295 research outputs found

    Bandwidth efficient CCSDS coding standard proposals

    Get PDF
    The basic concatenated coding system for the space telemetry channel consists of a Reed-Solomon (RS) outer code, a symbol interleaver/deinterleaver, and a bandwidth efficient trellis inner code. A block diagram of this configuration is shown. The system may operate with or without the outer code and interleaver. In this recommendation, the outer code remains the (255,223) RS code over GF(2 exp 8) with an error correcting capability of t = 16 eight bit symbols. This code's excellent performance and the existence of fast, cost effective, decoders justify its continued use. The purpose of the interleaver/deinterleaver is to distribute burst errors out of the inner decoder over multiple codewords of the outer code. This utilizes the error correcting capability of the outer code more efficiently and reduces the probability of an RS decoder failure. Since the space telemetry channel is not considered bursty, the required interleaving depth is primarily a function of the inner decoding method. A diagram of an interleaver with depth 4 that is compatible with the (255,223) RS code is shown. Specific interleaver requirements are discussed after the inner code recommendations

    A Phase Ambiguity Resolution Technique for TCM

    Get PDF
    This paper presents the simulation model, performance evaluation and hardware implementation of a technique to resolve phase ambiguity in trellis coded modulation (TCM) where the popular Viterbi algorithm is utilized. While this approach has been employed with BPSK and QPSK, its application to multilevel modulation schemes (M\u3e4) is novel and of interest because it provides a viable alternative to rotationally invariant codes. This approach does not require any arithmetic computations and can be accomplished with minimal hardware. The results presented in this paper are being used to implement a 32 sector phase quantized TCM system utilizing 8PSK modulation

    On linear structure and phase rotation invariant properties of block 2(sup l)-PSK modulation codes

    Get PDF
    Two important structural properties of block 2(l)-ary PSK (phase shift keying) modulation codes, linear structure and phase symmetry, are investigated. For an additive white Gaussian noise (AWGN) channel, the error performance of a modulation code depends on its squared Euclidean distance distribution. Linear structure of a code makes the error performance analysis much easier. Phase symmetry of a code is important in resolving carrier phase ambiguity and ensuring rapid carrier phase resynchronization after temporary loss of synchronization. It is desirable for a code to have as many phase symmetries as possible. A 2(l)-ary modulation code is represented here as a code with symbols from the integer group. S sub 2(l) PSK = (0,1,2,...,2(l)-1), under the modulo-2(l) addition. The linear structure of block 2(l)-ary PSK modulation codes over S sub 2(l)-ary PSK with respect to the modulo-2(l) vector addition is defined, and conditions under which a block 2(l)-ary PSK modulation code is linear are derived. Once the linear structure is developed, phase symmetry of a block 2(l)-ary PSK modulation code is studied. It is a necessary and sufficient condition for a block 2(l)-PSK modulation code, which is linear as a binary code, to be invariant under 180 deg/2(l-h) phase rotation, for 1 is less than or equal to h is less than or equal to l. A list of short 8-PSK and 16-PSK modulation codes is given, together with their linear structure and the smallest phase rotation for which a code is invariant

    Performance of generalized BCH codes over GF(qs)

    Get PDF
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Includes bibliographical references: p. 44-45.Issued also on microfiche from Lange Micrographics.Not availabl

    Codes for QPSK modulation with invariance under 90 degrees rotation

    Get PDF
    The new rate 1/2 nonlinear convolutional codes for quadrature phase shift keying (QPSK) modulation allow the achievement of full 90 degree rotational invariance of coded QPSK signal sequences at no significant loss in real coding gains when compared to linear codes. For mobile communication systems operating in a fading environment with frequent periods of low signal-to-noise ratio and the possibility of losses of carrier phase synchronization in the receiver, the invariance to 90 degree ambiguous demodulation should be a significant advantage

    Error control techniques for satellite and space communications

    Get PDF
    Shannon's capacity bound shows that coding can achieve large reductions in the required signal to noise ratio per information bit (E sub b/N sub 0 where E sub b is the energy per bit and (N sub 0)/2 is the double sided noise density) in comparison to uncoded schemes. For bandwidth efficiencies of 2 bit/sym or greater, these improvements were obtained through the use of Trellis Coded Modulation and Block Coded Modulation. A method of obtaining these high efficiencies using multidimensional Multiple Phase Shift Keying (MPSK) and Quadrature Amplitude Modulation (QAM) signal sets with trellis coding is described. These schemes have advantages in decoding speed, phase transparency, and coding gain in comparison to other trellis coding schemes. Finally, a general parity check equation for rotationally invariant trellis codes is introduced from which non-linear codes for two dimensional MPSK and QAM signal sets are found. These codes are fully transparent to all rotations of the signal set

    Measured and simulated performance of a ceramic micromechanical beam steering device at 94 GHz

    Get PDF
    We report the first experimental demonstration of a transmission-mode micromechanical beam steering device for use in standoff terahertz imaging and spectroscopy. The device was constructed by laminating laser-cut 96% alumina sheets to form two plates with interlocking rectangular gratings of 762 μm period and was characterized at 94 GHz in a free-space measurement setup with an automated elevation scan. Plate tilts as great as 6° deflected the transmitted beam by 6° for the transverse electric (TE) polarization and by 4° for the transverse magnetic polarization. Finite-difference time-domain simulations of the TE performance were in good agreement with the measurements

    Performance of generalized BCH codes over GF(qs)

    Get PDF
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Includes bibliographical references: p. 44-45.Issued also on microfiche from Lange Micrographics.Not availabl
    • …
    corecore