in DGEEVX computes eigenvalues thatare perturbed along the real axis as well as along the imaginary axis. In particular, they donot appear in plus-minus pairs as the exact eigenvalues do. Also, the errors are one order ofmagnitude larger than for the eigenvalues computed by HAMEV (except for norm scaling).We can conclude that in this example, symplectic scaling yields the best result since it returnsthe right pairing and algebraic multiplicity of the eigenvalues and the eigenvalues closest tothe correct ones.Example 4 [5, Example 6], [15] This example comes from a control problem for a J|100 jetengine as special case of a multivariable servomechanism problem. The system is describedby _x(t) = Ax(t) + Bu(t) for t > 0; x(0) = x0;y(t) = Cx(t)where the state vector x contains the state of the jet engine, the actuators, and the sensors.For the system matrices A 2 IR30�30, B 2 IR30�3, C 2 IR5�30 we refer to [5, 15]. Thecorresponding Hamiltonian matrix isH = " A BBTCTC �AT # :We know the exact values only for four of the eigenvalues of H which are 33:3 and a tripleeigenvalue at 20:0. We give absolute errors for these eigenvalues as computed by HAMEV



HAMEV and SQRED 17(Table 4) as well as the di�erence between the values computed by HAMEV (denoted by�HAMEV ) and DGEEVX (denoted by �QR) for the eigenvalues of smallest and largest modulus(Table 5).� = HAMEV(A) HAMEV(B) HAMEV(H) HAMEV(N) DGEEVX33.3 1:1 � 10�9 5:4 � 10�10 3:4 � 10�11 3:5 � 10�11 020.0 1:4 � 10�9 1:2 � 10�11 6:2 � 10�10 5:9 � 10�10 020.0 1:4 � 10�9 1:2 � 10�11 6:2 � 10�10 5:9 � 10�10 020.0 1:9 � 10�10 6:3 � 10�12 6:5 � 10�11 1:6 � 10�12 0Table 4: Example 4, absolute errors for exact eigenvalues� � HAMEV(A) HAMEV(B) HAMEV(H) HAMEV(N)577.036 1:6 � 10�12 4:3 � 10�11 4:0 � 10�11 4:1 � 10�110.182 8:6 � 10�13 3:2 � 10�15 1:3 � 10�10 1:3 � 10�10Table 5: Example 4, j�HAMEV � �QRjTables 4, 5 show that norm scaling can in some cases improve the accuracy of eigenvaluescomputed by the square reduced method signi�cantly. Symplectic scaling also improves theaccuracy for the eigenvalues of smallest and largest modulus.Example 5 [22, Example 5], [5, Example 15], [37, Example 1] The Hamiltonian matrix inthis problem comes from the position and velocity control problem for a string ofN high-speedvehicles and is given byA = 2666666666664 A11 A12 0 : : : 00 A22 A23 0 : : : 0... . . . . . . . . . . . . ...0 AN�2;N�2 AN�2;N�1 00 AN�1;N�1 " 0�1 #0 : : : 0 0 �1 3777777777775whereAk;k = " �1 01 0 # ; 1 � k � N � 1; and Ak;k+1 = " 0 0�1 0 # ; 1 � k � N � 2:The o�-diagonal blocks are given byG = diag(1; 0; 1; 0; : : : ; 1; 0; 1);Q = diag(0; 10; 0; 10; : : : ; 0; 10; 0):



18 Benner, Byers, and BarthThe Hamiltonian matrix is H = " A GQ �AT # 2 IR2n�2nwith n = 2N � 1. For all � 2 �(H) and for all tested orders N = 5k, k = 1; : : : ; 20, theeigenvalues computed by HAMEV for all scaling strategies satis�edj�QR � �HAMEV j � "kHkwhere �QR denotes the eigenvalues computed by LAPACK subroutine DGEEVX. All eigen-values are well conditioned and kHk2=j�j = O(1) for all � 2 �(H).In Table 6 we give the CPU times used by HAMEV and DGEEVX on a SUN SPARCsta-tion 10. The timings for HAMEV are similar for all scaling strategies and we therefore giveonly the values obtained by performing only Hessenberg scaling.N 25 50 75 100HAMEV 0.28 1.80 5.09 11.42DGEEVX 1.34 8.53 29.47 60.24Table 6: Example 5, CPU times (seconds)From Table 6 we see that HAMEV is signi�cantly faster than DGEEVX. For increasing N ,the CPU times used by HAMEV tend to be less than 20% of that of DGEEVX. This is evenfaster than predicted by the 
op count. In all the tested computing environments, matrix-vector products where some blocks in the matrix or vector are zero perform much faster thanfor arbitrary matrices/vectors. Since in this example, GQ = 0, QA�ATQ is tridiagonal, andA2 = A2 + GQ is already in upper Hessenberg form, many of the operations in Algorithm 6are products involving zero blocks. Therefore, the unexpected speed-up in HAMEV can beexplained by this e�ect due to the e�cient implementation of multiplication with zeros onthe tested computers.Example 6 We tested our subroutines for randomly generated Hamiltonian matrices withentries distributed normally in the interval [�1; 1 ]. Since the eigenvalue distribution for theseexamples usually behaves nicely, the eigenvalues computed by HAMEV are as accurate as forDGEEVX. We give the CPU times for 2n� 2n examples for several sizes of n. For each sizeof n, we computed 100 examples. The values given in Table 7 are the mean values of theCPU times measured on a SUN SPARCstation 10.n 25 50 75 100 125 150 175 200HAMEV 0.10 0.65 2.08 4.63 8.77 14.78 22.85 33.49DGEEVX 0.26 1.59 4.97 11.28 21.83 37.73 59.25 87.43Table 7: . Example 6, CPU times (seconds)Table 7 shows that the speed up of HAMEV compared with DGEEVX is a little smallerthan expected from the 
op counts. This is due to the more complicated data structure,



HAMEV and SQRED 19memory access, and index handling of SQRED. For growing n, the computational time usedby HAMEV tends to be about 38% of that required by DGEEVX (as opposed to the expected36% from the 
op count).Besides the faster computation of the eigenvalues HAMEV returns the right pairing of theeigenvalues as��i, i = 1; : : : ; n. Since DGEEVX treats a Hamiltonian matrix like an arbitraryunsymmetric matrix, small perturbations can cause computed eigenvalues with small realparts to cross the imaginary axis. For example, the number of stable eigenvalues returned byDGEEVX for n = 100 varied between 95 and 104.



20 Benner, Byers, and Barth5 ApplicationsTo show some possible applications for our subroutines we chose two problems from controltheory. These are considered in Examples 7 and 8. Another possible application is to useHAMEV to approximate the eigenvalues of a Hamiltonian matrix and to use them as shiftsin a solver for CAREs (2) such as the methods proposed in [2, 3, 31, 33, 34]. In [1] it will bereported how our subroutines are used during the numerical solution of the CARE (2) by themultishift algorithm as prosposed in [2].Example 7 The real stability radius of a real matrix [14]Given a stable matrix A 2 IRn�n (i.e., �(A) � C�), it is often important to know how nearA is to an unstable matrix. In other words, how large must a perturbation be to make Aunstable? The distance of A to the unstable matrices can be measured by�(A) = minfkEk : �(A+ E)\ {IR 6= ;g:In [14], a bisection method for measuring �(A) is presented which is based on the followingobservation:Let � � 0. Then the Hamiltonian matrixH = H(�) = " A ��In�In �AT #has an eigenvalue on the imaginary axis if and only if � � �(A).The following algorithm estimates �(A) within a factor of 10 or indicates that �(A) is lessthan a small tolerance.Algorithm BISECInput: A 2 IRn�n and a tolerance tol > 0.Output: �; 
 2 IR such that either 
10 � � � �(A) � 
 or 0 � �(A) � 
 � 10tol.Set � = 0 and 
 = kA+AT kF =2.WHILE 
 > 10maxftol; �g DOSet � = p
maxftol; �gIF �(H(�))\ {IR 6= ; THENset 
 = �ELSEset � = �END IFEND WHILEENDNote that kA+AT kF =2 is a simple upper bound for �(A). If tol = 10�pkA +AT kF =2, thenat most dlog2 pe bisection steps will be required. We used Algorithm BISEC with p = 12such that at most four bisection steps were required. The eigenvalues of H(�) were computedby HAMEV and DGEEVX and the decision if there exist purely imaginary eigenvalues wasbased on the relative toleranceRe (�) < 10"kH(�)kF j�j =: tol�: (16)



HAMEV and SQRED 21Let A = UT 2666666664 100 99 . .. 3 ! 1�1 ! 3777777775Uwhere U = In � 2uuTuT u and u = [1; 2; : : : ; 100]T . Thus, �(A) = minf3; !g. We computedthe upper and lower bounds for �(A), i.e., � and 
, once by BISEC using HAMEV andonce by BISEC using DGEEVX. The number of computed purely imaginary eigenvalues withrespect to tol� is returned by HAMEV if the subroutine is called with ORDER = 'O' andTOL = 10"kH(�)kF . In the version using DGEEVX, the criterion (16) is checked for thereturned eigenvalues. Table 8 shows the computed values for � and 
 as well as the requiredCPU times on a SUN SPARCstation 10 for several values of !.HAMEV DGEEVX! � 
 CPU time � 
 CPU time10�1 1:84 � 10�2 1:03 � 10�1 20.30 1:84 � 10�2 1:03 � 10�1 39.7310�3 5:82 � 10�4 3:27 � 10�3 19.57 5:82 � 10�4 3:27 � 10�3 40.5210�5 3:27 � 10�6 1:84 � 10�5 19.92 3:27 � 10�6 1:84 � 10�5 40.2310�7 1:84 � 10�8 1:03 � 10�7 19.62 1:84 � 10�8 1:03 � 10�7 41.6110�9 0.0 3:27 � 10�9 19.41 0.0 3:27 � 10�9 41.54Table 8: Example 7, �, 
, and CPU times (seconds)The computed bounds for �(A) are independent of the chosen method for the decision ifH(�) has eigenvalues on the imaginary axis. Note that in [14] it was shown that it is safeto base the decision if H(�) has eigenvalues on the imaginary axis on any method preservingthe Hamiltonian structure of H(�) which Van Loan's method does as observed in Remark 7.Here, the method using HAMEV is about twice as fast as the method using DGEEVX. Thisis a little less than for the randomly generated examples.Example 8 H1{norm of a transfer matrixThe computation of the H1{norm kGkH1 of a transfer matrixG(s) := C(sI �A)�1B +D =: " A BC D #where A 2 IRn�n is stable, B 2 IRn�m , C 2 IRp�n, and D 2 IRp�m, plays a central role inH1{control problems (see, e.g., [18, 17]). Here,kGkH1 = supf kG({s)k2 : s 2 IR g:Let � 2 IR such that � > �max(D) where �max(D) denotes the largest singular value of Dand de�ne F (�) = A +B(�2I �DTD)�1DTC;



22 Benner, Byers, and BarthR(�) = 1�2B(�2I �DTD)�1BT ;Q(�) = �CT (I +D(�2 �DTD)�1DT )C;H(�) = " F (�) R(�)Q(�) �F (�)T # :Obviously, H(�) is Hamiltonian. The following result (e.g., [41]) can be used to approximatekGkH1 . kGkH1 < �() �max(D) < � and �(H(�))\ {IR = ;This result indicates that an upper and lower bound for kGkH1 can be computed via Al-gorithm BISEC of Example 7. To get closer bounds, we also have to modify the stoppingcriterion in Algorithm BISEC. To obtain an interval with 
 � k�, the stopping criterion ismodi�ed to 
 � kmaxftol; �g. A similar bisection method was proposed in [8]. The initialsearch interval [�; 
] can naively be chose to be [ �max(D); 
ub ] where 
ub is the upper boundproposed in [8], i.e., 
ub = �max(D) + 2qn � trace(WcWo)and Wc, Wo are the solutions of the controllability and observability Lyapunov equationsAWc +WcAT + BBT = 0;ATWo +WoA+ CTC = 0:As an example we computed upper and lower bounds for kGkH1 for the state-space systemgiven in Example 4 with D = 0. For this example, kGkH1 � 2275:03. The decision if H(�)has eigenvalues on the imaginary axis was based on the eigenvalues computed by HAMEVanalogous to Example 7. Using k = 1:001 (i.e., a relative accuracy of 0.1%), we obtained2273:2 � kGkH1 � 2275:1 after 15 iterations (1.24 seconds on a HP 712).In [7], a quadratically convergent algorithm for the computation of the H1-norm is given thatrequires the computation of all the purely imaginary eigenvalues of H(�) in each iterationstep. Thus, our subroutines can also be used in this algorithm.



HAMEV and SQRED 236 ConclusionsWe have presented Fortran 77 subroutines that transform Hamiltonian matrices to square-reduced form and approximate its eigenvalues as described in [12, 37]. Numerical experimentson computers with conventional architecture con�rm the theoretical expectation that thesesubroutines do less than half the work and �nish in less than half the time of the QR algorithmas implemented in LAPACK [4].Rounding error analysis and numerical experiments also con�rm the observation in [12, 37]that eigenvalues of larger magnitude are computed as accurately as their condition numberssuggest, but that tiny eigenvalues may be perturbed by a square root of the unit round.Sometimes scaling improves accuracy, but an error of order of the square root of machineprecision can not always be avoided.



24 Benner, Byers, and BarthA The Fortran 77 Subroutine SQREDThis section describes the subroutine SQRED and gives an example program showing howto use SQRED. The description and example program text follow the SLICOT subroutinedocumentation standard [25].A.1 Subroutine description1. PurposeTo transform a Hamiltonian matrixH = " A GQ �AT # (17)into a square-reduced Hamiltonian matrixĤ = " Â ĜQ̂ �ÂT # (18)by an orthogonal symplectic similarity transformation Ĥ = UTHU whereU = " U1 U2�U2 U1 # : (19)2. Speci�cationSUBROUTINE SQRED(N, A, LDA, GP, QP, U, LDU, RWORK, COMPU,1 IERR)INTEGER N, LDA, LDU, IERRDOUBLE PRECISION A(LDA,N), GP(N*(N+1)/2), QP(N*(N+1)/2), U(LDU,2*N),1 RWORK(2*N)CHARACTER COMPU3. Argument List3.1. Arguments InN { INTEGER.The order of the matrices A, G, and Q.N � 1.A { DOUBLE PRECISION array of DIMENSION (LDA,N).The leading N�N part of this array contains the upper left block A of theHamiltonian matrix H in (17).Note that this array is overwritten.LDA { INTEGER.The leading dimension of array A as declared in the calling program.LDA � N.



HAMEV and SQRED 25GP, QP { DOUBLE PRECISION arrays of DIMENSION at least N�(N+1)/2.Array GP contains the upper right symmetric block G and array QP the lowerleft symmetric block Q of the Hamiltonian matrix H in (17) in lower packedstorage mode, i.e., the lower triangles of the symmetric matrices are stored bycolumns.Note that these arrays are overwritten.U { DOUBLE PRECISION array of DIMENSION (LDU,udim).If COMPU = 'A' or 'a' or 'F' or 'f', then udim � 2�N. Otherwise, udim � 1.If COMPU = 'A' or 'a', the leading N�2N part of this array must contain the�rst N rows of an orthogonal symplectic matrix. Otherwise U is not referencedon input.Note that this array is overwritten if COMPU = 'A' or 'a' or 'F' or 'f'.LDU { INTEGER.The leading dimension of array U as declared in the calling program.If COMPU = 'A' or 'a' or 'F' or 'f', then LDU � N. Otherwise, LDU � 1.3.2. Arguments OutA { DOUBLE PRECISION array of DIMENSION (LDA,N).The leading N�N part of this array contains the upper right block Â of thesquare-reduced Hamiltonian matrix Ĥ in (18).GP, QP { DOUBLE PRECISION arrays of DIMENSION at least N�(N+1)/2.Array GP contains the upper right symmetric block Ĝ and array QP the lowerleft symmetric block Q̂ of the square-reduced Hamiltonian matrix Ĥ in (18) inlower packed storage mode, i.e., the lower triangles of the symmetric matricesare stored by columns.U { DOUBLE PRECISION array of DIMENSION (LDU,udim).If COMPU = 'A' or 'a' or 'F' or 'f', then udim � 2�N. Otherwise, udim � 1.If COMPU = 'F' or 'f', then array U contains the �rst N rows of the orthogonalsymplectic matrix U in (19).IF COMPU = 'A' or 'a', then array U contains the �rst N rows of the product~UU of an orthogonal symplectic input matrix ~U and U from (19).Otherwise, U is not referenced.3.3. Work spaceRWORK { DOUBLE PRECISION array of DIMENSION at least 2�N.3.4. TolerancesNone.3.5. Mode ParametersCOMPU { CHARACTER.Indicates whether the orthogonal symplectic matrix U of (19) is returned or ac-cumulated into an orthogonal symplectic matrix or if the transformation matrixis not required.



26 Benner, Byers, and BarthCOMPU = 'A' or 'a', (The orthogonal symplectic similarity transformations areaccumulated in U , i.e., U is the product of an orthogonalsymplectic input matrix and the similarity transformationmatrix of (19). On input, array U must contain the �rstN rows of an orthogonal symplectic 2N�2N matrix);COMPU = 'F' or 'f', (The matrix U in (19) is formed, i.e., the �rst N rows ofthe orthogonal symplectic similarity transformation arereturned in U);Otherwise, (The transformation matrix is not required and U is notreferenced).3.6. Warning IndicatorNone.3.7. Error IndicatorIERR { INTEGER.Unless the routine detects an error (see next section), IERR contains 0 on exit.4. Warnings and Errors detected by the RoutineIERR = 1On input, N < 1,or LDA < Nor LDU < 1or LDU < N and (COMPU = 'A' or 'a' or 'F' or 'f').



HAMEV and SQRED 27A.2 Example programTo transform the Hamiltonian matrix H to square-reduced form Ĥ = STHS whereH = " A GQ �AT #and A = 264 1:0 2:0 3:04:0 5:0 6:07:0 8:0 9:0 375 ; G = 264 1:0 1:0 1:01:0 2:0 2:01:0 2:0 3:0 375 ; Q = 264 7:0 6:0 5:06:0 8:0 4:05:0 4:0 9:0 375 :Program Text* SQRED EXAMPLE PROGRAM TEXT.** .. Parameters ..INTEGER NIN, NOUTPARAMETER (NIN = 5, NOUT = 6)INTEGER NMAXPARAMETER (NMAX = 20)INTEGER LDA, LDU, LDGQPARAMETER (LDA = NMAX, LDGQ = NMAX*(NMAX+1)/2, LDU = NMAX)INTEGER LRWORKPARAMETER (LRWORK = 2*NMAX)DOUBLE PRECISION ZERO, ONEPARAMETER (ZERO = 0.0D0, ONE = 1.0D0)* .. Local Scalars ..INTEGER I, IERR, IJ, J, K, KJ, N, NSYMCHARACTER COMPU* .. Local Arrays ..DOUBLE PRECISION A(LDA,NMAX), G(LDGQ), Q(LDGQ), U(LDU,NMAX),$ RWORK(LRWORK)* .. External Subroutines ..EXTERNAL DCOPY, DGEMM, DGEMV, DSCAL, DSPMV, SQRED* .. Executable Statements ..* WRITE (NOUT,FMT=99999)* Skip the heading in the data file and read the data.READ (NIN,FMT='()')READ (NIN,FMT=*) N, COMPUIF (N .LE. 0 .OR. N .GT. NMAX) THENWRITE (NOUT, FMT=99998) NELSENSYM = N*(N+1)/2READ (NIN,FMT=*) ((A(I,J),J=1,N),I=1,N)READ (NIN,FMT=*) (G(I),I=1,NSYM)



28 Benner, Byers, and BarthREAD (NIN,FMT=*) (Q(I),I=1,NSYM)ENDIF* .. square reduce by symplectic orthogonal similarity ..CALL SQRED(N, A, LDA, G, Q, U, LDU, RWORK, COMPU, IERR)IF (IERR.NE.0) THENWRITE (NOUT,FMT=99997) IERRELSE* .. show the square-reduced Hamiltonian ..WRITE (NOUT,FMT=99996)IJ = 1DO 20 I = 1, NCALL DCOPY(N, A(I,1), LDA, RWORK(1), 1)CALL DCOPY(N-I+1, G(IJ), 1, RWORK(N+I), 1)KJ = IDO 10 J = 1, I-1RWORK(N+J) = G(KJ)KJ = KJ + N - J10 CONTINUEWRITE (NOUT,FMT=99994) (RWORK(J),J=1,2*N)IJ = IJ + N - I + 120 CONTINUEIJ = 1DO 40 I = 1, NCALL DCOPY(N, A(1,I), 1, RWORK(N+1), 1)CALL DSCAL(N, -ONE, RWORK(N+1), 1)CALL DCOPY(N-I+1, Q(IJ), 1, RWORK(I), 1)KJ = IDO 30 J = 1, I-1RWORK(J) = Q(KJ)KJ = KJ + N - J30 CONTINUEWRITE (NOUT,FMT=99994) (RWORK(J),J=1,2*N)IJ = IJ + N - I + 140 CONTINUE* .. show the square of H ..WRITE (NOUT,FMT=99995)IJ = 1DO 80 I = 1, NCALL DGEMM('N', 'N', 1, N, N, ONE, A(I,1), LDA, A, LDA, ZERO,$ RWORK, 1)CALL DCOPY(N-I+1, G(IJ), 1, RWORK(N+I), 1)KJ = IDO 50 J = 1, I-1RWORK(N+J) = G(KJ)KJ = KJ + N - J50 CONTINUECALL DSPMV('L', N, ONE, Q, RWORK(N+1), 1, ONE, RWORK(1), 1)



HAMEV and SQRED 29CALL DSPMV('L', N, ONE, G, A(I,1), LDA, ZERO, RWORK(N+1), 1)CALL DGEMV('N', N, N-I+1, -ONE, A(1,I), LDA, G(IJ), 1, ONE,$ RWORK(N+1), 1)DO 70 J = 1, NKJ = IDO 60 K = 1, I-1RWORK(N+J) = RWORK(N+J) - A(J,K)*G(KJ)KJ = KJ + N - K60 CONTINUE70 CONTINUEWRITE (NOUT,FMT=99994) (RWORK(J),J=1,2*N)IJ = IJ + N - I + 180 CONTINUEIJ = 1DO 120 I = 1, NCALL DGEMV('N', N, N, ONE, A, LDA, A(1,I), 1, ZERO,$ RWORK(N+1), 1)CALL DCOPY(N-I+1, Q(IJ), 1, RWORK(I), 1)KJ = IDO 90 J = 1, I-1RWORK(J) = Q(KJ)KJ = KJ + N - J90 CONTINUECALL DSPMV('L', N, ONE, G, RWORK(1), 1, ONE, RWORK(N+1), 1)CALL DSPMV('L', N, ONE, Q, A(1,I), 1, ZERO, RWORK(1), 1)CALL DGEMV('T', N-I+1, N, -ONE, A(I,1), LDA, Q(IJ), 1, ONE,$ RWORK(1), 1)DO 110 J = 1, NKJ = IDO 100 K = 1, I-1RWORK(J) = RWORK(J) - A(K,J)*Q(KJ)KJ = KJ + N - K100 CONTINUE110 CONTINUEWRITE (NOUT,FMT=99994) (RWORK(J),J=1,2*N)IJ = IJ + N - I + 1120 CONTINUEEND IFSTOP*99999 FORMAT (' SQRED EXAMPLE PROGRAM RESULTS',/1X)99998 FORMAT (/' N is out of range.',/' N = ',I5)99997 FORMAT (' IERR on exit from SQRED = ',I2)99996 FORMAT (/' The square-reduced Hamiltonian is ')99995 FORMAT (/' The square of the square-reduced Hamiltonian is ')99994 FORMAT (1X,8(F10.4))END



30 Benner, Byers, and BarthProgram DataSQRED EXAMPLE PROGRAM DATA3 N1.0 2.0 3.04.0 5.0 6.07.0 8.0 9.01.0 1.0 1.0 2.0 2.0 3.07.0 6.0 5.0 8.0 4.0 9.0Program ResultsSQRED EXAMPLE PROGRAM RESULTSThe square-reduced Hamiltonian is1.0000 3.3485 .3436 1.0000 1.9126 -.10726.7566 11.0750 -.3014 1.9126 8.4479 -1.07902.3478 1.6899 -2.3868 -.1072 -1.0790 -2.98717.0000 8.6275 -.6352 -1.0000 -6.7566 -2.34788.6275 16.2238 -.1403 -3.3485 -11.0750 -1.6899-.6352 -.1403 1.2371 -.3436 .3014 2.3868The square of the square-reduced Hamiltonian is48.0000 80.6858 -2.5217 .0000 1.8590 -10.5824167.8362 298.4815 -4.0310 -1.8590 .0000 -33.1160.0000 4.5325 2.5185 10.5824 33.1160 .0000.0000 .0000 .0000 48.0000 167.8362 .0000.0000 .0000 .0000 80.6858 298.4815 4.5325.0000 .0000 .0000 -2.5217 -4.0310 2.5185



HAMEV and SQRED 31B The Fortran 77 Subroutine HAMEVThis section describes the subroutine HAMEV and gives an example program showing howto use HAMEV. The description and example program text follow the SLICOT subroutinedocumentation standard [25].B.1 Subroutine description1. PurposeTo approximate the eigenvalues of a Hamiltonian matrixH = " A GQ �AT # (20)by Van Loan's square reduced method [37]. Here, A, G, and Q are N�N matrices where Gand Q are symmetric. The Hamiltonian matrix H is transformed to square-reduced form viaa similarity transformation Ĥ := 1� UTD�1HDU =: " Â ĜQ̂ �ÂT # (21)where U is orthogonal and symplectic, D = diag(D0; D�10 ) is a symplectic diagonal matrix,and � is a real scalar. The eigenvalues of H are computed as the positive and negative squareroots of the eigenvalues of Â2 + ĜQ̂.2. Speci�cationSUBROUTINE HAMEV(N, A, LDA, GP, QP, U, LDU, SCALE, NPI, WR, WI,1 RWORK, TOL, COMPU, JOBEV, JOBSCL, ORDER, IERR)INTEGER N, LDA, LDU, NPI, IERRDOUBLE PRECISION A(LDA,N), GP(N*(N+1)/2), QP(N*(N+1)/2), U(LDU,2*N),1 SCALE(N+1), WR(N), WI(N), RWORK(N*(N+1))CHARACTER COMPU, JOBEV, JOBSCL, ORDER3. Argument List3.1. Arguments InN { INTEGER.The order of the matrices A, G, and Q.N � 1.A { DOUBLE PRECISION array of DIMENSION (LDA,N).The leading N�N part of this array contains the upper left block A of theHamiltonian matrix H in (20).Note that this array is overwritten.LDA { INTEGER.The leading dimension of array A as declared in the calling program.LDA � N.



32 Benner, Byers, and BarthGP, QP { DOUBLE PRECISION arrays of DIMENSION at least N�(N+1)/2.Array GP contains the upper right block G, array QP the lower left block Q ofthe Hamiltonian matrix H in (20) in lower packed storage mode, i.e., the lowertriangles of the symmetric matrices are stored by columns.Note that these arrays are overwritten.U { DOUBLE PRECISION array of DIMENSION (LDU,udim).If COMPU = 'A' or 'a' or 'F' or 'f', then udim � 2�N. Otherwise, udim � 1.If COMPU = 'A' or 'a', the leading N�2N part of this array must contain the�rst N rows of an orthogonal symplectic matrix.Note that this array is overwritten if COMPU = 'A' or 'a' or 'F' or 'f'.LDU { INTEGER.The leading dimension of array U as declared in the calling program.If COMPU = 'A' or 'a' or 'F' or 'f', then LDU � N. Otherwise, LDU � 1.3.2. Arguments OutA { DOUBLE PRECISION array of DIMENSION (LDA,N).The leading N�N part of this array contains the upper left block Â of the square-reduced Hamiltonian matrix Ĥ of (21).GP, QP { DOUBLE PRECISION arrays of DIMENSION at least N�(N+1)/2.Array GP contains the upper right block Ĝ and array QP the lower left block Q̂of the square-reduced Hamiltonian matrix of (21) in lower packed storage mode,i.e., the lower triangles of the symmetric matrices are stored by columns.U { DOUBLE PRECISION array of DIMENSION (LDU,udim).If COMPU = 'A' or 'a' or 'F' or 'f', then udim � 2�N. Otherwise, udim � 1.If COMPU = 'F' or 'f', then array U contains the �rst N rows of the orthogonalsymplectic matrix of (21).IF COMPU = 'A' or 'a', then array U contains the �rst N rows of the productof an orthogonal symplectic input matrix and the orthogonal symplectic matrixU of (21).Otherwise, U is not referenced.SCALE { DOUBLE PRECISION array of DIMENSION at least scldim.If JOBSCL = 'A' or 'a', then scldim � N+1. Otherwise, scldim � 1.On output, SCALE contains all information to form the symplectic diagonalmatrix D = diag(D0; D�10 ) of (21).If JOBSCL = 'A' or 'a', thenD0 = 1pSCALE(N + 1) � diag(SCALE(1); : : : ; SCALE(N))and � = 1:0. Otherwise, D0 = pSCALE(1) � IN where IN denotes the N�Nidentity matrix, and � = SCALE(1).NPI { INTEGER.The number of returned eigenvalues having real part zero with respect to therelative tolerance TOL (see Section Tolerances). This number is only computedif ORDER = 'O' or 'o'. Otherwise, NPI is not referenced.



HAMEV and SQRED 33WR, WI { DOUBLE PRECISION arrays of DIMENSION at least nev.If JOBEV = 'S' or 's' or 'U' or 'u', then nev = N, i.e., only stable ('S', 's') orunstable ('U', 'u') eigenvalues are returned. Otherwise, nev = 2�N, and all theeigenvalues of the Hamiltonian matrix H of (20) are returned.WR contains the real parts, WI the imaginary parts of the required eigenvalues.Complex conjugate pairs of eigenvalues appear consecutively if their real part isnot zero. If all the eigenvalues are required, then the �rst N components of WR,WI contain the stable eigenvalues, followed by the unstable ones, i.e.,(WR(N+I),WI(N+I)) = �(WR(I),WI(I)), 1 � I�N.As a consequence, if H has a purely imaginary eigenvalue of odd multiplicity, say(WR(I),WI(I)), then its conjugate complex partner is �(WR(N+I),WI(N+I)).3.3. Work spaceRWORK { DOUBLE PRECISION array of DIMENSION at least 2�N.3.4. TolerancesTOL { DOUBLE PRECISION.A tolerance used for deciding if a computed eigenvalue � is considered to bepurely imaginary.jRe(�)j � TOL � j�j =) � is purely imaginary.If on input, TOL is less than zero, then TOL is set to the default value 10:0�p"(here, " denotes the machine precision). This is inspired by the error analysisfor eigenvalues computed by SQRED (see [12] and [37]).TOL is only used if ORDER = 'O' or 'o' (see next section). Otherwise, TOL isnot referenced.3.5. Mode ParametersCOMPU { CHARACTER.Indicates whether the orthogonal symplectic matrix U of (21) is returned oraccumulated into an input matrix or if the transformation matrix is not required.COMPU = 'A' or 'a', (The orthogonal symplectic similarity transformations areaccumulated in U, i.e., array U contains the �rst N rows ofthe product of an orthogonal symplectic input matrix andthe similarity transformation matrix of (21). On input,array U must contain the �rst N rows of an orthogonalsymplectic 2N�2N matrix);COMPU = 'F' or 'f', (The matrix U of (21) is formed, i.e., the �rst N rows ofthe orthogonal symplectic similarity transformation arereturned in U);Otherwise, (The transformation matrix is not required and S is notreferenced).JOBEV { CHARACTER.Indicates whether the stable, unstable, or all the eigenvalues are required.JOBEV = 'S' or 's', (Only the stable eigenvalues are required, i.e., N eigenvalueswith nonpositive real parts are returned);



34 Benner, Byers, and BarthJOBEV = 'U' or 'u', (Only the unstable eigenvalues are required, i.e., N eigen-values with nonnegative real parts are returned);Otherwise, (All the eigenvalues are required).JOBSCL { CHARACTER.Indicates which scaling strategy is used as follows, for details see Section 3.1.JOBSCL = 'A' or 'a', (Symplectic scaling);JOBSCL = 'B' or 'b', (Norm scaling);JOBSCL = 'N' or 'n', (No scaling).For any input value di�erent from 'N' or 'n', the rows and columns of Â2 + ĜQ̂are equilibrated in norm as far as possible using LAPACK subroutine DGEBAL[4] before computing its eigenvalues.ORDER { CHARACTER.Indicates whether the computed eigenvalues are ordered.ORDER = 'O' or 'o', (If purely imaginary eigenvalues are detected with respectto TOL, (see Section Tolerances), they are placed at theend of WR, WI (or the end of each half of WR, WI ifall the eigenvalues are returned). If possible, they aregrouped as complex conjugate pairs).Otherwise, the eigenvalues are returned in the order they are computed.3.6. Warning IndicatorNone.3.7. Error IndicatorIERR { INTEGER.Unless the routine detects an error (see next section), IERR contains 0 on exit.4. Warnings and Errors detected by the RoutineIERR = 1On input, N < 1,or LDA < Nor LDU < 1or LDU < N and (COMPU = 'A' or 'a' or 'F' or 'f').IERR > 10On input to DGEBAL, the (IERR�10)th argument had an illegal value.IERR = �JIf the limit of 30�N iterations is exhausted while the J{th eigenvalue is beingsought, see LAPACK subroutines DLAHQR or DHSEQR.



HAMEV and SQRED 35B.2 Example programTo compute the eigenvalues of H = " A GQ �AT # ;whereA = 264 2:0 0:0 0:00:0 1:0 2:00:0 �1:0 3:0 375 ; G = 264 1:0 0:0 0:00:0 2:0 3:00:0 3:0 4:0 375 ; and Q = 264 �2:0 0:0 0:00:0 0:0 0:00:0 0:0 0:0 375 :Program Text* HAMEV EXAMPLE PROGRAM TEXT.** .. Parameters ..INTEGER NIN, NOUTPARAMETER (NIN = 5, NOUT = 6)INTEGER NMAXPARAMETER (NMAX = 20)INTEGER LDA, LDGQ, LDUPARAMETER (LDA = NMAX, LDGQ = NMAX*(NMAX+1)/2, LDU = NMAX)INTEGER LRWORKPARAMETER (LRWORK = NMAX*(NMAX+1))* .. Local Scalars ..DOUBLE PRECISION TOLINTEGER I, IERR, J, N, NPI, NSYMCHARACTER COMPU, JOBEV, JOBSCL, ORDER* .. Local Arrays ..DOUBLE PRECISION A(LDA, NMAX), G(LDGQ), Q(LDGQ), SCALE(NMAX+1),$ U(LDU,2*NMAX), WR(2*NMAX), WI(2*NMAX),$ RWORK(LRWORK)* .. External FunctionsLOGICAL LSAMEEXTERNAL LSAME* .. External Subroutines ..EXTERNAL HAMEV* .. Executable Statements ..* WRITE (NOUT,FMT=99999)* Skip the heading in the data file and read the data.READ (NIN,FMT='()')READ (NIN,FMT=*) N, TOL, COMPU, JOBEV, JOBSCL, ORDERIF (N .LE. 0 .OR. N .GT. NMAX) THENWRITE (NOUT,FMT=99998) NELSENSYM = N*(N+1)/2READ (NIN,FMT=*) ((A(I,J),J=1,N),I=1,N)



36 Benner, Byers, and BarthREAD (NIN,FMT=*) (G(I),I=1,NSYM)READ (NIN,FMT=*) (Q(I),I=1,NSYM)IF (LSAME(COMPU,'A')) READ (NIN,FMT=*) ((U(I,J),J=1,2*N),I=1,N)* Compute the eigenvalues.CALL HAMEV(N, A, LDA, G, Q, U, LDU, SCALE, NPI, WR, WI, RWORK,$ TOL, COMPU, JOBEV, JOBSCL, ORDER, IERR)* IF (IERR .NE. 0) THENWRITE (NOUT,FMT=99997) IERRELSE* Show number of purely imaginary eigenvalues.IF (LSAME(ORDER,'O')) THENWRITE (NOUT,FMT=99996) TOLWRITE (NOUT,FMT=99995) NPIEND IF* Show the computed eigenvalues.WRITE (NOUT,FMT=99994)DO 10 I = 1, NWRITE (NOUT,FMT=99993) WR(I), ' + (', WI(I), ')i'10 CONTINUEIF (LSAME(JOBEV,'A')) THENDO 20 I = 1, NWRITE (NOUT,FMT=99993) WR(N+I), ' + (', WI(N+I), ')i'20 CONTINUEEND IFEND IFEND IFSTOP*99999 FORMAT (' HAMEV EXAMPLE PROGRAM RESULTS',/1X)99998 FORMAT (/' N is out of range.',/' N = ',I5)99997 FORMAT (' IERR on exit from HAMEV = ',I2)99996 FORMAT (/' Relative tolerance TOL for small imaginary parts :',$ G10.3)99995 FORMAT (' Number of purely imaginary eigenvalues w.r.t. TOL:',I3)99994 FORMAT (/' The eigenvalues are ')99993 FORMAT (1X,F8.4,A,F8.4,A)END



HAMEV and SQRED 37Program DataHAMEV EXAMPLE PROGRAM DATA3 .1D-11 'N' 'A' 'H' 'O'2.0 0.0 0.00.0 1.0 2.00.0 -1.0 3.01.0 0.0 0.0 2.0 3.0 4.0-2.0 0.0 0.0 0.0 0.0 0.0Program ResultsHAMEV EXAMPLE PROGRAM RESULTSRelative tolerance TOL for small imaginary parts : .100E-11Number of purely imaginary eigenvalues w.r.t. TOL: 0The eigenvalues are-1.4142 + ( .0000)i-2.0000 + ( -1.0000)i-2.0000 + ( 1.0000)i1.4142 + ( .0000)i2.0000 + ( 1.0000)i2.0000 + ( -1.0000)i



38 Benner, Byers, and BarthC How to Obtain the SoftwareThe codes corresponding to this paper may be obtained via anonymous ftp at TU Chemnitz-Zwickau. Proceed as follows.> ftp ftp.tu-chemnitz.de> Name: anonymous> Password: your complete e-mail address> cd /pub/Local/mathematik/Benner> binaryObserve the capital \L" in Local !You can obtain the complete set of source codes (hamev.f, sqred.f, croot.f, hamgiv.f, syref.f )by > get hamev.tar.gzor just the codes for the reduction to square-reduced form (sqred.f, hamgiv.f, syref.f ) by> get sqred.tar.gzwhere the su�x .gz is optional. Without this su�x, you obtain the tar-�les hamev.tar,sqred.tar whereas using the su�x .gz, the tar �les are compressed using gzip.Both tar �les contain the source codes, the example programs given in Appendices B.2 and A.2together with the data and resulting output �les. Also included are introductory README�les and validation programs.After exiting ftp, extracting the �les (after possibly uncompressing using gunzip) is achievedby > tar xf hamev.taror > tar xf sqred.tarIn both cases, a directory is created containing all required �les. For hamev.tar, this directoryis called hamev and for sqred.tar, it will be sqred.If you are using an MS DOS or MS WINDOWS environment and a tar command is notavailable on your sytem, you can obtain tar.exe at the same ftp site from directory/pub/tex/tools/tar/msdosFortran 77 �les for compressing a symmetric or triangular matrix to packed storage mode andfor uncompressing an array in packed storage mode are also available at the same location by> get sysp.tar.gzIf any problems occur in obtaining or running the codes, please send an e-mail message tobenner@mathematik.tu-chemnitz.de



HAMEV and SQRED 39References[1] G. Ammar and P. Benner, OSMARE: A Fortran 77 implementation of the orthogonalsymplectic multishift method for the continuous-time algebraic Riccati equation, preprint,Fak. f. Mathematik, TU Chemnitz{Zwickau, 09107 Chemnitz, FRG, 1996. in preparation.[2] G. Ammar, P. Benner, and V. Mehrmann, A multishift algorithm for the numericalsolution of algebraic Riccati equations, Electr. Trans. Num. Anal., 1 (1993), pp. 33{48.[3] G. Ammar and V. Mehrmann, On Hamiltonian and symplectic Hessenberg forms,Linear Algebra Appl., 149 (1991), pp. 55{72.[4] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. So-rensen, LAPACK Users' Guide, SIAM, Philadelphia, PA, second ed., 1994.[5] P. Benner, A. Laub, and V. Mehrmann, A collection of benchmark examples for thenumerical solution of algebraic Riccati equations I: Continuous-time case, Tech. ReportSPC 95 22, Fak. f. Mathematik, TU Chemnitz{Zwickau, 09107 Chemnitz, FRG, 1995.[6] P. Benner, V. Mehrmann, and H. Xu, A numerically stable, structure preservingmethod for computing the eigenvalues of real Hamiltonian or symplectic pencils, Tech.Report SFB393/96-05, Fak. f. Mathematik, TU Chemnitz{Zwickau, 09107 Chemnitz,FRG, 1996.[7] S. Boyd and V. Balakrishnan, A regularity result for the singular values of a transfermatrix and a quadratically convergent algorithm for computing its L1-norm, Sys. ControlLett., 15 (1990), pp. 1{7.[8] S. Boyd, V. Balakrishnan, and P. Kabamba, A bisection method for computingthe H1 norm of a transfer matrix and related problems, Math. Control, Signals, Sys., 2(1989), pp. 207{219.[9] J. Bunch, The weak and strong stability of algorithms in numerical algebra, LinearAlgebra Appl., 88 (1987), pp. 49{66.[10] A. Bunse-Gerstner and V. Mehrmann, A symplectic QR-like algorithm for thesolution of the real algebraic Riccati equation, IEEE Trans. Automat. Control, AC-31(1986), pp. 1104{1113.[11] A. Bunse-Gerstner, V. Mehrmann, and D. Watkins, An SR algorithm for Hamil-tonian matrices based on Gaussian elimination, Methods of Operations Research, 58(1989), pp. 339{358.[12] R. Byers, Hamiltonian and Symplectic Algorithms for the Algebraic Riccati Equation,PhD thesis, Cornell University, Dept. Comp. Sci., Ithaca, NY, 1983.[13] , A Hamiltonian QR-algorithm, SIAM J. Sci. Comput., 7 (1986), pp. 212{229.[14] , A bisection method for measuring the distance of a stable matrix to the unstablematrices, SIAM J. Sci. Comput., (1988), pp. 875{881.



40 Benner, Byers, and Barth[15] E. Davison and W. Gesing, The systematic design of control systems for the multivari-able servomechanism problem, in Alternatives for Linear Multivariable Control, M. Sain,J. Peczkowsky, and J. Melsa, eds., Nat. Eng. Consortium Inc., Chicago, IL, 1978.[16] J. Dongarra, J. D. Croz, S. Hammarling, and R. Hanson, An extended setof FORTRAN Basic Linear Algebra Subprograms, ACM Trans. Math. Soft., 14 (1988),pp. 1{17.[17] J. Doyle, K. Glover, P. Khargonekar, and B. Francis, State-space solutions tostandard H2 and H1 control problems, IEEE Trans. Automat. Control, AC-34 (1989),pp. 831{847.[18] B. Francis, A Course In H1 Control Theory, vol. 88 of Lecture Notes in Control andInformation Sciences, Springer{Verlag, Berlin, 1987.[19] G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins University Press,Baltimore, second ed., 1989.[20] C. Kenney, A. Laub, and M. Wette, A stability-enhancing scaling procedure forSchur-Riccati solvers, Sys. Control Lett., 12 (1989), pp. 241{250.[21] P. Lancaster and L. Rodman, The Algebraic Riccati Equation, Oxford UniversityPress, Oxford, 1995.[22] A. Laub, A Schur method for solving algebraic Riccati equations, IEEE Trans. Automat.Control, AC-24 (1979), pp. 913{921. (see also Proc. 1978 CDC (Jan. 1979), pp. 60-65).[23] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Basic linear algebra subpro-grams for FORTRAN usage, ACM Trans. Math. Software, 5 (1979), pp. 303{323.[24] V. Mehrmann and E. Tan, Defect correction methods for the solution of algebraicRiccati equations, IEEE Trans. Automat. Control, 33 (1988), pp. 695{698.[25] Numerical Algorithms Group, Implementation and documentation standards forthe subroutine library in control and systems theory SLICOT, Publication NP2032, Nu-merical Algorithm Group, Eindhoven/Oxford, 1990.[26] E. Osborne, On pre-conditioning of matrices, J. ACM, 7 (1960), pp. 338{345.[27] C. Paige and C. Van Loan, A Schur decomposition for Hamiltonian matrices, LinearAlgebra Appl., 14 (1981), pp. 11{32.[28] P. Pandey, On scaling an algebraic Riccati equation, in Proc. American Control Conf.,San Francisco, CA, June 1993, pp. 1583{1587.[29] B. Parlett and J. Le, Forward instability of tridiagonal QR, SIAM J. Matrix Anal.Appl., 14 (1993), pp. 279{316.[30] B. Parlett and C. Reinsch, Balancing a matrix for calculation of eigenvalues andeigenvectors, Numer. Math., 13 (1969), pp. 296{304.[31] R. Patel, Z. Lin, and P. Misra, Computation of stable invariant subspaces of Hamil-tonian matrices, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 284{298.



HAMEV and SQRED 41[32] P. Petkov, N. Christov, and M. Konstantinov, On the numerical properties ofthe Schur approach for solving the matrix Riccati equation, Sys. Control Lett., 9 (1987),pp. 197{201.[33] A. Raines and D. Watkins, A class of Hamiltonian{symplectic methods for solvingthe algebraic Riccati equation, Linear Algebra Appl., 205/206 (1994), pp. 1045{1060.[34] V. Sima, Algorithm GRICSR solving continuous-time algebraic Riccati equations usingGaussian symplectic transformations, Stud. Res. Comp. Inf., 1 (1992), pp. 237{254.[35] B. Smith, J. Boyle, J. Dongarra, B. Garbow, Y. Ikebe, V. Klema, andC. Moler, Matrix Eigensystem Routines|EISPACK Guide, vol. 6 of Lecture Notes inComputer Science, Springer-Verlag, New York, second ed., 1976.[36] P. Van Dooren, Fast computation of the real and complex stability radius. Talk givenat IMA Conference on Linear Algebra and Applications, Manchster, UK, July 1995.[37] C. Van Loan, A symplectic method for approximating all the eigenvalues of a Hamilto-nian matrix, Linear Algebra Appl., 16 (1984), pp. 233{251.[38] J. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford,1965.[39] H. Xu, Solving Algebraic Riccati Equations via Skew-Hamiltonian Matrices, PhD thesis,Inst. of Math., Fudan University, Shanghai, P.R. China, Apr. 1993.[40] H. Xu and L. Lu, Properties of a quadratic matrix equation and the solution of thecontinuous-time algebraic Riccati equation, Linear Algebra Appl., 222 (1995), pp. 127{146.[41] K. Zhou, K. Glover, B. Bodenheimer, and J. Doyle, Mixed H2 and H1 per-formance objectives I: Robust performance analysis, IEEE Trans. Automat. Control, 39(1994), pp. 1564{1574.


