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Abstract. Existing techniques to identify moving forces based traditional finite element
method (TFEM) is subject to a large number of elemevith detailed description of a structure,
which makes modeling complicated. A new modelinghoe for a vehicle-bridge system called
wavelet finite element method (WFEM) is presentethis paper. It makes use of a multi-scale
analysis whereby detailed description can be aeldige overcome this problem. The shape
function of WFEM is formed by a scale function invavelet space and by a transformation
matrix to connect the wavelet space to the physioal To evaluate the properties of WFEM,
simulations of two moving forces on a simply sugedrand a continuous bridge are conducted
with subsequent comparison with TFEM. To smooth ribese and large fluctuations on the
boundaries of the identified results in the timstdry, the first-order Tikhonov regularizations
combined with the dynamic programming technique adapted and compared with the
zeroth-order Tikhonov regularization. White noisedded to the simulated dynamic responses.
Some parameter effects, such as vehicle bridgangdeas, measurement parameters are also
considered. Numerical results demonstrate the WHadlhod and the first-order Tikhonov
regularization method to be effective for movingct identification. The first-order Tikhonov
regularization has the property of smoothing nasel avoiding large fluctuations on the
boundaries. Meanwhile, the parameters analyzedtafie identified results to some extent.

Keywords: wavelet, multi-resolution, scale function, tramshation matrix, dynamic
programming technique, first-order Tikhonov regiziation.

1. INTRODUCTION

Most existing moving force identification method® d&ased on traditional finite element
method (TFEM) for its ripe theory, simply undersdosature and developed software support.
Some new finite element methods were proposed tigceeluding generalized conforming
element method [1], spline finite element methofl [Reshless finite element method [3] and
others [4]. During the last few decades, a nevtdielement method was developed - wavelet
finite element method (WFEM). It aims at solvingoplems with singularity like greatly
changed gradient in numerical calculation and @agkich can not be overcome based on
TFEM. The WFEM not only can well deal with complied boundaries the same as TFEM, but
also provide a refined algorithm with high precisiaccording to its unique multi-scale and
multi-resolution features. The WFEM was formallpbght forward by KO [5] as early as 1995,
and it was applied for solving simple mathematezgliations. Spline wavelet finite element was
subsequently constructed by CHEN [6-7] to analygeadhic problems in truss and membrane
structures. B-spline wavelet on the interval (BSWés developed by HE et al [8-11], vibration
analysis [12-13] and simply damage diagnosis [1jelbdifferent structure models were done
based on it.

Generally speaking, it is still in the beginningget of WFEM. Most of the studies focused on
the benefit of the positive problems such as demtpa model with accuracy based on WFEM,
and analyzing of the dynamic behavior of vibrattonensure the correctness of the model.
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However, it is without meaning for an engineerimglgem if such a theoretical model can not
solve negative problems or can not be superidngarodel based on TFEM.

Dynamic moving force is an important aspect ofgha@blem of bridge-vehicle system, as not
only for the bridge design and the management ghway pavement, but also for their
monitoring and retrofitting in the transportatiomgieering. Calculation or direct measurement
of the interaction moving force between vehicle #ma bridge is usually subject to bias and is
expensive, e.g. the Weigh-in Motion systems [16}hke recent years, great effort has been made
for moving force identification of bridge-vehiclgsgem [17-30], and acceptable accuracy was
yielded to meet this need. The identification pemblwas resolved by time domain method
(TDM) [17-18], (time-frequency domain method) TFDA9] and others [20-21]. The
theoretical basis of the methods was categorizedtimo types, i.e. the exact solution method
(ESM) [22] and TFEM [18, 23-24]. The bridge was geily modeled as a Euler-Bernoulli
beam [25] or Timoshenko beam [26] or an orthotragictangular plate [23, 24]. The section
could be uniformed [25] or non-uniformed [26]. Téan could be single [27] or multi [25-26].
The bearings were stiff [27] or elastic [28]. Tharere also many studies on comparison of these
methods and model conditions [29-30], in this papemparison are not all the same as those
ones.

Such inverse dynamics problem, concerned with stienation of unknown applied moving
forces based on measured data, falls into a clagsoblems called ill-conditioned because the
solution is extremely sensitive to the noise thaswalways present in the measurements. One
successful approach to these problems was thehzerdér Tikhonov regularization, which was
also called the least squares error method [31aB8] was applied to provide bounds to the
identified forces in the time domain. But for me@snents polluted with high level noise, the
identified results were coarse [26] and with larfgctuations. The first-order Tikhonov
regularization was proposed by TRUJILLO [33-34] @rhicould make sure the continuity of
identified parameters and smooth the data. Hengllibe employed to optimize the identified
moving forces compared with zeroth-order reguldigzetechnique.

In this paper the WFEM is applied for modeling ehicle-bridge system and subsequently
compared with TFEM. The validations of the propeasfythe proposed modeling method are
demonstrated by identifying the moving forces on kinds of vehicle-bridge system models: a
simply supported beam model and a continuous bnidgeel, polluted with noise of different
levels, employing different dynamic measurementadatrranging different locations and
number of sensors. There are so many methods feingnéorce identification [17-21], here the
dynamic programming technique [35] and Tikhonowitagzation method are adapted for the
moving force identification in the work. Numericasults demonstrate that the WFEM yields
similar or more accurate results with respect ® TREM under the same condition, and the
scales of WFEM can be conveniently changed andh@ee different identification precisions,
meanwhile the first-order Tikhonov regularizatiomsha great benefit for avoiding large
fluctuations and smoothing noise distinctly on deatinuous bridge model polluted with high
level noise.

2. THE VEHICLE-BRIDGE SYSTEM

In practice the bridge-vehicle system is a very plicated system. Normally, the bridge
decks are modeled as beams or orthotropic rectangldtes. The use of simplified models is
more effective to establish a clear connection betwthe moving force and the bridge response
than a complex model. Thus Euler-Bernoulli beamsyliich the effects of shear deformation
and rotary inertia are not taken into account arpleyed in this paper. The vehicles are
simulated as a two-axle moving forces with a figéstance for simple analysis of vehicle-bridge
interaction.
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3. WFEM MODEL

3.1 Derivation of Transformation Matrix

In TFEM, piecewise polynomial and spline functioe ased as the interpolation function. In
WFEM, (B-spline wavelet on the interval) BSWI idesgted for constructing wavelet elements as
an interpolation function in the wavelet space ifsrdefinite analytic expression in sections
compared with other kinds of wavelet function.

In order to satisfy the continuity and compatilyilitf displacements in the boundaries, and to
conveniently introduce boundary conditions, itée@ssary to transform the system stiffness and
mass matrix from wavelet space to physical spameespondingly transform the DOFs of each
element from wavelet parameters to physical unknéeid function. So, it's the basement of
WFEM to bring in a transform matrix, which is a kagint for elemental construction.

An arbitrary unknown field function is expresseda@kws in wavelet space:

- 221a' g mk (€)= dfac ) 1)

k=—m+1
in which, aez[a’m,_m a'm,_m+2--~a'm,2v_1]T indicates a column vector of wavelet

interpolating parametersp = [¢’ m-mii(&) ¢ mome2(&)-g" m,2‘—1(§)] indicates a row vector of
scale function withm order andr scale.

On account of the continuity and compatibility retboundaries of the element based on a
Bernoulli-Euler beam model, two DOFs including theknown field functionw and the
derivation of w should be considered, while only lateral displagets of the nodes within the
element were taken into account. So there m#e3 DOFs in one wavelet finite element, and
the physical DOFs could be defined by:

T

{we}{m&fl) I 1r_p we) W) wig) 2 |

le dg le dg
where e denotes an elementl.i%;)h?:fl and li%f)wsz denote the DOFs of
rotation angles on the boundaries.
Substituting Eq. (1) withw(gi) on different nodes into Eq. (2), a formulationrthe given

by:
wef=[Re e} ®)

in which matrix lReJ is defined by:

e

T

[Re]{df(él lldq;f)lé L0 - ) O %fﬁ Gl @

Substituting Eq. (3) into Eqg. (1), an expressicentshould be given as:
e -1 e e e
we)=o(Re] e )= nefoe] ©)
in which,
N (S 6)
N¢ is the shape function of the wavelet finite elemen
Rewrite Eq. (6) with:

[r]- (=) ™
the relationship between wavelet space and physi@ade is obviously obtained by:
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N°® =ofr*] (8)
in which, transform matrix[Te] connects the scale functio® in wavelet space with the
shape functionN® of wavelet finite element in physical space.

3.2 Construction of a beam element based on WFEM ing BSWI

For a Euler-Bernoulli beam, the rotational angleejsresented by a first-order derivation of
the laterabisplacement according to the theory of classiealding beams. The potential energy
functional of such a beam element is given by:

b 2 \? b
El [ d°w dw
ow)= |—| - dx— |g(x)wdx— > Pwx )]+ > M, | — 9
)= [ 5 - b S ) T B ©
where El is the bending stiffnessw(x) is the mid-plane deflection function of the beam
element. q(x) denotes the distributed load?, denotes the concentrated load, denotes

the concentrated bending moment, is the position coordinate of action point in glemental

solving domain,[i""j means the value of rotation angle at the actiontd the concentrated
dx J,

bending moment.

Substituting Eqg. (9) into Eq. (5) after the solvithgmain ; has been mapped into standard
solving domain Q.. Assuming dII=0 according to the variational principle, the sotyin
equation in one element can be expressed as:
ke o= 1P+ P2 o P | a0)
in which, the stiffness matrix of each elementefirkd as:

El o d2@" d?®
K el = e € 11

the force vector under concentrated load is exprkas:
{PeWJ }zzpj([-re])T(DT(fj) (12)
i

The deduction of elemental mass matrix in the wetvdbmain is similar to that for the
stiffness matrix based on the potential energyasgmtation of the system giving:

oo ) orofr-he &

in which, p means the density of materialA means the square of cross-section of the beam

model.

Since Eq. (11) and Eqg. (15) are obtained, whiche give expression of each physical
parameter based on wavelet space using BSWI iram lidement, the consequent processing
was the same as TFEM, considering that:

=3 ], [<]=Xlke] [el=alml+ k],
= (P}l d o )= Do)

i=1
where s represents the total number of elementsg are parameters decided by the first
several natural frequencies of the beam model kﬂdindicates a Rayleigh damping matrix.
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{f} denotes the vector of actual moving forces :{Mﬂi signifies a time-varying location
matrix relating to the moving forcedM ] ,[C] and [K] represent global system mass,
damping and stiffness matrices respectively.

4. METHOD FOR MOVING FORCE IDENTIFICATION
4.1 State-space equations:

Using the state-space formulation, the equilibriequation of motion was converted into
discrete forms using standard exponential repratientas follows [35]:

X} =[FFIX}; +[6] .11}, (14)
0 [1]
-MIPPK] -[MIP[e]], o

IR R

in which [5] represents the dynamic characters of the systeen jimeans the jth time step of
computation, NN is the DOFs of the total system amfl is the number of the acting moving
forces.

In the general formulation of the inverse probleih,was possible to replace the
regularization term with the derivative of unknofances instead of the forces themselves [33].
Eq. (14) then is rewritten as follows for tfiest-order system:

{)_(}Hl =[‘]]j+l{>?}j +M]{f }j (15)

in which, {X}, , = {{X}‘”} is a vector of state variables with dimensifnn+nf )1, {f} is

where [FF]= e[K*]At 2nnx2nn [K * ]: |:

0

and [G]=[G |um.om {[M I

{a

the first-order derivative of the unknown forceshwdimension (nf )x1 with:

o= ]

The moving forces would be identified from Eq. (1&he system matrices are known.
4.2 Problems and identified methods

The aim of this paper is to find a value of thecfog term {f} to best match the measured
forces. In practice, it is not possible to measalteof the displacements, velocities or the
accelerations, only certain combinations of theéaldes {)7} are measured. The simultaneous
measured vector could be defined by:

{Z}Znle = [Q]ZHSXZHI’] {)_(}Znnxl (16)

where the number of simultaneous measured pditgsis usually much less than the number of
DOFs of the system. In this condition, the problefmthis paper is solved by set up of a
non-linear least-squares minimization procedureerrefl to as the zeroth-order Tikhonov
regularization.

Therefore, the first-order Tikhonov regularizatiman be deduced upon the first-order system
as follows:

E(X, 1,)=2[iz}, - [Ix. ) ANz], - lix)+ (] [elf )] )
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In which (x,y) denotes the inner product of two vectaxsand y. [A] is usually a
nsxns identity matrix, and [B] is a nf xnf diagonal matrix containing the optimal

regularization parametert . [A], [B] are weighting matrix andB] has the effect of

smoothing the identified forces.

In order to obtain the identified moving forces fmnimizing the value of errorkE in Eq.
(17), the dynamic programming technique and Bellsxd@rinciple of Optimality [36] are
applied to find out the minimum value optimized day optimal regularization paramefer A
derivative formula using Bellman’s Principle of @pality about Eq. (17) is given by:

g,,(0)=min[(z},, - [Qlix}, JAkiz}, .~ [l )+ (B .
+ gj([‘]]{y(}u +[W]{f }1—1) (18)

{f' }j and g; present the optimal derivative of the force andino@l cost respectively. The
optimal cost will be obtained by an approprie{u'e}j, which is determined by the optimal
regularization parametef . Eq. (18) can be expressed by:
9,(X)=a; +({X}is}; )+ (X} [R], (%) (19)
where the variables are defined by:
a; =(z},.[Akz})).is}; = -2Q]"[Akz}, . [R]; = [Q],"[Al], (20)

The iterative solution starts at the end of thecpss, wherej = N . Then the subsequent
variables in the j —1th step are expressed by variables in thih step. Once all the variables

are determined in the backward sweep, the optiresivative force will be deduced and
expressed by these variables in a forward sweep as:

)=l T I )T [0 5 @

Furthermore, the moving forceéf }j will then be obtained from Eq. (15).

As we all known L-curve was an efficient and acteiraethod seeking for the location of the
optimal regularization parameter [31]. Thus, thkofeing norms will be plotted to produce the
L-curves for the first-order Tikhonov regularizatio

£ = (12}, - QUK [alfz, ~[QNK ). F 2 =3 (. 11,) @2

i=1 i=1

It is clear that when the system is at rest, thit@alroptimal condition is zeros for the upper
part of the state vectob_( }1 and the initial value for the unknown forces ie thwer part of the
state vector{)_( }1 can be found by averaging the value of the idietimoving forces without

the beginning and ending parts in a guess tristhefestimation procesklowever if the bridge
wasn't at rest at the beginning, the initial optis@ndition would be given by [34]:

{x} 4
{{f }1} = _[R]l {5}1/2 (23)
from Eq. (19).
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5. SIMULATION CASES AND ANALYSIS
5.1 Identification of moving forces from a simply spported beam

In order to check the correctness of the above-imeed modeling method, two time-varying
moving forces are simulated as follows:

P,(t) = 20001+ 0.sin(107t)+ 005sin(401t))
P, (t)= 2000@1- 0.1sin(107t)+ 005sin(402t))

x() Pi(t)
Pa(t)

v i
AT /77%%77 B

| L |
I \

Fig. 1. Vehicle-Bridge model under moving forces

The two forces represent a vehicle with a staticgmweight of 40000N, and with a fixed axle
spacing of 4-meters, moving with a constant vejoaft40 m/s over the bridge.

A 40-meters simply supported Bernoulli-Euler beanthwa bending stiffness ol
=1.274% 10" Nm? is modeled as the bridge, with a length density.ak 10*kg/m. The first
three frequencies of this beam dye3.2 Hz,f,=12.8 Hz and; =28.8 Hz respectively. The
sampling frequency should be selected twice higieefirst five vibration modes and limited by
the computation capacity. Therefore, the optimutueraf 400 Hz is selected as the sampling
frequency during the calculation. The first thresemping ratios weres, =0.02, £,=0.02 and

¢,=0.04 respectively. The model system has a Rayldahping and the corresponding two
parameters arer =0.64344 andf = 3.977% 10 respectively.

The bridge model is divided into 8 TFEM elementdolitusually is enough for the required
precision of identified moving forces. To figuretdhe advantage of the WFEM compared with
the TFEM, only 1 WFEM element is chosen for ideatifion. Scales 3 and 4 are employed to
validate the multi-scale property of WFEM.

According to the simulated forces, the simulatedadyic responses at different locations of
the beam will be calculated using Newmark methagpeetively, which are forward problems.
White noise is added to the calculated responsesnialate the polluted measurements. To
evaluate the modeling method and the identificatimouracy, the relative percentage error
(RPE) between the true and identified forces ateutated for different models, identification
methods or different location and number of senasrollows:

Z| flrue - fidentified|
2. fuee

In Eq. (24), the true force is the simulated tine@ywng moving forces and the identified
force will be obtained by solving inverse problesstated in Eq. (14) or Eq. (15) depending on
different regularization methods.

Error =

x 100% (24)

5.1.1 First-order Tikhonov regularization procedure compared with zeroth-order one

The displacements and velocities are simulated doyriNark method as the applied dynamic
responses, and seven sensors are equally spacgadtaobeam.

With zeroth-order and first-order Tikhonov regutation methods, figures 2 and 3 show the
identified moving forces based on TFEM and WFEM giedvith 10 percent noise level, Tables
1 and 2 give the RPE results between the true lanélentified forces applying different noise
levels, different modeling methods and differeratias with WFEM.
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true.
—— TrEMS

— — WFEM1(m=4,=3)
—— WFEM1(m=4,=4)

1 0 02 04 06 08 1
Time(s) Time(s)

Fig. 2. Identification with 10% noise with zeroth-ordekfionov regularization

x10* x10*

Force(N) f2

true
—— TFEMS

— — WFEM1(m=4,=3)
—— WFEM1(m=4,=4)

0 02 04 06 08 1 0 02 04 06 08 1
Time(s) Time(s)

Fig. 3.ldentification with 10% noise with first-order Tikhov regularization

Table 1.RPE values in two forces identification (%) wittrath-order Tikhonov regularization

Errors (%)
Noise level (%) 0 5 10
f TFEM 8 elements 9.92 16.46 30.53
1 WFEM (m=4,r=3) 1 element 9.94 16.98  31.59
WFEM (m=4,r=4) 1 element 10.6 15.83 28.97
f TFEM 8 elements 10.11 1455  27.62
2 WFEM (m=4,r=3) 1 element 10.06  14.70 27.73

WFEM (m=4,r=4 1 element 10.48 14.42 26.82

Table 2. RPE values in two forces identification (%) betwéeo regularization methods with WFEM

WFEM (m=4, j=3) Error (%)
Noise level (%) 0 5 10
f Tikhonov regularization 9.47 15.09 28.57
! First-order regularization 7.96 8.10 8.47
f Tikhonov regularization 10.55 14.44 26.82
2 First-order regularization 6.38 6.39 6.68

Table 3. Computational time required for the zeroth-ordighdnov regularization solution
Computational time (second)

Noise level (%) 0 5 10
TFEM 8 elements 4.4 4.7 4.8
WFEM (m=4,r=3) 1 element 3.5 4.5 4.4
WFEM (m=4,r=4) 1 element 4.8 4.8 4.8

Table 4. Computational time required for the first-ordekA@nov regularization solution
Computational time (second)

Noise level (%) 0 5 10
TFEM 8 elements 7.7 7.6 7.6
WFEM (m=4,r=3) 1 element 5.1 5.0 5.1
WFEM (m=4,r=4) 1 element 7.9 8.1 8.0
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Tables 3 and 4 note the computational time requireh different modeling methods and
noise levels. From the analysis of the above mpatlofigures and tables, the following
comments are given:

(1) From Figs. 2 and 3, the identified black anckgdines are close to the true value ones under
both zeroth and first-order Tikhonov regularizatimethods. It indicates that it is feasible for
WFEM model to identify moving force using displacemts and velocities as simulated dynamic
responses.

(2) The errors between the identified and truedsrdecrease with the increase of the scales of
WFEM in Table 1, when the noise is polluted int@ tsimulated dynamic responses. This
indicates that it's capable for the property of tinstale of WFEM to affect the precision of
force identification.

(3) The RPE values are similar under WFEM 1 elemeotlels compared with TFEM 8
elements model. It means the WFEM takes the adgaradmuch fewer elements compared to
TFEM for a similar identification precision.

(4) When the scales are adopted from 3 to 4, momgpatation effort is needed for moving force
identification. Comparing the computation time beén TFEM and WFEM, it reveals that
similar or less computation efforts are needed &8M for similar identification accuracy.

(5) Figs. 2 and 3 provide the identified movingcies using the simulated dynamic responses
polluted with a high level noise of 10%. The resulbs only illustrate the first-order Tikhonov
regularization has a strong capability of avoidthg large fluctuations on the boundaries and
smoothing out the high frequency components dutiegdentified force time histories, but also
mean that the first-order Tikhonov regularizati@thnique is noise non-sensitive while the
zeroth-order one is noise sensitive.

5.1.2 Effects of parameters on identification accuacy

Many parameters influence the moving force idesdifion problem and it is necessary to
study their effects on the identification metho8eme effects of the main parameters, such as
bridge-vehicle parameters (vehicle speed) and meamnt parameters (frequency,
measurement number and stations), are reported here

For vehicle speed:

Scale 3 and 4 of WFEM are chosen for modeling witlement and the dynamic responses
of displacements and velocities with and withouseaare used for moving force identification
respectively. Fig. 4 and Fig. 5 reveal that thenidieation RPEs vary with the vehicle speeds.
Some recommendations during the considerationeddparea are:

(1) When the dynamic responses are without ndigeRPE values of both the two axle loads are
varying slowly. When the vehicle speed increases,RPE of the identified front axle (light
axle) load rises while the RPE of the rear axl@a{lyeaxle) load drops.

(2) When the dynamic responses are with noisebéis¢ RPEs are obtained under the vehicle
speed with 20 m/s on such models. So for the geargineering problem considering noise, the
best identified results of moving forces will bet@bed if the vehicle speed is about 72 km/h for
the simulated vehicle used in this paper. That méla@ best method for achieving the two-axle
vehicle loads which are most close to the real asde monitor the corresponding vehicles
moving on the highway bridges.

For sampling frequency:

Fig. 6 illustrates the effect of sampling frequecythe WFEM and TFEM models with the
zeorth order Tikhonov regularization using dynangisponses polluted with 5% noise. The best
sampling frequency for such a model is around 490THie identified RPEs are divergent when
the sampling frequency is above 480 Hz, while tRERof identified moving force are too large
and unstable when the sampling frequency is todlsMaanwhile, the RPEs on WFEM model
are more sensitive to sampling frequency than ties @n TFEM model.
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Fig. 4. The identification RPEs of the front axle load
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Fig. 5. The identification RPEs of the rear axle load
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Fig. 7 presents the effect of sampling frequencytenWFEM model with the first-order
Tikhonov regularization using dynamic response$uped with 5% noise. The RPESs vary bit by
bit along the increasing of sampling frequency. @amed with Fig 6, it is obvious that the
identification results are nearly non-sensitivestonpling frequency based on WFEM model
with the first-order Tikhonov regularization.

For sensor number and stations:

Scale 4 of WFEM is chosen for modeling with 1 elatrte compare with TFEM 8 elements.
The simulated accelerations are applied as the mignaneasurements with polluted noise
components instead of the displacements and theities, which are much more close to
practical condition. The analysis on force idenéfion results is studied when the number of
sensors changed from three to seven, or only ttaitm of sensors is changed.

X 10 without noise x 10" 10% noise level

F1/N
F1/N

z z
N o
i [y
TFEM8 I TFEM8
— — — WFEM1(m=4,r=4) | — — — WFEM1(m=4,r=4)
1
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
time /S time /S

Fig. 8. The identification results based on TFEM and WFEbdels with different noise levels

Table 5. RPE values with different number and locationarfsors using acceleration responses

RPE (%)
— TFEM 8 elements WFEM (#1=4, r=4) 1 element
0% 5% 10% 0% 5% 10%

fi b Ji b fi b fi b fi b fi b
1_.&"'8_‘7_‘1 2861 | 437 | 293 | 4538 | 3006 | 46.04 | * - * * * *
..3':8.". 28.21 | 35.41 | 28.48 | 36.82 | 28.79 | 37.67 * H o ® - ""
1/2,5/8
1-&:._{3“'_1 2341 | 27.92 | 24.25 | 31.19 | 252 | 33.97 | 234 | 27.94 | 2424 @ 31.2 | 2518 33.98
1/8,
i? 1036 | 997 | 12.71 | 23.79 | 21.17 | 3471 | 109 | 10.34 | 12.82 | 2443 | 21.0 3539
5/8,7/8
1/4,
3/8, - : o —_— e " - " " ” "
112 26.62 | 33.16 | 26.96 | 34.82 | 27.35 | 36.27 : & ¥ ) * !
5/8, 3/
1/8,
}".I._l' 9.91 10,0 | 13.87 | 2489 | 25,78 | 36.85 | 10.50 | 10.45 | 13.5 | 2549 | 2486 37.39
3/4,7/8
Each
1/8 992 | 10.11 | 13.12 | 25.04 | 23.27 | 37.060 | 10.55 | 10.48 | 13.08 | 25.62 | 22.84 | 37.52
location

Note: * denotes RPE values > 50%
497

© VIBROENGINEERING JOURNAL OF VIBROENGINEERING SEPTEMBER2011.VOLUME 13,1SSUE3. ISSN1392-8716



659.COMPARATIVE STUDIES OF COMPUTATION TOOLS FOR MOVINEORCE IDENTIFICATION
QIONG YOU, ZHIYU SHI, S.S.LAW

Zeroth-order Tikhonov regularization is employed $olving the inverse problem. Fig. 8
shows the identification results of moving forcedlyted with different noise levels under both
WFEM and TFEM models with seven sensors. Tablests lihe RPE values with different
numbers and locations of sensors. From the regrdtented the following may be noted:

(1) In Fig. 8 the identified lines of moving forces a®se to the lines of true one. This
indicates that it is successful for the WFEM maebbtain the identification solution with the
simulated acceleration measurements.

(2) The figure and the table show that the RPEashre similar under WFEM 1 element model
compared with TFEM 8 elements model. It signifinattthe WFEM takes the advantage of
much fewer elements compared to TFEM for the simidientification accuracy, when the
location of sensors was properly arranged.

(3) In Table 5 the identification errors of movifgrces with different noise level decreases
totally when the number of sensors increases fram73 When the number of sensors varies to
5, one of the force identification results are elde the ones using 7 sensors. Such results
illustrate that the number of sensors affects deatification RPEs, however it can be cut down
if the location of sensors is with a proper arranggt.

(4) There are RPE values in Table 5 expressedvdseh WFEM model applied. That notes the
identification results with WFEM are much more séws than TFEM to the location of sensors
even if the same number of sensors is adopted.

5.2 Identification of moving forces from a continuais bridge beam

(e PaCtie
(i)
Paltye

[
(@] (@)

| fre |
| =1

Fig. 9. The continuous vehicle-bridge model under movingde

A continuous multi-span beam is used for WFEM miodgeto further prove the studies done
above. The moving forces are arranged along tred dixection of the beam at a speed of 32 m/s,
and separated at a fix distance of 4 m. They geesented as follows consisting of a carrier
force and two other components at higher frequancie
R(t) = 15001+ 0.1sin(10zt)+ 005sin(407t))

P,(t) = 25000(1 - 0.1sin(10zt)+ 0.05sin(40xt))

The two forces simulate a vehicle with a staticsgraveight of 40 kN, similar to the above
one, with the first and second static force beibghd 25 kN, respectively, which will be much
more close to the practical condition.

The bridge is modeled as a three span continuoam b@ver two internal supports, and
simply supported over the two outer supports. Tarameters of the beam de=1.2749% 10"
Nm* and pA=1.2x 10*kg/m. The total length of the beam is 60 m andé¢hgth of each of the

three spans is 20 m. The first three damping valuee taken to be,” =0.02 for all. The first

three vibration modes ark=12.8 Hz,f,=16.4 Hz andf;=24.0 Hz, respectively. Reyleigh
damping is assumed, and the corresponding dampeffjaents are obtained from the damping
and the natural frequencies.

The continuous beam model is equally divided info TFEM elements and 3 WFEM
elements, respectively. Scale 3 of WFEM is chosdigure out the feasibility for moving force
identification on the continuous bridge. The sintethacceleration measurements polluted with
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noise are used for the inverse analysis taken ataufuthe experimental instruments. Seven
sensors are located on the continuous beam, wige thf them equally spaced on the middle
span and others arranged on the 1/4 and 3/4 pusitibthe side spans.

5.2.1 First-order Tikhonov regularization comparedwith zeroth-order one
without noise

x 10° 1% noise

5 ‘ 5
4 I 4
z3 } z3
3 3
[T} J‘/ L2 Iy
e ) M\V@T\J’\N’L&M
0 0
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Fig. 10.The force identification results based on zeratheo Tikhonov regularization with different noise

levels
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Fig. 11.Moving force identification with different Tikhowaregularizations

With zeroth-order Tikhonov regularization, the itéed moving forces polluted with and
without noise are shown as Fig. 10. With the fider Tikhonov regularization, the
identification result is presented in Fig. 11(bjrgrared with the zeroth-order one in Fig. 11 (a).
The comparison RPE values between different regalton methods and noise levels with
WFEM are noted in Table 6. Meanwhile, the compatel effort required for each condition is
also listed out in Table 7. From the results presstbelow, the following observations are made:
(1) In Fig. 10 the identified black and red lines alose to the true ones both with and without
noise. This indicates that it is possible for WFEMdentify moving force using the simulated
acceleration measurements on a continuous beaml.mode
(2) The identified lines of moving forces with WFERIelements are close to the ones with
TFEM 12 elements, especially at the parts of higbgdency components, under both
zeroth-order and first-order Tikhonov regularizatimethods. It indicates that the WFEM takes
the advantage of much fewer elements compared EMT#er a similar identification accuracy,
as the same as on a simply supported beam.

(3) If the simulated dynamic responses are pollutgd a 5% noise level, the identified moving
forces with different Tikhonov regularization metisoare as shown in Fig. 11. The results of
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Fig. 11 (a) notes that the zeroth-order Tikhona@utarization could not avoid the effect of high
level noise, the identification is ill-posed andmabkt loses true values, meanwhile, the
comparison from Fig. 7 (b) illustrates that thestfiorder Tikhonov regularization has a strong
capability to avoid the large fluctuations in theubdaries and the supporting points, and to
smooth out the high frequency components inclutiigh level noise during the identified force
time histories.

(4) As the noise level increases, the RPE valuggase obviously in Table 6 with zeroth-order
Tikhonov regularization. It denotes that the zemttier Tikhonov regularization is noise
sensitive. The errors based on the first-order diildv regularization solution increase relatively
bit by bit with the increasing of noise levels. Thaemarks the first-order Tikhonov
regularization comparatively is noise non-sensitive

(5) Comparison of the computation time between TFan WFEM that the latter requires
slightly more computational effort for similar idéication accuracies. The first-order Tikhonov
regularization takes more computation time compaoegeroth-order Tikhonov regularization
as the cost for a higher precision. In short, thengutational effort for all conditions is
acceptable.

Table 6. RPE values in two forces identification (%) betwé®o regularization methods under WFEM

WFEM (m=4, j=3) Error (%)
Noise level (%) 0 1 5
f Tikhonov regularization 22.21 22.68 51.43
! First-order regularization 8.05 9.14 20.41
f Tikhonov regularization 12.37 16.0 50.67
2 First-order regularization 5.0 5.76 11.77

Table 7.Computation time required for different regulariaatmethods and models
Computational time (second)

Zeroth-order Tikhonov First-order Tikhonov
Noise level (%) 0 1 5 0 1 5
TFEM 12 elements 10.39 8.91 8.88 18.67 15.24 15.14
WFEM 3 elements 14.68 11.14 11.18 21.86 16.80 17.16

5.2.1 Effects of parameters on identification accuacy

Some effects of the main parameters, such as bvidgiele parameters (vehicle speed) and
measurement parameters (frequency), are reported he

For vehicle speed:

Based on the WFEM 3 elements and TFEM 12 elementiemFigs. 12 and 13 shows the
identification RPEs change with vehicle speed usiogeleration dynamic responses with and
without noise. Some comments based on the resulteifigures considering speed area:

(1) When the dynamic responses are without ndigeeRPE values of both the two axle loads are
varying quite slowly.

(2) When the dynamic responses are with noiseaticeptable identification RPEs should be
above 20 m/s, the identification results are mugttelo when the speed is raised.

For sampling frequency:

Figs. 14 and 15 illustrate the effect of sampliregfiency on the WFEM and TFEM models
with the zeroth and first-order Tikhonov regulatiaa respectively using dynamic responses
polluted with 5% noise.

The identification RPEs are unstable and out of tegquirement when the sampling
frequency is too low, and they are divergent whendampling frequency is above 480 Hz with
the zeroth-order Tikhonov regularization in Fig. Gbmparatively, the identification RPEs are
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stable and acceptable when the sampling frequenalyave 250 Hz and the RPEs decrease with
the increase of sampling frequency with the finstes Tikhonov regularization in Fig. 15.

without noise

RPE o frat ade load /N

TFEM12 ||
fitting |
100 - +  WFEMS3 ||
fitting !
0 1
o 5 10 15
speed m/s
Fig. 12.The identification RPEs of the front axle load
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Fig. 13The identification RPEs of the rear axle load
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Fig. 14.The identification RPEs with zeroth-order Tikhormmegularization
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Fig. 15.The identification RPEs with the first-order Tikimv regularization

6. CONCLUSIONS

The results presented above indicate that it is@teble and successful to use WFEM model
to accurately identify the moving vehicles on badgcompared with TFEM. Comparative
studies on modeling methods and moving force ifleation methods have been carried out.
The effects of parameters, such as the scales dMYEhe computational time, the sensor
number and location, the sampling frequency, theclke speed and the influence of noise levels
have been investigated respectively. The followdagclusions are drawn. (1) The moving force
identification with scale 4 yields a higher precisicompared to scale 3, irrespective of noise
levels and type of the dynamic responses usedli@)identifications with WFEM and TFEM
models both provide acceptable and close resuliecting the change of noise, while only few
elements are needed for WFEM models. (3) Zerotleroridkhonov regularization is noise
sensitive, when the model varies to more complitated the noise level rises, the moving force
identification results turn to unacceptable, aswshin Fig 11(a). The first-order Tikhonov
regularization is comparatively noise non-sensitivéas the capability to smooth out the high
frequency components of the identified lines durihg force time histories and to avoid the
large fluctuations in the boundaries and supponioigts at the same time. (4) The computation
effect based on WFEM model and the first-order ®ikbv regularization has no direct
connection with noise levels. (4) During the cossédion of vehicle speed area, the RPE values
change bit by bit along the increase of vehicleedpwhen the dynamic responses are without
noise. But in practice the noise pollution is olserin the dynamic responses. For simply
supported bridge, the best speed of two-axle veliazl moving force identification is around 72
km/h. While for continuous bridge, the larger tipeead the better. (5) The identification RPEs
are obviously affected by the sampling frequenayweroth-order Tikhonov regularization, and
the RPEs on WFEM model are more sensitive to saggdtequency than the ones on TFEM
model. Comparatively, the RPEs are acceptable aaoleswith the first-order Tikhonov
regularization when the sampling frequency is ab2d@ Hz. That implies that the first-order
Tikhonov regularization is non-sensitive to samplfrequency in some extent. (6) The WFEM
is more sensitive than TFEM to the location of sessvhen the same number of sensors is
arranged (Table 5). The sensor number could beceetto a comparatively low level if the
location of sensors is properly selected.
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