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A B S T R A C T

This thesis presents new results on probabilistic error analysis. By freeing ourselves
of the burden of having to account for every possible worst-case scenario, we provide
error bounds that are more informative than the long standing worst-case bounds.
We also see in practice how these new bounds can guide the development of new
algorithms.

We begin by studying stochastic rounding, a rounding mode which rounds a com-
puted result to the next larger or smaller floating-point number randomly. We com-
pare stochastic rounding with round-to-nearest, finding some similarities but also a
large number of properties that hold for round-to-nearest but fail to hold for stochas-
tic rounding. Importantly, we show that the rounding errors produced by stochastic
rounding are mean zero, mean independent random variables. Using this fact, we
build on earlier probabilistic error analysis to show that for a wide range of inner
product based linear algebra computations, stochastic rounding provides backward
error bounds where we can take the square root of the dimensional constants in the
worst-case bounds. This has been a well known rule of thumb for some time, but we
show it to be a rule for stochastic rounding.

Expanding on this work for inner-product based algorithms, we investigate or-
thogonal transformations. Using the same model of rounding errors as that which
stochastic rounding satisfies, we show that for Householder QR factorization, and
other related algorithms, we see the same square rooting of the dimensional constant
in the backward error bound. The analysis makes use of a matrix concentration in-
equality, where previous probabilistic error analyses employed scalar concentration
inequalities. We also derive a new backward error formula for QR factorization, used
in our numerical experiments which validate our bounds.

Finally, we consider the randomized SVD, a well known method for computing
low rank matrix approximations. We perform a complete rounding error analysis
of the fixed-rank problem, the most straightforward version of the randomized SVD
where we have a priori specified a target rank. This is complementary to the existing
literature providing error bounds on this procedure in exact arithmetic. While our
initial analysis is worst-case, we use our previous probabilistic results to refine these
error bounds. Using these refined bounds, we propose a mixed-precision version
of the algorithm that offers potential speedups by gradually reducing the precision
during the execution of the algorithm.
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1 I N T R O D U C T I O N

In the early days of scientific and digital computing, the landscape of floating-point

arithmetic was rather turbulent. A seminal moment was the publication of the IEEE

standard 754 [17], which defines a particular floating-point arithmetic. The aims of

this standard were to encourage robust and portable codes. Reasons for its develop-

ment were many [20], but the basic idea is simple: if the floating-point arithmetics

on two different machines both adhere to the standard, then when we move a pro-

gram from one machine to the other, the results will be identical! There are further

complicating factors which mean that’s not always strictly true, but the spirit of the

idea is clear. Pre IEEE-754, most computers offered both a single and a double pre-

cision floating-point format, but the formats varied wildly across different machines.

Some example formats are shown in Table 1.0.1. In Table 1.0.1: β refers to the base

of the floating-point arithmetic; t is the precision; emin and emax are the minimum

and maximum exponents; and u is the unit roundoff. Each of these quantities are

defined in Section 2.2. Each different format brings its own idiosyncrasies, and from

[20] “ those idiosyncrasies and the programming contortions they induce imposes a

numbing intellectual burden upon the software industry ”. Since the IEEE standard,

scientific computing has traditionally been dominated by one floating-point format:

IEEE double precision, comprising 64 bits and sometimes called binary64 or fp64.

Table 1.0.1: Old floating-point formats [12, Tab. 2.1].

Arithmetic β t emin emax u

Cray-1 single 2 48 ´8192 8191 4ˆ 10´15

Cray-1 double 2 96 ´8192 8191 1ˆ 10´29

IBM 3090 single 16 6 ´64 63 5ˆ 10´7

IBM 3090 double 16 14 ´64 63 1ˆ 10´16
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The IEEE standard brought great stability, but in recent years this stability has

once again been undermined. Hardware vendors have begun to provide support for

a wide variety of formats, including 16 and 8 bit formats. The adoption of these

low-precision formats has been primarily application driven. If 32 or 64 bit floating-

point arithmetic can be replaced by low precision, then there is great potential for

computational speedup and reduced memory and energy footprints. We detail some

notable successes of using low precision arithmetics in modern scientific computing.

There are many examples of this over the past decade or so, across a wide range of

application areas.

One of the most prominent is machine learning. Two prominent papers advocating

the use of low precision in neural networks are [4] and [11]. It has been acknowledged

that machine learning algorithms are tolerant of large errors and so amenable to the

use of low precision. It has also been suggested that the use of low precision can act

as a form of regularization in training models.

The Ising model is a well known thermodynamic system, and often serves as a

prototype system in statistical physics. It has become particularly well known as it

has been a testing ground of sorts for computational algorithms. In [27], it was shown

that fp32 can be replaced by bfloat16 while simulating the Ising model, without any

loss of accuracy. Fp32 is a long standing 32 bit format, while bfloat16 is a relatively

new format. The exact specifications of both are given in Chapter 2.

A large amount of work has been done in studying the effect of precision on

weather forecasting codes. The reduced cost of low precision arithmetic, both in ex-

ecution and memory footprint, means that its successful adoption can lead to more

refined spatial grids, and thus more accurate prediction. It has been argued that the

use of double precision is redundant in these models, as observations upon which

the models are built are low precision and there are large inherent uncertainties at

play [6], [24]. Computational gains in this area have been demonstrated in [22], [25].
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Rather than simply replacing all high precision computations with low precision

computations, what has become increasingly common is what are termed mixed-

precision algorithms. Loosely speaking, we aim to use two or more precisions and

hope to exploit the speedup and reduced energy and storage costs offered by low

precisions, without sacrificing on the accuracy offered by higher precisions.

The idea of iterative refinement for solving a linear system Ax “ b dates back to

the 1940’s when it was programmed by Wilkinson. The basic concept is in the name:

we start with an initial guess for a solution and then refine it until we have reached

some acceptable accuracy. Recent works have shown great benefit in mixed-precision

variants of these algorithms. [21] proposed a two precision version. [3] then proposed

a three precision version along with convergence analysis, and [2] extended this idea

to five precisions. Extensive surveys of mixed-precision in numerical linear algebra

are [1], [14].

The interest of the computer hardware community and manufacturers in low pre-

cision computation and stochastic rounding, an important aspect of this thesis to be

discussed in Chapter 3, has also increased in recent years. References include [5], [7],

[9], [10], [11], [16], [18] and [23],

Adjacent to the rise of these low precisions has been the ever increasing capabilities

of the largest supercomputers. The Frontier system at Oak Ridge National Laboratory

is, at present, the most powerful supercomputer to ever exist. It achieved a score

of 1.102 Exaflop/s on the June 2022 HPL benchmark1 [8], the metric used to rank

machines on the Top500 list2. This benchmark involves solving a linear system of

equations. The size of the system solved by Frontier for which it achieved this flop

rate was a massive 2.4ˆ 107.

A common quantity in error bounds is nu, where n is our problem size and u is the

unit roundoff of our floating-point arithmetic. These two trends of ever increasing

1 https://www.top500.org/project/linpack/
2 https://top500.org/

https://www.top500.org/project/linpack/
https://top500.org/
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problem sizes and much more variety in the floating-point landscape mean that the

product nu can often exceed 1, which in the worst case scenario will render an error

bound essentially meaningless. The central aim of this thesis is to employ probabilistic

rounding error analysis to provide bounds that are more informative and valid for a

wider range of problem sizes and unit roundoffs.

For many years, it has been a rule of thumb that one can replace a worst-case

rounding error bound of the form f pnqu by something of the form
a

f pnqu. This

is attributable to Wilkinson. In [26, p. 318], he derives rounding error bounds for

Gaussian elimination, Givens QR factorization and Householder QR factorization,

and then states

“In general, the statistical distribution of the rounding errors will reduce

considerably the function of n occurring in the relative errors. We might

expect in each case that this function should be replaced by something

which is no bigger than its square root and is usually appreciably smaller.”

Despite this rule of thumb, there was no proof that made it rigorous. Recent work

by Higham and Mary [13], [15], and Ipsen and Zhou [19] progressed the field of

probabilistic error analysis. These works modelled rounding errors as mean-zero, in-

dependent random variables. In this thesis, we identify a different model of rounding

errors which relaxes the requirement of independence to mean independence. We iden-

tify that a particular mode of stochastic rounding satisfies this model, and use the

model to derive probabilistic rounding error bounds. This is done for inner-product

based computations in Chapter 3 and for orthogonal transformation based computa-

tions in Chapter 4. The results in these chapters show that, under the assumptions of

this model of rounding errors, we see the reduction f pnqu to
a

f pnqu as predicted by

Wilkinson, and the rule of thumb is now simply a rule. In Chapter 5, we provide a

rounding error analysis of a randomized low-rank matrix approximation algorithm,

the operations of which have probabilistic rounding error analyses thanks to our

results in the previous two chapters. Using our probabilistic rounding error analy-

sis, we are able to justify mixed-precision algorithms which offer potential speedup
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without sacrificing on accuracy. Chapter 5 demonstrates that the results derived in

Chapters 3 and 4 can be used to not only provide new error bounds, but also guide

the development of new algorithms.

Chapter 2 summarizes the main definitions and properties that are used through-

out the thesis but are not given in the introductory sections of the following chapters.

Since the thesis is in journal format, a few background topics are discussed in more

than one place. Some of these topics are discussed in more detail in Chapter 2 than

in the following chapters, as we feel the expository treatment given to them will be

beneficial to the overall readability of the thesis.

Chapters 3, 4 and 5 are presented in a format suitable for publication and are based

on the preprints and journal papers listed on page 10. For coauthored papers, the

authors contributed equally to the final manuscript.
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2.1 linear algebra

Primary sources for this section are [5] and [6]. We assume that the reader is famil-

iar with some basic ideas in linear algebra such as vector spaces, subspaces, linear

independence, span, basis, dimension, and determinants.

Matrices. A matrix is a rectangular array of scalars. More precisely, a matrix over a

field F is an array where the individual entries are elements of F. If the matrix A has

m rows and n columns, and so mn entries, we say A P Fmˆn. Throughout this thesis,

F is either R or C. We denote matrices with uppercase Latin or Greek letters, and

individual entries with the corresponding lower case letter subscripted with its row

and column indices. For example, for the matrix A, the element in the i-th row and

j-th column is given by aij. When convenient, we will use MATLAB style notation to

index matrices. This means we refer to aij as Api, jq, and we can use colons to index

entire rows or columns, so Api, :q is the i-th row of A and Ap:, jq is the j-th column

of A. Matrices in F1ˆm and Fmˆ1 are called row and column vectors, respectively. In

the case of column vectors we drop the dimension of 1 and simply write Fm. We

typically denote vectors with lower-case Latin or Greek letters.

Matrices with the same dimensions can be summed, and the sums are performed

elementwise. If A, B P Fmˆn then pA` Bq P Fmˆn and pA` Bqij “ aij ` bij. Products

are defined for matrices with appropriate dimensions. An inner product is a product

18
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of a row and a column vector of the same dimension and the result is a scalar. For

two vectors a P F1ˆm and b P Fm the inner product c “ ab is given by

c “
m
ÿ

i“1

aibi.

For matrices A P Fmˆp and B P Fqˆn, the product C “ AB is defined if p “ q, with

C P Fmˆn. The elements of C are given by

cij “

p
ÿ

k“1

aikbkj,

meaning the pi, jq element of C is given by the inner product of the i-th row of A with

the j-th column of B.

The range and nullspace are two important subspaces associated with each matrix

A P Fmˆn. The range of A is given by

ranpAq “ ty P Fm : y “ Ax for some x P Fnu,

and the nullspace by

nullpAq “ tx P Fn : Ax “ 0u.

The rank of a matrix is the dimension of the range of A:

rankpAq “ dimpranpAqq.

We also have dimpnullpAqq ` rankpAq “ n. If rankpAq ă mintm, nu we say that A is

rank-deficient.

The multiplicative inverse of A P Fnˆn is written as A´1 and we have AA´1 “

A´1A “ In. The identity matrix In is a matrix with elements iij “ δij, where δij is the

Kroenecker delta. The transpose of A P Fmˆn is AT P Fnˆm and is the matrix where

the element in position pi, jq is the pj, iq element of A. The conjugate transpose of A
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is given by A˚, where as well as the transposition above we also take the complex

conjugate of each element.

Special matrices. Some matrices are endowed with properties that make them

important, either from the perspective of computation or error analysis. The main

diagonal of a matrix is the set of entries that have the same row and column index. A

diagonal matrix is one which has zero entries everywhere off the main diagonal, while

the entries on the main diagonal may be zero or non-zero. Diagonal matrices may

be rectangular, but typically refer to square matrices. The identity matrix In P Rnˆn is

the diagonal matrix with all ones on the main diagonal. Sometimes the subscript n

is dropped if the dimension is obvious from context.

A matrix T P Fnˆn is upper triangular if tij “ 0 for i ą j, and lower triangular if tij “ 0

for i ă j. These are important matrices as it is both fast and numerically stable to

solve equations of the form Tx “ b with x, b P Fn. If T P Fmˆn is rectangular, we

instead use the terms upper trapezoidal or lower trapezoidal, when the same conditions

on the individual elements of T hold. An important “close to triangular” matrix is a

Hessenberg matrix. A matrix is upper Hessenberg if all entries below the first subdi-

agonal are zero, and lower Hessenberg if all entries above the first superdiagonal are

zero. More precisely, A P Fnˆn is upper Hessenberg if aij “ 0 for i ă j` 1 and lower

Hessenberg if aij “ 0 for j ą i` 1.

A matrix A P Rnˆn is symmetric if AT “ A and skew symmetric if AT “ ´A. A

matrix Q P Rnˆn is orthogonal if QQT “ QTQ “ In, or equivalently QT “ Q´1. For the

complex case, we say a matrix A P Cnˆn is Hermitian if A˚ “ A and skew-Hermitian

if A˚ “ ´A. A matrix U P Cnˆn is unitary if UU˚ “ U˚U “ In, or equivalently

U˚ “ U´1.

A matrix A P Rnˆn is symmetric positive definite if xT Ax ą 0 for all non-zero x,

and symmetric positive semi-definite if xT Ax ě 0 for all non-zero x. An equivalent

condition for a matrix to be symmetric positive definite or semi-definite, is for the
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eigenvalues to all be positive or non-negative respectively. Obvious analogues hold

for the Hermitian case.

A matrix A P Rmˆn is low-rank if rankpAq “ k ! minpm, nq and a matrix of rank k

can be written A “ XYT with X P Rmˆk and Y P Rnˆk. Identifying and exploiting

matrices that are low-rank can lead to large computational benefits.

A matrix is sparse if it contains enough non-zeros that it is worth exploiting them.

An obvious and simple sparse matrix is a diagonal matrix. Algorithms and data

structures that are tailored to sparse matrices can lead to large computational gains.

Eigenvalues and eigenvectors. For A P Cnˆn, x P Cn and nonzero, and λ P C,

if Ax “ λx then we have λ is an eigenvalue of A, x is an eigenvector and pλ, xq is

an eigenpair. Rearranging the above equation to pA´ λIqx “ 0, we can see that λ

is an eigenvalue if and only if pA ´ λIq is singular. This is equivalently written as

detpA´ λIq “ 0, so the eigenvalues of A are given by the roots of this characteristic

polynomial detpA´ λIq. The spectral radius ρpAq is given by

ρpAq “ maxt|λ| : detpA´ λIq “ 0u. (2.1.1)

Vector and matrix norms. Norms are a powerful tool in numerical linear algebra

and error analysis. They allow for an mˆ n matrix to be compressed into a single

scalar, which provides conciseness and interpretability to various results. A norm is

a function } ¨ } : Cmˆn Ñ R if, for any A, B P Cmˆn and α P C, the following conditions

are satisfied:

1. }A} ě 0, with equality if and only if A “ 0.

2. }αA} “ |α|}A}.

3. }A` B} ď }A} ` }B}.
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We call this function a vector norm if the input is a vector (n “ 1). Three common

vector norms, defined below for x P Cm, are

}x}1 “
m
ÿ

i“1

|xi|,

}x}2 “ px˚xq1{2,

}x}8 “ max
1ďiďm

|xi|.

These are all special cases of the Hölder p-norm

}x}p “

˜

m
ÿ

i“1

|xi|
p

¸1{p

, p ě 1.

The most immediate, and simplest, matrix norm is the Frobenius norm, given by

}A}F “

¨

˝

m
ÿ

i“1

n
ÿ

j“1

|aij|
2

˛

‚

1{2

“ tracepA˚Aq1{2,

with tracepBq “
řn

i“1 bii for B P Cnˆn. The subordinate matrix norm on Cmˆn, given

vector norm } ¨ }, is given by

}A} “ max
x‰0

}Ax}
}x}

.

For the p “ 1, 2, and 8 vector norms, it can be shown that the corresponding subor-

dinate matrix norms are given by

}A}8 “ max
1ďiďm

n
ÿ

j“1

|aij|,

}A}1 “ max
1ďjďn

m
ÿ

i“1

|aij|,

}A}2 “ pρpA˚Aqq1{2 “ σmaxpAq,

where ρpBq is the spectral radius (2.1.1) and σmaxpAq is the largest singular value. We

can also express }A}F “
`
řn

i“1 σ2
i

˘1{2, with σi the i-th singular value (see (2.1.2)).
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A norm is consistent if }AB} ď }A}}B}. The Frobenius norm and all subordinate

norms are consistent. This is a convenient property for error analysis and manipulat-

ing expressions containing norms.

A unitarily invariant norm is one for which }UAV} “ }A} for all unitary U and

V. This is a useful property with implications for error analysis, as it means that

multiplication of a matrix contaminated with errors by a unitary matrix does not

magnify those errors when measured in a unitarily invariant norm. The 2-norm and

the Frobenius norm are both unitarily invariant norms.

It is often important to be able to switch between different norms. Of most interest

to us are the relations between the 2-norm and the Frobenius norm, where we have

}A}2 ď }A}F and }A}F ď
a

rankpAq}A}2 ď
?

n}A}2.

Used often throughout is the notion of componentwise absolute value of a matrix

or vector. Given matrix A and vector x, the matrix |A| and vector |x| have elements

|aij| and |xi| respectively.

Triangular systems. A crucial computational routine is that of solving a triangular

linear system. The method for solving Lx “ b for lower triangular L P Rnˆn, called

forward substitution, is summarized below:

x1 “ b1{l11,

xi “

¨

˝bi ´

i´1
ÿ

j“1

lijxj

˛

‚{lii.

A similar method called back substitution exists for solving Ux “ b for upper trian-

gular U:

xn “ bn{unn,

xi “

¨

˝bi ´

n
ÿ

j“i`1

uijxj

˛

‚{uii.
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These methods are numerically stable, having backward error (see Section 2.2) as

small as could be hoped for [6, Thm. 8.5]. They form the basis for many compu-

tational methods where the goal is to reduce the problem to solving one or more

triangular systems.

LU factorization. The most common method for solving a general dense square

system of linear equations Ax “ b is via LU factorization. This is composed of two

stages: perform the decomposition A “ LU where L is unit lower triangular and U

is upper triangular; and then perform successive triangular solves Ly “ b for y and

Ux “ y for x. We have the following existence result for LU factorization [6, Thm.

9.2].

Theorem 2.1. There exists a unique LU factorization of A P Rnˆn if and only if Ap1 : k, 1 :

kq is nonsingular for k “ 1 : n´ 1. If Ap1 : k, 1 : kq is singular for some 1 ď k ď n´ 1 then

the factorization may exist but it is not unique.

In performing LU factorization, for the sake of numerical stability, one can imple-

ment what is called a pivoting strategy. The most common strategy is partial pivoting,

where at each stage of the decomposition we perform a row interchange. This helps

to avoid divisions by zero and the addition or subtraction of large numbers which

could lead to a loss of significance. Mathematically this means that we compute the

LU decomposition not of A, but the matrix PA where P is a permutation matrix that

permutes the rows of A.

From the perspective of error analysis, an important method for computing the

LU factorization is Doolittle’s method. All methods of computing an LU factoriza-

tion that are mathematically equivalent will satisfy a common error bound, and since

Doolittle’s method is composed of simply inner products and substitutions, its anal-

ysis is rather straightforward. There is also no need to analyse the method with

pivoting, as it is equivalent to the method without pivoting applied to the permuted

matrix. Standard results show that LU factorization and solution of linear systems
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Algorithm 2.1 Doolittle’s method for computing the LU factorization of A P Rnˆn.

1: for k “ 1 : n do
2: for j “ k : n do
3: ukj “ akj ´

řk´1
i“1 lkiuij

4: end for
5: for i “ k` 1 : m do
6: lik “ paik ´

řk´1
j“1 lijujkq{ukk

7: end for
8: end for

by the method are, save for some highly unlikely worst-case scenarios, numerically

stable.

Cholesky factorization. A method similar to LU factorization exists for symmetric

positive definite systems. If A P Rnˆn is symmetric positive definite then there is a

unique upper triangular R P Rnˆn with positive diagonal elements such that A “

RTR. The textbook algorithm for computing a Cholesky decomposition is shown.

Algorithm 2.2 Computing a Cholesky factorization A “ RTR for symmetric positive
definite A P Rnˆn.

1: for j “ 1 : n do
2: for i “ 1 : pj´ 1q do
3: rij “ paij ´

ři´1
k“1 rkirkjq{rii

4: end for
5: rjj “ pajj ´

řj´1
k“1 r2

kjq
1{2

6: end for

The computational cost is half that of LU factorization, and it is also a numerically

stable routine. Again, having computed A “ RTR we can solve the system Ax “ b by

solving RTy “ b and then Rx “ y.

QR factorization. A QR factorization of A P Rmˆn with m ě n is a factorization

A “ QR where Q P Rmˆm and R is upper trapezoidal. We can also consider the

economy-size decomposition A “ Q1R1 where Q1 P Rmˆn and R1 is upper triangu-

lar. The QR factorization has uses in solving linear systems and least squares and

eigenvalue problems. In Chapter 4, we consider the numerical properties of algo-
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rithms used to compute the QR factorization. Here we provide some detail on those

algorithms.

A Householder matrix is a matrix of the form

P “ I ´
2

vTv
vvT, 0 ‰ v P Rn.

The matrix P is symmetric, orthogonal and involutory (P2 “ I). The power in

Householder matrices lies in their ability to introduce zeros into a vector. Given two

nonequal vectors x and y such that }x}2 “ }y}2, we can always find a Householder

matrix P such that Px “ y. A QR factorization can then be computed by premulti-

plying the matrix A by a sequence of Householder matrices, so that we produce the

upper trapezoidal matrix R. To begin, we construct a Householder matrix P1 that

when applied to the first column of A leaves all but the first entry as zero. This pro-

cess is repeated for subsequent columns, where we leave the second column with two

non-zeros by applying P2, and so on until we have computed R “ Pn . . . P2P1A with

Q “ pPn . . . P2P1q
T “ P1P2 . . . Pn. If we require the matrix Q explicitly, we can form it

by accumulating this product of Householder matrices, but it is often advantageous

from a computational perspective to keep the matrix in its factored form.

Givens rotations operate by a similar idea of introducing zeroes to a vector, but do

so one at a time. A Givens rotation Gpi, j, θq is equal to the identity except

Gpri, js, ri, jsq “
„

cospθq sinpθq
´ sinpθq cospθq



.

In the multiplication y “ Gpi, j, θqx, the individual components of y are given by

yk “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

xk k ‰ i, j,

cospθqxi ` sinpθqxj, k “ i,

´ sinpθqxi ` cospθqxj, k “ j.
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We can set yj “ 0 if we choose

sinpθq “
xj

b

x2
i ` x2

j

, cospθq “
xi

b

x2
i ` x2

j

.

We can then proceed in a similar fashion to a Householder QR factorization, introduc-

ing zeros to the required locations in order to bring A to an upper trapezoidal form.

For a general, dense mˆ n matrix, a Givens QR factorization is more expensive than

a Householder QR factorization. Its utility lies in computing the QR factorization

of specially structured matrices, such as tridiagonal or Hessenberg matrices. House-

holder matrices are good at introducing a large amount of zeros in one go to a matrix,

while Givens matrices are the chosen method when we must be more selective with

where we want to zero.

Singular value decomposition. Given A P Cmˆn, the singular value decomposition

(SVD) of A computes orthogonal matrices U P Cmˆm, V P Cnˆn and a diagonal matrix

Σ P Cmˆn such that

A “ UΣV˚. (2.1.2)

As for the QR decomposition, we can obtain economy size versions of the SVD. For

m ą n, we have

U “
“

U1 U2
‰

, U1 P Cmˆn, U2 P Cmˆpm´nq,

Σ “

„

Σ1

0



, Σ1 P Cnˆn,

V “ V1.

For m ă n, we have

U “ U1,

Σ “
“

Σ1 0
‰

, Σ1 P Cmˆm,

V “
“

V1 V2
‰

, V1 P Cnˆm, V2 P Cnˆpn´mq.
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In either case, A “ UΣV˚ “ U1Σ1V˚1 .

The entries σi, i “ 1 : n are in order of decreasing magnitude, and are called the

singular values of A. The singular values of A are the positive square roots of the

eigenvalues of the matrix AA˚.

Often, one truncates an SVD even further than is done in the economy size versions.

We denote this truncated SVD as Ak “ UkΣkV˚k , where Uk P Cmˆk contains the first

k columns of U, Σk P Ckˆk is diagonal containing only the first k singular values and

Vk P Cnˆk, containing only the first k columns of V.

The SVD is an immensely important matrix. Some examples, amongst many, of

its use are computing pseudoinverse [4]; computing the numerical rank and 2-norm

of a matrix; and performing principal component analysis 1, a popular method of

dimensionality reduction. The SVD also provides optimal solutions in the area of low

rank approximation. Given a matrix A, a truncated SVD provides the nearest matrix

to A of a given rank. The famous Eckart-Young Theorem describes this precisely [1].

Theorem 2.2 (Eckart-Young Theorem). Let A “ UΣV˚. If k ă r “ rankpAq and

Ak “ UkΣkV˚k ,

then

min
rankpBq“k

}A´ B}2 “ }A´ Ak}2 “ σk`1.

This result says that the closest a rank-k matrix can be to the matrix A is σk`1 when

measured in the 2-norm, and this matrix is given by the truncated SVD Ak. A similar

result holds in the Frobenius norm except the closest we can be is
b

σ2
k`1 ` ¨ ¨ ¨ ` σ2

n .

1 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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2.2 computer arithmetic

Primary sources for this section include [2], [6], and [11]. Our aim is to cover some

basics of floating-point arithmetic and error analysis. It is not intended to be a com-

plete treatment of these topics, only to provide some background for the remainder

of the thesis. We refer the reader to the above references for more information.

2.2.1 Floating-point arithmetic

The most prevalent choice for representing the real numbers on a computer is that of

floating-point arithmetic. A floating-point number system F Ă R has elements of the

form

y “ ˘mˆ βe´t. (2.2.1)

Four integer parameters characterize a floating point system F: the base β, the

precision t and the minimum and maximum exponents emin and emax, such that

emin ď e ď emax. Another common way of expressing elements of F is given by:

y “ ˘βe ˆ .d1d2 . . . dt, (2.2.2)

with each digit di satisfying 0 ď di ď β´ 1. The preferred choice is typically (2.2.1)

due to its relative simplicity.

The integer m is called the significand. It satisfies 0 ď m ď βt ´ 1 and we say a

floating-point system F is normalized if for every y P F such that y is nonzero, we

have that m ě βt´1. This ensures that every nonzero y has a unique representation. In

the representation given by (2.2.2), normalised numbers are those for which d1 ą 0.
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0 xmin 1

εM

2

Figure 2.2.1: The positive numbers of a toy floating-point system with base β “ 2. Shown are the
machine epsilon εM, the minimum normalized number xmin and the subnormal numbers
in red.

A floating-point system can be extended by including those numbers that possess

the minimum exponent emin and for which 0 ă m ă βt´1. These numbers are termed

subnormal. In the representation given by (2.2.2), subnormal numbers have d1 “ 0.

These numbers have fewer digits of precision than normalized numbers (as at least

the first digit is 0), and are all lesser in magnitude than the smallest normalized

floating-point number xmin “ βemin´1.

An important feature of (normalized) floating-point numbers is their uneven spac-

ing. At every power of β, the distance between successive floating-point numbers

increases by a factor β. This is characterized by an important quantity, machine ep-

silon. This is defined as the distance from 1 to the next largest floating-point number

and is given by εM “ β1´t. This spacing between numbers is then constant between 1

and β. Between β and β2 it increases to β2´t, and similarly decreases to β´t between

1 and 1{β. The spacing between the subnormals is constant (as they all have the same

exponent) and is the same as that between xmin and βxmin, given by xminεM “ βemin´t.

This can all be seen in Figure 2.2.1.

One of the most important features of any floating-point system is how we choose

to represent a number x P R where x R F. We denote this by the transformation

x Ñ flpxq where flpxq is chosen by some rounding rule we have prescribed. The first

case to consider is where flpxq does not lie in the range of F. If |flpxq| is greater than

the largest magnitude element of F, then we say flpxq has overflowed. Similarly, if

|flpxq| is non-zero but less than the smallest magnitude non-zero element of F, we say

flpxq has underflowed. More details will be given on how these cases are handled
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when we discuss IEEE arithmetic. For numbers which lie within the range of F, the

most common rounding mode is round to nearest, which simply maps x to its nearest

number in F, where different rules can be chosen for tie breaks. The following result

[6, Thm. 2.2] bounds the relative distance from any real x within the range of F to its

nearest floating-point representation.

Theorem 2.3. If x P R lies in the range of F then

flpxq “ xp1` δq, |δ| ď u “
1
2

β1´t. (2.2.3)

The relative error δ we call a rounding error and u is called the unit roundoff. We

can also define directed rounding modes: round up, round down, round towards

zero and round away from zero. Analogous results to Theorem 2.3 hold but with

the substitution u Ñ 2u. If we assume elementary operations are correctly rounded,

we arrive at what is called the standard model of floating-point arithmetic [6, Sec. 2.2].

Correctly rounded here means that we compute the true result exactly, and then

round accordingly. We have

flpx op yq “ px op yqp1` δq, |δ| ď u, op “ `,´,ˆ,˜,
?
¨, (2.2.4)

which tells us that the computed value of any scalar operation is equal to the rounded

exact answer. The model (2.2.4) proves crucial for error analysis of floating-point

arithmetic.

From here on we discard the use of the general β for the base and simply assume

β “ 2, as it is in virtually any scenario of practical interest. Note for normalized

floating-point numbers we require d1 in (2.2.2) to be greater than 0, but for β “ 2 the

only choices for each di are 0 and 1. This means for any normalized base 2 floating-

point number, we know d1 “ 1 and there is no need to store it. This means we can

gain an extra bit for free in the significand, called the hidden bit.
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Table 2.2.1: IEEE-754 floating-point formats

Arithmetic Bits t emin emax u Range

IEEE single (fp32) 32 23` 1 ´126 127 2´24 « 6ˆ 10´8 10˘38

IEEE double (fp64) 64 52` 1 ´1022 1023 2´53 « 1ˆ 10´16 10˘308

2.2.2 IEEE arithmetic

So far we have taken a theoretical perspective on floating-point arithmetic. Here

we provide some details of its implementation in practice. A seminal moment was

the publication of the IEEE standard 754 [8], which defines a particular floating-

point arithmetic. The two formats specified by IEEE-754 are widespread in modern

scientific computing and detailed in Table 2.2.1. The formats have base 2. A 1987

revision to the standard included base 10, but we are only concerned with base 2.

The “`1” in the t column indicates that the formats take advantage of the hidden bit

discussed in Section 5.3. For the rest of this thesis, we follow the convention seen in

Table 2.2.1, where IEEE compliant floating point formats are denoted fpxx, with the

trailing numbers equalling the number of bits the format has.

We further detail some of the specifications beyond Table 2.2.1.

‚ All arithmetic operations must be computed as if we had computed the exact

result, and then rounded according to one of the allowed rounding modes.

The standard includes the square root as an arithmetic operation. Elementary

function such as exp, sin, and cos are not mentioned in the standard.

‚ The default rounding mode is round-to-nearest, with round to even (least sig-

nificant bit 0) in case of a tie. Using this rounding mode, we satisfy (2.2.3). The

other rounding modes supported by the standard are directed: round to `8,

round to ´8, and round to zero.

‚ Subnormal numbers are required to be supported, and so the IEEE formats will

gradually underflow.
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‚ IEEE arithmetic is a closed system, meaning the result of every arithmetic oper-

ation produces a result. We must introduce some special values that are used

in exceptional situations. Without these special values, in situations like divi-

sion by zero or taking the square root of a negative number, there would be no

alternative but to abort the computation. See [2, Sec. 2.2] for a more exhaustive

treatment.

– A NaN (Not a Number) is generated by invalid operations, such as 0{0,

0{8 and
?
´1. Whenever a NaN then participates in any floating-point

operation the result is a NaN. A NaN is unordered and unequal to every-

thing including itself. A NaN is represented by exponent field emax` 1 and

a non-zero significand.

– Infinity is represented by a zero significand and the same exponent field

as a NaN with the sign bit distinguishing `8 and ´8. An infinity is

returned in the case of overflow. An interesting point to note is that while

0{0 returns a NaN, division of a non-zero by zero returns the appropriate

infinity.

– Zero is represented by the exponent field emin ´ 1 and a zero significand,

with the sign bit distinguishing `0 and ´0.

‚ IEEE-754 actually defined four precisions, those in Table 2.2.1, plus single ex-

tended and double extended. The extended precisions offer a little extra preci-

sion and range, with only a lower bound provided on how much extra precision

is required. Extended precision is useful as it allows for the easy creation of ac-

curate routines for the elementary functions [7]. It is also useful for conversion

between binary floating-point and decimal, as it guarantees that in the sequence

of conversions: floating-point Ñ decimal Ñ floating-point, we can recover the

original floating-point number.
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Table 2.2.2: New floating-point formats

Arithmetic Bits t emin emax u Range

IEEE half (fp16) 16 10` 1 ´14 15 2´11 « 5ˆ 10´4 10˘5

Bfloat16 16 7` 1 ´126 127 2´8 « 4ˆ 10´3 10˘38

IEEE quad (fp128) 128 112` 1 ´16382 16383 2´114 « 1ˆ 10´34 10˘4932

2.2.3 The modern landscape

A 2008 revision to the standard [9] introduced two new formats: a quadruple pre-

cision (fp128) and a half precision (fp16). The half precision was originally defined

only as a storage format. An early motivation for this format was computer graph-

ics, where the reduced precision was still satisfactory. Another half precision format,

bfloat16, was later proposed by Google. Bfloat16 also occupies 16 bits, but sacrifices

some bits in the significand for increased dynamic range. Fp16 has approximately 4

decimal digits of precision, while bfloat16 has approximately 3. The exact specifica-

tions of these formats are given in Table 2.2.2.

2.2.4 Error analysis

Here we describe some key concepts in error analysis. Given some computed solu-

tion py « f pxq computed in precision u, the field of error analysis is concerned with

assessing the quality of the solution py. The best solution we could reasonably hope

for is that the relative error in py is approximately u, but this can be an unreasonable

burden. Instead, we consider what we call the backward error. Generally, for some

computed py « f pxq, we ask what is the smallest ∆x such that py “ f px`∆xq. Many

parts of this thesis are concerned with backward error analysis. Backward error anal-

ysis is attractive for two reasons. Firstly, if there are some inherent uncertainties in

our input, and we can bound our backward error to be no larger than them, then we

have certainly produced the best solution we can reasonably ask for. Secondly, we
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can relate backward errors to the usual relative and absolute errors, called forward

errors quite easily. Forward error is concerned with the distance of the computed

solution py from the true solution y. This is dependent on the conditioning of the

problem, where we have the approximate rule of thumb that the forward error is

bounded by the backward error times the condition number. Works by Turing [14]

and von Neumann and Goldstine [3] contain ideas about backward error analysis,

but it was Wilkinson who matured and popularized backward error analysis in the

1950s and 1960s [15], [16].

A primary focus in this thesis is analyzing how rounding errors accumulate and

providing informative backward error bounds. Lemma 2.4 [6, Lem. 3.1] is an impor-

tant result that is widespread in error analysis.

Lemma 2.4. If |δi| ď u and ρi “ ˘1 for i “ 1 : n, and nu ă 1, then

n
ź

i“1

p1` δiq
ρi “ 1` θn,

where

|θn| ď
nu

1´ nu
:“ γn.

The need for this result arises from considering the accumulation of rounding

errors arising from the model (2.2.4). Consider as an example the inner product

yn “ aTb where a, b P Rn. Computed in the usual recursive pattern yi “ yi´1 ` aibi,

then it is easy to see by repeated application of (2.2.4) that we will have a final result

of the form

pyn “ a1b1p1` θnq ` a2b2p1` θ1nq . . . anbnp1` θ2q, (2.2.5)
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Each term on the right hand side of (2.2.5) has the form aibip1`αiq, where we certainly

have |α| ď γn for all i. This then leads to the standard backward error result for inner

products. We have

pyn “ pa`∆aqTb “ aTpb`∆bq, |∆a| ď γn|a|, |∆b| ď γn|b|, (2.2.6)

where the inequalities above hold componentwise. As discussed, once we have a

backward error result a forward error bound is readily available:

|pyn ´ yn| ď γn|a|T|b|.
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2.3 probability theory

This section is intended to introduce some notions of probability theory. It is not

intended to be a complete coverage, but to provide the reader with the necessary

background for what will follow. We assume the reader is familiar with the concepts

of probability and random variables. Much of this section draws from [10] and [12].

2.3.1 Random variables

A random variable X is said to be discrete if it takes values in a countable subset

tx1, x2, . . . u of R. Otherwise it is said to be continuous. The probability mass function

(PMF) of a discrete random variable X is given by fXpxq “ PrpX “ xq. Suppose the

set of all outcomes Ω is given by Ω “ tx1, x2, . . . , xNu. We then have

EpXq “
ÿ

xiPΩ

xi PrpX “ xiq.

For X a continuous random variable, define the cumulative distribution function

FX by

FXpxq “ PrpX ď xq.

If there exists a function fX such that for all a,

FXpaq “
ż a

´8

fXpxqdx,
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then we call fXpxq the probability density function (PDF) of X and we have F
1

Xpxq “

fXpxq. The PDF is the continuous analogue of the PMF. We have that Prpa ď X ď

bq “
şb

a fXpxqdx. Expected value and the higher moments are given by

EpXkq “

ż 8

´8

xk fXpxqdx, k “ 1, 2, . . .

The expectation of a function g of a random variable is given similarly by

EpgpXqq “
ż 8

´8

gpxq fXpxqdx.

Variance, denoted VarpXq, is given by

VarpXq “ ErpX´EpXqq2s “ EpX2q ´EpXq2.

Two random variables are described below.

1. A continuous random variable X is said to be uniform over the interval ra, bs if

it has a probability density function given by

f pxq “

$

’

’

&

’

’

%

1
b´a for a ă x ă b,

0 otherwise.

We have EpXq “ pa` bq{2.

2. A continuous random variable X is said to be normal with parameters µ and

σ ą 0 if its probability density function is given by

f pxq “
1

σ
?

2π
e´px´µq2{2σ2

.

We have EpXq “ µ and VarpXq “ σ2. A normal random variable with parame-

ters µ “ 0 and σ “ 1 is often referred to as a standard normal random variable.

We will later refer to a standard normal random variable as a Gaussian random

variable.
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Some definitions and discussion follows on the properties of independence, mean

independence and correlation.

Definition 2.1. Discrete random variables X and Y are independent if and only if

PrpX “ x, Y “ yq “ PrpX “ xqPrpY “ yq for all x, y,

that is their joint PMF is the product of their individual PMF’s.

Definition 2.2. Continuous random variables X and Y are independent if and only if

fX,Ypx, yq “ fXpxq fYpyq for all x, y,

that is their joint PDF is the product of their individual PDF’s.

Definition 2.3. The conditional probability of event X “ x given event Y “ y is given

by

PrpX “ x | Y “ yq “ PrpX “ x, Y “ yq{PrpY “ yq.

Definition 2.4. For discrete random variables X and Y, the conditional expectation

of X given Y “ y is given by

EpX | Y “ yq “
ÿ

x
xPpX “ x | Y “ yq.

Definition 2.5. For X and Y continuously distributed, the conditional expectation of

X given that Y “ y is given by

EpX | Y “ yq
ż 8

´8

x fX|Ypx | yqdx,

with fX|Ypx, yq “ fX,Ypx, yq{ fYpyq.
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Definition 2.6. The conditional expectation EpX | Yq is the random variable that

takes the value EpX | Y “ yq when Y “ y.

Definition 2.7. Random variables X is mean independent of Y if and only if EpX |

Yq “ EpXq.

Definition 2.8. Random variables X and Y are uncorrelated if and only if EpXYq “

EpXqEpYq.

Lemma 2.5 (Law of total expectation). If X and Y are random variables defined on the

same probability space and EpXq is defined, then

EpXq “ EpEpX | Yqq.

Lemma 2.6. Let X and Y be discrete random variables. Then their independence implies their

mean independence.

Proof. From Definition 2.3 we have PrpX “ x | Y “ yq “ PrpX “ x, Y “ yq{PrpY “ yq.

From independence we have PrpX “ x, Y “ yq “ PrpX “ xqPrpY “ yq. Mean

independence follows by a straightforward calculation.

EpX | Y “ yq “
ÿ

x
x PrpX “ x | Y “ yq

“
ÿ

x
x

PrpX “ x, Y “ yq
PrpY “ yq

“
ÿ

x
x PrpX “ xq

“ EpXq.

Lemma 2.7. Mean independence implies uncorrelated, that is, if X and Y are random vari-

ables and X is mean independent of Y then EpXYq “ EpXqEpYq.
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Proof. By the law of total expectation,

EpXYq “ EpEpXY | Yqq

“ EpYEpX | Yqq

“ EpYEpXqqq

“ EpYqEpXq.

The proof of Lemma 2.7 is valid for continuous or discrete random variables. We

thus have the relationship

Independence ùñ EpXq “ EpX | Yq ùñ EpXYq “ EpXqEpYq.

The converse is not true for either of the above. Unlike independence, mean indepen-

dence is not symmetric, so EpXq “ EpX | Yq does not imply EpYq “ EpY | Xq.

2.3.2 Concentration inequalities

Concentration inequalities deal with the deviation of random variables from their

mean. Sometimes called deviation bounds, they are a formal way of describing the

intuition that if we sum many independent random variables, that sum will with very

high probability be close to its expected value. The most straightforward results of

this type are stated for independent random variables, but can be extended to cases

where we do not have independence, as we will see in later chapters. The derivation

of concentration inequalities requires the notion of moment generating functions and is

beyond the scope of this thesis. We will state them without proof, but refer the reader

to any of the provided references on concentration inequalities for further details.
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Our motivation here is to introduce some well know scalar and matrix concentration

inequalities to familiarise the reader with the nature of the bounds.

One of the best known results of this type is Hoeffding’s bound [10, Thm. 4.12].

Theorem 2.8. Let X1, . . . , Xn be independent random variables such that for all 1 ď i ď n,

EpXiq “ µ and Xi P ra, bs. Then for any t ą 0

ˇ

ˇ

ˇ

ˇ

ˇ

1
n

n
ÿ

i“1

Xi ´ µ

ˇ

ˇ

ˇ

ˇ

ˇ

ď t,

with probability at least 1´ 2 expp´2nt2{pb´ aq2q.

The way we have written this result is slightly non-standard. More typical would

be to say
ˇ

ˇ

ˇ

ˇ

ˇ

1
n

n
ÿ

i“1

Xi ´ µ

ˇ

ˇ

ˇ

ˇ

ˇ

ě t,

with probability at most 2 expp´2nt2{pb´ aq2q. The former convention is cleaner for

our later treatment of this type of result in a numerical linear algebra setting.

Theorem 2.8 is a very general result, with no underlying assumption on the dis-

tribution of the random variables. Introducing more information about the random

variables can lead to more refined results. In Theorem 2.9, one of many results known

as Bernstein’s Inequality, we incorporate information about the variance of the random

variables to provide a tighter bound on the probability.

Theorem 2.9. Let X1, . . . , Xn be independent random variables with EpXiq “ 0 and assume

that Xi ď 1. Let

σ2 “
1
n

n
ÿ

i“1

VarpXiq.

Then for any t ą 0
1
n

n
ÿ

i“1

Xi ă t

with probability at least 1´ expp´nt2{p2pσ2 ` t{3qqq.
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These types of result can be extended to the matrix setting. Expectation extends

easily here. The expectation EpZq of random matrix Z is simply the component-wise

expectation. Consider Theorem 2.10 [13, Thm. 6.1.1].

Theorem 2.10. Consider a finite sequence Sk of independent, random matrices with common

dimension mˆ n. Assume that

EpSkq “ 0, }Sk}2 ď L

for all k. Introduce the random matrix Z “
ř

k Sk. Let vpZq be the matrix variance statistic:

vpZq “ maxt}EpZZTq}2, }EpZTZq}2u

“ maxt}
ÿ

k

EpSkST
k q}2, }

ÿ

k

EpST
k Skq}2u.

Then for all t ą 0 we have that }Z}2 ď t with probability at least

1´ pm` nq exp
ˆ

´t2{2
vpZq ` Lt{3

˙

.

The particular results shown here will not be required later, but rather similar ones

which will be introduced when required. Our aim here has been simply to introduce

concentration inequalities to the reader.
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3 S TO C H A S T I C R O U N D I N G A N D I T S

P R O B A B I L I S T I C B A C K W A R D E R R O R

A N A LY S I S

Abstract. Stochastic rounding rounds a real number to the next larger or smaller

floating-point number with probabilities 1 minus the relative distances to those num-

bers. It is gaining attention in deep learning because it can increase the success of

low precision computations. We compare basic properties of stochastic rounding

with those for round to nearest, finding properties in common as well as significant

differences. We prove that for stochastic rounding the rounding errors are mean

independent random variables with zero mean. We derive a new version of our

probabilistic error analysis theorem from [N. J. Higham, and T. Mary, SIAM J. Sci.

Comput., 41 (2019), pp. A2815–A2835], weakening the assumption of independence

of the random variables to mean independence. These results imply that for a wide

range of linear algebra computations the backward error for stochastic rounding is

unconditionally bounded by a multiple of
?

nu to first order, with a certain probabil-

ity, where n is the problem size and u is the unit roundoff. This is the first scenario

where the rule of thumb that one can replace nu by
?

nu in a rounding error bound

has been shown to hold without any additional assumptions on the rounding errors.

We also explain how stochastic rounding avoids the phenomenon of stagnation in

sums, whereby small addends are obliterated by round to nearest when they are too

small relative to the sum.

46
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3.1 introduction

The results of most elementary floating-point operations can not themselves be rep-

resented as floating-point numbers. This simple fact leads to one of the defining

features of floating-point arithmetic: rounding error. To define a floating-point arith-

metic we must prescribe how to round the result of an operation to a nearby floating-

point number. The IEEE standard 754 for binary floating-point arithmetic [21] defines

four rounding modes.

‚ Round to nearest. The default, where we round towards even (least significant

bit 0) to break ties.

‚ Round towards 0.

‚ Round towards `8.

‚ Round towards ´8.

The latter three modes are called directed rounding modes. Here, we consider two

stochastic rounding modes. Let F Ď R denote the floating-point number system. In

the first mode, we round x P R with x R F to the next larger or next smaller floating-

point number with a probability that is 1 minus the relative distance of x to each of
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those numbers. In the second mode, we round up or down with equal probability.

For x P R, define

txu “ maxt y P F : y ď x u, rxs “ mint y P F : y ě x u,

so that txu ď x ď rxs, with equality throughout if x P F. For x R F, txu and rxs are

adjacent floating-point numbers. For x P R with x R F the two stochastic rounding

modes are

mode 1: flpxq “

$

’

’

&

’

’

%

rxs with probability p “ px´ txuq{prxs´ txuq,

txu with probability 1´ p,
(3.1.1)

mode 2: flpxq “

$

’

’

&

’

’

%

rxs with probability 1{2,

txu with probability 1{2.
(3.1.2)

Stochastic rounding is an old idea, proposed in the 1950s and 1960s by Barnes,

Cooke-Yarborough, and Thomas [2], Forysthe [10], [9] and Hull and Swenson [20]. It

is attracting renewed interest in deep learning, especially where low precision arith-

metic is used. It is shown in [14], in the context of neural network training, that

using a 16-bit fixed-point representation with mode 1 stochastic rounding can be as

effective as using 32-bit floating-point numbers with round to nearest. Stochastic

rounding solves the problem of the obliteration of small parameter updates in the

neural network, which is an instance of what we call stagnation. If a parameter φ is

updated by a quantity h that is less than half the spacing of the floating-point num-

bers (or fixed-point numbers) around φ then flpφ` hq “ φ with round to nearest, so

the information in h is lost. Stochastic rounding helps to preserve this information.

Much recent work applies stochastic rounding in neural network training and infer-

ence; see, for example, [6], [8], [26], [29], [30], [38], [41], [42], [46], and the references

therein.
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Another application where mode 1 stochastic rounding has been shown to improve

accuracy with fixed-point arithmetic is the numerical solution of neural ODEs [19].

Much work on stochastic rounding with floating-point arithmetic has focused on

using it to validate numerical methods through an empirical approach. The CESTAC

method [5], [39] and its implementation CADNA [25], [34] use mode 2 stochastic

rounding, termed “stochastic arithmetic”, to detect instabilities in numerical routines

and to provide estimates of the accuracy of the computed results. Further references

on this topic include [13], [12], [40].

Parker’s Monte Carlo arithmetic [31], [32] is more general than stochastic rounding,

not least because as well as randomly rounding it can randomly perturb the input to

a floating-point operation and the output of it.

We are not aware of any analysis of stochastic rounding or any work on rounding

error analysis for stochastic rounding. The purpose of this paper is to fill this gap in

the literature. We make the following contributions.

‚ We analyze the properties of stochastic rounding in floating-point arithmetic

vis-à-vis the properties of round to nearest, finding both common properties

and significant differences.

‚ We show that the recent probabilistic backward error analysis of Higham and

Mary [16], which assumes that rounding errors are independent random vari-

ables with zero mean, holds with the weaker assumption of mean indepen-

dence. We also show that mode 1 stochastic rounding produces rounding errors

that are mean independent random variables with zero mean. We conclude that

the long-standing rule of thumb that one can replace a worst-case error bound

nu by a more realistic (probabilistic) error bound
?

nu [43, p. 318], [44, p. 26]

holds unconditionally for stochastic rounding.

‚ We show that the expected value of a computed result from mode 1 stochastic

rounding is the true value for summation, inner products, matrix–vector and
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matrix–matrix products, and the solution of triangular systems, and we explain

why this property does not extend to matrix factorizations.

‚ We prove that mode 1 stochastic rounding avoids stagnation in summation and

thereby can lead to more accurate results than round to nearest.

We begin, in section 3.2, by recalling some basic properties of floating-point arith-

metic. In section 3.3 we investigate properties of stochastic rounding and compare

them with key properties of round to nearest. In section 3.4 we generalize the proba-

bilistic backward error analysis of Higham and Mary [16], showing that the assump-

tion that rounding errors are independent random variables can be relaxed to them

being mean independent random variables. Then, in section 3.5, we show that this

strengthened analysis applies to mode 1 stochastic rounding, which therefore enjoys

unconditional
?

nu error bounds in place of the worst-case nu bounds. In section 3.6

we analyze the expected value of computations under mode 1 stochastic rounding.

We illustrate the benefits of the
?

nu error bounds for mode 1 stochastic rounding in

section 3.7 with numerical experiments on sums and inner products. Finally, we give

concluding remarks in section 3.8.

3.2 floating-point arithmetic

We recall some basic properties of floating-point arithmetic. For more details, see

[11], [15, Chap. 2], [28]. A number y in the floating-point number system F has the

form

y “ ˘mˆ βe´t, (3.2.1)

which involves four integers:

‚ β is the base, which is 2 throughout this paper,
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‚ t is the precision,

‚ e is the exponent, which satisfies emin ď e ď emax, and

‚ m is the significand, which satisfies 0 ď m ď βt ´ 1.

Normalized numbers are those for which m ě βt´1. The machine epsilon ε is the

distance from 1 to the next larger floating-point number and is given by ε “ β1´t.

The spacing of floating-point numbers increases by a factor β at each power of β. For

β “ 2 the spacing in the interval p1{2, 1s is ε{2 “ u “ 2´t, the unit roundoff. With

round to nearest it can be shown that [15, Thm. 2.2]

flpxq “ xp1` δq, |δ| ď u. (3.2.2)

The standard model of floating-point arithmetic assumes that the elementary oper-

ations and the square root are correctly rounded (as indeed is the case for IEEE

standard arithmetic [21]), so that with round to nearest they satisfy

flpx op yq “ px op yqp1` δq, |δ| ď u, op P t`,´, ˚, {,?u. (3.2.3)

Under stochastic rounding we define the elementary floating-point operations`,´, ˚, {,?

to be the stochastically rounded exact ones. Therefore for stochastic rounding, equa-

tions (3.2.2) and (3.2.3) hold with u replaced by 2u:

flpxq “ xp1` δq, |δ| ď 2u, (3.2.4a)

flpx op yq “ px op yqp1` δq, |δ| ď 2u, op P t`,´, ˚, {,?u. (3.2.4b)

We make reference throughout to various floating-point systems, the parameters

of which are shown in Table 3.2.1. All those beginning with “fp” are from the IEEE

standard. Bfloat16 [22] is a half-precision format supported by the Google Tensor
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Table 3.2.1: Parameters of floating-point systems. (sig., exp.) denotes number of bits in significand
(including implicit most significant bit) and exponent, u is the unit roundoff, xmin is the
smallest normalized positive number, and xmax is the largest finite number.

(sig., exp.) u xmin xmax

bfloat16 (8, 8) 3.91ˆ 10´3 1.18ˆ 10´38 3.39ˆ 1038

fp16 (11, 5) 4.88ˆ 10´4 6.10ˆ 10´5 6.55ˆ 104

fp32 (24, 8) 5.96ˆ 10´8 1.18ˆ 10´38 3.40ˆ 1038

fp64 (53, 11) 1.11ˆ 10´16 2.22ˆ 10´308 1.80ˆ 10308

Processing Unit1 (TPU), the NVIDIA A100 GPU, the Intel Cooper Lake processor,

and the Armv8-A architecture [1].

3.3 properties of stochastic rounding

In this section, stochastic rounding refers to either mode 1 or mode 2, defined by

(3.1.1) and (3.1.2), and all the results are valid for both. We compare stochastic round-

ing with round to nearest, identifying properties in common as well as significant

differences that should be borne in mind when stochastic rounding is used.

3.3.1 Properties that continue to hold

We begin by identifying properties of round to nearest that continue to hold under

stochastic rounding. First, we note that flpflpxqq “ flpxq with stochastic rounding, that

is, rounding a floating-point number leaves it unchanged.

Sterbenz’s lemma [15, Thm. 2.5], [37] is a property of floating-point numbers that

is independent of the rounding mode, so it certainly holds for stochastic rounding.

1 https://cloud.google.com/tpu/

https://cloud.google.com/tpu/
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Lemma 3.1 (Sterbenz). If x and y are floating-point numbers with y{2 ď x ď 2y then

flpx´ yq “ x´ y under stochastic rounding (assuming x´ y does not underflow).

Under round to nearest we have (in base 2, but not for all bases [15, Probs. 2.7, 2.8])

that for floating-point numbers x and y with x ď y

x ď flppx` yq{2q ď y. (3.3.1)

These inequalities are an immediate consequence of the monotonicity of round to

nearest, where monotonicity of rounding is the property that for x P R and y P R, the

inequality x ď y implies flpxq ď flpyq. We show that they remain true for stochastic

rounding, even though it is not monotonic (as shown in the next section). Since

division by 2 is exact in base 2 arithmetic, we need to show that 2x ď flpx` yq ď 2y.

For the case x “ y, the inequalities trivially hold. We thus consider x ă y. Let

y “ x ` δ, where δ ą 0. Then x ` y “ 2y´ δ ă 2y, so flpx ` yq ď 2y. Furthermore,

x` y “ 2y´ δ ě 2y´ 2δ “ 2py´ δq “ 2x, so flpx` yq ě 2x.

3.3.2 Properties that no longer hold

Some properties that are trivial under round to nearest do not hold under stochastic

rounding. Since rounding is probabilistic, two different evaluations of flpxq can give

different results. Similarly, in general we have

flp|x|q ‰ |flpxq|,

flp´xq ‰ ´flpxq,

flp2pxq ‰ 2pflpxq, p an integer,

but in each case the two possible values of the left-hand side are equal to the two

possible values of the right-hand side (in the third case this follows from r2pxs “ 2prxs

and t2pxu “ 2ptxu).
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Round to nearest is monotonic but stochastic rounding is not: if we have two

adjacent floating-point numbers a ă b, then for a ă x ď y ă b, flpxq ą flpyq is possible

under stochastic rounding.

In [7], [15, Prob. 2.12] it is shown that for x satisfying 1 ď x ă 2, flpx ˚ p1{xqq is

either 1 or 1 ´ ε{2 with round to nearest, where ε is the machine epsilon. Under

stochastic rounding we have two more possibilities for the result.

Theorem 3.2. For 1 ď x ă 2, flpx ˚ p1{xqq P t1´ ε, 1´ ε{2, 1, 1` εu under stochastic

rounding.

Proof. The spacing of the floating-point numbers in the interval p1{2, 1s is ε{2. This

means that under stochastic rounding we have

ˇ

ˇ

ˇ

ˇ

1
x
´ fl

´1
x

¯

ˇ

ˇ

ˇ

ˇ

ă
ε

2

ùñ

ˇ

ˇ

ˇ

ˇ

1´ xfl
´1

x

¯

ˇ

ˇ

ˇ

ˇ

ă
xε

2
ă ε

ùñ 1´ ε ă xfl
´1

x

¯

ă 1` ε. (3.3.2)

The floating-point numbers in the interval r1´ ε, 1` εs are t1´ ε, 1´ ε{2, 1, 1` εu. We

therefore have flpx ˚ flp1{xqq P t1´ ε, 1´ ε{2, 1, 1` εu.

Consider the computation of flpn ˚ flpm{nqq, where m and n are integers. If m{n

is a floating-point number then flpn ˚ flpm{nqq “ flpn ˚ pm{nqq “ flpmq “ m for any

rounding scheme, as no rounding takes place. For round to nearest, Kahan proved

that the same identity holds for many other choices of m and n [11, Thm. 7]. Recall

that a floating-point number has precision t and that we are assuming base 2.

Theorem 3.3 (Kahan). Let m and n be integers such that |m| ă 2t´1 and n “ 2i ` 2j for

some i and j. Then flpn ˚ flpm{nqq “ m with round to nearest.
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The sequence of allowable n begins 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20 (and is A048645

in the On-Line Encyclopedia of Integer Sequences [36]), so Kahan’s theorem covers

many common cases. As an example of where the result is useful, if we partition

r0, 1s into n intervals of length h “ 1{n, we may want, for consistency in a computa-

tion, that flpnhq “ 1. Kahan’s result shows that n does not need to be a power of 2 for

this condition to hold.

Theorem 3.3 does not hold for stochastic rounding because there are three possibil-

ities for the computed result, as the next result shows.

Theorem 3.4. Let m and n be integers such that |m| ă 2t´1 and n “ 2i ` 2j for some i

and j. Under stochastic rounding, flpn ˚ flpm{nqq is either m, the next smaller floating-point

number, or the next larger floating-point number.

Proof. The proof is a modification of the proof of [11, Thm. 7]. Without loss of

generality we can assume that m ą 0. It is harmless to scale n and m by powers of

2, since it changes only the exponents. Scale n so that 2t´1 ď n ă 2t and scale m so

that 1{2 ď q “ m{n ă 1. We then have 2t´2 ď m ă 2t. Since the original m has been

reduced by at most a factor 2, m now has at most 1 bit to the right of the binary point.

We will show that q “ flpm{nq “ flpqq satisfies

|nq´m| ď
1
4

. (3.3.3)

Since m has at most 1 bit to the right of the binary point, if (3.3.3) is satisfied then un-

der stochastic rounding flpnq̄q will equal either m or one of the two adjacent floating-

point numbers. (It would, in fact, be enough to prove (3.3.3) with 1{2 on the right-

hand side.)

We now seek to bound |nq´m|. Write q “ .q1q2 . . . and let pq “ .q1q2 . . . qt1. From

the proof of [11, Thm. 7] we have |pq ´ q| ě 1{pn ˆ 2t`1´rq, where n must have the

form n “ 2t´1 ` 2r and r ď t´ 2. Assume q ă pq. The proof for q ą pq is similar. We

now have two cases.
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Case 1: For q ă pq, with round to nearest we would necessarily round down and so

q “ pq´ 2´t´1 “: qd. This is one possibility with stochastic rounding. In this case we

have nqd ă nq “ m and so

|m´ nqd| “ m´ nqd “ npq´ qdq

“ npq´ pq` 2´t´1q

ď n
ˆ

2´t´1 ´
1

nˆ 2t`1´r

˙

“
1
4

.

Case 2: With stochastic rounding we have another possibility. As qd ă q, the other

value we can compute for q must be qu “ qd ` 2´t. We then have qu “ pq ` 2´t´1.

Following a similar procedure as before we can show |m´ nqu| ď 1{4, concluding the

proof.

With round to nearest (and specifically for base 2), we have that flp
?

x2q “ |x| for

x a floating-point number [15, Prob. 2.20], barring underflow and overflow. We show

that this identity can fail under stochastic rounding, and flp
?

x2q can be one of three

values.

Theorem 3.5. For a floating-point number x P p1, 2q, flp
?

x2q P t|x| ´ ε, |x|, |x| ` εu under

stochastic rounding.

Proof. By (3.2.4b), we have
a

flpx2q “
a

x2p1` δq “ |x|p1` δq1{2, |δ| ď 2u, and

|x|p1` δq1{2 “ |x|
ˆ

1`
δ

?
1` δ` 1

˙

“: |x| ` θ.

To maximize |θ|, take δ “ ´2u and x “ 2´ 2u, which is the largest floating-point

number that lies in p1, 2q. Then

|θ| ď
p2´ 2uq2u
?

1´ 2u` 1
.
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For u ď 1{2, we have |θ| ď 2u “ ε. Since the spacing of the floating-point numbers

on p1, 2q is ε, it follows that flp
a

flpx2qq can round to any of t|x| ´ ε, |x|, |x| ` εu.

We have verified by numerical experiments in MATLAB that each of the cases for

the computed results in Theorems 3.2, 3.4, and 3.5 is attainable in bfloat16, fp16, and

fp32 arithmetic for some choices of the data.

Theorem 3.5 implies that the inequality flpx{
a

x2 ` y2q ď 1 (which always holds

under round to nearest [15, Prob. 2.21]) can fail under stochastic rounding. This

means that the formula acospx{
a

x2 ` y2q for one of the angles in a right-angled

triangle with smallest sides of length x and y can fail. Indeed, take y to be zero, or

so small that flpx2 ` y2q “ flpx2q holds with high probability. For x ą 0, Theorem 3.5

shows that flp
?

x2q “ x´ ε is possible, in which case

x
flp
?

x2q
“

x
x´ ε

ą 1,

and it follows that under stochastic rounding the result can exceed 1.

Stochastic rounding has two drawbacks in common with a fused multiply-add

operation [15, sect. 2.6]. First, if we compute the modulus squared of a complex

number from the formula

px´ iyqpx` iyq “ x2 ` y2 ` ipxy´ yxq,

the result may be nonreal, since flpxyq ‰ flpyxq is possible. Second, in evaluating a

discriminant b2´ ac, even if b2 ě ac the discriminant can evaluate as negative because

of the nonmonotonicity of stochastic rounding, which is problematic if
?

b2 ´ ac must

be computed.

Under round to nearest (in base 2) we have for floating-point numbers x and y that

errpx, yq “ x` y´ flpx` yq satisfies |errpx, yq| ď minp|x|, |y|q [15, Prob. 4.6], [35]. We

show this to be false under stochastic rounding by counterexample. For x “ 4 and



58 stochastic rounding and its probabilistic backward error analysis

y “ ε we have flpx` yq P t4, 4` 4εu as the spacing of the floating-point numbers in the

interval r4, 8s is 4ε. The bound is satisfied for flpx` yq “ 4 but for flpx` yq “ 4` 4ε,

|errpx, yq| “ |4` ε´ p4` 4εq| “ 3ε ą minp|x|, |y|q.

Vital to compensated summation algorithms is the fact that for floating-point num-

bers a and b, if s “ flpa` bq with round to nearest then t “ a` b´ s is a floating-point

number, which can be computed by the following algorithm.

Algorithm 3.1 (FastTwoSum) Given floating-point numbers a, b such that |a| ě |b|,
compute (with round to nearest) s and t such that s “ flpa ` bq and s ` t “ a ` b
exactly.

1: s Ð a` b
2: z Ð s´ a
3: t Ð b´ z

Under stochastic rounding, the computed pt from Algorithm 3.1 is not exact, but we

can bound the error. From [13, Prop. 4.3], we have

|pt´ t| ď 2u|t| (3.3.4)

if each arithmetic operation is performed with a directed rounding mode and hence

also for stochastic rounding. Based on this argument, error bounds are provided in

[13], [12] for compensated summation algorithms under directed rounding schemes,

and these bounds therefore hold under stochastic rounding. We note that while the

computation of t is no longer exact, compensated summation algorithms still prove

accurate under stochastic rounding.

While the collection of properties analyzed above is by no means exhaustive, it

demonstrates that it would be dangerous to simply replace round to nearest by

stochastic rounding in a given computation. One should carefully consider whether

the computation is dependent on properties of round to nearest beyond the model

(3.2.3) and, if they are, check whether they remain true for stochastic rounding.
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3.4 probabilistic backward error analysis

We wish to exploit the properties of stochastic rounding in backward error analysis.

Standard backward error analysis based on the model (3.2.3) remains valid with u Ð

2u by (3.2.4b), but we wish to take advantage of the statistical properties of stochastic

rounding. In this section we develop probabilistic backward error bounds, which we

apply to stochastic rounding in the next section.

3.4.1 Summary of probabilistic backward error bounds under independence

It is standard practice to express backward error results in terms of the constant

γn “ nu{p1´ nuq. This constant arises when rounding error terms 1` δi with |δi| ď u

are collected in a product and the distance of the product from 1 is bounded using

the following lemma [15, Lem 3.1].

Lemma 3.6. If |δi| ď u and ρi “ ˘1 for i “ 1 : n, and nu ă 1, then

n
ź

i“1

p1` δiq
ρi “ 1` θn, |θn| ď γn. (3.4.1)

The inequality |θn| ď γn is a worst-case bound that is often pessimistic in practice

and so it can fail to provide a good indication of the size of the error of a typical

computation. This weakness is especially relevant in the context of large scale and/or

low precision computations, since for large values of n or u, γn can exceed 1, in which

case the worst-case bound is not able to guarantee even a single correct digit.2 For

example, with the half-precision arithmetics fp16 and bfloat16, nu ą 1 for n ą 2048

and n ą 256, respectively.

2 Indeed once nu ą 1, the bound (4.1.5) is not valid. By exploiting the round to nearest property it is
possible to relax the condition nu ă 1 at the cost of more complicated proofs [24], [33], but the bound
will still be large for nu ą 1.
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These observations have generated a renewed interest in analyzing rounding er-

rors from a probabilistic point of view. In particular, a systematic backward error

analysis based on a probabilistic model that assumes rounding errors to be indepen-

dent random variables of mean zero has recently been developed by Higham and

Mary [16].

We state the following result, which is a minor rewriting of [16, Thm. 2.4] with the

change of variable λ Ð λ{p1´ uq. Define

rγnpλq “ exp
ˆ

λ
?

nu` nu2

1´ u

˙

´ 1 “ λ
?

nu`Opu2q. (3.4.2)

Lemma 3.7. Let δ1, δ2, . . . , δn be independent random variables of mean zero such that |δi| ď

u for all i, and let ρi “ ˘1, i “ 1 : n. Then for any constant λ ą 0,

n
ź

i“1

p1` δiq
ρi “ 1` θn, |θn| ď rγnpλq

holds with probability at least Ppλq “ 1´ 2 expp´λ2{2q.

The significance of the lemma is that it shows that if the rounding errors are as-

sumed to be independent random variables of mean zero then γn “ nu`Opu2q can

be replaced by the relaxed constant rγnpλq “ λ
?

nu`Opu2q with a probability that is

high even for modest λ. It justifies the long-standing rule of thumb that one can take

the square root of an error constant because of statistical effects in rounding error

propagation.

As an example of what can be proved using Lemma 3.7 we state the following

result for inner products from [16, Thm. 3.1]. We define

Qpλ, nq “ 1´ np1´ Ppλqq “ 1´ 2n expp´λ2{2q.
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Theorem 3.8 (inner products). Let y “ aTb, where a, b P Rn, be evaluated in floating-

point arithmetic. If the rounding errors are independent random variables of mean zero then

no matter what the order of evaluation the computed py satisfies

py “ pa`∆aqTb “ aTpb`∆bq, |∆a| ď rγnpλq|a|, |∆b| ď rγnpλq|b| (3.4.3)

with probability at least Qpλ, nq.

Lemma 3.7 and Theorem 3.8 rely, however, on the two key assumptions that round-

ing errors are independent and have zero mean. With deterministic rounding modes

these assumptions do not always hold and indeed examples where the probabilistic

bound is violated are provided in [16] and are used in our experiments in section 3.7.

3.4.2 Generalizing backward error bounds to mean independence

We now weaken the independence assumption in Lemma 3.7 to mean independence.

A random variable X is said to be mean independent of another random variable Y

if its conditional expectation given Y is equal to its unconditional expectation, that

is, EpX | Yq “ EpXq. Random variables δ1, δ2, . . . are mean independent if Epδk |

δ1, . . . , δk´1q “ Epδkq for all k. Independent random variables are mean independent,

but the converse is not true in general. We will show in the next section that the

rounding errors from mode 1 stochastic rounding are mean independent.

The probabilistic error analyses of [17], [23] prove that the assumption of indepen-

dence of rounding errors can be relaxed to mean independence in the special case

of inner product-based computations. We now show that it is possible to do so for

general linear algebra operations, by deriving a version of Lemma 3.7 that requires

only mean independence. To do so, we need the concept of a martingale.
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Definition 3.1 (martingale). A sequence of random variables E0, . . . , En is a martin-

gale if, for all k, Ep|Ek|q ă 8 and

E
`

Ek | E0, . . . , Ek´1
˘

“ Ek´1.

We also need the following inequality [27, Thm. 13.4].

Lemma 3.9 (Azuma–Hoeffding inequality). Let E0, . . . , En be a martingale such that

|Ek ´ Ek´1| ď ck, for k “ 1 : n. Then for any λ ą 0,

Pr

˜

|En ´ E0| ě λ

ˆ n
ÿ

k“1

c2
k

˙1{2
¸

ď 2 exp
`

´λ2{2
˘

.

We are ready for the main result, which is a version of Lemma 3.7 with the inde-

pendence assumption replaced by the weaker assumption of mean independence.

Theorem 3.10. Let δ1, δ2, . . . , δn be random variables of mean zero with |δk| ď u for all k

such that Epδk`1 | δ1, . . . , δkq “ Epδk`1q “ 0 for k “ 1 : n´ 1. Then for ρi “ ˘1, i “ 1 : n

and any constant λ ą 0,

n
ź

i“1

p1` δiq
ρi “ 1` θn, |θn| ď rγnpλq (3.4.4)

holds with probability at least 1´ 2 expp´λ2{2q.

Proof. Let Ek “
řk

i“1 ρiδi for k “ 1 : n and E0 “ 0. Since |Ek| ď ku, clearly Ep|Ek|q ă 8.

Moreover, since Ek`1 “ Ek ` ρk`1δk`1,

EpEk`1 | E1, . . . , Ekq “ Ek ` ρk`1Epδk`1 | δ1, . . . , δkq “ Ek.

Therefore E0, . . . , En is a martingale. Since |Ek`1 ´ Ek| ď u, Lemma 3.9 yields

|En ´ E0| “ |En| ď λ
?

nu (3.4.5)
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with probability at least 1´ 2 expp´λ2{2q. By a Taylor expansion it can be shown that

[16, eqn. (2.3)]

δi ´
u2

1´ u
ď logp1` δiq ď δi `

u2

1´ u
.

Hence, for ρi “ ˘1,

ρiδi ´
u2

1´ u
ď ρi logp1` δiq ď ρiδi `

u2

1´ u
.

Summing gives

En ´
nu2

1´ u
ď log

n
ź

i“1

p1` δiq
ρi ď En `

nu2

1´ u
,

which by (3.4.5) can be weakened to

´

ˆ

λ
?

nu`
nu2

1´ u

˙

ď log
n
ź

i“1

p1` δiq
ρi ď λ

?
nu`

nu2

1´ u
.

We slightly weaken this bound further by dividing the λ
?

nu terms by 1´ u on each

side, and then we exponentiate to obtain

1´
rγnpλq

1` rγnpλq
“

1
1` rγnpλq

ď

n
ź

i“1

p1` δiq
ρi ď 1` rγnpλq.

From the definition of θn, we therefore have |θn| ď rγnpλq.

Theorem 3.10 can now be used to derive analogues of the probabilistic backward

error results from [16] for inner products, matrix–vector and matrix–matrix products,

LU factorization, Cholesky factorization, solution of triangular systems, and solu-

tion of linear systems by LU factorization or Cholesky factorization. In all cases the

assumption that the rounding errors are independent random variables can be weak-

ened to an assumption of mean independence. To be precise, we define the following

model of rounding errors in a given computation.

Model 3.11 (probabilistic model of rounding errors). Let the computation of interest

generate rounding errors δ1, δ2, . . . in that order. The δk are random variables of mean zero

such that Epδk | δ1, . . . , δk´1q “ Epδkq (“ 0).
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As an example, we write down the results for inner products, matrix–matrix prod-

ucts, and solution of linear systems.

Theorem 3.12 (inner products). Let y “ aTb, where a, b P Rn, be evaluated in floating-

point arithmetic. Under Model 3.11, no matter what the order of evaluation the computed py

satisfies

py “ pa`∆aqTb “ aTpb`∆bq, |∆a| ď rγnpλq|a|, |∆b| ď rγnpλq|b| (3.4.6)

with probability at least Qpλ, nq.

Proof. The proof is almost identical to that of [16, Thm. 3.1], the difference being that

we invoke Theorem 3.10 instead of Lemma 3.7.

The next two results are analogues of [16, Thms. 3.4, 3.7].

Theorem 3.13 (matrix–matrix products). Let C “ AB with A P Rmˆn and B P Rnˆp.

Under Model 3.11, the jth column of the computed pC satisfies

pcj “ pA`∆Ajqbj, |∆Aj| ď rγnpλq|A|, j “ 1 : n, (3.4.7)

with probability at least Qpλ, mnq, and hence

|C´ pC| ď rγnpλq|A||B| (3.4.8)

with probability at least Qpλ, mnpq.

Theorem 3.14 (linear system). Let A P Rnˆn and suppose that LU factorization and sub-

stitution produce computed factors pL and pU and a computed solution px to Ax “ b. Then,

under Model 3.11,

pA`∆Aqpx “ b, |∆A| ď
`

3rγnpλq ` rγnpλq
2˘|pL||pU| (3.4.9)
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holds with probability at least Qpλ, n3{3` 3n2{2` 7n{6q.

3.5 backward error analysis for stochastic rounding

Now we focus on stochastic rounding, with the aim of showing that the analysis of

the previous section is applicable, that is, that stochastic rounding satisfies Model 3.11.

Throughout this section stochastic rounding means mode 1 stochastic rounding. In

all our analysis the data is assumed to be deterministic.

We first show that stochastic rounding forces the rounding errors to be random

variables with zero mean.

Lemma 3.15. For x P R, if y “ flpxq “ xp1` δq is produced by stochastic rounding then δ

is a random variable with Epδq “ 0.

Proof. Recall the definition (3.1.1) of stochastic rounding:

flpxq “

$

’

’

&

’

’

%

rxs with probability p “ px´ txuq{prxs´ txuq,

txu with probability 1´ p.

Clearly, flpxq and δ “ pflpxq ´ xq{x are random variables. We have

Epflpxqq “ prxs` p1´ pqtxu “
px´ txuqrxs` prxs´ xqtxu

rxs´ txu
“ x.

Then Epδq “ Eppflpxq ´ xq{xq “ 0.

It is important to note that mode 2 stochastic rounding does not produce a zero

mean: (3.1.2) implies that Epflpxqq “ prxs` txuq{2, which is in general not equal to x.
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Lemma 3.7, and the analysis of [16], require independence of rounding errors. The

question therefore arises: does stochastic rounding enforce independence of rounding

errors? The answer is negative. Indeed, successive rounding errors are still depen-

dent on each other since they affect the computed values. Consider for example the

computation of pa` bq ` c. We have

flpflpa` bq ` cq “ ppa` bqp1` δ1q ` cqp1` δ2q.

Clearly, δ2 depends on the addends pa` bqp1` δ1q and c and hence on δ1. This simple

example shows that independence of rounding errors is not enforced by stochastic

rounding. However, stochastic rounding does enforce mean independence of the

rounding errors.

Lemma 3.16. Let the computation of interest generate rounding errors δ1, δ2, . . . , in that

order. If stochastic rounding is used then the δk satisfy Model 3.11.

Proof. We know by Lemma 3.15 that the rounding errors have mean zero. It suffices to

consider quantities a and b resulting from the computation of k´ 1 scalar operations

that have produced rounding errors δ1, . . . , δk´1. Consider now the computation of

c “ a op b for any scalar operation op P t`,´, ˚, {,?u, resulting in pc “ flpa op bq “

pa op bqp1` δkq. The rounding error δk “ ppc´ cq{c is a random variable that depends

on δ1, . . . , δk´1 and is given by

δk “

$

’

’

&

’

’

%

prcs´ cq{c with probability p “ pc´ tcuq{prcs´ tcuq,

ptcu´ cq{c with probability 1´ p.
(3.5.1)
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Moreover, prcs ´ cq{c and ptcu ´ cq{c are themselves random variables that are en-

tirely determined by δ1, . . . , δk´1 and so the conditional expectation of each given

δ1, . . . , δk´1 is itself. Therefore we obtain

Epδk | δ1, . . . , δk´1q “ pE

ˆ

rcs´ c
c

| δ1, . . . , δk´1

˙

` p1´ pqE
ˆ

tcu´ c
c

| δ1, . . . , δk´1

˙

“ p
ˆ

rcs´ c
c

˙

` p1´ pq
ˆ

tcu´ c
c

˙

“ 0.

Since we have proven in Lemmas 3.15 and 3.16 that the rounding errors δi produced

by stochastic rounding satisfy the assumptions of Theorem 3.10, we conclude that the

probabilistic bound (3.4.4) holds unconditionally for them (with u Ð 2u in view of

(3.2.4)), without exception. Hence for stochastic rounding the rule of thumb that

one can replace nu in a worst-case error bound by
?

nu to obtain a more realistic

(probabilistic) error bound is unconditionally true. Furthermore, the backward error

bounds in Theorems 3.12– 3.14 hold unconditionally for stochastic rounding as long

as we replace u by 2u in rγpλq in (3.4.2).

3.6 the mean of the error for stochastic rounding

We now ask what is the expected value of the computed result for stochastic rounding.

Since the result from a computation with stochastic rounding has a random error,

which is generally different each time the computation is repeated, it is intuitively

desirable that the expected value of the computed result is the true result. We focus

on mode 1 stochastic rounding since, as we noted in the previous section, for mode 2

this property does not hold.
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For a single floating-point operation we know that the expected value is the true

value by Lemma 3.15, because Ep1` δq “ 1 for a single rounding error δ. In the next

result we show that a product of rounding error terms also has expected value 1. The

key property needed is mean independence.

Lemma 3.17. Let δ1, δ2, . . . , δn be random variables of mean zero such that Epδk`1 | δ1, . . . , δkq “

Epδk`1q “ 0 for k “ 1 : n´ 1. Then

E

˜

n
ź

i“1

p1` δiq

¸

“ 1.

Proof. Define Pn “
śn

i“1p1` δiq. We prove EpPnq “ 1 by induction. The result clearly

holds for P1 since Ep1` δ1q “ 1. Assume it holds for Pn´1. Using the law of total

expectation (or tower property) EpXq “ E
`

EpX | Yq
˘

[3, p. 448], [45, p. 401], we have

EpPnq “ EpEpPn | δ1, . . . , δn´1qq

“ EpEpPn´1p1` δnq | δ1, . . . , δn´1qq

“ EpPn´1Ep1` δn | δ1, . . . , δn´1qq

“ EpPn´1q “ 1,

and the result follows by induction.

We note that Lemma 3.17 does not generalize to the product
śn

i“1p1` δiq
ρi with

ρi “ ˘1. We apply the lemma to inner products.

Theorem 3.18 (inner products). Let y “ aTb, where a, b P Rn, be evaluated in floating-

point arithmetic. Under stochastic rounding, no matter what the order of evaluation the

computed py satisfies Eppyq “ y.

Proof. Standard backward error analysis [15, sect. 3.1] shows that py can be written as

py “
n
ÿ

i“1

aibi

n
ź

k“1

p1` δkiq,
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where the δki satisfy (3.2.4b). (Some of the δki will be zero, depending on the order in

which the inner product is evaluated). Taking the mean and using Lemma 3.17, along

with the fact that the rounding errors from stochastic rounding are mean independent

with zero mean by Lemma 3.16, we obtain Eppyq “
řn

i“1 aibi “ y.

As a special case of Theorem 3.18 we have that the expected value of a sum is the

exact sum under stochastic rounding. We have a similar result for matrix multiplica-

tion (and, as a special case, matrix–vector products).

Theorem 3.19 (matrix multiplication). Let C “ AB, where A P Rmˆn and B P Rnˆp, be

evaluated in floating-point arithmetic. Under stochastic rounding, no matter what the order

of evaluation the computed pC satisfies Ep pCq “ C.

Proof. The result is obtained by applying Theorem 3.18 to the inner products cij “

Api, :qBp:, jq.

Theorems 3.18 and 3.19 do not, of course, hold for round to nearest, because it is

deterministic.

This argument extends to the solution of triangular systems, as we now show. We

need an extension of Lemma 3.17.

Lemma 3.20. Let δ´m, . . . , δ0, δ1, δ2, . . . , δn be random variables of mean zero such that

Epδk | δ´m, . . . , δk´1q “ Epδkq “ 0 for k “ 1 : n. Then

E

˜

n
ź

i“1

p1` δiq

ˇ

ˇ

ˇ
δ0, . . . , δ´m

¸

“ 1.

Proof. Define

pn “ E

˜

n
ź

i“1

p1` δiq

ˇ

ˇ

ˇ
δ´m, . . . , δ0

¸

.
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We prove by induction that pn “ 1. We have

p1 “ E
`

1` δ1 | δ´m, . . . , δ0
˘

“ 1`E
`

δ1 | δ´m, . . . , δ0
˘

“ 1.

Assume that pn´1 “ 1. Using the general form of the law of total expectation, EpX |

Yq “ EpEpX | Zq | Yq where “Y Ď Z” [3, Thm. 34.4], we have

pn “ E

˜

n
ź

i“1

p1` δiq

ˇ

ˇ

ˇ
δ´m, . . . , δ0

¸

“ E

˜

E

˜

n
ź

i“1

p1` δiq

ˇ

ˇ

ˇ
δ´m, . . . , δn´1

¸

ˇ

ˇ

ˇ
δ´m, . . . , δ0

¸

“ E

˜

n´1
ź

i“1

p1` δiqE
`

1` δn | δ´m, . . . , δn´1
˘

ˇ

ˇ

ˇ
δ´m, . . . , δ0

¸

“ pn´1 “ 1,

so the result follows by induction.

Theorem 3.21. Let the triangular system Tx “ b, where T P Rnˆn is nonsingular, be solved

by substitution with stochastic rounding. The computed solution px satisfies Eppxq “ x.

Proof. Assume that T is lower triangular without loss of generality. We prove that

Eppxiq “ xi by induction. From (3.2.4b) and Lemma 3.15, we have

Eppx1q “ E

ˆ

b1

t11
p1` δ

p1q
1 q

˙

“
b1

t11
“ x1.

Assume that Eppxjq “ xj for all j ă i. We compute xi from

xi “
´

bi ´

i´1
ÿ

j“1

tijxj

¯

L

tii. (3.6.1)

There are 2i ´ 1 rounding errors in total and no term in (3.6.1) is involved in more

than i` 1 rounding errors. Using (3.2.4b), and proceeding as in standard backward
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error analysis [15, sect. 8.1], we find that no matter what the order of evaluation of

(3.6.1), we can write

tiipxi “ bi

i`1
ź

k“1

`

1` δ
piq
i,k

˘

´

i´1
ÿ

j“1

tijpxj

i`1
ź

k“1

`

1` δ
piq
j,k

˘

,

where the δ
piq
j,k are drawn from the 2i´ 1 rounding errors and some of the δ

piq
j,k are zero,

depending on the order of evaluation. Therefore we obtain

Eptiipxiq “ biE

ˆ i`1
ź

k“1

`

1` δ
piq
i,k

˘

˙

´

i´1
ÿ

j“1

tijE

ˆ

pxj

i`1
ź

k“1

`

1` δ
piq
j,k

˘

˙

. (3.6.2)

The first expectation term in this equation is equal to 1 by Lemmas 3.16 and 3.17.

We need to show that the second expectation term is also 1, which is not immediate

because pxj is not constant (it depends on the previous rounding errors, which are

random). To prove the result, we use the law of total expectation to condition on all

the rounding errors upon which pxj depends. Let

Sj “ t pp, `, mq : p “ 1 : j, ` “ 1 : p, m “ 1 : p` 1 u.

We have

E

ˆ

pxj

i`1
ź

k“1

`

1` δ
piq
j,k

˘

˙

“ E

ˆ

E

ˆ

pxj

i`1
ź

k“1

`

1` δ
piq
j,k

˘

ˇ

ˇ

ˇ

 

δ
ppq
`,m : pp, `, mq P Sj

(

˙˙

“ E

ˆ

pxjE

ˆ i`1
ź

k“1

`

1` δ
piq
j,k

˘

ˇ

ˇ

ˇ
t δ
ppq
`,m : pp, `, mq P Sj u

˙˙

“ Eppxjq “ xj,

where the penultimate equality follows from Lemma 3.20, which is applicable by

Lemma 3.16 and since the rounding errors δ
piq
j,k occur later than the rounding errors

t δ
ppq
`,m : pp, `, mq P Sj u for all j ă i. Equation (3.6.2) now gives

tiiEppxiq “ bi ´

i´1
ÿ

j“1

tijxj “ tiixi,



72 stochastic rounding and its probabilistic backward error analysis

so Eppxiq “ xi. The result follows by induction.

These results do not extend to matrix factorizations and the solution of general

linear systems by LU factorization. The reason is that such kernels involve divisions

by computed quantities, which leads to a nonzero mean error because Ep1{Xq ‰

1{EpXq. For example, the Doolittle form of LU factorization [15, sec. 9.2] gives the

following recurrence for the lower triangular factor:

`ik “

ˆ

aik ´

k´1
ÿ

j“1

p`ijpujk

˙

L

pukk,

where the division by the computed pukk prevents the mean of the computed `ik equal-

ing `ik.

3.7 numerical experiments

We present a set of numerical experiments to verify that mode 1 stochastic rounding

obeys the probabilistic bound rγ
psq
n pλq in (3.4.6) for inner products without fail, even

when the bound does not hold for round to nearest. To that end, we revisit the

numerical experiments of [16], which give two examples where the bound is violated

with round to nearest.

We use the implementation of stochastic rounding provided in the MATLAB func-

tion chop3 [18]. The computations are performed in MATLAB R2019b. The precisions

used are half precision (fp16) and single precision (fp32). Reference solutions used in

backward error formulas are computed in double precision (fp64).

3 https://github.com/higham/chop

https://github.com/higham/chop
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Figure 3.7.1: Computed backward errors of inner products for random constant vectors in (a) fp32 and
(b) fp16. For each value of n we perform the computation 10 times and plot the maximum
backward error for round to nearest (RTN) and stochastic rounding (SR).

In Figure 3.7.1 we plot the backward error for the inner product of two random

vectors with constant entries, the two constants being sampled uniformly from r0, 1s.

We also plot γn and

rγ
psq
n pλq “ exp

ˆ

2λ
?

nu` 4nu2

1´ 2u

˙

´ 1 “ 2λ
?

nu`Opu2q,

which is rγnpλq in (3.4.2) with u replaced by 2u. We take λ “ 1, as in the experiments

of [16]. With round to nearest, the error does not satisfy the bound (3.4.6), which

is proportional to
?

nu, but rather grows proportionally to nu. As explained in [16],

since the entries in each vector are constant, so too are the rounding errors within

intervals of consecutive powers of 2. For round to nearest we thus have

Epδk`1 | δ1, . . . , δkq “ δk`1 ‰ 0

for any δk`1 unless it is the first rounding error incurred within the current interval

of consecutive powers of two. Therefore the rounding errors are clearly not mean

independent. However, stochastic rounding avoids producing constant rounding er-

rors by randomizing them, and it thereby yields a much smaller error that satisfies

the probabilistic bound (3.4.6).
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The second example displays the phenomenon of stagnation [4], [16]. It arises

when summing a large number of terms of identical sign (positive, say). Consider,

for example, the following recursive summation algorithm to compute the sum s “
řn

i“1 xi of nonnegative xi.

s Ð x1

for i “ 2 : n do

s Ð s` xi

end for

Since the xi are all nonnegative, the sum s grows monotonically with i. At some

point, the sum becomes so large that the spacing ψ of floating-point numbers around

s becomes larger than the xi. Specifically, if the xi are less than ψ{2, then with round

to nearest the computed sum absorbs the xi and no longer grows, that is, psi`1 “ psi.

This leads to necessarily negative rounding errors, which therefore causes the error

to start growing as nu rather than
?

nu. This stagnation is especially critical when

using low precisions, since it can occur even for moderate values of n.

Figure 3.7.2 illustrates this phenomenon with the inner product of two vectors with

random entries uniformly sampled in r0, 1s. With round to nearest, stagnation occurs

for n Á 106 in single precision and for n Á 104 in half precision. Stochastic rounding

does not suffer stagnation and is able to maintain an error growth bounded by
?

nu.

This is because stochastic rounding allows the sum to continue growing: indeed,

each increment has a small probability of increasing the sum to the next floating-

point number, and statistically for a large number of increments the sum averages

out to the exact sum. Theorem 3.18 makes this argument rigorous: the expected

value of the computed inner product is the exact inner product.

In conclusion, these two examples illustrate that even in situations where round

to nearest leads to rounding errors violating the assumptions required for the prob-

abilistic bound (3.4.4) to hold, stochastic rounding still enforces these assumptions.

Stochastic rounding can therefore produce significantly more accurate results than
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Figure 3.7.2: Computed backward errors of inner products for data sampled from r0, 1s in (a) fp32 and
(b) fp16. For each value of n we perform the computation 10 times and plot the maximum
backward error for each rounding mode.

round to nearest by reducing the error from nu to
?

nu. In particular, this explains

the improvements from using stochastic rounding reported in deep learning applica-

tions.

The two examples above are bad cases for round to nearest. Figure 3.7.3 shows the

results of an experiment with inner products of vectors x and y with elements from

the uniform distribution on r´1, 1s. In this case the errors for stochastic rounding and

round to nearest do not grow with n and so are both much less than the probabilistic

error bound. The reason the errors do not grow is that the elements of x and y have

mean zero, which means we obtain a backward error of Opuq rather than Op
?

nuq.

[17, Thm. 3.2]. Overall, round to nearest provides slightly more accurate results than

stochastic rounding in this example, as might be expected in view of (3.2.3) and

(3.2.4b).
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Figure 3.7.3: Computed backward errors of inner products for data sampled uniformly from r´1, 1s in
fp32 (a) and fp16 (b). For each value of n we perform the computation 10 times and plot
the maximum backward error for each rounding mode.

3.8 conclusions

Stochastic rounding is an old idea that is drawing renewed interest, notably in the

context of deep learning. We have presented rounding error analyses applicable to

a wide range of numerical linear algebra algorithms using floating-point arithmetic

with stochastic rounding, and we expect our conclusions to extend to fixed-point

arithmetic.

Stochastic rounding satisfies the basic model of floating-point arithmetic (3.2.3),

provided that the unit roundoff u is replaced by 2u; see (3.2.4b). However, we have

identified several properties of round to nearest that no longer hold with stochastic

rounding. Before replacing round to nearest by stochastic rounding in a computation

one should therefore check whether these properties are needed.

Stochastic rounding has some attractive features compared with round to near-

est, especially for large problems and low precisions. We have shown that stochas-

tic rounding has the property that the rounding errors it produces are mean inde-

pendent. We have also generalized the probabilistic error analysis result of [16]

(Lemma 3.7 here) by weakening the independence assumption to mean indepen-
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dence (Theorem 3.10). An important consequence of these results is that for stochastic

rounding a worst-case error bound nu can be replaced by the more realistic proba-

bilistic error bound
?

nu—that is, the long-standing rule of thumb is actually a rule

for stochastic rounding.

Stochastic rounding can yield significantly more accurate results than round to

nearest in the situations where the latter violates the probabilistic bounds, notably in

certain sums and inner products. In particular, we have proved that stochastic round-

ing avoids stagnation and that the computed result has expected value equal to the

exact sum. These findings are particularly important for deep learning applications,

where stagnation can hamper parameter updates in neural networks.
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4 P R O B A B I L I S T I C R O U N D I N G E R R O R

A N A LY S I S O F H O U S E H O L D E R Q R

FA C TO R I Z AT I O N

Abstract. When an mˆ n matrix is premultiplied by a product of n Householder ma-

trices the worst-case normwise rounding error bound is proportional to mnu, where u

is the unit roundoff. We prove that this bound can be replaced by one proportional to
?

mnu that holds with high probability if the rounding errors are mean independent

and of mean zero, under the assumption that a certain bound holds with probabil-

ity 1. The proof makes use of a matrix concentration inequality. In particular, this

result applies to Householder QR factorization. The same square rooting of the error

constant applies to two-sided transformations by Householder matrices and hence to

standard QR-type algorithms for computing eigenvalues and singular values. It also

applies to Givens QR factorization. These results complement recent probabilistic

rounding error analysis results for inner-product based algorithms and show that the

square rooting effect is widespread in numerical linear algebra. Our numerical exper-

iments, which make use of a new backward error formula for QR factorization, show

that the probabilistic bounds give a much better indicator of the actual backward

errors and their rate of growth than the worst-case bounds.

Keywords: floating-point arithmetic, backward error analysis, backward error, prob-

abilistic rounding error analysis, Givens QR factorization, Householder QR factoriza-

tion, matrix concentration inequality.
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4.1 introduction

It is well known that backward error bounds from worst-case rounding error analyses

can greatly overestimate the backward error. Recently, it was proved that for inner

product-based algorithms with backward error bounds of the form f pnqu, where n is

the problem dimension and u is the unit roundoff, a bound proportional to
a

f pnqu

holds with high probability under suitable assumptions on the rounding errors [16].

These results apply to matrix multiplication, Cholesky factorization, LU factorization,

and the solution of triangular systems, but not to algorithms based on orthogonal

transformations.

A QR factorization of A P Rmˆn (m ě n) is a factorization A “ QR where Q P Rmˆm

is orthogonal and R P Rmˆn is upper trapezoidal. A Householder matrix is a matrix

of the form

P “ I ´
2

vTv
vvT, 0 ‰ v P Rm.

The vector v can be chosen so that in the product y “ Px all elements of y except the

first are zero. By applying a sequence of such Householder matrices to A we can re-

duce it to upper trapezoidal form: Pn . . . P2P1A “ R. We then have Q “ pPn . . . P2P1q
T.

The standard rounding error analysis for Householder QR factorization is summa-

rized in the following result [13, Thm. 19.4]. We define

γn “
nu

1´ nu
(4.1.1)

and use the 2-norm }x}2 “ pxTxq1{2, the corresponding subordinate matrix norm,

and the Frobenius norm }A}F “ tracepAT Aq1{2. We denote the jth column of A by aj.

Throughout this work we express our bounds in terms of positive constants c0, c1, c2,

. . . , which do not depend on u or any of the matrix dimensions.
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Theorem 4.1. Let pR P Rmˆn be the computed upper trapezoidal QR factor of A P Rmˆn

(m ě n) obtained via the Householder QR algorithm, and assume that a condition of the form

c0γmn ă 1 holds. There exists an orthogonal Q P Rmˆm such that

A`∆A “ QpR,

where

}∆aj}2 ď c1γmn}aj}2, j “ 1 : n. (4.1.2)

The columnwise bounds (4.1.2) yield the normwise backward error bound

}∆A}F ď c1γmn}A}F. (4.1.3)

The purpose of this work is to show that the worst-case backward error bounds (4.1.2)

and (4.1.3) for Householder QR factorization can be replaced by probabilistic bounds

in which the dimension-dependent constants are proportional to the square roots of

the original constants under suitable assumptions on the rounding errors; essentially,

we can replace c1γmn by c11γ?mn`Opu2q. This is not an immediate consequence of the

analysis for inner product-based algorithms, because the vector addition and scaling

involved in applying Householder matrices need a different treatment.

We use the standard model of floating-point arithmetic, which assumes that the

elementary operations are correctly rounded, so that

flpx op yq “ px op yqp1` δq, |δ| ď u. (4.1.4)

In a rounding error analysis products of 1` δ terms arise, and their distance from 1

can be bounded using the following lemma [13, Lem 3.1].
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Lemma 4.2. If |δi| ď u and ρi “ ˘1 for i “ 1 : n, and nu ă 1, then

n
ź

i“1

p1` δiq
ρi “ 1` θn, |θn| ď γn. (4.1.5)

An analogous probabilistic result [8, Thm. 4.6] is given in terms of the constant

rγnpλq “ exp
ˆ

λ
?

nu` nu2

1´ u

˙

´ 1 “ λ
?

nu`Opu2q. (4.1.6)

with λ ą 0.

We need a definition.

Definition 4.1. Random variables δ1, δ2, . . . , δn are mean independent if Epδk | δk´1, . . . , δ1q “

Epδkq for k “ 2 : n, where E denotes expectation.

Lemma 4.3. Let δ1, δ2, . . . , δn be mean independent random variables of mean zero such that

|δi| ď u for all i, and let ρi “ ˘1, i “ 1 : n. Then for any constant λ ą 0,

n
ź

i“1

p1` δiq
ρi “ 1` θn, |θn| ď rγnpλq, (4.1.7)

holds with probability at least ppλq “ 1´ 2 expp´λ2{2q.

Throughout this work we will use the following model of rounding errors, which

was also used in [8] and [17].

Model 4.4 (probabilistic model of rounding errors). Let the computation of interest gen-

erate rounding errors δ1, δ2, . . . (in that order) satisfying (4.1.4). The δk are mean independent

random variables of mean zero.

For the round to nearest rounding mode (the default in IEEE arithmetic) the error

bounds obtained under Model 4.4 often reflect the behavior of the actual errors ob-

tained, but in some circumstances the model is not valid because the rounding errors
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are highly dependent or have nonzero mean, and the bound can then be violated [8,

sec. 7], [9, sec. 8], [16, sec. 4.2]. For stochastic rounding [8], [9], the rounding errors

always satisfy the model. For further discussion of the applicability of the model see

[8], [16].

In our probabilistic rounding error analysis it is more difficult than in worst-case

rounding error analysis to bound terms of all orders in u so we will state the bounds

to first order in u. We will, however, show that the higher order terms do not change

the conclusions of the analysis. We also give explicit bounds for the probabilities with

which the error bounds hold, and these show that the analysis does not introduce

exponential worsening of probabilities with the dimensions. All our probabilistic

results can informally be stated as saying that the given backward error bound holds

with λ a modest constant with high probability.

We begin in section 4.2 with a probabilistic analysis of the rounding errors in con-

structing a Householder vector. In section 4.3 we state a matrix concentration in-

equality that we use in section 4.4 in our probabilistic rounding error analysis of the

application of products of Householder matrices to a matrix and of Householder QR

factorization. In section 4.5 we discuss the implications of the analysis for two-sided

transformations, Givens QR factorization, and other approaches. In section 4.6 we

give a new backward error formula for QR factorization that we use in section 4.7,

where we carry out numerical experiments to compare the results of the analysis

with the practical behavior. Conclusions are given in section 4.8.

4.2 construction of a householder vector

We first give a probabilistic error result for the construction of the Householder vec-

tors needed in QR factorization. We begin by considering the evaluation of the vector

2-norm. We denote by flpexprq the computed result of evaluating the expression expr.
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Note that Model 4.4 assumes that (4.1.4) holds, so we are at liberty to use worst-case

bounds within the probabilistic rounding error analysis, and we will do so for certain

scalar operations.

Lemma 4.5. Under Model 4.4, the computed 2-norm of x P Rn satisfies

flp}x}2q “ }x}2p1` ηq, |η| ď c1rγnpλq, (4.2.1)

with probability at least p1pλ, nq “ 1´ 2n expp´λ2{2q.

Proof. By standard inner-product analysis [8, Thm. 4.8], [16, Thm. 3.1],

flpxTxq “ xTxp1` θnq, |θn| ď rγnpλq, (4.2.2)

holds with probability at least p1pλ, nq. Then flp}x}2q “ }x}2
?

1` θnp1 ` δq, with

|δ| ď u. For
?

1` θn “ 1` α, we certainly have |α| ď |θn|. Then p1` αqp1` δq “ 1` β,

with |β| ď |θn| ` u` |θn|u. Hence provided |θn| ď rγnpλq, we have |β| ď rγnpλq ` u`

rγnpλqu ď c1rγnpλq. The bound holds with probability at least the probability of (4.2.2)

holding.

We now derive a probabilistic version of the worst-case error bound for construc-

tion of a Householder vector [13, Lem. 19.1]. Here, signptq “ ´1 if t ă 0 or 1 if t ě 0.

We state the result for x P Rn, although strictly speaking x P Fn, where F Ă R is a

particular floating-point number system.
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Lemma 4.6. Let x P Rn. Consider the construction of β P R and v P Rn such that

Px “ ´ signpx1q}x}2e1, where P “ I ´ βvvT is a Householder matrix and β “ 2{pvTvq, by

v “ x,

s “ signpx1q}x}2,

w “ v1 ` s,

β “ 1{pswq,

v1 “ w.

Under Model 4.4 the computed pβ and pv satisfy pvp2 : nq “ vp2 : nq and

pv1 “ v1p1` ηq, pβ “ βp1` ηq,

where |η| ď c3rγnpλq `Opu2q with probability at least p1pλ, nq.

Proof. From Lemma 4.5 we have that ps “ sp1`∆sq, where |∆s| ď c1rγnpλq holds with

probability at least p1pλ, nq. The rest of the computations, which determine w and β,

are scalar operations and so we use worst-case bounds for these. We have

pw “ pv1 ` psqp1` δq, |δ| ď u

“ v1 ` s` δpv1 ` sq ` s∆sp1` δq “: w`∆w1.

Because v1 and s have the same sign, |s| ď |v1 ` s|, and so

|∆w1| “

ˇ

ˇ

ˇ

ˇ

pv1 ` sq
´

δ`
s

v1 ` s
∆sp1` δq

¯

ˇ

ˇ

ˇ

ˇ

ď |w| pu` c1rγnpλq ` c1rγnpλquq ď c2rγnpλq|w|.

So pw “ wp1`∆wq, where |∆w| ď c2rγnpλq holds with probability at least p1pλ, nq. We

then have, using (4.1.4) and (4.1.5),

pβ “ flp1{pps pwqq “
1` θ2

sp1`∆sqwp1`∆wq
“

1
sw
p1` ξq,
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where |ξ| ď c3rγnpλq `Opu2q.

If we redefine the Householder matrix as P “ I ´ vvT with }v}2 “
?

2 then

Lemma 4.6 amounts to the result

pv “ v`∆v, |∆v| ď c4rγnpλq|v|, (4.2.3)

where the bound holds with probability at least p1pλ, nq.

4.3 matrix concentration inequalities

The proof of Lemma 4.3 in [8] makes use of the scalar Azuma–Hoeffding inequality

[18, Thm. 13.4]. Here, we will use a matrix version of that result due to Tropp [19,

Thm. 7.1]. Our notation is as follows: we write (in this section only), X ď Y, where

X and Y are symmetric, to mean that Y´ X is positive semidefinite; the expectation

of a matrix is defined componentwise; and we denote by λmax the largest eigenvalue

of a symmetric matrix. Note that “with probability 1” is often expressed as “almost

surely”.

Theorem 4.7. Let X1, . . . , Xn be a sequence of random symmetric dˆ d matrices. If EpXk |

Xk´1, . . . , X1q “ 0 and X2
k ď A2

k with probability 1 for all k, where A1, . . . , An is a fixed

sequence of symmetric dˆ d matrices, then for all t ě 0,

P

˜

λmax

ˆ n
ÿ

k“1

Xk

˙

ě t

¸

ď d exp
`

´t2{p8σ2q
˘

, (4.3.1)

where

σ2 “

›

›

›

›

n
ÿ

k“1

A2
k

›

›

›

›

2
. (4.3.2)
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We note briefly that the constant 1{8 in (4.3.1) can be improved to 1{2 as in our

later invocation of Theorem 4.7, Xk commutes with Ak [19, Rem. 7.4]. We choose to

leave the theorem in its most general form.

We need a version of Theorem 4.7 for nonsymmetric matrices. Define

φpBq “
„

0 B
BT 0



(4.3.3)

to be the symmetric dilation of the rectangular matrix B. It is well known that

λmaxpφpBqq “ }B}2. (4.3.4)

The required result can be obtained by applying the theorem to the symmetric dila-

tion of the sequence X1, . . . , Xn and using (4.3.4) [19, Rem. 7.3]. We also rescale by

defining λ “ t{p2
?

2σq.

Theorem 4.8. Let X1, . . . , Xn be a sequence of random d1ˆ d2 matrices. If EpXk | Xk´1, . . . , X1q “

0 for all k, and XkXT
k ď Ak AT

k and XT
k Xk ď AT

k Ak with probability 1 for all k, where

A1, . . . , An is a fixed sequence of d1 ˆ d2 matrices, then for all λ ě 0,

P

˜

›

›

›

›

n
ÿ

k“1

Xk

›

›

›

›

2
ě 2

?
2σλ

¸

ď pd1 ` d2q expp´λ2q, (4.3.5)

where

σ2 “ max
ˆ›

›

›

›

n
ÿ

k“1

Ak AT
k

›

›

›

›

2
,
›

›

›

›

n
ÿ

k“1

AT
k Ak

›

›

›

›

2

˙

ď

n
ÿ

k“1

}Ak}
2
2. (4.3.6)

This is the key result that we need in the next section.
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4.4 application of a sequence of householder matri-

ces

Our probabilistic rounding error analysis for Householder QR factorization follows a

similar strategy as for the worst-case analysis in [13, sec. 19.3]: we analyze the appli-

cation of a sequence of general Householder matrices to a vector, then the application

of the same sequence to a matrix, and finally specialize to the Householder matrices

used in QR factorization.

For a single application of an mˆm Householder matrix our backward error anal-

ysis gives an error constant proportional to m1{2. A straightforward inductive argu-

ment for the application of n Householder matrices would lead to a backward error

bound with a constant proportional to nm1{2, which is unsatisfactory as it is linear in

n, as for the worst-case analysis. Our key observation is that by applying the matrix

concentration inequality in Theorem 4.8 we can obtain a bound with a constant of

order n1{2m1{2. In the first three lemmas we take the Householder vectors to be exact.

Lemma 4.9. Consider the (given) Householder matrices

Pi “ I ´ vivT
i P Rmˆm, vT

i vi “ 2, i “ 1 : r,

and the product

ar`1 “ Pr . . . P2P1a, a “ a1 P Rm,

computed as aj`1 “ Pjaj “ aj ´ pvT
j ajqvj, j “ 1 : r. Under Model 4.4, the computed par`1

satisfies

par`1 “ pPr `∆Prq . . . pP1 `∆P1qa, (4.4.1)
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where

}∆Pj}2 ď c5rγmpλq (4.4.2)

holds for all j with probability at least p2pλ, m, rq “ 1´ 2rm expp´λ2{2q.

Proof. Define the scalars sj “ vT
j aj. From standard rounding error analysis [13,

sec. 3.1], [16, Proof of Thm. 3.1], the computed sj satisfy psj “ vT
j Djpaj, where

Dj “ diag
`

dpjqk

˘

, dpjqk “

m
ź

i“1

`

1` δ
pjq
k,i

˘

,
ˇ

ˇδ
pjq
k,i

ˇ

ˇ ď u, i, k “ 1 : m.

Then we form

paj`1 “ flppaj ´ psjvjq “
`

I `Λ
pjq
1

˘`

paj ´
`

I `Λ
pjq
2

˘

psjvj
˘

,

where

Λ
pjq
k “ diag

`

ε
pjq
k,i

˘

,
ˇ

ˇε
pjq
k,i

ˇ

ˇ ď u, k “ 1, 2.

Note that Λ
pjq
1 depends on Λ

pjq
2 , and that since we are using Model 4.4 the δ

pjq
k,i and ε

pjq
k,i

are mean independent random variables of mean zero. Hence

paj`1 “
`

I `Λ
pjq
1

˘`

paj ´
`

I `Λ
pjq
2

˘

vT
j Djpaj ¨ vj

˘

“
`

I `Λ
pjq
1

˘`

I ´
`

I `Λ
pjq
2

˘

vjvT
j Dj

˘

paj

“

”

I ´
`

I `Λ
pjq
2

˘`

vjvT
j ` vjvT

j pDj ´ Iq
˘

`Λ
pjq
1

`

I ´
`

I `Λ
pjq
2

˘

vjvT
j Dj

˘

ı

paj

“ pPj `∆Pjqpaj, (4.4.3)

where

∆Pj “ ´Λ
pjq
2 vjvT

j ´
`

I `Λ
pjq
2

˘

vjvT
j pDj ´ Iq

looooooooooooomooooooooooooon

p˚q

`Λ
pjq
1

`

I ´
`

I `Λ
pjq
2

˘

vjvT
j Dj

˘

, (4.4.4)
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and so

}∆Pj}2 ď 2u` 2p1` uq}Dj ´ I}2 ` u
`

1` 2p1` uq}Dj}2
˘

“ 3u` 2p1` uq}Dj ´ I}2 ` 2up1` uq}Dj}2.

From Lemma 4.3 we have that for any constant λ ą 0 and any particular j,

dpjqk “ 1` ψ
pkq
j , |ψ

pkq
j | ď rγmpλq, (4.4.5)

holds for any particular k and j with probability at least ppλq “ 1´ 2 expp´λ2{2q,

or equivalently it fails to hold with probability at most 1 ´ ppλq. By the inclu-

sion–exclusion principle [22, p. 39] (4.4.5) fails to hold for at least one of the pairs

pj, kq with probability at most rmp1´ ppλqq, which means that it holds for all j and k

with probability at least p2pλ, m, rq “ 1´ rmp1´ ppλqq “ 1´ 2rm expp´λ2{2q.

Hence }I ´ Dj}2 ď rγmpλq holds for all j with probability at least p2pλ, m, rq and

hence

}∆Pj}2 ď 3u` 2p1` uqrγmpλq ` 2up1` uqp1` rγmpλqq ď c5rγmpλq (4.4.6)

holds for all j with probability at least p2pλ, m, rq.

Lemma 4.10. With the same notation as in Lemma 4.9, assume that the bound (4.4.2) holds

with probability 1 for all j. Then the computed par`1 satisfies

par`1 “ QTpa`∆aq, }∆a}2 ď c6λ
?

r rγmpλq}a}2 `Opu2q (4.4.7)

with probability at least p3pλ, mq “ 1´ 2m expp´λ2q, where Q “ pPr . . . P2P1q
T.
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Proof. We can rewrite (4.4.1) as

par`1 “ ar`1 `

¨

˝

r
ÿ

j“1

Pr . . . Pj`1∆Pj Pj´1 . . . P1 `Opu2q

˛

‚a

“ ar`1 `QT

¨

˝

r
ÿ

j“1

Fj `Opu2q

˛

‚a, (4.4.8)

where

Fj “ P1 . . . Pj∆Pj Pj´1 . . . P1. (4.4.9)

Our aim is to show that EpFj | Fj´1, . . . , F1q “ 0, so that we can apply Theorem 4.8

with Xk “ Fk. When we substitute the expressions for Fj and then ∆Pj into this

expression and use the linearity of the expectation we obtain a sum of expectations,

each of which we need to show is zero. We will just consider two of the terms, which

come from p˚q in (4.4.4), as the other terms are treated similarly.

The matrix Dj contains the rounding errors from the computation of vT
j aj, whereas

all the other terms in Fj contain rounding errors from later computations.

For the first part of the term p˚q in (4.4.4) we have

EpP1 . . . PjvjvT
j pI ´DjqPj´1 . . . P1 | Fj´1, . . . , F1q (4.4.10)

“ P1 . . . PjvjvT
j EpI ´Dj | Fj´1, . . . , F1qPj´1 . . . P1,

since the vj and Pj are constant. We need the general form of the law of total expec-

tation (LTE), EpX | Yq “ EpEpX | Zq | Yq, for any pair of measurable sets Y and Z

such that Y Ď Z [3, Thm. 34.4]. We define the set

Zs “
  

δ
p`q
k,i : i, k “ 1 : m, ` “ 1 : s

(

, Fj´1, . . . , F1
(

. (4.4.11)
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By the LTE

EpDj | Fj´1, . . . , F1q “ E
`

EpDj | Zj´1q | Fj´1, . . . , F1
˘

“ I,

by [8, Lem. 6.4], in view of Model 4.4. Hence the expectation (4.4.10) is zero.

For the second part of the term p˚q in (4.4.4) we have

EpP1 . . . PjΛ
pkq
2 vjvT

j pI ´DjqPj´1 . . . P1 | Fj´1, . . . , F1q

“ P1 . . . PjE
´

Λ
pjq
2 vjvT

j pI ´Djq | Fj´1, . . . , F1

¯

Pj´1 . . . P1.

By the LTE,

E
´

Λ
pjq
2 vjvT

j pI ´Djq | Fj´1, . . . , F1

¯

“ E
´

E
´

Λ
pjq
2 vjvT

j pI ´Djq | Zj

¯

| Fj´1, . . . , F1

¯

“ E
´

E
´

Λ
pjq
2 | Zj

¯

vjvT
j pI ´Djq | Fj´1, . . . , F1

¯

“ 0,

since E
`

Λ
pjq
2 | Zj

˘

“ 0 by Model 4.4.

We now bound }Fj}2, so that we can apply Theorem 4.8. By (4.4.2), (4.4.9), and the

assumption of the lemma,

}Fj}
2
2 “ }∆Pj}

2
2 ď c2

5rγmpλq
2, j “ 1 : r,

with probability 1. Hence we can take Xj “ Fj, Aj “ c5rγmpλqId1,d2 , and σ2 “ rc2
5rγmpλq

2

in Theorem 4.8 and set E “
řr

j“1 Fj, to obtain

P
`

}E}2 ě 2
?

2c5λ
?

r rγmpλq
˘

ď 2m expp´λ2q, (4.4.12)

or equivalently

}E}2 ď c6λ
?

r rγmpλq, (4.4.13)
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holding with probability at least 1´ 2m expp´λ2q.

From (4.4.8) we have

par`1 “ QTa`QTEa`Opu2q “ QTpa`∆aq

with ∆a “ Ea`Opu2q, and so

}∆a}2 ď }Ea}2 `Opu2q ď c6λ
?

r rγmpλq}a}2 `Opu2q. (4.4.14)

Now we consider the backward error in applying a sequence of Householder ma-

trices to a matrix.

Lemma 4.11. Consider the sequence of transformations

Ak`1 “ Pk Ak, k “ 1 : r.

where A1 “ A P Rmˆn, each Pk P Rmˆm is a Householder matrix. Under Model 4.4 and the

assumption of Lemma 4.10, the computed matrix pAr`1 satisfies

pAr`1 “ QTpA`∆Aq,

where QT “ PrPr´1 . . . P1 and where

}∆aj}2 ď c6λ
?

r rγmpλq}aj}2 `Opu2q, j “ 1 : n, (4.4.15)

holds with probability at least p4pλ, m, nq “ 1´ 2mn expp´λ2q.

Proof. Lemma 4.10 shows that for each j the bound (4.4.7) holds with a “ aj with

probability at least p3pλ, mq. The probability that it holds for all columns is given
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by 1 minus the probability that it fails for at least one, which is at least 1´ np1´

p3pλ, mqq “ 1´ 2mn expp´λ2q.

The probabilistic result for Householder QR factorization, analogous to the worst-

case rounding error result Theorem 4.1, now follows.

Theorem 4.12. Let pR P Rmˆn be the computed upper trapezoidal QR factor of A P Rmˆn ob-

tained via the Householder QR algorithm. Under Model 4.4 and the assumption of Lemma 4.10,

there exists an orthogonal Q P Rmˆm such that

A`∆A “ QpR, (4.4.16)

where

}∆aj}2 ď c6λ
?

n rγmpλq}aj}2 `Opu2q, j “ 1 : n, (4.4.17)

holds with probability at least p4pλ, m, nq “ 1´ 2mn expp´λ2q.

Proof. The theorem follows from Lemma 4.11 as long as we note two subtleties. First,

the Householder matrices in the lemma are completely general, yet for QR factor-

ization they are chosen to introduce zeros into vectors and we explicitly set those

elements to zero rather than compute them. This essentially forces rows of ∆Pi in

(4.4.4) to be zero, which does not increase }∆Pi}2, so the bounds still hold.

The second subtlety is that for Householder QR factorization the Householder

vector vj in Lemma 4.9 depends on previous computed quantities and is computed

itself, so is subject to rounding error. The fact that vj is no longer a constant as

regards the conditional probabilities can be dealt with by adding “vj, vj´1, . . . , v1” to

Zs in (4.4.11). The key point is that Dj, Λ
pjq
1 , and Λ

pjq
2 depend on rounding errors that

occur later than those on which vj depends. The result (4.2.3) for the construction

of a Householder vector, together with (4.4.4), shows that the error in vj adds a



4.4 application of a sequence of householder matrices 99

perturbation of order uc4rγmpλq “ Opu2q to ∆Pj, so it does not change the bound

(4.4.6) and hence does not change (4.4.17).

Theorem 4.12 bounds the backward error to first order, while the analogous worst-

case result, Theorem 4.1, bounds all orders. We argue that the exclusion of higher

order terms is inconsequential. Set r “ n in Lemma 4.10. The Opu2q term that we

dropped from the analysis after the expansion of (4.4.1) at the beginning of the proof

of Lemma 4.10 comprises
`n

2

˘

terms of order u2 and in view of (4.4.2) is bounded

by (omitting constants ci and λ) n2
rγmpλq

2}a}2 « n2mu2}a}2. The first-order term has
?

mnu dependence, while the second-order term has mn2u2 dependence. Thus for

problem sizes with m1{2n3{2u ą 1, second-order terms could dominate. This, in effect,

imposes the requirement

m1{2n3{2u ă 1 (4.4.18)

for our analysis to imply that the error grows like
?

mnu. The higher order terms do

not affect this argument. Indeed the ratio of the bound for the pk` 1qst-order terms

divided by the bound for the kth-order terms is

` n
k`1

˘

pm1{2uqk`1
`n

k

˘

pm1{2uqk
“

n!
pn´k´1q!pk`1q! m

pk`1q{2uk`1

n!
pn´kq!k! m

k{2uk
“

n´ k
k` 1

m1{2u,

and this ratio is less than 1 for k ě 2 given (4.4.18). However, (4.4.18) is no more

restrictive than existing assumptions about the worst-case analysis, as Theorem 4.1

has the assumption

mnu ă 1. (4.4.19)

Since we have m ě n, and in many applications m " n, (4.4.18) can be significantly

less restrictive than (4.4.19). While we ideally would have probabilistic bounds for

the higher order terms, our analysis has still shown that we can significantly tighten

the error bounds for the same problem sizes for which the worst-case analysis holds.
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Ideally, we would remove the assumption in Lemmas 4.10 and 4.11 and Theo-

rem 4.12 that the bound (4.4.2) holds with probability 1 for all j. We have effectively

replaced a probability of 1 ´ 2rm expp´λ2{2q with a probability of 1. To remove

this assumption we need a version of Theorem 4.8 that allows XkXT
k ď Ak AT

k , and

XT
k Xk ď AT

k Ak to hold with a certain probability less than 1 rather than almost surely.

Such a result is not, to our knowledge, available in the literature on concentration

inequalities, and deriving one requires further research that is beyond the scope of

this paper.

The columnwise bound (4.4.17) implies a normwise one:

}∆A}F ď c6λ
?

n rγmpλq}A}F `Opu2q. (4.4.20)

The equivalent bound for the worst-case analysis is (4.1.3).

The conclusion from our analysis is that the constant mnu in the worst-case back-

ward error bound for Householder QR factorization reduces to
?

mnu in the proba-

bilistic bound.

Finally, we derive a probabilistic error bound on the loss of orthogonality in the

computed factor pQ formed as the product of the Householder matrices, computed in

the more efficient right to left order.

Theorem 4.13. Let pQ P Rmˆm be the computed orthogonal QR factor of A P Rmˆn obtained

by forming Q “ P1P2 . . . Pn in the right to left order. Under Model 4.4 and the assumption

of Lemma 4.10, pQ “ Q`∆Q, where the jth column of ∆Q is bounded by

}∆qj}2 ď c6λ
?

n rγmpλq `Opu2q, j “ 1 : m, (4.4.21)

with probability at least p4pλ, m, nq “ 1´ 2mn expp´λ2q. Moreover,

} pQT
pQ´ I}F ď c7λ

?
mn rγmpλq `Opu2q (4.4.22)
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holds with the same probability.

Proof. Applying Lemma 4.10 with the Pi taken in the reverse order, with r “ n and

a the jth column of the mˆm identity matrix, gives (4.4.21), where the probability

follows by the same argument as in the proof of Lemma 4.11.

By [14, Thm. 8.17], with U denoting the orthogonal polar factor of pQ, which is the

nearest orthogonal matrix to pQ in the Frobenius norm [14, Thm. 8.4], we have

} pQT
pQ´ I}F ď p1` } pQ}2q} pQ´U}F

ď p1` } pQ}2q} pQ´Q}F

ď c7λ
?

mn rγmpλq `Opu2q.

The worst-case bound corresponding to (4.4.21) has constant mnu [13, p. 360], so

again the dimensions are square-rooted.

4.5 discussion

We now discuss several aspects and implications of the error analysis.

4.5.1 Choice of λ

We begin with a brief discussion of the probabilities associated with the bounds in

Lemma 4.9 and Theorem 4.12. As noted in previous work [8], [16], [17], these prob-

abilities are typically pessimistic and setting λ “ 1 almost always provides bounds
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Table 4.5.1: The value of 1´ p5pλ, m, mq for various choices of λ and m. The underlined entries corre-
spond to negative probabilities.

m

λ 102 104 106 108

6.0 3.0460e´04 3.0460e`00 3.0460e`04 3.0460e`08
7.0 4.5795e´07 4.5795e´03 4.5795e`01 4.5795e`05
8.0 2.5328e´10 2.5328e´06 2.5328e´02 2.5328e`02
9.0 5.1535e´14 5.1535e´10 5.1535e´06 5.1535e´02

10.0 3.8575e´18 3.8575e´14 3.8575e´10 3.8575e´06
11.0 1.0622e´22 1.0622e´18 1.0622e´14 1.0622e´10
12.0 1.0760e´27 1.0760e´23 1.0760e´19 1.0760e´15

that hold in practice. Define 1´ p5pλ, m, nq “ 2mn
`

expp´λ2q ` expp´λ2{2q
˘

, which

is an upper bound on the probabilities in Lemma 4.9 and Theorem 4.12 that the re-

spective bounds do not hold. Table 4.5.1 shows values of 1´ p5pλ, m, mq. For certain

values the upper bounds are negative. However, for λ “ 10 and all the problem sizes

shown in Table 4.5.1, p5 is within 4ˆ 10´6 of it.

4.5.2 Aggregated Householder transformations

In practice, Householder transformations are usually aggregated in order to express

the computation primarily in terms of matrix multiplication. A common form of

aggregation is the WY representation [4], [13, sec. 19.5]. We represent the product

Qr “ PrPr´1 . . . P1 of b Householder matrices Pi “ I ´ vivT
i as

Qr “ I `WbYT
b , Wb, Yb P Rmˆb.

This is done through the recurrence

W1 “ ´v1, Y1 “ v1, Wi “
“

Wi´1 ´vi
‰

, Yi “
“

Yi´1 QT
i´1vi

‰

.

We partition A as

A “
“

A1 B
‰

, A1 P Rmˆr
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and transform A1 to upper trapezoidal form by forming Pr . . . P1A1, accumulating

the product Pr . . . P1 “ I`WrYT
r . The matrix B is then updated via B Ð B`WrpYT

r Bq,

and we repeat this process on the remaining rows of B.

We do not perform a full analysis of the aggregated algorithm. We simply note

that the two core operations of the aggregated Householder QR factorization are the

application of a sequence of Householder matrices, in forming Pr . . . P1A1, and matrix

multiplication in forming B Ð B `WrpYT
r Bq. Both of these operations have been

shown to have probabilistic bounds whose constants are the square roots of those

in the worst-case bounds, so we can expect the same to be true for the aggregated

algorithm.

4.5.3 Mixed-precision QR factorization

Yang, Fox, and Sanders [23, Thm. 4.1] consider a mixed precision Householder QR

factorization algorithm in which the working precision is ulow and the inner products

are computed at precision uhigh. They obtain a normwise backward error bound of

order npulow`muhighq. Our analysis is readily adapted for this algorithm by replacing

rγm “ rγmpuq in (4.4.2) by rγmpuhighq `Opulowq, and the resulting probabilistic error

bound is of order n1{2pulow `m1{2uhighq.

4.5.4 Two-sided transformations

Householder matrices and Householder QR factorization are tools in many algo-

rithms, including the reduction of matrices to tridiagonal or Hessenberg form for

the QR algorithm for eigenvalues and to bidiagonal form for the QR algorithm for

singular values [12]. Can we use our results to obtain probabilistic backward error

bounds with reduced constants for these reductions? For the reduction of A P Rnˆn
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to Hessenberg form H we have H “ Pn´2 . . . P1APT
1 . . . PT

n´2. The reduction is carried

out in the order

H “ Pn´2p. . . pP1APT
1 q . . . qPT

n´2, (4.5.1)

because Pj`1 depends on Pj . . . P1APT
1 . . . PT

j . Our analysis does not directly apply to

this two-sided case. However, consider applying all the transformations on the left

before applying those on the right:

H “ pPn´2 . . . P1AqPT
1 . . . PT

n´2 ” pPAqPT. (4.5.2)

Two applications of Lemma 4.11 give

pH “
`

PpA`∆A1q `∆A2
˘

PT

“ PpA`∆AqPT, ∆A “ ∆A1 ` PT∆A2.

The probabilistic bounds on }∆A1}F and }∆A2}F from the lemma are proportional to

nu and hence so is the bound for }∆A}F. The usual worst-case bound obtained by

Wilkinson is proportional to n2u [21, pp. 160–161] (we have accounted for the fact

that Wilkinson assumes that inner products are accumulated at twice the working

precision).

There are two reasons why the probabilistic backward error bound for (4.5.2)

should be indicative of the backward error for (4.5.1). First, (4.5.2) does many more

operations, since it incurs substantial fill-in; in particular Pn´2 . . . P1A is full, apart

from the first column. We have carried out extensive numerical experiments, in which

the backward error for (4.5.2) was always of the same, or smaller, order of magnitude

as that for (4.5.1). The second reason is that in practice the Householder matrices

are aggregated, so that the actual computation lies somewhere between (4.5.1) and

(4.5.2).
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For the multishift Hessenberg QR iteration the bulge chasing is implemented using

Householder matrices [6], [7], so Lemma 4.11 can be applied again for sufficiently

large bulges, and for small bulges one can apply the worst-case bounds.

4.5.5 Other forms of QR factorization

The modified Gram–Schmidt algorithm applied to A P Rmˆn with m ě n is known to

be equivalent both mathematically and numerically to Householder QR factorization

applied to the augmented matrix
“ 0

A

‰

[5], [13, sec. 19.8]. Hence we can apply Theo-

rem 4.12, and since the augmented matrix is pm` nqˆ n the constant obtained will be

proportional to
a

pm` nqnu «
?

mnu since m ě n. (As explained in the above refer-

ences, some additional work is needed to obtain a backward error result for modified

Gram–Schmidt and the constant will be increased.)

In [1], a randomized process for computing the QR factorization of A P Rmˆn is

presented. It uses a randomized Gram-Schmidt process, with the approach based on

the dimension reduction technique of random sketching. The authors give a round-

ing error analysis under the assumption that the rounding errors are mean inde-

pendent random variables of zero mean. They exploit mixed-precision arithmetic

with two precisions ufine ă ucrs, where ucrs is used for computing the projections

and ufine for everything else. The analogous result to Theorem 4.12 is [1, Thm. 3.2]

}A´ pQpR}F ď cucrsn3{2}A}F, where pQ P Rmˆn is the computed orthonormal QR factor.

Finally, we consider Givens QR factorization. Givens transformations operate on

vectors of length 2, so there is no benefit to a probabilistic approach in analyzing the

application of a single rotation. The backward error analysis [13, sec. 19.6] shows that

each individual rotation introduces a backward error bounded by a small constant
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and that the m` n´ 2 products of disjoint rotations needed for a QR factorization

lead to a result of the same form as Theorem 4.1 but with

}∆aj}2 ď c7 γm`n´2}aj}2, j “ 1 : n.

A probabilistic analysis analogous to that in the proof of Lemma 4.9, using the matrix

concentration inequality, leads to a result of the same form as Theorem 4.12 but with

probabilistic bound

}∆aj}2 ď c8pm` nq1{2 u}aj}2 `Opu2q, j “ 1 : n.

4.6 backward error for qr factorization

In our numerical experiments in the next section we need to compare the probabilis-

tic backward error bounds with the actual backward errors. How to compute the

backward error matrix ∆A “ A ´ QpR for a given pR, though, is not clear, since the

orthogonal matrix Q in Theorems 4.1 and 4.12 is unknown. We will focus on the

backward error measure

µppRq “ min

#

ˆ n
ÿ

j“1

}dj∆aj}
2
2

˙1{2

: A`∆A “ QpR, Q P Rmˆm, QTQ “ Im

+

(4.6.1)

“ min
`

}pA´QpRqD}F : Q P Rmˆm, QTQ “ Im, D “ diagpdjq
˘

.

For D “ diagp}aj}
´1
2 q we have a columnwise backward error and for D “ }A}´1

F I the

normwise relative backward error.

The next result shows how to compute µppRq. Recall that the polar decomposition

of A P Rnˆn is a factorization A “ UH, where U is orthogonal and H is symmetric

positive semidefinite.
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Theorem 4.14. Let A, B P Rmˆn and let D “ diagpdiq P Rnˆn be nonsingular. Then

mint }pA´ QBqD}F : Q P Rmˆm, QTQ “ Im u is obtained for Q “ UT, where U is the

orthogonal polar factor of the matrix BD2AT.

Proof. For F, G P Rmˆn, the orthogonal Procrustes problem has the form min
 

}F ´

GW}F : W P Rnˆn, WTW “ In
(

and any orthogonal polar factor of GT F is a solution

[14, Thm. 8.6]. Writing }pA´QBqD}F “ }AD´QBD}F “ }DAT´DBTQT}F therefore

gives the result on taking F “ DAT and G “ DBT.

By Theorem 4.14, µppRq “ }pA´ QpRqD}F, where QT is an orthogonal polar factor

of pRD2AT. If pRD2AT “ UΣVT is a singular value decomposition then we can take

QT “ UVT.

We note that one can express µppRq2 “ }AD}2F ` }pRD}2F ´ 2
řn

i“1 σippRD2ATq, where

σi denotes the ith largest singular value. However, this formula suffers from severe

cancellation, and rounding errors can cause it to evaluate as negative, so it is better

to use the expression }pA ´ QpRqD}F. In fact, even the latter expression does not

necessarily give a result of the correct order of magnitude, so it is best to compute

the backward error at twice the working precision. Hence in our experiments we take

single precision as the working precision and compute the backward error in double

precision.

4.7 numerical experiments

For all our all numerical experiments we set the parameter λ “ 1 and set all con-

stants ci in the error bounds (worst-case or probabilistic) to be 1. We use MATLAB

R2021b and take IEEE single precision as the working precision. Normwise relative
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backward errors, as defined by (4.6.1) with D “ }A}´1
F I, are computed as described

in section 4.6, in double precision.

We use round to nearest in all the experiments. We have tried stochastic rounding,

which ensures that the assumptions of Model 4.4 are satisfied [8], and found that

the numerical results reported are virtually identical to those for round to nearest in

these experiments.

In sections 4.7.1, 4.7.3, and 4.7.4 we use random mˆ n matrices with entries drawn

uniformly from the interval r0, 1s and we sample 10 different matrices for each pair of

dimensions. In section 4.7.2 we use real-life matrices from the SuiteSparse collection.

4.7.1 Householder QR factorization for random matrices

In this experiment we test the backward error bound in Theorem 4.12. In order to

study how the error grows with n and m independently, we first fix a value of n

and vary m and then fix m and vary n. For each pair of dimensions we plot the

maximum and mean normwise backward errors for Householder QR factorization

along with associated worst-case and probabilistic bounds obtained from (4.1.3) and

(4.4.20). The results are given in Figures 4.7.1 and 4.7.2. We see that the probabilistic

bound
?

mnu proves a much better indicator than the worst-case bound mnu of the

size of the error and its rate of growth.

4.7.2 Householder QR factorization for SuiteSparse matrices

We also consider Householder QR factorization of some matrices from the SuiteS-

parse Matrix Collection [10], [11]. We select all matrices from the collection with
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Figure 4.7.1: Normwise backward errors and bounds for Householder QR factorization for n “ 10 and
various m, for mˆ n matrices with elements sampled uniformly from r0, 1s.
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Figure 4.7.2: Normwise backward errors and bounds for Householder QR factorization for m “ 104

and various n, for mˆ n matrices with elements sampled uniformly from r0, 1s.
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Figure 4.7.3: Normwise backward errors and bounds for 774 mˆ n matrices from the SuiteSparse col-
lection.

10 ď m, n ď 2 ˆ 103 and m ě n. This results in 842 matrices. We plot the same

error quantities as for the random matrices. Some of the matrices in the collection

have zero columns, so we filter these out. There are a few cases where the reported

error exceeds even the deterministic bound, which we suspect is an underflow issue;

a similar observation is made in [16, sec. 4.5]. We also filter out these cases from

the reported results, which results in 774 matrices. We show the observed backward

errors in Figure 4.7.3. Again, the probabilistic bound is satisfied and proves closer to

the observed error than the worst-case bound by several orders of magnitude.

4.7.3 Givens rotations

Givens QR factorization is typically used for structured matrices, such as tridiagonal

or upper Hessenberg matrices, but here we wish to see how the backward error of

the factorization behaves for dense matrices. For random nˆ n matrices we plot in

Figure 4.7.4 the maximum and mean normwise backward errors, the worst-case error

bound 2nu, and the probabilistic error bound
?

2n u. The backward error grows at a

rate very similar to that of the probabilistic bound.
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Figure 4.7.4: Normwise backward error and backward error bound for Givens QR factorization for
nˆ n matrices with elements sampled uniformly from r0, 1s.

4.7.4 Reduction to Hessenberg form

Finally, we consider Householder reduction matrix to Hessenberg form: A “ QHQT.

Figure 4.7.5 shows normwise backward errors, computed as }A ´ pQH pQT}F{}A}F,

where pQ is the computed product of Householder matrices (we do not have an ex-

plicit backward error formula such as that in Theorem 4.14 in this two-sided case),

and the worst-case and probabilistic bounds, n2u and nu respectively. We see that the

backward error satisfies the probabilistic bound, and again the probabilistic bound is

a better indicator than the worst-case bound of the rate of growth of the backward

error with n.

Throughout Section 4.7 we presented various comparisons of worst-case and prob-

abilistic bounds and observed errors. In some cases, the probabilistic bounds not only

bound the observed error, but also provide good estimates for how the error grows.

In other cases, the probabilistic bound can be several orders of magnitude larger than

the observed error. While it is important to emphasise that they are bounds and not

predictions of the error, an interesting area for further research is to narrow this gap

between bound and error for some of the cases. This is done in [17] for the case of

summation, where some underlying assumptions are made about the data.
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Figure 4.7.5: Normwise backward errors and bounds for reduction to Hessenberg form for nˆ n ma-
trices with elements sampled uniformly from r0, 1s.

4.8 conclusions

In a classic 1961 paper, Wilkinson [20, p. 318] carries out rounding error analyses of

LU factorization, Givens QR factorization, and Householder QR factorization. He

notes that “The bounds we have obtained are in all cases strict upper bounds. In gen-

eral, the statistical distribution of the rounding errors will reduce considerably the

function of n occurring in the relative errors. We might expect in each case that this

function should be replaced by something which is no bigger than its square root and

is usually appreciably smaller.” Recent probabilistic rounding error analysis has pro-

vided a rigorous foundation for Wilkinson’s statement for LU factorization and other

inner product-based computations. Our work does the same for Householder QR

factorization-based methods, as well as for Givens QR factorization, under the tech-

nical assumption in Lemma 4.10. The assumption we make is that a certain bound

holds with probability 1, when in actuality it holds with at least some probability

that we can make arbitrarily close to, but not equal to 1. In order to avoid making

this assumption we require a version of Theorem 4.7 which bounds X2
k ď A2

k with a

certain probability. A potential alternative route is a theorem involving bounds on

the moments of Xk. A related result in the scalar case is given by [2, Thm. 3.14].
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A significant feature of the probabilistic backward error bounds is that they bound

the likely rate of growth of the backward error as the problem dimensions increase.

The rate of growth, along with blocking, exploiting architectural features of the hard-

ware, and using other techniques to improve the accuracy of the computations, is

what determines our ability to solve problems at extreme scale and possibly low

precision in a numerically stable way [15].
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5 R A N D O M I Z E D LO W R A N K M AT R I X

A P P R O X I M AT I O N : R O U N D I N G E R R O R

A N A LY S I S A N D A M I X E D P R E C I S I O N

A LG O R I T H M

Abstract. The available error bounds for randomized algorithms for computing a

low rank approximation to a matrix assume exact arithmetic. Rounding errors po-

tentially dominate the approximation error, though, especially when the algorithms

are run in low precision arithmetic. We give a rounding error analysis of the method

that computes a randomized rangefinder and then computes an approximate singu-

lar value decomposition approximation. Our analysis covers the basic method and

the power iteration for the fixed-rank problem, as well as the power iteration for

the fixed-precision problem. We see that for the fixed-rank problem, the bound for

the power iteration is favourable in terms of simplicity and rounding error contribu-

tion. We give both worst-case and probabilistic rounding error bounds as functions

of the problem dimensions and the rank. The worst-case bounds are pessimistic,

but the probabilistic bounds are reasonably tight and still reliably bound the error

in practice. We also propose a mixed precision version of the algorithm that offers

potential speedups by gradually decreasing the precision during the execution of the

algorithm.

Keywords: randomized algorithms, low rank matrix approximation, singular value

decomposition, rounding error analysis, probabilistic rounding error analysis, mixed

precision algorithm.
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5.1 introduction

Randomized algorithms for low rank matrix approximation, a problem with many

applications in scientific computing, first began to appear two decades ago. Early,

influential works, including [1], [6], [7], [16], [19], and [24], showed that for certain

problems randomized algorithms can be significantly more computationally efficient

than classical numerical linear algebra algorithms. Comprehensive surveys of ran-

domized algorithms and low-rank approximation are given in [15] and [17]. Given a

matrix A P Rmˆn with m ě n and low numerical rank, the goal is to compute cheaply

some useful factorization that approximates A well. The basic computational proce-

dure can be split into two steps [6], [17, sect. 11].

‚ Rangefinder: Compute an orthonormal Q such that A « QQT A and Q has as

few columns as possible.

‚ Factorization: Use Q to help construct an approximate factorization of A.

The two steps are described in more detail in Algorithms 5.1 and 5.2. Here we

focus specifically on computing the singular value decomposition (SVD), but other

factorizations can also be computed using Q from Algorithm 5.1 (see, for example,

[18, sect. 3]). Algorithm 5.1 describes the case of drawing a Gaussian matrix Ω. By a

Gaussian matrix we mean a random matrix whose elements are independently drawn

from the standard normal distribution (mean 0, variance 1). A thin QR factorization

means one with a rectangular Q and an upper triangular R.

Algorithm 5.1 Given A P Rmˆn with m ě n and an integer k ă n, compute a matrix
Q P Rmˆk with orthonormal columns such that A « QQTA.

1: Draw a Gaussian matrix Ω P Rnˆk.
2: Y “ AΩ
3: Compute an orthonormal basis Q P Rmˆk for Y via a thin QR factorization Y “

QR.
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Algorithm 5.2 Given A P Rmˆn with m ě n and Q from Algorithm 5.1, compute the
approximate SVD A « UΣVT, where U P Rmˆk, Σ P Rkˆk, V P Rnˆk.

1: B “ QT A
2: Compute the economy size SVD B “ rUΣVT.
3: U “ Q rU

Note that line 2 of Algorithm 5.1 requires about a factor n{k more flops than line 3,

so most of the work is in the matrix multiplication of line 2.

We wish to bound the normwise absolute error in the approximate SVD from

Algorithm 5.2. In exact arithmetic,

}A´UΣVT} “ }A´Q rUΣVT} “ }A´QB} “ }A´QQTA}, (5.1.1)

so it is only Algorithm 5.1, the rangefinder process, that introduces errors. Previous

error analyses of randomized algorithms that provide bounds on the right-hand side

of (5.1.1) (see, e.g., [17, sect. 11]) are for exact arithmetic, so to obtain practical error

bounds one has to assume that floating-point arithmetic errors are swamped by the

errors introduced by the randomization process, or account for their effect on (5.1.1).

This is done in [2] for the Nyström approximation of a positive semidefinite matrix,

with the goal of balancing the two sources of error and exploiting low-precision

arithmetic.

Our goal is to perform a rounding error analysis of Algorithms 5.1 and 5.2. The al-

gorithms as presented refer to the fixed-rank problem, where we have a user-specified

value of k, the rank of Ω. In the other approach, the fixed-precision problem, we itera-

tively construct Q until the error (5.1.1) is less than some specified tolerance. We ana-

lyze both problems, beginning with the fixed-rank problem. Since the fixed-precision

problem is essentially solved as a sequence of fixed-rank problems, our fixed-rank

analysis proves crucial for our fixed-precision analysis.

In section 5.2 we give a rounding error analysis for Algorithms 5.1 and 5.2, which

treat the fixed-rank problem. We then extend the analysis to a power iteration gen-
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eralization of Algorithm 5.1. The power iteration analysis has a favourable rounding

error term and avoids having to make complicated statements about the probability

of the bounds holding, as unfortunately is the case for the basic method. This analy-

sis is a usual worst-case analysis, but in section 5.2.2 we give a probabilistic rounding

error analysis. In section 5.3 we extend our analysis to an algorithm for the fixed-

precision problem, and we propose a mixed precision version of the algorithm. We

give numerical experiments to assess the quality of the rounding error bounds and to

indicate the possible benefits of the mixed precision algorithm. Concluding remarks

are given in section 5.4.

5.2 rounding error analysis

If there are no rounding errors then the error in the computed SVD from Algo-

rithm 5.2 is given by (5.1.1). We wish to derive an error bound that accounts for

rounding errors. We will make the simplifying assumption that the SVD in line 2 of

Algorithm 5.2 is computed exactly. This assumption has little effect on the final error

bounds assuming that the SVD is computed by a numerically stable algorithm.

We will use the standard model of floating-point arithmetic [8, sect. 2.2]:

flpx op yq “ px op yqp1` δq, |δ| ď u, (5.2.1)

with op P t`,´,ˆ, {u. Throughout we use the quantities

γn “
nu

1´ nu
, rγn “

cnu
1´ cnu

, (5.2.2)

where c is a small integer constant and u is the unit roundoff.
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We will use the 2-norm, }A}2 “ maxx‰0 }Ax}2{}x}2 and the Frobenius norm, }A}F “

p
ř

i,j |aij|
2q1{2. We will also use the inequality, for A P Crˆm, B P Cmˆn, C P Cnˆs [13,

1991, Cor. 3.5.10],

}ABC}F ď }A}2 }B}F }C}2. (5.2.3)

We need the result that for A P Rmˆn, B P Rnˆp, and C “ AB the computed

product pC satisfies [8, sect. 3.5].

pC “ C`∆C, |∆C| ď γn|A||B|. (5.2.4)

Let pR P Rkˆk be the computed upper triangular factor of A P Rmˆk obtained by

Householder QR factorization. Then there exists a matrix rQ P Rmˆk with orthonor-

mal columns such that [8, Thm. 19.4]

A`∆A “ rQpR, }∆aj}2 ď rγmk}aj}2, j “ 1 : k. (5.2.5)

We can now obtain an error bound for step 2 of Algorithm 5.1

Lemma 5.1. Let Y “ AΩ, where A P Rmˆn with m ě n and Ω P Rnˆk, where k ď n.

Householder QR factorization of the computed pY produces a computed upper triangular pR

satisfying

Y`∆Y “ rQpR, }∆yj}2 ď pγn ` rγmk ` γnrγmkq}A}F}ωj}2, j “ 1 : k, (5.2.6)

where rQ P Rmˆk has orthonormal columns and ωj is the jth column of Ω.

Proof. From (5.2.4) we have pY “ Y`∆Yp1q, where

}∆yp1qj }2 ď γn} |A||ωj| }2 ď γn}A}F}ωj}2. (5.2.7)
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By (5.2.5), Householder QR factorization of pY yields pY `∆Yp2q “ rQpR, where rQ has

orthonormal columns and

}∆yp2qj }2 ď rγmk}pyj}2 ď rγmk
`

}yj}2 ` γn}A}F}ωj}2
˘

.

Writing ∆Y “ ∆Yp1q `∆Yp2q and using }yj}2 ď }A}F}wj}2 gives (5.2.6).

We could explicitly form the matrix Q after computing the QR factorization in

Algorithm 5.1 and then explicitly form the matrix product B “ QT A on step 1 of

Algorithm 5.2. However, it is normal practice to keep Q in factored form and apply

it to A in factored form. We will assume that this is how B is evaluated.

The error analysis of Householder QR factorization shows that the matrix rQ in

Lemma 5.1 is a product of exact Householder matrices that are defined in terms of

the computed quantities that appear during the factorization. Moreover, if QT is

applied in factored form to a matrix H P Rmˆn to form G “ QT H then [8, Lem. 19.3]

implies that the computed pG satisfies

pG “ rQT H `∆H, }∆hj}2 ď rγmk}hj}2, j “ 1 : n. (5.2.8)

Therefore the matrix pB computed on line 1 of Algorithm 5.2 using the factored form

of Q satisfies

pB “ rQT A`∆A, }∆A}F ď rγmk}A}F. (5.2.9)

The matrix pU from line 3 of Algorithm 5.2 computed using the factored form of Q

satisfies

pU “ rQ rU `∆U, }∆U}F ď rγmk}rU}F “ k1{2
rγmk. (5.2.10)
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Hence

A´ pUΣVT “ A´ rQ rUΣVT ´∆UΣVT

“ A´ rQpB´∆UΣVT

“ pI ´ rQ rQTqA´ rQ∆A´∆UΣVT

“ pI ´ rQ rQTqA` E, (5.2.11)

where

}E}F ď rγmk}A}F ` k1{2
rγmk}ΣVT}F

“ rγmk}A}F ` k1{2
rγmk}pB}F

ď rγmk}A}F ` k1{2
rγmkp1` rγmkq}A}F

“ rγmk
`

1` k1{2p1` rγmkq
˘

}A}F. (5.2.12)

We now have

A´ pUΣVT “ pI ´ rQ rQTqA` E,

To bound pI ´ rQ rQTqA, we note that for any X of suitable size,

}pI ´ rQ rQTqA}F ď }pI ´ rQ rQTqAΩX}F ` }pI ´ rQ rQTqApI ´ΩXq}F. (5.2.13)

For the first term we have pI ´ rQ rQTqAΩ “ ´pI ´ rQ rQTq∆Y by (5.2.6). Using (5.2.3),

together with }I ´ rQ rQT}2 ď 1 we then have

}pI ´ rQ rQTqAΩ}F ď }∆Y}F, (5.2.14)

and so

}pI ´ rQ rQTqAΩX}F “ }´ pI ´ rQ rQTq∆YX}F ď }∆Y}F}X}F.
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For the second term, choose X “ pVTΩq:VT, where V contains the first r right singu-

lar vectors of A such that r` 4 ď k. We can then obtain, assuming VTΩ has full rank

and using VTΩpVTΩq: “ Ir,

}pI ´ rQ rQTqApI ´ΩXq}2F ď }ApI ´ΩpVTΩq:VTq}2F

“ }ApI ´VVTqpI ´ΩpVTΩq:VTq}2F

ď }ApI ´VVTq}2F ` }ApI ´VVTqΩpVTΩq:}2F

“ }Σ2}
2
F ` }Σ2pVT

KΩqpVTΩq:}2F,

with Σ2 containing singular values σr`1, σr`2, . . . and VK the corresponding singular

vectors. We are left with

}pI ´ rQ rQTqA}F ď }∆Y}F}pVTΩq:}F `

b

}Σ2}
2
F ` }Σ2pVT

K
ΩqpVTΩq:}2F. (5.2.15)

To proceed, two key observations from [6, sec. 10] are needed. Firstly, we can

bound, both in expectation and probabilistically, the 2 and Frobenius norms of the

pseudoinverse of a Gaussian matrix. Secondly, as the Gaussian distribution is rota-

tionally invariant, the matrices VTΩ and VT
KΩ are also Gaussian matrices, and as

such their norms can be bounded by those results on pseudoinverses.

The second term in (5.2.15) is independent of u and corresponds to the exact

bounds present in [6, Thm. 9.1] and, on incorporating the bounds on VT
KΩ and

pVTΩq:, will be equal to those results up to a constant. The first term, which bounds

the rounding errors, is what we are interested in. Note that pVTΩq: P Rrˆk and so

by [6, Prop. 10.4], it is bounded probabilistically in the Frobenius norm by a constant

of order
?

k. We know from (5.2.6) that }∆Y}F ď pγn ` rγmk ` γnrγmkq}A}F}Ω}F. From

[21, Thm. 4.1.1], we can bound }Ω}2 ď t
?

n, where the bound holds with at least

some probability that depends on t, k and n. This probability is extremely close to 1

for any realistic choice of n and k and a very modest t. Using norm relations we have
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}Ω}F ď
?

k}Ω}2 “ Op
?

knq. Combining all this we find that the final rounding error

contribution can be bounded by

}∆Y}F}pVTΩq:}F ď Opmk3{2uq}A}F}Ω}F ď Opm
?

nk2uq}A}F,

As the leading order term of E is Opmkuq, we have from the above that

}A´ pU pΣ pVT}F ď Opm
?

nk2uq}A}F `

b

}Σ2}
2
F ` }Σ2pVT

K
ΩqpVTΩq:}2F, (5.2.16)

the left term corresponding to the rounding error contribution and the right hand

term the randomization errors. For a more precise bound, one would have to incor-

porate statements of probability from the bounded random matrices. We avoid doing

this here because, as we will see in the next section, the analysis of the power method

is more interpretable while also providing a favourable rounding error contribution,

meaning it is the analysis we focus on for the remainder of this chapter.

In practice, structured random matrices are often used instead of a Gaussian Ω. As

an example we consider the commonly used subsampled random Fourier transform

(SRFT) [6, sect. 4.6]. An SRFT matrix has the form

Ω “

c

n
k

DFR, (5.2.17)

where

‚ D “ diagpz1, z2, . . . , znq P Cnˆn, with each zi P C an independent random vari-

able uniformly distributed on the complex unit circle,

‚ the unitary matrix F P Cnˆn is the discrete Fourier matrix with entries

f jk “ n´1{2 expp´2πipj´ 1qpk´ 1q{nq,
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‚ R is an nˆ k matrix whose columns are sampled uniformly at random from the

nˆ n identity matrix without replacement.

We expect rounding error bounds for the basic method using SRFT or other struc-

tured matrices to be attainable, using a similar method to that for obtaining the Gaus-

sian matrix bound, but requiring results about the particular random matrix, such as

in [6, sec. 11]. We will see in the next section that another advantage of our analysis

of the power method is that the results will hold for any choice of random Ω.

5.2.1 Extension to power iteration

If the singular values of A decay slowly then the accuracy of Algorithm 5.1 in exact

arithmetic degrades. To address this issue a power scheme that generalizes Algo-

rithm 5.1 was proposed in [6, sect. 4.5], which we reproduce in Algorithm 5.3.

Algorithm 5.3 Given A P Rmˆn with m ě n, and integers k ă n and q, compute a
matrix Q P Rmˆk with orthonormal columns such that A « QQTA.

1: Draw a Gaussian matrix Ω P Rnˆk.
2: Y “ pAATqq AΩ
3: Compute an orthonormal basis Q P Rmˆk for Y via a thin QR factorization Y “

QR.

In floating-point arithmetic, the power scheme given in Algorithm 5.3 fails to cap-

ture singular vectors associated with singular values that are small relative to }A}2,

so a modified variant of this algorithm given in Algorithm 5.4 is usually considered.
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Algorithm 5.4 Given A P Rmˆn with m ě n, and integers k ă n and q, compute
a matrix Q P Rmˆk with orthonormal columns such that A « QQTA. All the QR
factorizations used are thin QR factorizations.

1: Draw a Gaussian matrix Ω P Rnˆk.
2: Compute Y1 “ AΩ and factorize Y1 “ Q1R1.
3: for i “ 1 : q do
4: Compute Y2i “ ATQ2i´1 and factorize Y2i “ Q2iR2i.
5: Compute Y2i`1 “ AQ2i and factorize Y2i`1 “ Q2i`1R2i`1.
6: end for
7: Q “ Q2q`1

In Algorithm 5.4, q “ 1 or q “ 2 is usually sufficient for most practical problems

[6, sect. 1.6]. However, here we perform analysis for the general case, and extend the

analysis of section 5.2 for Algorithm 5.4, to bound }A ´ pU pΣ pVT}F. Introducing the

exact Q, we can write

A´ pU pΣ pVT “ pI ´QQTqA` pQQT ´ rQ rQTqA` E (5.2.18)

and so

}A´ pU pΣ pVT}F ď }pI ´QQTqA}F ` }pQQT ´ rQ rQTqA}F ` }E}F, (5.2.19)

where }pI ´QQTqA}F is bounded by the analysis in [6, sect. 9.3], and }E}F, which is

the error term that arises from Algorithm 5.2 once we have computed Q via Algo-

rithm 5.4, is bounded by (5.2.12). The matrix rQ is the exact Q that arises, as defined

in (5.2.5), from the final QR factorization of Algorithm 5.4.

The key observation is that we can identify the factorization Q2q`1R2q`1 “ Y2q`1 “

AQ2q in Algorithm 5.4 with the factorization QR “ Y “ AΩ in Algorithm 5.1. By a

similar proof to that of Lemma 5.1 we have

Y2q`1 `∆Y2q`1 “ rQpR2q`1, }∆Y2q`1}F ď k1{2pγn ` rγmk ` γnrγmkq}A}F (5.2.20)

for a matrix rQ P Rmˆk with orthonormal columns.
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Purely for the purposes of the error analysis, we now assume that all the QR

factorizations in Algorithm 5.4 are full QR factorizations with Qj P Rmˆm and Rj “

“ R1
j

0

‰

with R1j P Rkˆk, and we set Q “ Q2q`1 Im,k P Rmˆk, where Im,k “ Ip:, 1 : kq “
“ Ik

0

‰

P Rmˆk. We have

QQTY2q`1 “ Q2q`1 Im,k IT
m,kQT

2q`1Q2q`1R2q`1

“ Q2q`1 Im,k IT
m,k

«

R12q`1
0

ff

“ Q2q`1

«

R12q`1
0

ff

“ Q2q`1R2q`1 “ Y2q`1. (5.2.21)

Then, with F “ QQT ´ rQ rQT, using (5.2.20) and (5.2.21) we have

FY2q`1 “ QQTY2q`1 ´ rQ rQTY2q`1 “ pI ´ rQ rQTqY2q`1

“ ´pI ´ rQ rQTq∆Y2q`1. (5.2.22)

Combining (5.2.20) and (5.2.22) gives

}pQQT ´ rQ rQTqA}F “ }FA}F “ }FAQ2q}F “ }FY2q`1}F

ď }∆Y2q`1}F ď k1{2pγn ` rγmk ` γnrγmkq}A}F. (5.2.23)

Using this bound in (5.2.19) gives the next result.

Theorem 5.2. Let A P Rmˆn, where m ě n, and assume that the SVD on line 2 of Al-

gorithm 5.2 is computed exactly. Algorithm 5.4, with q ě 1, and Algorithm 5.2 produce a

computed SVD A « pU pΣ pVT satisfying

}A´ pU pΣ pVT}F ď }pI ´QQTqA}F

`
`

p1` k1{2qrγmk ` k1{2γnp1` rγmkq ` k1{2
rγ2

mk
˘

}A}F. (5.2.24)
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We note that results are given in [6, sect. 10.4] bounding the expected value of the

2-norm approximation error }pI ´ QQTqA}2, with deviation bounds easy to obtain.

Results for the Frobenius norm can be obtained by using }B}F ď
a

rankpBq}B}2.

Note the leading order rounding error contribution is mk3{2u compared with mn1{2k2u

in (5.2.16). The smaller constant in (5.2.24) compared with (5.2.16) is attributable to

the fact that the final QR factorization in Algorithm 5.4 is of AQ2q`1 rather than of

AΩ as in Algorithm 5.1, and we have exploited the orthogonality of Q2q`1.

5.2.2 Probabilistic rounding error analysis

Recent results in probabilistic error analysis provide error bounds that are both

tighter and more indicative of the typical error growth than worst-case bounds [3],

[4], [10], [11], [14]. Worst-case error bounds of the form f pnqu translate to probabilis-

tic bounds of the form
a

f pnqu under the assumption that the rounding errors are

mean independent random variables of mean zero. Results of this form hold for in-

ner products, matrix-vector and matrix-matrix products, LU factorization, triangular

systems, Cholesky factorization, and QR factorization. Crucially for this work, these

results hold for the two central kernels of Algorithms 5.1 and 5.2.

For matrix multiplication the probabilistic analogue of (5.2.4) is given by [4, Thm. 5.9],

[10, Thm. 3.4]

pC “ C`∆C, |∆C| ď γnpλq|A||B|, (5.2.25)

where

γnpλq :“ exp
ˆ

λ
?

nu` nu2

1´ u

˙

´ 1 “ λ
?

nu`Opu2q. (5.2.26)
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Here, and below, λ ą 0 is a constant that can be freely chosen and controls the

probability of failure of the bound, which is a monotonically decreasing function of

λ. We do not state probabilities of failure, as they are very close to 1 even for modest

λ and they are also pessimistic; see the cited references for the details.

Similar probabilistic analogues apply for Householder QR factorization and the

multiplication of a matrix by a sequence of Householder matrices. The analogue to

(5.2.5) is given by [3, Thm. 4.4]

A`∆A “ rQpR, }∆aj}2 ď cλ
?

kγmpλq}aj}2 `Opu2q, j “ 1 : n, (5.2.27)

where c is a modest integer constant. The same reduction in the error constant applies

to (5.2.8); see [3, Lem. 4.3].

Using these results, the worst-case analysis extends straightforwardly to the proba-

bilistic case, giving the following analogue of Theorem 5.3. For the sake of readability,

we include a more detailed analysis than the outline given here in Appendix 5.A at

the end of this chapter. We write “under the assumptions of probabilistic error anal-

ysis” to mean that rounding errors are mean independent random variables of mean

zero and that a technical assumption in [3, Lem. 4.2], required for QR factorization,

holds.

Theorem 5.3. Let A P Rmˆn, where m ě n, and assume that the SVD on line 2 of Al-

gorithm 5.2 is computed exactly. In floating-point arithmetic and under the assumptions

of probabilistic error analysis, Algorithm 5.4 and Algorithm 5.2 produce a computed SVD

A « pU pΣ pVT satisfying

}A´ pU pΣ pVT A}F ď }A´QQTA}F

`
`

pk` k1{2qγmpλq ` k1{2γnpλq
˘

}A}F `Opu2q.
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Table 5.2.1: Leading order rounding error terms in the bounds.

Worst case Probabilistic

Algorithms 5.2 and 5.1 (standard, Gaussian Ω) mn1{2k2u pmnq1{2k3{2u
Algorithms 5.2 and 5.4 (power iteration) mk3{2u m1{2ku

We note that the leading rounding error contribution is
?

mku for the probabilistic

case, in comparison to mk3{2u in Theorem 5.2.

Probabilistic error analysis can also be applied to the analysis of the basic method,

reducing the leading order rounding error contribution from mn1{2k2u to pmnq1{2k3{2u.

In Table 5.2.1, we compare the leading order error terms of the two methods and the

two types of analysis. The more favorable algorithm in terms of rounding error

bound is the power iteration.

5.2.3 Numerical experiments

We present some numerical experiments to test the sharpness of the worst-case error

bound (5.2.16) and its probabilistic variant. The leading order rounding error contri-

butions for each are given in Table 5.2.1. We first need the result [6, Thm. 10.7] that

for Gaussian Ω the bound

}A´QQT A}F ď ψ1pk, p, tq
ˆ

ÿ

jąk

σ2
j

˙1{2

` ψ2pk, p, t, sqσk`1, (5.2.28)

holds with probability at least 1´ p2t´p ` e´s2{2q, where k is the target rank, and the

functions ψ1 and ψ2 are given by

ψ1pk, p, tq “ 1` t
ˆ

3k
p` 1

˙1{2

, ψ2pk, p, t, sq “ st
e
a

k` p
p` 1

. (5.2.29)
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For even modest choices of these parameters the probability of failure is negligible.

Choosing for example p “ t “ s “ 5 results in a probability of failure of 6ˆ 10´4.p

We simply choose to set p “ t “ s “ 1, as we have observed that the probabilities

associated with these parameters are pessimistic. We use (5.2.28) for the exact error

term in (5.2.16). For the rounding error terms contained in (5.2.16), we simply plot

the leading order terms and set any non-dimensional constants to 1.

Note the parameter p above is an oversampling parameter, so in the bounds given

in (5.2.16) we should strictly make the substitution k Ð k` p. In Figure 5.2.1 we do

not include the contribution from the oversampling parameter because the p we have

chosen is small enough to make no material effect to the displayed bounds.

We use two types of test matrix, which were also used in [23]. In this section

we just consider Algorithms 5.1 and 5.2. We do not consider the power iteration of

section 5.2.1 as an error bound analogous to (5.2.28) is not available [6, sect. 10.4]. All

matrices used in the tests are square (m “ n); we have run tests with m " n and

obtained similar results. The types are as follows.

‚ Type 1: low rank plus noise. Define D “ diagpIr, 0q P Rnˆn. Then

A “ D` pξ{nqGGT,

with G a Gaussian matrix. We fix ξ “ 10´4 and r “ 20.

‚ Type 2: polynomial decay. We generate random orthogonal matrices U, V P

Rnˆn from the Haar distribution [20] and define

A “ UDVT, D “ diagpφIr, 2´α, 3´α, . . . , pn´ r` 1q´αq. (5.2.30)

Throughout r “ 20, α “ 3, and φ “ 106.

The experiments are run in MATLAB R2021a. All steps of the algorithms are per-

formed in IEEE single precision, with reference quantities computed in IEEE double
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(a) Type 1 matrix with k “
?
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(b) Type 2 matrix with k “
?

n.

Figure 5.2.1: Numerical experiments performed in fp32. The dashed line in both figures is u “ 2´24 «

6ˆ 10´8, the unit roundoff for single precision.

precision. Test matrices are also rounded to single precision. The results are plot-

ted in Figure 5.2.1, in which “Worst bound” denotes the worst-case rounding error

bound from (5.2.16), “Prob bound” denotes the probabilistic bound from Table 5.2.1,

“Exact bound” denotes the bound in (5.2.28), and “Error” is the approximation error

}A´ pU pΣ pVT}F{}A}F.

All of the error curves in Figure 5.2.1 exhibit the same phenomenon: at a certain

value of n the error decreases drastically. This is due to the experimental setup, where

we have set k “
?

n. Each of the test matrices has a singular value spectrum that is

flat for the largest singular values, but then drops off quickly past a certain point.

The large decrease in the error curves corresponds to the point when k has reached

a value large enough that the singular values we are approximating are past this

dropoff point in the singular value spectrum of the test matrices.

We see that for Type 1 matrices the error satisfies all the bounds, with the proba-

bilistic bound being significantly closer to the exact bound than the worst-case bound.

In the case of Type 2 matrices, however, as the exact bound becomes less than the unit

roundoff, it no longer becomes a reliable indicator for the computed error. In this case

our probabilistic bound again bounds the error.
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5.3 fixed-precision algorithms

Up to now, we have discussed fixed-rank problems, where we specify a target rank a

priori. Perhaps a more common situation computationally is the fixed-precision prob-

lem, in which we specify a tolerance to which we want our computed approximation

to be accurate. In Algorithm 5.5 we display the basic fixed-precision rangefinder al-

gorithm proposed by Martinsson and Voronin [18, Fig. 4]. Here we essentially solve

the fixed-rank problem multiple times with the rank k chosen to be some block size

b and iteratively construct a basis matrix until the specified tolerance has been met.

We consider the specified tolerance ε to be a relative tolerance.

Algorithm 5.5 Given A P Rmˆn with m ě n and a tolerance ε ą 0, this algorithm
computes a matrix Q P Rmˆb with orthonormal columns and B P Rbˆn such that
}A´QB}F{}A}F ď ε. The parameter b is a block size and q determines the number
of power iterations in the inner loop.

1: Q “ r s, B “ r s, A1 “ A, ρ1 “ 1
2: for i “ 1 : itsmax do
3: Draw a Gaussian matrix Ω P Rnˆb.
4: Y “ AiΩ
5: Qi “ qrpY, 0q
6: for j “ 1 : q do
7: Compute Y “ AT

i Qi and Qi “ qrpY, 0q.
8: Compute Y “ AiQi and Qi “ qrpY, 0q.
9: end for

10: Qi “ qrpQi ´
ři´1

j“1 QjQT
j Qi, 0q

11: Bi “ QT
i Ai

12: Ai`1 “ Ai ´QiBi
13: ρi “ }Ai`1}F{}A}F
14: If ρi ď ε then quit.
15: end for
16: Q “ rQ1 ¨ ¨ ¨ Qis, B “ rBT

1 ¨ ¨ ¨ BT
i s

T

In the algorithms of this section qrp ¨ , 0q returns the orthonormal factor from the

thin QR factorization. We compute the factorization A « QB, with B “ QT A. Once Q

and B are available, further factorizations, such as the SVD or low rank QR, are easily

computed [18, Rem. 1]. The main focus of this section is on the iterative construction

of Q and B.
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An alternative algorithm is proposed in [25, Alg. 2]. This is the algorithm imple-

mented by the MATLAB svdsketch function1. We know from [25, Prop. 1] that when

executed in exact arithmetic [25, Alg. 2] and Algorithm 5.5 are identical. In floating-

point arithmetic, there are two main differences. The algorithm [25, Alg. 2] performs

the same operations for computing Qi as Algorithm 5.5, but in a different order. To

analyse [25, Alg. 2] we would need to modify the analysis of Section 5.2 to account

for this changed order. The error ρi is also calculated differently, which allows one to

avoid retaining and computing the Frobenius norm of }Ai`1}F at each iteration, as is

done in Algorithm 5.5. This new method of calculating the error introduces a limita-

tion on the accuracy of the computation [25, sec. 3.3]. In the remainder of this work

we focus on Algorithm 5.5, with the expectation that our analysis can be adapted to

[25, Alg. 2].

5.3.1 Error analysis of fixed-precision algorithm

Here we present a framework for analyzing the effect of rounding errors on Algo-

rithm 5.5. In the next section we use this analysis to motivate mixed precision algo-

rithms for these problems. Our primary interest is how the influence of rounding

errors limits the tolerance that we can set in these algorithms.

On a given iteration, we compute pQi and pBi “ pQT
i A and we are interested in

the error }A ´ pQi pBi}F. Here, we assume for the sake of the analysis that the fixed-

precision iterations have q ą 0, meaning we incorporate the power iteration. The

reasoning we will apply is also valid for the basic method, but we make this choice

as our power iteration error analysis results are more formal and it is what we use in

the experiments to follow. From either Theorem 5.2 or Theorem 5.3 , we know that,

to first order in u,

}A´ pQi pQT
i A}F ď }A´QiBi}F ` u f pm, n, bq}A}F, (5.3.1)

1 https://uk.mathworks.com/help/matlab/ref/svdsketch.html

https://uk.mathworks.com/help/matlab/ref/svdsketch.html
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where Qi and Bi are the exact matrices and the form of f depends on whether the

bound is worst-case or probabilistic. As the computation proceeds, A is updated and

at each iteration the quantity ρi (Line 13 of Algorithm 5.5) serves as our relative error.

Define

pPi “ I ´ pQi pQT
i , Pi “ I ´QiQT

i ,

In exact arithmetic, the error after t iterations of the outer loop in Algorithm 5.5 is

given by

ρt “
}Pt . . . P2P1A}F

}A}F
. (5.3.2)

In floating-point arithmetic it is given by

pρt “
}pPt . . . pP2 pP1A}F

}A}F
. (5.3.3)

Bounding the difference between (5.3.2) and (5.3.3) will allow us to determine the

impact of rounding errors on the iterative algorithm.

We have pPi A´ Pi A “ p pQi pQT
i ´QiQT

i qA which we can bound from the analysis of

Section 5.2. This term amounts to the }FA}F term we bounded in (5.2.23). In the case

of both Theorems 5.2 and 5.3, the contribution of the }FA}F term is what gives the

leading order rounding error term. For the sake of simplicity then, we write

pPi A “ Pi A`∆ i, }∆ i}F ď u f pm, n, bq}A}F, (5.3.4)

where, as described in (5.3.1), the precise form of f depends on the specific analysis

deployed. Then

pPt . . . pP2 pP1A “ pPt . . . pP2pP1A`∆1q

“ pPt . . . pP3pP2pP1A`∆1q `∆2q

“ ¨ ¨ ¨ “ Pt . . . P1A`
t´1
ÿ

i“1

Pt . . . Pi`1∆ i `∆t,
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so

pρt ď ρt `

›

›

›

řt´1
i“1 Pt . . . Pi`1∆ i `∆t

›

›

›

F
}A}F

ď ρt `

t
ÿ

i“1

}∆ i}F{}A}F.

Finally, we have

pρt ď ρt ` tu f pm, n, bq, (5.3.5)

where the general form of (5.3.5) is the same as that of the bounds of section 5.2:

our computed error is bounded by the exact error plus a term involving the unit

roundoff, and some function of the problem dimensions. The dependence on }A}F

has disappeared as we are now considering the relative error. If the exact error

ρt is less than or equal to tu f pm, n, bq it is possible that the overall error will be

dominated by rounding errors. This could in turn cause the algorithm not to converge

as expected.

Note that in exact arithmetic, the approximation error of Algorithm 5.5 is identical

to that of Algorithm 5.1 [18, sect. 4]. Therefore, after t iterations of Algorithm 5.5 with

block size b, we can identify ρt with the relative approximation error of Algorithm

5.1 with Ω P Rnˆk where k “ bt.

5.3.2 Mixed precision rangefinder

We saw in the previous section how accuracy guarantees of fixed-precision problems

can be affected by the choice of precision and the problem size. Here we motivate

the use of low precision in these algorithms.

We use the probabilistic bounds given in section 5.2.2 to guide how to deploy

low precisions. Algorithm 5.6 describes this approach. We update Ai, beginning

in high precision, and switch to lower precisions once }Ai}F is sufficiently reduced,

corresponding to a smaller relative error ρi.



5.3 fixed-precision algorithms 137

Algorithm 5.6 Given A P Rmˆn with m ě n and a relative tolerance ε ą 0, this
algorithm computes a matrix Q P Rmˆtb with orthonormal columns such that }A´
QQT A}F ď ε. The parameter b is a block size and q determines the number of power
iterations in the inner loop. A sequences of precisions u1 ă u2 ă ¨ ¨ ¨ ă up and
tolerances 1 ą ε1 ą ¨ ¨ ¨ ą εp “ ε are given.

1: Q “ r s, B “ r s, A1 “ A, ρ1 “ 1
2: for i “ 1 : itsmax do
3: Draw a Gaussian matrix Ω P Rnˆb.
4: Find the largest j, 1 ď j ď p such that ρi ă ε j.
5: Y “ AiΩ at precision uj.
6: Qi “ qrpY, 0q at precision uj
7: for j “ 1 : q do
8: Compute Y “ AT

i Qi and Qi “ qrpY, 0q at precision uj.
9: Compute Y “ AiQi and Qi “ qrpY, 0q at precision uj.

10: end for
11: Reorthonormalize Qi at precision u1.
12: Bi “ QT

i Ai at precision uj.
13: Ai`1 “ Ai ´QiBi at precision uj.
14: ρi “ }Ai`1}F{}A}F
15: If ρi ď ε then quit.
16: end for
17: Q “ rQ1 ¨ ¨ ¨ Qis, B “ rBT

1 ¨ ¨ ¨ BT
i s

T

The primary difficulty in this algorithm is determining when to switch to lower

precision. We use a combination of the rounding error bounds from previous sections

and a user-specified parameter to set these tolerances. In the problem setup we

have a global tolerance ε, a sequence of available precisions uj, j “ 1 : p, an m ˆ n

matrix A, and a block size b. Assume we perform power iterations, so q ą 0. The

basic idea is simple: for t iterations at precision uj, if t
?

mbujρt, from (5.3.5) with

f pm, n, bq chosen to be
?

mb from Table 5.2.1, is significantly less than ε then we

know that the contribution of rounding errors will be negligible compared with the

algorithmic error, and we can safely use precision uj. If we had a priori knowledge of

the number of iterations that would be performed at precision uj, we could compare

these quantities to ε and decide whether the use of precision uj is appropriate. As we

do not know t, we must set a user-specified parameter θ, so our quantity of interest is

now θ
?

mbujρt. The parameter θ helps to account for the role played by the unknown
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number of iterations, but also allows the user to incorporate a degree of optimism or

pessimism in the algorithm. We then make the simple choice

ε j “

$

’

’

&

’

’

%

ε{pθ
?

mbuj`1q, j “ 1 : p´ 1,

ε, j “ p.
(5.3.6)

This choice means that if ρt ă ε j, when we switch to precision uj`1 we know that

θ
?

mbuj`1ρt ă ε. The parameter θ controls by how much we want to ensure that

the leading rounding error contribution is less than ε. The larger the value of θ, the

more certain we can be that rounding errors will not swamp the algorithmic error.

The smaller the value of θ, the more optimistic we are about the impact of rounding

errors, and the earlier the switch to lower precisions.

5.3.3 Reorthonormalization

The reorthonormalization steps in Line 10 of Algorithm 5.5 and Line 11 of Algorithm

5.6 are performed in order to maintain orthonormality among the columns of the

computed Q. Preserving orthonormality is important as any subsequent uses for Q

will have the assumption that Q has orthonormal columns. Taking for example the

computation of the randomized SVD in Algorithm 5.2, if Q loses orthonormality then

in Line 3 the resultant U will also lack orthonormality. To ensure orthonormality we

reorthonormalize each Q at each iteration in the highest used precision.

In Algorithm 5.6 we have some specified accuracy tolerance ε, a sequence of avail-

able precisions u1 ă u2 ă ¨ ¨ ¨ ă up, and we orthonormalize at the highest precision,

u1. The matrix pQi that we orthonormalize has been computed at some precision uj

and so } pQi ´Qi} will be of order uj. Orthonormalizing at precision u1, to obtain rQi,

ensures that } rQT
i
rQi ´ I} is of order u1, but } pQi ´ rQi} will still be of order uj. This

means that our accuracy is limited by the lowest precision used, as we always have a

term of order uj in the error bound (5.3.5). For this reason, we only allow precisions
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to be used in Algorithm 5.6 which have a unit roundoff less than the specified relative

tolerance.

From the point of view of the error analysis of section 5.2, the orthonormalization

step simply changes the constant slightly in (5.2.10) and subsequent bounds. It does

not change the form of the final bounds, so Theorems 5.2 and 5.3 remain valid with

orthonormalization.

5.3.4 Numerical experiments

We now test the performance of Algorithm 5.6. For various test matrices we com-

pute the matrices Q and B. We then compute the approximate SVD A « pU pΣ pVT as

described in Algorithm 5.2. We use the error measure }A´ pU pΣ pVT}F{}A}F. The test

matrices used are described below. Throughout we set the block size b “ 10 and set

q “ 1 in the power iterations. We use an implementation of Algorithm 5.6 in which

we have three available precisions: fp64 (IEEE double precision), fp32 (IEEE single

precision), and fp16 (IEEE half precision), with respective unit roundoffs 2´53, 2´24,

and 2´11. We compare this to Algorithm 5.5 run entirely in fp64. The subsequent

computation of the SVD is done in fp64 in both implementations.

For double and single precision we use the native MATLAB arithmetic. For half

precision we use the chop function2 of [12]. We use three types of matrices.

‚ Type 1. A P Rnˆn is generated using the default mode in the MATLAB func-

tion gallery('randsvd'), which gives geometrically distributed singular val-

ues. We set n “ 500 and κ2pAq “ 1010.

‚ Type 2. Polynomial decay. These are the matrices (5.2.30) with n “ 500, r “ 100,

p “ 2, and φ “ 1.

2 https://github.com/higham/chop

https://github.com/higham/chop
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Table 5.3.1: Iteration counts for experiments with Type 1 matrices with various relative tolerances ε and
choices of θ.

ε “ 10´1 ε “ 10´3 ε “ 10´5 ε “ 10´7

θ 0.1 1 10 0.1 1 10 0.1 1 10 0.1 1 10

th 6 5 0 10 5 0 0 0 0 0 0 0
ts 0 1 6 6 11 16 26 25 20 30 25 20
td 0 0 0 0 0 0 0 1 6 6 11 16

Cost 0.27 0.31 0.51 0.38 0.46 0.53 0.55 0.56 0.65 0.64 0.70 0.76

‚ Type 3. Exponential decay[22, Sec. 7.3.1]. We generate random orthogonal

matrices U, V P Rnˆn from the Haar distribution, as in (5.2.30), and define

A “ UDVT, D “ diagpIr, 10´p, 10´2p, . . . , 10´pn´rqpq. (5.3.7)

We take n “ 500, r “ 100 and p “ 0.1.

In Tables 5.3.1, 5.3.2, and 5.3.3, pth, ts, tdq denote the number of iterations in half,

single, and double precision respectively. We use (5.3.6) for the choice of the ε j, with

the values for the global tolerance ε indicated in each table. For each matrix type we

choose three θ values: 0.1, 1, and 10. In all experiments, the mixed precision and

fp64 algorithms satisfy the global tolerance ε with a comparable final error. For the

same values of θ, the mixed-precision and fp64 algorithms always require the same

number of iterations.

We have also included the reduction in computational cost for each set of results,

given as a number between 0 and 1, where we are taking the cost of an equivalent

number of fp64 iterations to be 1. To work out this cost we assume a ratio of 1 : 2 : 4

for the costs of fp16, fp32, and fp64 arithmetics. We take the operation count of

computing C “ AB with A P Rmˆn, B P Rnˆr to be 2mnr flops, and the cost of

computing a QR factorization to be 2n2pm´ n{3q flops for A P Rmˆn[5, Chap. 1], [9,

App. C]. For iteration i of Algorithm 5.6 this gives 10mnb ` 6b2pm ´ b{3q flops at

precision uj, and 4pi´ 1qmbr` 2b2pm´ b{3q flops at precision u1. The “Cost” values
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Table 5.3.2: Iteration counts for experiments with Type 2 matrices with various relative tolerances ε and
choices of θ.

ε “ 10´1 ε “ 10´2 ε “ 10´3 ε “ 10´4

θ 0.1 1 10 0.1 1 10 0.1 1 10 0.1 1 10

th 10 8 0 9 1 0 2 1 0 0 0 0
ts 0 2 10 2 10 11 10 11 12 18 18 13
td 0 0 0 0 0 0 0 0 0 0 0 5

Cost 0.28 0.33 0.52 0.32 0.50 0.52 0.48 0.50 0.52 0.53 0.53 0.66

Table 5.3.3: Iteration counts for experiments with Type 3 matrices with various relative tolerances ε and
choices of θ.

ε “ 10´1 ε “ 10´3 ε “ 10´5 ε “ 10´7

θ 0.1 1 10 0.1 1 10 0.1 1 10 0.1 1 10

th 11 9 0 2 1 0 0 0 0 0 0 0
ts 0 2 11 11 12 13 15 10 4 6 5 4
td 0 0 0 0 0 0 0 5 11 11 12 13

Cost 0.28 0.32 0.52 0.49 0.51 0.52 0.53 0.69 0.87 0.83 0.86 0.89

in the table are then worked out using the specific iteration counts and assumed cost

ratios .

We see that the mixed precision iterations can lead to computational gains. Smaller

values of θ leads to better performance of Algorithm 5.6, as it performs a greater

proportion of the operations in low precision while still satisfying the final tolerance.

We have found θ “ 0.1 to be an appropriate choice in our experiments.

Under the assumed cost ratios for fp16, fp32, and fp64, for certain choices of θ and

ε we can expect the mixed-precision algorithm to be at least twice as fast as the fp64

algorithm.
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5.4 concluding remarks

We have addressed the question of how rounding errors affect the exact arithmetic

error bounds for randomized low rank matrix approximating. Our key findings for

the fixed rank problem are summarized by the leading order rounding error terms

in Table 5.2.1. For the power iteration (Algorithms 5.2 and 5.4), the probabilistic

error bound is proportional to m1{2ku, so under the assumptions of probabilistic

error analysis the effects of rounding errors will be negligible if m1{2ku is sufficiently

smaller than the error }pI ´ QQTqA}F for exact arithmetic. For IEEE half precision

arithmetic (fp16), for which u « 4.88ˆ 10´4, the rounding error bound could well

dominate unless m is small.

We proposed in Algorithm 5.6 an algorithm that exploits arithmetics of different

precisions. It gradually decreases the precision of the arithmetic as the algorithm

proceeds, exploiting the fact that as the approximation error decreases we need less

precision in the arithmetic. Our experiments showed potential benefits, since the low

precision iterations will have lower arithmetic, energy, and memory costs than higher

precision ones.
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A P P E N D I X

5.a probabilistic error analysis

To extend the worst-case analysis to the probabilistic case, we simply need to replace

any use of the worst-case versions of the rounding error results with their stated

probabilistic versions. This analysis is reproduced below. There are no meaning-

ful differences beyond the worst-case and probabilistic distinction and the reduction

in error constant that follows. For this appendix, we operate as if all assumptions

needed for probabilistic error analysis hold. There is still future work to be done

refining the assumptions mentioned in Chapter 4. To avoid repetition these assump-

tions are not stated in any of the theorems that follow. We carry out a first-order

analysis, so Opu2q terms are omitted.

We can first obtain an error bound for the QR factorization performed on the matrix

Y “ AΩ. This is an analogue of Lemma 5.1.

Lemma 5.4. Let Y “ AΩ, where A P Rmˆn with m ě n and Ω P Rnˆk, where k ď n.

Householder QR factorization of the computed pY produces a computed upper triangular pR

satisfying

Y`∆Y “ rQpR, }∆yj}2 ď pγnpλq ` c1λ
?

kγmpλqq}A}F}ωj}2, j “ 1 : k, (5.A.1)

where rQ P Rmˆk has orthonormal columns and ωj is the jth column of Ω.

143
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Proof. From (5.2.25) we have pY “ Y`∆Yp1q, where

}∆yp1qj }2 ď γnpλq} |A||ωj| }2 ď γnpλq}A}F}ωj}2. (5.A.2)

By (5.2.27), Householder QR factorization of pY yields pY `∆Yp2q “ rQpR, where rQ has

orthonormal columns and

}∆yp2qj }2 ď c1λ
?

kγmpλq}pyj}2 ď c1λ
?

kγmpλq
`

}yj}2 ` γnpλq}A}F}ωj}2
˘

.

Writing ∆Y “ ∆Yp1q `∆Yp2q and using }yj}2 ď }A}F}wj}2 gives (5.A.1).

From [3, Lem. 4.3] the matrix pB computed on line 1 of Algorithm 5.1 using the

factored form of Q satisfies

pB “ rQT A`∆A, }∆A}F ď c2λ
?

kγmpλq}A}F.

The matrix pU from line 3 of Algorithm 5.2 computed using the factored form of Q

satisfies

pU “ rQ rU `∆U, }∆U}F ď c3λ
?

kγmpλq}
rU}F “ c3λkγmpλq.

Hence

A´ pUΣVT “ A´ rQ rUΣVT ´∆UΣVT

“ A´ rQpB´∆UΣVT

“ pI ´ rQ rQTqA´ rQ∆A´∆UΣVT

“ pI ´ rQ rQTqA` E, (5.A.3)
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where

}E}F ď c2λ
?

kγmpλq}A}F ` c3λkγmpλq}ΣVT}F

“ c2λ
?

kγmpλq}A}F ` c3λkγmpλq}
pB}F

ď c2λ
?

kγmpλq}A}F ` pc3λkγmpλq `Opu2qq}A}F

“ pc4λ
?

kγmpλqp1`
?

kq `Opu2qq}A}F. (5.A.4)

For the case of the power iteration, the extension is simple. Introducing the exact

Q, we rewrite this equation as

A´ pUΣVT “ pI ´QQTqA` pQQT ´ rQ rQTqA` E. (5.A.5)

We have

}A´ pU pΣ pVT}F ď }pI ´QQTqA}F ` }pQQT ´ rQ rQTqA}F ` }E}F, (5.A.6)

where we have already bounded }E}F probabilistically in (5.A.4) and }pI ´QQTqA}F

is bounded by the analysis in [6, sect. 9.3].

We note the probabilistic analogue of (5.2.20).

Y2q`1 `∆Y2q`1 “ rQpR2q`1,

}∆Y2q`1}F ď k1{2prγnpλq ` c5λ
?

kγmpλq `Opu2qq}A}F (5.A.7)

Following the analysis as in Section 5.2.1, we obtain

FY2q`1 “ QQTY2q`1 ´ rQ rQTY2q`1 “ pI ´ rQ rQTqY2q`1

“ ´pI ´ rQ rQTq∆Y2q`1. (5.A.8)
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Combining (5.A.7) and (5.A.8) gives

}pQQT ´ rQ rQTqA}F “ }FA}F “ }FAQ2q}F “ }FY2q`1}F

ď }∆Y2q`1}F ď k1{2pγnpλq ` c5λ
?

kγmpλq `Opu2qq}A}F,

combined with (5.A.4) gives Theorem 5.3

To see the reduction in leading rounding error constant for the basic method, note

that the leading rounding error contribution in Lemma 5.4 is reduced to
?

mku, so

the only change is a reduction in the contribution of }∆Y}F in (5.2.15), which car-

ries through to reducing the overall leading order contribution to Oppmnq1{2k3{2uq in

(5.2.16).
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6 C O N C L U S I O N

It has been well known for some time that the dimensional constants in rounding

error bounds can, in all likelihood, be replaced by something like their square root.

However, the two trends of ever increasing problems sizes and seemingly ever de-

creasing precisions meant that it became vital to replace this rule of thumb by some-

thing more rigorous.

In Chapter 3, we provided a detailed error analysis of stochastic rounding. Cru-

cially, we showed that the rounding errors produced by stochastic rounding are mean

independent. By relaxing the assumption of independence of rounding errors from

[2] to mean independence, we developed error bounds for inner product based algo-

rithms where worst case bounds can be replaced by their square root. This showed

that for stochastic rounding, the rule of thumb is a rule. This helps to highlight

the benefits of using stochastic rounding in actual computation, and the references

in Chapter 3 to its use and implementation in hardware show the scientific commu-

nity are interested in it. More central to this thesis however, is its theoretical use in

providing informative error bounds.

In Chapter 4, we used this same model of rounding errors to analyse Householder

QR factorization. We again observed the same square rooting of dimensional con-

stants. The analysis for this case was more involved than Chapter 3, in particular

requiring the use of a matrix concentration inequality [3] where previously we had

only required scalar results. Extending our results to other orthogonal transforma-

tion based computations, and having covered inner-product based computations in

149
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Chapter 3, showed that the square rooting effect is widespread throughout numerical

linear algebra.

In Chapter 5, we considered the problem of low rank matrix approximation. We

first considered the randomized SVD procedure made famous by [1]. Typical er-

ror bounds for this procedure assume that any errors incurred by the floating-point

arithmetic will be swamped by those of the randomization process. We were able to

derive both worst-case and probabilistic bounds for this algorithm. Using our prob-

abilistic bounds as guidance, we then devised a mixed-precision randomized SVD,

demonstrating potential performance gains in speed and memory without any loss

in accuracy.

The field of mixed-precision computation, and particularly mixed-precision nu-

merical linear algebra, is truly thriving. There are endless possibilities for tuning and

altering existing algorithms, as well as devising brand new ones that make the best

use of the floating-point formats being offered by the state of the art hardware. Pos-

sibilities for future work include exploring more applications for stochastic rounding

and identifying scenarios where its favourable rounding properties are particularly

useful, as well as investigating the numerical consequences of different possible im-

plementations of stochastic rounding. Extending our ideas about mixed-precision in

the randomized SVD to other randomized algorithms is also an area of great interest,

particularly as the inherent approximation error in these algorithms gives us a lot of

leeway with the precision used. By devising rigorous yet informative probabilistic

error bounds, we hope these will have a positive impact on numerical analysts when

devising ever faster algorithms that are still, in all likelihood, accurate.
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