357 research outputs found

    Comparative studies of computation tools for moving force

    Get PDF
    Existing techniques to identify moving forces based on traditional finite element method (TFEM) is subject to a large number of elements with detailed description of a structure, which makes modeling complicated. A new modeling method for a vehicle-bridge system called wavelet finite element method (WFEM) is presented in this paper. It makes use of a multi-scale analysis whereby detailed description can be achieved to overcome this problem. The shape function of WFEM is formed by a scale function in a wavelet space and by a transformation matrix to connect the wavelet space to the physical one. To evaluate the properties of WFEM, simulations of two moving forces on a simply supported and a continuous bridge are conducted with subsequent comparison with TFEM. To smooth the noise and large fluctuations on the boundaries of the identified results in the time history, the first-order Tikhonov regularizations combined with the dynamic programming technique are adapted and compared with the zeroth-order Tikhonov regularization. White noise is added to the simulated dynamic responses. Some parameter effects, such as vehicle bridge parameters, measurement parameters are also considered. Numerical results demonstrate the WFEM method and the first-order Tikhonov regularization method to be effective for moving force identification. The first-order Tikhonov regularization has the property of smoothing noise and avoiding large fluctuations on the boundaries. Meanwhile, the parameters analyzed affect the identified results to some extent

    Automated Experimental Modal Analysis of Bladed Wheels with an Anthropomorphic Robotic Station

    Get PDF
    Experimental modal analysis is challenging when the component has a highly three-dimensional shape, since a great number of measurement points are needed with accurate positioning. An anthropomorphic robotic station is proposed to automate this analysis, specifically on bladed wheels. This provides a reliable control of the spot location and of the beam orientation of a Laser Doppler Vibrometer. The modal frequencies were obtained along with the vibrational shapes and their spatial resolution was managed by exploiting the programming flexibility of the robotic station. The SAFE diagram was easily obtained by measuring a single point for each sector, and an extension of this diagram was demonstrated for the splitter blade wheels. The use of multiple measurement points, for each wheel sector, significantly improved the characterization of the modes having the same number of nodal diameters, hence the same shape coordinate on the SAFE diagram

    The diagnostic analysis of the fault coupling effects in planet bearing

    Get PDF
    The purpose of this paper is to investigate the fault coupling effects in the planet bearing as well as the corresponding vibration signatures in the resultant vibration spectrum. In a planetary gear application, the planet bearing can not only spin around the planet gear axis, but also revolve about the sun gear axis and this rotating mechanism poses a big challenge for the diagnostic analysis of the planet bearing vibration spectrum. In addition, the frequency component interaction and overlap phenomenon in the vibration spectrum caused by the fault coupling effect can even worsen the diagnosis results. To further the understanding of the fault coupling effects in a planet bearing, a 34° of freedom planetary gear model with detailed planet bearing model was established to obtain the dynamic response in the presence of various bearing fault scenarios. The method of modelling the bearing distributed faults and localized faults has been introduced in this paper, which can be further incorporated into the planetary gear model to obtain the faulted vibration signal. The “benchmark” method has been adopted to enhance the planet bearing fault impulses in the vibration signals and in total, the amplitude demodulation results from 20 planet bearing fault scenarios have been investigated and analyzed. The coherence estimation over the vibration frequency domain has been proposed as a tool to quantify the fault impact contribution from different fault modes and the results suggested that the outer raceway fault contributes most to the resultant planet bearing vibration spectrum in all the investigated fault scenarios

    14th Conference on Dynamical Systems Theory and Applications DSTA 2017 ABSTRACTS

    Get PDF
    From Preface: This is the fourteen time when the conference “Dynamical Systems – Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and the Ministry of Science and Higher Education. It is a great pleasure that our invitation has been accepted by so many people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcome nearly 250 persons from 38 countries all over the world. They decided to share the results of their research and many years experiences in the discipline of dynamical systems by submitting many very interesting papers. This booklet contains a collection of 375 abstracts, which have gained the acceptance of referees and have been qualified for publication in the conference proceedings [...]

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    SIRM 2017

    Get PDF
    This volume contains selected papers presented at the 12th International Conference on vibrations in rotating machines, SIRM, which took place February 15-17, 2017 at the campus of the Graz University of Technology. By all meaningful measures, SIRM was a great success, attracting about 120 participants (ranging from senior colleagues to graduate students) from 14 countries. Latest trends in theoretical research, development, design and machine maintenance have been discussed between machine manufacturers, machine operators and scientific representatives in the field of rotor dynamics. SIRM 2017 included thematic sessions on the following topics: Rotordynamics, Stability, Friction, Monitoring, Electrical Machines, Torsional Vibrations, Blade Vibrations, Balancing, Parametric Excitation, and Bearings. The papers struck an admirable balance between theory, analysis, computation and experiment, thus contributing a richly diverse set of perspectives and methods to the audience of the conference

    Novel Approaches for Structural Health Monitoring

    Get PDF
    The thirty-plus years of progress in the field of structural health monitoring (SHM) have left a paramount impact on our everyday lives. Be it for the monitoring of fixed- and rotary-wing aircrafts, for the preservation of the cultural and architectural heritage, or for the predictive maintenance of long-span bridges or wind farms, SHM has shaped the framework of many engineering fields. Given the current state of quantitative and principled methodologies, it is nowadays possible to rapidly and consistently evaluate the structural safety of industrial machines, modern concrete buildings, historical masonry complexes, etc., to test their capability and to serve their intended purpose. However, old unsolved problematics as well as new challenges exist. Furthermore, unprecedented conditions, such as stricter safety requirements and ageing civil infrastructure, pose new challenges for confrontation. Therefore, this Special Issue gathers the main contributions of academics and practitioners in civil, aerospace, and mechanical engineering to provide a common ground for structural health monitoring in dealing with old and new aspects of this ever-growing research field
    corecore