
w

r

SEMI-ANNUAL STATUS REPORT

Error Control Techniques for Satellite and

Space Communications

NASA Grant Number NAG5-557

Principal Investigator:

Daniel J. Costello, Jr.

March 1991

u

w

w

w

_=

w

https://ntrs.nasa.gov/search.jsp?R=19910013158 2020-03-19T17:49:43+00:00Z



m

R

II

I

r_

I

_m
g

ml

t

I

m

i

U

u

z

g

II

qP

mm

W

M

Z

U

mR



=

Summary of Progress

During the period August 1, 1990 - January 31, 1991, significant progress was made in a

number of areas. In this report, we will focus on the results included in the Ph.D. dissertation

of Mr. Steven S. Pietrobon, a Ph.D. student supported by the grant. Mr. Pietrobon completed

his dissertation in December, 1990 and will formally receive his Ph.D. degree in May, 1991.

A copy of the dissertation is included as an Appendix to this report. One journal paper

has already been published based on this research [1], and two more are being submitted to

the IEEE Transactions on Information Theory this month [2,3]. In addition, a number of

conference presentations have resulted from this work [4-11]. The following sections contain

a brief summary of the important aspects of this dissertation.

1) Trellis Coded Multidimensional Phase Modulation

Since the publication of the paper by Ungerboeck [12], trellis-coded modulation (TCM)

has become a very active research area. The basic idea of TCM is that by trellis coding onto

an expanded signal set (relative to that needed for uncoded transmission), both power and

bandwidth efficient communication can be achieved.

TCM can be classified into two basic types, the lattice type (e.g., M-pulse amplitude

modulation (PAM) and M-quadrature amplitude shift keying (QASK)) and the con-

stant amplitude type (e.g., multiple phase shift keying (MPSK)). Constant amplitude

modulation schemes have a lower power efficiency compared with lattice type modulation

schemes but are more suitable for certain channels, e.g., satellite channels containing nonlin-

ear amplifiers such as traveling wave tubes (TWT's).

In any TCM design, partitioning of the signal set into subsets with increasing minimum

intrasubset distances plays a central role. It defines the signal mapping used by the modulator

and provides a tight bound on the minimum free Euclidean distance (dl,.e_) between code

sequences.
We have investigated a class of trellis-coded multidimensional (multi-D) MPSK modu-

lation schemes. Signals from a 2L-dimensional (2L-D) MPSK signal set (which we denote as

L x MPSK) are transmitted over a two-dimensional (2-D) modulation channel by sending

L consecutive signals of an MPSK signal set. Therefore, the L x MPSK signal set is the

cartesian product of L 2-D MPSK signal sets.

An efficient method of partitioning multi-D MPSK signal sets has been developed that

leads to easily implemented multi-D signal set mappers. When these signal sets are combined

with trellis codes, significant asymptotic coded gains in comparison to an uncoded system

are achieved. These codes provide a number of advantages compared to trellis codes with

2-D signal sets which make them particularly attractive for NASA satellite communication

systems: 1) flexibility in achieving a variety of fractional information rates, 2) codes which are

partially or totally transparent to discrete phase rotations of the signal set, 3) suitability for

use as inner codes in a concatenated coding system, and 4) higher decoding speeds resulting
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from the high rate codes used (rate k/(k + 1) with k up to 15 for some codes).

For trellis coded L x MPSK modulation, with M = 2 i, effective information rates of

I - (j/L) bits/symbol, for j = 1,2,..-, L, can be achieved. This allows a system designer a

greater choice of data rates than is available with 2-D signal sets (L = 1) without sacrificing

data quality.

An analytical description of multi-D signal sets in terms of block code cosets, and the use

of systematic convolutional encoding, results in an encoder design (from the differential en-

coder to the 2-D signal set mapper) that allows many good codes to be found. This approach

also leads to the construction of signal sets that allow codes to be transparent to multiples

of 360°/M phase rotations. Finally, due to the way the signal sets are mathematically con-

structed, a signal set mapper can be easily implemented by using basic logic gates and L-bit

binary adders.

A systematic code search based on maximizing d/r,, (and thus the asymptotic coding

gain) as well as minimizing the number of nearest neighbors for various degrees of phase

transparency was performed. For L x 4PSK, asymptotic coding gains up to 7.8 dB compared

to an uncoded system were obtained. For L x 8PSK and L x 16PSK, codes exhibiting

asymptotic coding gains up to 5.85 dB were found.

Since a Viterbi decoder processes k bits in each recursion of the algorithm, the large values

of k for codes using multi-D signal sets allows very high bit rates to be achieved (compared to

convolutional codes that map only into a 2-D signal set). The large number of branch metric

computations can be reduced either through the use of a modified Viterbi algorithm or large

lookup tables. Finally, a method has been developed that uses the redundancy in some signal

sets to achieve symbol synchronization at the decoder for codes that are not fully transparent.

Rate k/(k + 1) trellis codes with L × MPSK modulation also have the advantage of -

being useful as inner codes in a high rate concatenated coding system with Reed-Solomon

(RS) outer codes over GF(2k). In the inner decoder makes errors, one trellis branch error

will exactly match one symbol in the outer RS codeword. The symbol oriented nature of

trellis coded L x MPSK inner codes can provide an improvement of up to 1 dB in the

overall performance of a concatenated coding system when these codes replace bit oriented

trellis coded 1 x MPSK inner codes of the same rate. This can be an extremely important

advantage in achieving high bandwidth and power efficiency in concatenated coding systems

such as NASA's TDRSS.

2) Trellis Coding with Multidimensional QAM Signal Sets

We have also performed a systematic code search for trellis codes with multi-D QAM signal

sets. The 2-D signal sets used in the construction of the multi-D signal sets range from 16

to 512 points and were designed to have minimum energy, to be 90 ° rotationally symmetric,

and to be suitable for partitioning. Where possible, the signal set selected is the same as that

commonly used in the literature and in practical implementations of TCM schemes.

Rate k/(k + 1) codes were used in the code search. The codes presented all have signal

3
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sets with 21 signal points, where I is a positive integer. Some of the advantages of multi-D

signal sets are: possible 90 ° phase invariance, lower coding complexity, non-integer information

rates, and suitability for use in a concatenated system. The multi-D QAM signal sets were

constructed through the use of cosets by a method similar to that used for multi-D MPSK.

The code search found the codes having the largest minimum free Euclidean distance

(dfr_,) and the smallest number of nearest neighbors. This maximizes the asymptotic coding

gain and minimizes the bit error probability at high SNR. There are usually two different

possible phase transparencies for a linear code, and the best codes for each phase transparency

were found. The information rates ranged from 3 to 8 bits/symbol, with signal sets up to

eight dimensions for the 16QAM and 32 CROSS constellations, six dimensions for the 64

CIRC constellation, four dimensions for the 128 CROSS and 256 CIRC constellations, and

two dimensions for the 512 STAR constellation. (The 64 CIRC, 256 CIRC, and 512 STAR

constellations are new 2-D signal sets.) Codes were found having asymptotic coding gains up

to 6 dB.

The codes constructed for the small size signal sets (especially 16 QAM) may be useful in

NASA's satellite communication systems where high bandwidth efficiency is required at the

expense of more linear amplifiers. The codes constructed for the larger size signal sets may

be useful for high capacity microwave links and telephone modems where high data rates are

required on bandwidth limited channels.

3) Rotationally Invariant Trellis Codes

One aspect of trellis coding that has come under increasing study is the search for codes

that are invariant to phase rotations of the received signal set. The rotations under considera-

tion are those caused by a demodulator in a communication system. When the signal set has

rotational symmetries, e.g., MPSK or 16QAM, the demodulator has no knowledge of which of

the symmetries was transmitted. Thus, the demodulator selects one of the symmetries with

which to demodulate the received signal, regardless of whether it is the correct or incorrect

symmetry.

In uncoded systems, this problem is easily corrected by differentially encoding (precoding)

the data before transmission. After demodulation, differenital decoding (postdecoding) of the

received data is then used to return the data to its original form. Precoding of the data also

allows the recovery of data altered by phase slips within the demodulator. This occurs when

noise in the received signal causes the demodulator to lose lock and results in another of the

signal set symmetries being selected.

For trellis coding the situation is much more complicated. Here, we are dealing with

sequences of symbols in the code space rather than independent symbols, as in the uncoded

case. In fact, convolutional and trellis codes can be thought of as subclasses of sequence codes.

Unlike block codes, sequence codes have code words of infinite length, consisting of sequences

of symbols taken from a finite or infinite size signal set. Any finite or infinite set of sequences

can be considered as a sequence code. If a coded sequence has been rotated, the resulting
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code sequence may or may not be in the code space.

The transparency or rotational invariance of a sequence code is the minimum non-zero

phase rotation for which all code sequences in the code space can be rotated such that the

rotated sequences are still in the code space of the sequence code. A sequence code is rotation-

ally invariant or transparent if the invariance of the code is equal to the minimum non-zero

phase symmetry of the two-dimensional (2-D) signal set. If there are some sequences which

are not in the code space after a phase rotation, a decoder will produce erroneous data if the

received sequence has been rotated by this amount.

A good example of this is the NASA standard (2, 1, 6) convolutional code with Gray

mapped QPSK modulation. This code is not 90 ° transparent (and is therefore not rotationally

invariant), but it is 180 ° transparent. A decoder will produce erroneous data after a 90 ° or

-90 ° rotation. To overcome this, the decoder needs to recognize that a 90 ° rotation has

occurred and rotate the received sequence. This process can be slow, resulting in many errors

being produced before the decoder is properly synchronized. A rotationally invariant code,

however, will only produce a small number of errors after a phase rotation, since there is no

need to detect and then correct for a phase rotation.

In order to describe and study rotationally invariant sequence codes, we use the parity

check equations (PCE) of a code. For rate k/(k + 1) codes, a single PCE fully describes

the relationship between the 2-D symbols in a code sequence. However, the PCE gives no

information about the input/output relationship of an encoder, i.e., it is independent of the

encoder implementation. This allows us to minimize the number of variables in finding good

rotationally invariant codes, thus simplifying the code search.

A systematic method of obtaining rotationally invariant trellis codes for a variety of 2-D

signal sets has been developed. Since codes based on linear PCE's cannot be rotationally

iuvariant for 2-D signal sets with more than two points, an alternative general nonlinear PCE

was found. This nonlinear PCE allows the construction of invariant codes for 2-D signal sets

that are "naturally" mapped.

A general method of combining the precoder with a systematic encoder without increasing

the encoder memory was also discovered. This eliminates the need for a postdecoder, since

the precoder is part of the encoder trellis.

When a signM set has 90 ° rotational symmetries or only one input bit is checked by

the encoder, the general PCE is relatively simple, with only one non-linear term. The best

rotationally invariant nonlinear codes found for QPSK, 8PSK, and 16PSK signal sets have

smaller free distances than the best corresponding linear codes. However, their low number

of nearest neighbors may result in good performance at moderate Eb/No ratios. The QAM

codes found were very good. Most of these codes had the same free distance as the best

corresponding linear codes. In particular, the new 90 ° rotationally invariant rate 3/4, 64

state, 16-QAM code with a 5.44 dB asymptotic coding gain is being considered for adoption

by CCITT as the V.FAST coding standard for Two-Wire High-Speed Modems. This code

transmits 3 bits/symbol and achieves an almost 5 dB real coding gain at a BER of 10 -5 over

uncoded 8PSK.
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4) Implementation of a Bandwidth Efficient Coding Scheme for the Hubble

Space Telescope

A trellis coding scheme using 8PSK modulation has been designed for use on NASA's

Hubble Space Telescope (HST). By using a four dimensional signal set (i.e., the cartesian

product of two 8PSK symbols) and a rate 5/6 encoder, it is possible to obtain a bandwidth

efficiency of 2.5 bits/symbol. This implies that the data rate can be increased from the current

1 Mbit/s to 7.5 Mbit/s without any increase in bandwidth. The code selected has 16 states

and gives a real coding gain of 3.1 dB compared with uncoded 2.5 bits/symbol 8PSK and 1.5

dB compared with uncoded QPSK at a bit error rate of 10 -s. Due to the multidimensional

signal set, this code is also fully rotationally invariant. A 2 Mbit/s serial implementation of a

Viterbi decoder is being implemented for this code. This work is due to be completed by the

end of the grant period.
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TRELLIS CODING WITH MULTIDIMENSIONAL SIGNAL SETS

AND ROTATIONALLY INVARIANT TRELLIS CODES

Abstract

by

Steven Silvio Pietrobon

Shannon's capacity bound shows that coding can achieve large

reductions in the required EJN ° in comparison to uncoded schemes. For

bandwidth efficiencies of 2 bit/sym or greater, these improvements have

been obtained through the use of Trellis Coded Modulation (TCM) and

Block Coded Modulation (BCM). A method of obtaining these high

efficiencies using multidimensional MPSK and QAM signal ___Se_ts with .....

trellis coding is described. These schemes have advantages in decoding

speed, phase transparency, and coding gain in comparision to other

trellis coding schemes. Finally, a general parity check equation for

rotationally invariant trellis codes is introduced from which

non-linear codes for two dimensional MPSK and QAM signal sets are

found. These codes are fully transparent to all rotations of the signal

set.
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CHAPTER ONE

INTRODUCTION

In nearly all communication systems which are modeled with an

Additive White Gaussaian Noise (AWGN) channel, there axe three main

parameters that determine the performance of the system. These are the

information bit error rate (Pb), the signal to noise ratio per

information bit (Eb/N 0 where E b is the energy per bit and NJ2 is the

double sided noise density) and the bandwidth efficiency (K, the number

of information bits transmitted in each signalling interval of T

seconds). In the communication schemes we axe considering, a two-

dimensional symbol is transmittted in each signalling interval. We use

the unit bit/sym for K.

Assuming a flat channel, these three parameters can be related to

each other through Shannon's famous capacity bound [62]

C = B log2(1 + E/N0), (1.1)

w

where C is the capacity of the channel (in bit/sec), B is the bandwidth

(in Hz), and E/N ° is the signal to noise ratio (E is the energy per

symbol). We have taken the base two logarithm since bits are used as

the basic unit of information. Shannon's noisy channel coding theorem

effectively states that Pb Can be made as small as desired as long as

the transmission rate does not exceed C for the given B and E/N o.

Conversely, reliable communication is not possible if C is exceeded.



m

We can modify (1.1) so that the capacity bound relates K and

EJN ° instead of C, B and E/N 0. Assuming perfect Nyquist signalling

(i.e., the bandwidth expansion factor is one) we have that

m
Ul

I

K < C/B, (1.2) m
I

i.e., K must be less than C/B for reliable transmission. We also have
i

Es/N ° = K Eb/N o. (1.3) m
m

m

Thus, substituting (1.2) and (1.3) into (1.1) we obtain the bound m

I

2K -- 1 Z.
Eb]NO >- K (1.4) m

This bound is plotted in Figure 1.1. Note that the minimum Eb]_ 0 that

can be acheived is in 2 or -1.59 dB. However, to achieve this minimum,

K must be infinitely small (i.e., approaching 0). This implies that

i
g

J

very large bandwidths will be required, As K increases, the minimum
B

EJN ° also increases. This fact is very important since it tells us the

price we have to pay (in terms of EJN o) in order to achieve larger K i

and thus greater bandwidth efficiency.

m
Also shown in Figure 1.1 are points for uncoded Binary Phase

Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK) at a Pb of __
ImP

10 s. Note the large improvements in EJN 0 that can be achieved, even

if we maintain the same value of K. To achieve these gains, coding must w

be used.

I

Traditionally, this has been achieved through the use of block

codes, convolutional codes, or a combination of the two. These schemes

involve the addition of redundant bits to the information bits. These

g

_,__ _. ____4- ..... " .............. _--- --_ "''7_ .... 7 ::- " " "
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redundant bits axe used to increase the minimum free Hamming distance

(dHr_) of a code compared to an uncoded scheme where Hamming distance

is defined as the number of differing bits between two codewords. The

d H of a code is the minimum Hamming distance between all non-equal
frr.e

codewords.

BPSK or (Gray mapped) QPSK modulation is used with these codes

because the squared Euclidean distance between two codewords is

proportional to the Hamming distance between the codewords. Thus, the

minimum squared Euclidean distance between non-equal codewords (d_,,.)

is proportional to the ci_t of a code. Therefore, one can find a code
f lee

without considering the signal set being used. The limitation of these

codes is that K cannot be greater than or equal to two bit/sym.

The parameter K is important because the required bandwidth for a

communication system is inversely proportional to K. When bandwidth is

limited such that the required K is 2 bit/sym or greater, alternative

coding techniques are required. Since we cannot increase bandwidth (as

the traditional schemes do), the only way to obtain redundancy is

through an expanded signal set. The basis for this technique was first

described systematically by Ungerboeck [65].

Ungerboeck obtained bounds of K versus Es/N 0 for various one

dimensional (l-D) and 2-D signal sets. Some of these bounds are

reproduced in Figure 1.1 for BPSK, QPSK, and 8PSK modulation (Eb/N o is

used as the reference here, though). As can be seen, the potential

coding gain of using 8PSK for K--2 bit/sym compared with uncoded QPSK

is 6.6 dB (this is only 1.2 dB less than the theoretical minimum for

K = 2 biffsym). This would require an infinite amount of coding effort

though, and so a practical coding system will have a coding gain

i
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somewhat less than 6.6 dB.

The codes that Ungerboeck obtained in [65] are based on

convolutional codes with k input bits and k+l output bits, which are

then mapped into a signal set. Convolutional coding schemes with K of 2

bit/sym or greater have become known as Trellis Coded Modulation (TCM).

The difference between these schemes and traditional convolutional

codes is that the codes are based on d 2 only and not on the d H of
f_ frez

the code.

More recently,

Coded Modulation

[5,11,13,26,27,31,34-36,39,41,59,61,63,80]. The basic method

was first outlined in [33] and is also known as multi-level coding.

there has been active research in using Block

(BCM) to obtain high bandwidth efficiency

for this

1.1 Partitioning

An important class_of_signal sets is Multiple Phase Shift Keying

(MPSK) modulation. These signal sets have the property that each 2-D

signal is of equal amplitude. This is useful in nonlinear channels such

as in communication satellites with travelling wave tube amplifiers

where the signal set remains largely unaffected (although spectral

regrowth can occur causing an increase in bandwidth). Quadrature

Amplitude Modulation (QAM) signal sets have the advantage of greater

efficiency (due to their denser packing), but usually require a linear

or near-linear channel to avoid any distortion of the signal point

levels.

An important part of either TCM or BCM is in the partitioning of

the signal set being used. This is related to partitioning a set into



g

subsets. Each partition divides a previous set into two subsets, with

an equal number of points in each subset. So, starting with the

original signal set, we divide this set into two subsets. Each of these

i

ii

two subsets are divided into two and so on, until only one point

remains in each subset (we assume that the number of points in the [I

signal set is a power of two). i
i

The partition is usually made such that the minimum squared

Euclidean distance between all non-equal points in each subset is as i

large as possible. The minimum of these distances over all the subsets

is called the Minimum Squared Subset Distance (MSSD) at partition level u

p (52 , the partition level starts at 0 for the full signal set and z
p

increments by one for each two-level partition). Usually, due to

symmetry in the signal set, 52 is the same in each subset. If 52 is the
p p I

same as the previous partition level, we try to minimize the average
=.._...

number of nearest neighbors in each coset. II

This partition leads to a mapping of n bits into each of the 2" z

II
points (the 2" subsets at partition level n). It is this mapping and

the 62's of the signal set that lead to construction of good TCM or BCM
p !1

schemes.

U

1.2 Trellis Coding with Multidimensional Phase Modulation
z

There are some limitations of only mapping into a 2-D signal set

with linear convolutional codes. One of them is that this class of

codes has an integer value of K (since k = K for a rate k/(k+l) code).

il

II

To obtain fractional rates, schemes have been developed that use

periodically time varying trellis codes (PTVTC) [30]. For example, to
U

m

i

I
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obtain K = 2.5 bits with 8PSK modulation, two trellis codes are used.

The first code transmits 2 bits for the first symbol, followed by 3

bits for the next symbol. This process then repeats.

For a specific PTVTC it has been shown that one can obtain a

single encoder that modulates L 2-D signal sets, where L is the period

of the code [48]. There appears to be no reason why this is not true in

general (on the condition that the PTVTC convolutional encoder is

linear). This would indicate that it might be better to find a code

that considers the L 2-D signal sets as a whole, rather than one at a

time. Indeed, this appears to be true in terms of coding gain and a

number of other criteria as well.

This concatenation of L signal sets is called a multi-

dimensional (or multi-D) signal set. Other work on trellis codes that

have used multi-D signal sets are described in [3,4,6,14-

17,19,37,48,50,51,56,75,76]. Usually, the concatenation is with 2-D

signal_ sets, giving a 2L dimensional signal set. ..... :-

A major part of obtaining good codes with multi-D signal sets is

in finding good partitions as described above. If there are I bits for

each 2-D signal set, the total number of points in each signal set is

2 m. Even for small I and L (e.g., I = 3 and L = 2) the number of

multi-D points becomes very large and thus finding a good partition (or

partitions) by hand becomes very difficult.

A solution to this problem is to use the partition of the 2-D :_=

signal set. For example, we can use the partition (and notation for the

subsets) for 8PSK given in [65] (reproduced in Figure 1.2). A 4-D 8PSK ....

signal set would consist of the set A0xA0 where x denotes the cartesian

product. The f'u'st partition could consist of the cosets B0xB0 w BlxB1
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and B0xB1 _ BlxB0. It is also not too difficult to see what the MSSD is

for these two levels (A_ = 0.586 and A2=l 2A_ = 1.172, where we use A

to indicate the MSSD's for multi-D signal sets). The rest of the

partition can follow in a similar manner.

Although this method gives a good intuitive feel of how multi-D

partitions are made, it has its limitations when larger values of L an:

considered. In fact, the problem becomes very similar to finding good

block codes (and their cosets), except that we are dealing with more

than one "level" of coding (also called coding level). Each level of

coding effectively codes one of the partition levels of the 2-D signal

set. To distinguish one level from another, powers of 2 are used in the

codewords. For example, a codeword at partition level 0 (of the 2-D

signal set) might have a code word of [1 1], at level 1, a codeword of

[2 2] and so on. This can be seen in the previously described example.

At partition level one of the 4-D signal set, we can see that the flu'st

coset has two code words of length 2 at code level 0, corresponding to ---

the (2,1) block code with a da of 2. The other two code levels are
free

uncoded, i.e., they use the (2,2) block code which has a dH of one.
fn_

Another method for constructing multi-D signal sets is Fomey' s

2-construction or 3-construction [23].

In Chapter 2, we present in detail the construction of trellis

codes that use multi-D MPSK or LxMPSK. The encoder is broken into three

parts, the differential encoder, a systematic convolutional eneoder and

the signal set mapper.

In Chapter 2, the results of a systematic code search for a wide

variety of rates and signal sets are presented. The 2-D signal sets

that were used are QPSK, 8PSK and 16PSK, with the number of 2-D signal
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sets (L) varying from one to four. Codes with the following values of K

were found, 1.0, !.25, 1.33, 1.5, 1.67, 1.75, 2.0, 2.25, 2.33, 2.5,

2.67, 2.75, 3.0, 3.25, 3.33, 3.5, 3.67, and 3.75 bits. The complexity

of the codes (the number of checked bits, k, plus the memory of the

encoder, v) ranges up to a value of 10.

1.2.1 Code Transparency

The construction of the signal sets has been described by use of

coset representatives or generators. This method has also been

described in [22]. The generators allow the signal set mapper to be

easily implemented using exclusive OR gates and I = log2M bit binary

adders.

A significant advantage of using generators for this mapping is

that it determines a simple relationship of how the n mapping bits are

affected when the signal set has been rotated by • = 360/M degrees,

e.g., 8PSK being rotated 45 ° (this can be caused by phase slips within

a demodulator). With a 2-D signal set, nearly all linear convolutional

codes are not fully transparent to phase rotations of • (an exception

is BPSK). This implies that a Viterbi decoder needs to synchronize with

the received signal set. These synchronizers are usually based on a

measure of the performance of the decoder. Due to the synchronizers

random nature, it may take many symbols before a decoder recognises an

out of synch condition and attempts to lock on to the correct phase.

With MPSK modulation, this can be a significant problem as the points

are very close in phase (45 ° for 8PSK, 22.5 ° for 16PSK). Demodulators

are thus more likely to have phase slips than if QPSK or BPSK were

used.
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With a transparent code, a phase rotation has no affect on the

coded sequences and so a Viterbi decoder does not need to have a

synchronising circuit, simplifying the design and possibly improving

performance. The coded sequences may remain the same on a phase

rotation but the relation between the information sequence and coded

sequence will change with a phase rotation. To overcome this,

differential encoding (or precoding) before the encoder and

differential decoding (or postdecoding) after the decoder are used.

With modulo-M or a combined modulo-M and modulo-2 addition of the

generators, it is shown in Chapter 2 that at most I bits out of the

n < IL bits used in the mapping are affected by a phase rotation of P.

Since these bits are usually evenly spread out through the mapping

bits, many codes can be found that are fully transparent to phase

rotations of tp (this is because only two to four of the mapping bits

are actually coded, the rest remaining uncoded). This mapping also

allows the design of general precoders and postdecoders.

1.2.2 Decoder Speed

Another advantage of using multi-D signal sets is the large

values of k that can be used. This can result in very high decoding

speeds, possibly approaching 1 Gbit/s for a single codee. This is

because each iteration of the Viterbi algorithm decodes as many as IL-I

bits (the maximum value of k), while the decoder complexity, in terms

of the number of coded bits and encoder memory, is about the same as

for trellis codes which use only a 2-D signal set. However, the branch

metric calculator is usually much more complicated, due to the greater

number of parallel transitions between the trellis.

v
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As an example, a decoder that has been built for a PTVTC has an

internal clock speed of 75 MHz [18]. The code is of rate 8/9 with 8PSK

modulation giving K = 2.67 bit/sym. Since the 2-D symbol rate is the

same as the decoder internal clock speed, the bit rate is limited to

200 Mbit/s. However, the equivalent multi-D scheme (which uses a 3x8PSK

signal set) has each decoder iteration decoding 8 bits instead of 2.67

bit/sym on average. Thus, this same decoder (with about 50% extra

hardware due to the paraUe! transitions that need to be decoded) could

be made to have a bit rate of 600 Mbit/s! This code also has other

advantages due to the multi-D signal set. It is fully transparent

(compared with only 180 ° transparency for the PTVTC) and it has a

asymptotic higher coding gain due to its larger d z
fr_"

In Figure 1.1 we have plotted the points for the COMSAT code, as

well as the point for the equivalent multi-D code [46] at a Pb of 10 .5.

As can be seen, the multi-D code achieves an extra 0.5 dB coding gain.

Also shown in Figure 1.1 are various other coding schemes.
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1.2.3 Decoder Implementation

The practical side of trellis codes is examined in Chapter 5.

Here, the implementation of one of the 262 codes from Chapter 2 that

were found in the search is described. A soft decision Viterbi decoder

and encoder for this code has been designed. Initially, the code that

was chosen was a rate 7/8 code with 3x8PSK modulation, K = 2.33, two

checked bits and 16 states.

This code was chosen mainly due to a previous PTVTC code that was

implemented which has similar properties to the code we have chosen

[30] (called the COMSAT code, after the company that developed the
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decoder). Note that this COMSAT code is not the same code as that shown

in Figure 1. I. This COMSAT code has a rate of 7/9, uses 8PSK

modulation, has K =2.33, a maximum of two checked bits and 16 states.

The main differences between our code and the COMSAT code is that for

an equivalent hardware complexity, our code is about L = 3 times faster

in terms of bit rate and has a phase transparency of 90 ° verses 180 °

for the COMSAT code [48]. Our code also has a larger d_m (4.0 instead

of 3.515). Figure 1.1 plots the simulated performance of our code [46],

showing a 2.2 dB coding gain in comparison to uncoded QPSK at a P ofb

10 -5.

Recent developments have led us to change our code to a 2.5

bit/sym, 4-D 8PSK code (its simulated performance [46] is also plotted

in Figure 1.1). This code also has 16 states and two checked bits,

implying minimal changes to the already exisiting design. It is also

45 ° invariant. The reason for the change are due to INTELSAT's new

SONET standard which requires a 155.52 Mbit/s bit rate through a 70 MI-Iz
............................

channel. A 2.5 bit/sym code will be able to meet this standard and so

our low data rate design could be a "proof of concept" for the SONET

system.

The codee is to be implemented using standard TTL logic (mainly

low power and advanced Schottky). The internal clock speed of the

Viterbi decoder is 10 MHz. Each of the 16 add-compare-select (ACS)

operations (one for each state), is to be performed serially. Thus,

only one ACS circuit is required. A total of approximately 23 clock

cycles are required for each iteration of the Viterbi algorithm.- This

gives a maximum bit rate of 3.04 Mbit/s and 2.17 Mbit/s for the 2.33

bit/sym and 2.5 bit/sym codes, respectively.
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1.3 Trellis Coding with Multidimensional QAM signal sets

IB

u

The methods that are described in Chapter 2 for MPSK modulation

can also be applied to QAM constellations. Some work has already been i

done in this area [5,8-10,12,22,24,64,68,74] but nearly all of it has

i
been ad hoe in nature (some codes were even designed by "hand"). In

Chapter 3, we apply the systematic multi-D construction and code search _l

methods developed for MPSK signal sets to that of QAM signal sets. A

"natural" mapping of each 2-D 90 ° rotationally symmetric QAM signal set •

(ranging from 16 to 512 points) is presented. This allows us to easily

U

determine the phase properties of the codes.

The code search used 2-D to 8-D signal sets with:K ranging from U

3.0 to 8.0 bit/sym. Some of the larger size signal sets were further

limited in the number of dimensions due to computational limitations. J

The benefits of the code search have resulted in new codes being found

_ • . . •

that are 90 ° invariant and that have the fewest number of nearest

neighbors (Nfr_). Also, a I6 state, 3 biffsym 8-D 16QAM code was found m

that has 6.02 dB asymptotic coding gain (y). This code can also be used

in larger size signal sets for the same y (although Nf_.c may not be

optimum).

1.4 Rotationally Invariant Trellis Codes
I

As has been described earlier, a desirable property of trellis i

codes is to have fuU transparency. One way to achieve this is through

a multi-D signal set. If L > 2, the decoder will need to synchronize

U

m
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onto the L 2-D symbols. This may be a problem in some channels where

symbol loss is likely to occur, e.g., in fading channels. Thus, codes

are desired which have only a 2-D signal set (to avoid symbol

synchronisation) and that are fully transparent. Linear codes cannot

achieve these requirements. This is because at least two bits are

always affected in the signal set mapping. The parity check equation

for linear codes (which describes the relationship between the coded

bits) will always change on a phase rotation for all non-trivial codes.

To obtain phase transparency, the code has to be made non-linear.

That is, them are logical AND operations in the code. Rotationatly

invariant codes have been previously found in [3,10,19,40,75] with

multi-D signal sets and in [1,3,32,44,52,54,73,74,81] for 2-D signal

sets. The work in [48,49,70] concentrated on ffmding rotationaUy

invariant rote 1/2 codes with QPSK modulation. We have extended this

work into finding rotationally invariant codes for rate 2/3 8PSK and

rate k/(k+l) QAM. - ....

To obtain the codes in [48] we used a parity check equation that

was found by Ungerboeck [66]. This parity check equation was designed

such that the equation remained the same after a 90 ° phase rotation. To
i :

achieve this, a non-linear term was added into the equation. With rate

2/3 8PSK the situation becomes much more complicated. The parity check

equation now has to compensate for three terms being affected on a

phase rotation, not just two as in the QPSK case. To f'md the various

forms of the parity check equation for rate 2/3 8PSK, a different

approach was taken.

This was achieved by finding a general parity cheek equation for

any rate k/(k+l) rotationally invariant trellis code that has a natural
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type mapping (it is really two equations, one with modulo-2 arithmetic

U
and the other with modulo-M arithmetic). From this relatively simple

general equation, one can derive the rate 1/2 general parity check ----
H

equation that was found by Ungerboeck. Also, the complicated rate 2/3

equations can also be derived. With these parity check equations, a u

code search for rate 2/3 8PSK rotationally invariant trellis codes was

performed.
m
I

The rate 2/3 codes with two checked bits were found to have 0 dB
i

asymptotic coding gain, but with very small Nfr_. This small Nr_ may

make these codes suitable for fading channels in comparison to uncoded il

QPSK. Other rate 2/3 codes with one checked bit were also found.

However, their parallel transitions in a fading channel is a

m

II

significant disadvantage (although the codes have y = 3.0 dB).

A surprising result was found for the rotationally invariant QAM

codes. For all except one code, the d 2 of the invariant codes are =
free i

the same as the best linear codes, with the invariant code having fewer

N .... than the-linear Codes.-The results of a code sem-ch for-rate-l/2 ----•
fme

QPSK codes are also presented.
I

I

i

m
i

u



w

CHAPTER TWO

TRELLIS.CODED MULTIDIMENSIONAL PHASE MODULATION

In this chapter, we investigate a class of trellis coded

multidimensional (multi-D) MPSK modulation schemes. Signals from a

2L-dimensional (2L-D) MPSK signal set (which we shall denote as LxMPSK)

are transmitted over a 2-D modulation channel by sending L consecutive

signals of an MPSK signal set. Therefore, the LxMPSK signal set is the

Cartesian product of L 2-D MPSK signal sets. Trellis coded multi-D

phase modulation (TC-LxMPSK) provides us with a number of advantages

that usually can't be found with TC-MPSK: (i) flexibility in achieving

a variety of fractional information rates, (ii) codes which are

partially or totally transparent to discrete phase rotations of the

signal set, and (iii) higher decoder speeds resulting from the high

rate codes used (rate k/(k+l) with k up to 15 for some codes).

In Section 2.1, we introduce a block coding technique for

partitioning LxMPSK signal sets. Section 2.2 describes how the encoder

system, comprising a differential precoder, a systematic convolutional

encoder, and a multi-D signal set mapper, is obtained for the best

codes found in a systematic code search. The signal sets are designed

such that the codes can become transparent to integer multiples of

360°/M rotations of the MPSK signal set. Also, due to the way in which

they are mathematically constructed, a signal set mapper can be easily

implemented by using basic logic gates and L bit binary adders. The

17



18

systematic code search is based on maximizing the minimum free

Euclidean distance (dr_e) and thus the asymptotic coding gain, as well

as minimizing the number of nearest neighbors (Nf) for various

degrees of phase transparency. TC-Lx4PSK, TC-Lx8PSK, and TC-Lxl6PSK

codes for L = 1 to 4 are found. For TC-Lx8PSK and TC-LxI6PSK,

asymptotic coding gains up to 5.85 dB compared to an uncoded system are

obtained. The TC-Lx4PSK codes exhibit asymptotic coding gains up to 7.8

dB. Among the L = 1 codes listed are some new codes which have

improvements in Nfr_ and phase transparency compared to codes found

previously [43,65,68,76]. Viterbi decoding of TC-L×MPSK is also

discussed, concentrating on maximum likelihood decoding of the parallel

transitions within a code trellis.

2.1 Muiti-D Signal Set Partitioning

U

w

m
W

I

I

I

lib

U
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In order to describe set partitioning we will start with the

familiar partitioning of the 8PSK signal set. This is followed with an

example of multi-D signal set partitioning using the 2x8PSK signal set.

Generalizations will be gadually introduced, so that by the end of

this section the reader should become thoroughly familiar with the

concepts involved.

2.1.1 Partitioning the 8PSK Signal Set

In partitioning the 8PSK signal set, or lx8PSK, we form a minimum

2 52 2, _52 = 4, andsquared subset distance (MSSD) chain of 50 = 0.586, t= 2

532 = o. (assuming that the average signal energy is one). Figure 1.2

illustrates this partitioning, in which each subset is equally divided

I

It

I

Ul

lid

I

J

Ill



19

into two smaller subsets such that the MSSD in each smaller subset is

maximized. Partitioning continues in this manner until we have eight

2
subsets, each containing a single point, hence _53 = o..

2.1.2 Partitioning 2x8PSK

A 2x8PSK signal set (L = 2) is illustrated in Figure 2.1. We use

integers y_ to indicate the first 8PSK point and Y2 for the second 8PSK

point, where yl,y: _ {0,1 ..... 7}. Natural mapping is used to map the

integer yj into each complex valued 8PSK signal, i.e.,

"iv _ exp[CTTyjrr/4], for j = 1,2. We can also represent Yt and y,. in

binary form as the vector Yi = [y 'y 'y ' with yj _ {0,1}, and where

yj = ,O,y_+ 2yl.+y_,j for j= 1,2. That is, the least significant bit

(lsb) of yj corresponds to the right most bit and the most significant

bit (msb) to the left most bit. We will use this convention throughout

the chapter.

30

40

20 O1

50 06

O0 30

07 40

Yl Y2

Figure 2.1: The 2xSPSK signal set.

00

07

To represent a 2x8PSK signal point we form the 2 x 3 binary

matrix,



Yl] =Y= Y2

Y; Yl Y_

2 I 0

Y2 Y2 Y2

Since there are a total of six bits used to describe a signal

point, the unpartitioned signal set (indicated by f2 °) has a total of 26

= 64 points. We also say that f2 ° is at partition level p = 0. It can

easily be seen that the MSSD at partition level p = 0 is

A2 = 52= 0.586 (we use large A to indicate the MSSD's for L > 1 and
0 0

small 5 for L = 1). The next partition (at partition level p = 1)

divides f2 ° into two subsets of 32 points each. We call _1 the subset

that contains the all zero element (i.e., Yt = Y: = 0). The other

subset of 32 points is its coset, labeled f_l(1). In forming these two

subsets, we would like their MSSD, A 21' to be larger than A2"o If this

were not possible, then we should find a partitioning that leads to a

maximum reduction in the number of nearest neighbors within the smaller

2
subsets (i.e., the _average number of signal points that are distance A 1

away from any point). In principle, the partitioning could be carried

out in this heuristic manner.

A more efficient way of partitioning f_o is to require the column

vectors of y, i.e., yi • i i,T= tyl,Y21, for 0 < i <__2, to be codewords in a

block code. This representation using block codes is also known as

multilevel coding (first described by Imai and Hirakawa [33] and later

applied to QAM by Cusack [131). To express this mathematically, we need

to introduce some further notation. We define C as that block code
I11

1

which contains the column vectors yi, for 0 < i __ 2. Thus, C contains
m

0

the least significant bits of y_ and Y2' Cm contains the middle bits
1

!0 W
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w

of y_ and Y2' and so on. The actual value of m i indicates which block

code is being used. For L = 2 there are only three block codes that are

of interest to us: Co, which is the (2,2) block code with Hamming

distance d o = 1 (and code words [0 0] T, [0 1] T, [1 1]T, and [1 0]T),

C l, which is the (2,1) block code with Hamming distance d I = 2 (and

code words [0 0] T and [1 1]T), and C 2, which is the (2,0) block code

having only one code word, [0 0] T and Hamming distance d 2 = **.
L-m.

Also, since C denotes a block code with 2 ' code words, we
ITI.

1

can write that the partition level p is the sum of all the m.'s that
i

produce the subset f'2p, i.e., P = y2i=o mf Since there are I = logzM

bits needed for each MPSK point, p can range from 0 to IL (0 to 6 in

this case). A shorthand way of writing which column vectors yi belong

to which block codes is _(C ,C ,C ). Thus, we can write
m 2 m I m0

t'l ° = O(C0,C0,C0). Since C o

vectors, then f_o is generated.

To obtain the next

fl I = fl(C0,Co, C1). This

contains all possible length two binary

partition (at level p = 1), we let

partition satisfies our previous comments on

partitioning. That is, there are only two code words in C (reducing

the number of points to 32), and C l contains the all zero code word. In

partitioning, we also require the property that all the points in fl _

belong to f_0 (written as f_l c f2°). For this example, since C I c C O,

this property is satisfied. This can be stated more generally as

ffl c fg', for 0 < p < IL-1. Thus, if we have two partition levels p

and p', and p' = p+l, then C • _ C for 0 < i < I-1.
Ill m.

i 1

The partition f_l is equivalent to forcing the lsb's of Yt and Y2

to be either both zero or both one. By inspection of Figure 2.1 we can
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m_

thus see that A_ = 282"o= 1.172. In fact, we can use a more general

expression which gives a lower bound on the MSSD. From [27,61] we have,

A: >_ min (52i .d ..... 5_d m ,3_d m ),
p -1 mi. 1 1 0

(2.1)

where d
Ill

I

is the Hamming distance of the code C m, for 0 <i < I-1.
i

From (2.1), we obtain for 2x8PSK,

A2 > rain (4d ,2d ,0.586d ). (2.2)
P m 2 m I m 0

For p = 0 and 1, we can see that (2.2) is satisfied with equality. In

fact, due to the symmetry of the 8PSK signal set, (2.2) is an equality

for all values of p. It can be seen that in partitioning f2 ° into f21 and

its coset .@(1), we could have formed f2(Co,C1,C o) or 22(Ci,C0,C0)

instead of f2(C0,C0,Cl). However, both these other partitions have

A2= 0.586, and are therefore not good partitions, since we want A 2 to
1 I

be as large as possible. This is because d 2 can be lower bounded by
fw.e

2A21 for many trellis codes [65].

Ignoring for the moment how the cosets are formed, we can

partition f_l into f_2 and its coset f_2(2), and so on. (The value within

the brackets of the coset will be explained in Section 2.1.3.) Every

time we partition, we want to make A2 as large as possible. To do this
p

we use the following rule. The C= that we partition (into Cm÷ l) from
t i

level p to level p+l should be the i corresponding to the smallest

_i.2d at partition level p. If there are two or more _52•d that have
I 11'1 1 II1.

i 1

the smallest value, we choose the one with the smallest i.
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Note that once C
ffl.

1

has been partitioned to C 2 (or C H in

general), then that particular block code cannot be further partitioned

(since it contains only one code word). Table 2.1 illustrates the

partitioning of the 2x8PSK signal set. The arrows show which C's are
Ill.

1

being partitioned as p is increased. The values of A2 are also shown.
p

Note that at p - 3, we have _.2d -- 4 for both i = 1 and 2. As
1 m

i

indicated by the above rule, i = 1 is chosen to be partitioned to form

f_4. Even though A 2 = A 2 = 4, partition level 4 is still useful for
4 3

coding since the number of nearest neighbors for f2 4 is less than for

_3. This will become more apparent when the actual codes are found.

Part ition

Level (p)

0

1

2

3

4

5

6

TABLE 2.1

2x8PSK SIGNAL SET PARTITION

f2(Co,Co,C o)

f_(Co,Co,C I)

f2(Co,Co,C2)

f2(Co,Ci,C 2)

f_(Co,C2,C 2)

_"_( C ,C2,C2)
4, 1

_'2(C2,C2, C2)

Minimum squared 2psubset distance (A)

min(4,2,0.586) -- 0.586

min(4,2,1.172) = 1.172

rain(4,2 ,o,) = 2.0

min(4,4,0-) = 4.0

min(4,0-,**) = 4.0

rain(8 ,o,,**) -- 8.0

min(**,o*,**) = **

Generator

(tP) T

[0 1]

[1 1]

[0 2]

[2 2]

[0 4]

[4 4]

The above rule usually works quite well. For L = 3, though, some

of the best partitions do not follow this rule. Instead, we can allow a

A 2 to be smaller than the rule proposes, in order to obtain a larger
p

A 2, for some p' > p, than is possible by following the rule.
P
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2.1.3 Formation of Cosets

Now consider partition level p = I. We have shown that there are

two subsets, namely H L and its coset f2_(l). To obtain H_(1), we must

look at how coset codes are derived from block codes. Recall that C is
1

the (2,1) block code with Hamming distance d I = 2. The coset of this

code, C1(1), is formed by adding modulo-2 a non-zero code word that

belongs to C O, but does not belong to C (called the generator "c°), to

all the code words in C I. We illustrate this with an example. C O has

code words [0 0] r, [0 1]T, [1 0] "r, and [1 1]"r (remember that these code

words correspond to column vectors of y) and C 1 has code words [0 0] r

and [1 1] r. Therefore, the generator 3° could equal [0 1] T or [1 0] T.

We arbitrarily choose "c° = [0 1] T. Thus, C1(1 ) = C 1 _ x° =

{[0 1IT, j1 0]'r). (In this chapter the symbol _ will be used to denote

modulo-2 (exclusive-OR) arithmetic and + to denote integer or modulo-M,

M > 2, arithmetic.) Note that if 'c° = [1 0] "r, the same coset vectors

would have been found, except that they would have been in a different

order. Also note that the Hamming distance between codewords in Cl(1 )

is equal to d 1.

We can also write a general expression for the cosets at

partition level p = 1 as

Cl(_ °) = C l @ _°x°, (2.3)

where _o {0,1}i Thus, when _0= 0, we obtain Cl(0) " C 1 and when

_o= 1, we obtain the coset of C !, C1(1). In a similar way we can

divide C i into C 2 and its coset C2(2), and Ci(1 ) into cosets C2(1) and

C2(3). Figure 2.2 gives an illustration of this partition. For the

second generator, there is only one choice, i.e., x _ = [1 1] "r. The
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general expression for the cosets at partition level p = 2 becomes

w

=

w

w

w

C(2_l + _o) = C2 ff_ _1.tl @ _oTo

:   E11]• (2.4)

where C: is the all zero vector and _" _ {0,I}, for 0 < m < 1. We also

note that C 2 c C 1 c C O and that '_" _ C, but that ._m _t Ca+ t , for

0<m_<l.

l(O)=C1

C2(2) =[ 11]

Co (0) = C 0

m=O m=l m=2

do=l d1=2 d2=_

Figure2.2: Partitioning of the L = 2 binary vector space.

Since we have shown how the cosets of C are formed, we can now
nl

show how the cosets of f_P are formed. We start with the simplest case,

the single coset of fl I namely f2_(1). In the same way as the block codes

are partitioned, we must find a 2 x 3 matrix that belongs to f2 ° but

does not belong to _t. This is called the generator of f21 and is



26

labeled to. Since C is partitioned in going from f2° to f2I, this
m

0

implies that to = [O,O,x°], where 0 is the all zero vector [00] T,

i.e.,

t° E°°°]= 001 "

An alternate notation for t o (using the symbol to), is to treat to as

if it represented two integer values, Yl and Y2" Thus, t o in integer

form is to = [0 1] v.

To form the coset fll(1), all that is required is to add to

modulo-2 to all the signal points in _. We write this as

f21(z °) = f21 _ z°t °, (2.5)

where z°_ {0,1} indicates which of the two subsets is being selected.

We can see that in coset f2_(1), the lsb's of y_ and Y2 are either 0 and

1 or 1 and 0, respectively. Thus this coset has the same MSSD as f2 l,

i.e., A2 = 1.172. Alternately, to can be added modulo-M (modulo-8 in
l

this case) to the signal points in f_l. With modulo-8 arithmetic, the

Isb's of Yt and Y2 are still added modulo-2, but the Isb's now produce

carries which affect the middle and most significant bits. This is

denoted as

f_l(z°) = fl t + z°t ° (mod 8). (2.6)
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For example, a signal y = [1 3] T (where Y = [Yl Y2]T) in f21 becomes

[1 2] T with modulo-2 addition of to to y or [1 4] T with modulo-8

addition of to to y. Using either type of arithmetic, we still obtain
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w

the required partition, although the ordering of

each coset is different. In constructing rotationally invariant

codes, we will find that there is a distinct advantage to

modulo-M arithmetic over modulo-2 arithmetic.

signal points within

trellis

using

Continuing with the set partitioning, it should be obvious that

the next generator is t I = [1 1]"r. From Table 2.1, we see that t _

corresponds to the generator of C 1. The expression for the cosets of f_2

is

+ + ] + 0[0] ,mo s, (2.7)

where z i _ {0,1}, for 0 < i < 1. For partition level p = 3, we choose

t2= [0 2] "r, with z2_ {0,1} used to select t2. Continuing in the same

way, we can partition the signal set until we obtain only a single

(4-D) signal point. Thus we can form the equation (using the generators

from Table 2.1)

y(z)
Yl ] _6(Z )Y2

_-zS[ 4]+ Z4[ 0]+ Z3[ 2]+ Z2[ 0]+ zl[ 11]+ zO[ 0] (mod 8),
(2.8)

where z 5-..5 ii Z i= 2z, with e {0,1}, for 0 < i < 5, and y(z) gives the
i=0

integer representations of the two 8PSK signal points. The signal set

mapping given by z can now be directly used by a convolutional encoder.

Since Yl and Y2 can be described in terms of z, the signal set mapper

can be implemented using simple logic circuits (exclusive-OR circuits

for modulo-2 addition and binary adders for modulo-M addition).

Alternatively, since z can be represented with only six bits, one can
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use a small ROM. Figure 2.3 illustrates two possible signal set mappers

for 2x8PSK. Figure 2.3(a) shows a mapper using modulo-2 arithmetic, and

Figure 2.3(b) shows a mapperusing modulo-8 arithmetic.

In general,we can write (2.8) as

y(z) =

where _IL-1 i iz = i=0 2z, with

Yl IL -1

= _"2IL(z) E i i= zt, (2.9)
i=O

Zi E {0,1}, for 0 _< i _< IL-1. The addition

in (2.9) is not specified, but may be modulo-2 (using the binary matrix

generators), modulo-M (using the integer generators), or a combination

of modulo-2 and modulo-M. Figure 2.4 illustrates the partitioning of _0

into f_3 and its cosets _3(4z 2 + 2z _ + z°) for the 2x8PSK signal set

using modulo-8 addition.

2.1.4 Partitioning 3xMPSK and 4xMPSK Signal Sets

In a similar fashion to 2x8PSK, to partition LxSPSK (for L > 2)

requires the partitioning of length L > 2 block codes. We again look

for partitions that have an increasing Hamming distance. For L = 3,

there are two partitions that are interesting.

1 =2, 1The first partition has Hamming distances d o = 1, d I d 2 = 2,

and d 3 --**. These Hamming distances correspond to the (3,3), (3,2),

(3,1), and (3,0) block codes C O, C i C l and C 3, respectively, where• I' 2'

C 3 c C 21c C!ct Co" Table 2.2(a) gives the three generators, x°1, xtt' and

,t1,2 that were chosen, along with the Hamming distances (d=) and the

number of nearest neighbors (N) at each partition level m. The choice
m

was not completely arbitrary, since one of the generators must be the

all ones vector (which in this case is x_). The reason for this will be

I
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5
Z

4
Z

Z 2
Z

I
Z

0
Z

_r

Yl Y_ Yl Y2Y2Y2

Figure 2.3(a): 2x8PSK signal set mapper with

modulo-2 addition.

w

Z5 ".. " ,

4 i

z2 T T I_
zl I_ I- IT
Zo IT IT II-

"- II, II lifo

2 1 0 "

Yl Yl Yl Y2Y2Y2

Figure 2.3(b): 2x8PSK signal set mapper with

modulo-8 addition.
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i

p=0 p 1 p=2 p=3

£_o= _Co,Co,Co) _1 = _(Co,Co,C1) £_2= f/(Co,Co,C2) ffl= _(Co,C_ ,C2)

2 A_=2.0 A2=4.0
A2= 0.586 Al= 1.172

Figure 2.4: A three level 2x8PSK signal set partition.
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m

0

1

2

d
m

1

2

2

TABLE 2.2

BINARY GENERATORS FOR L = 3 AND 4

(a) L = 3 (I)

N
m

3

3

1

[11 1]

[11 0]

[01 l]

(b) L = 3 (H)

m d N
m m

0 1 3

1 1 1

2 3 1

[00 1]

[01 l]

[11 1]

w

w

(c) L = 4

m d N
m m

0 1 4

1 2 6

2 2 2

3 4 1

(_m)T

[0 0 0 1]

[0 0 1 1]

[0 1 0 1]

[ll 11]

explained in Section 2.2.

It is interesting to note that the generator matrix for these

block codes can be formed from the generators. In general, a generator

matrix G for an (L,L-m) block code C, for 0 < m _< L-l, can be formed
m In

from the generators xm to x Lq, i.e., Gm ---- [,_m,_m+l .... ,,_L-I]T. For

example, for the L = 3 block codes given in Table 2.2(a),

' [_ I _],G:= [_ 11 0],G:--[0 1 1 ] •Go- 01 1

For the other L = 3 partition, we have d o = 1, d21--l, d22 = 3,

2 2

and d 3 = **. These distances correspond to block codes C o, C t, C 2, and

2 2
Cy where C 3 c C 2 c Ct c C o. Table 2.2(b) shows the generators for

2 is the all ones vector in this case. Thethese codes. Note that x2

advantage of this partition is that d22 = 3 is larger than dl2 = 2.
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However, d2 = 1 is less than dt = 2.
1 I

The partitions of 3×8PSK that will be useful for trellis coding

are given in Table 2.3. Table 2.3(a) corresponds to the first partition

where we try to maximize A2 at each partition level. In Tables 2.3(b)
p

and 2.3(c), the second set of block codes are used to increase A2 to
2

1.757 while A2 decreases to 0.586. In Table 2.3(c), A 2 increases to 6.0
1 6

and A 2 decreases to 2.0. Note how A2= 6.0 is obtained in Table 2.3(c).
4 6

At p = 4 we have A2 = min (4.0,2.0,o*) and at the next partition level,4

A52 = min (4.0,6.0,,_) = 4.0. Now Cm is partitioned
2

A2 = min (8.0,6.0,o,,) = 6.0. In the next level, we partition
6

obtain A 2 = 8.0. In Section 3, the reasons why these
7

partitions are used will be seen more clearly.

to give

C to
m

I

latter two

TABLE 2.3(a)

3x8PSK SIGNAL SET PARTI_ON (I)

Par t ition

Level (p)

0

1

2

3

4

5

6

7

8

9

_2 p

f (C0,C0,C 0)

f (Co,Co,C ll)

f2(C0,C0,C 3)

1' 3 )f (Co,ClC

_'_(Co,C 12,C3 )
,4,

_r2(Co,C3,C 3)

f2(Ci,,C3,C3)

f2 i
(C2,C3,C 3)

__(C3,C3,C 3)

Minimum squared (A2)
subset distance p

min(4,2,0.586) = 0. 586

min(4,2,1.172) = 1. 172

min(4,2,1.172) = 1. 172

min(4,2,_) = 2.0

min(4,4,_,) = 4.0

min(4,4,**) = 4.0

min(4,**,**) = 4.0

rain(8,**,**) = 8.0

rain( 8 ,**,**) = 8.0

min(**, _*,_*) = **

Generator
(tP)"

[I II1

[1 10]

[o 1 11

[2 2 2]

[2 2 01

[0 2 21

[4 4 41

[4 4 0]

[0 4 4]
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L_

Par t ition

Level (p)

0

1

2

3

4

5

6

7

8

9

TABLE 2.3(b)

3x8PSK SIGNAL SET PARTITION (II)

f (Co,Co,C o)

f (C0,C0,C2t)
4,

_(Co,Co,C22 )

f (Co,Co,C3)

f2(Co,Cll,C3)

1 C
f_(Co,C 2, 3)

_'_(Co, C3,C 3 )

_"_(C 11,C 3, C3 )

_'_(C3,C3,C3)

Minimum squared (A2p)subset distance

min(4,2,0.586) = 0. 586

min(4,2,0.586) = 0. 586

min(4,2,1.757) = 1. 757

min(4,2,**) = 2.0

min(4,4,**) = 4.0

min(4,4,o0) = 4.0

min(4,**,**) = 4.0

rain( 8 ,,,*,o*) = 8.0

min(8 ,o.,o.) -- 8.0

min(o*,**,o*) = o.

Generator
(tP)"

[o o 11

[0 1 1]

[1 1 11

[2 2 2]

[2 2 O]

[0 2 2]

[4 4 41

[4 4 O]

[o 4 4]

For L = 4 there is only one good way to partition length 4 block

codes. - Table 2.2(c) gives a - summary of the basic parameterK- Using

Table 2.2(c), we can partition the 4x8PSK signal set as shown in Table

2.4.

For Lx4PSK and Lxl6PSK we obtain from (1) that,

A2 > rain (4d ,2d ),
P m I m 0

Az _ rain (4d ,2d ,0.586d ,0.152d ),
P m 3 m2 m I m0

(2.10a)

(2.10b)

respectively, where P = _i-1i=0 mi (I = 2 for (2.10a) and I = 4 for

(2.10b)). In a similar fashion to Lx8PSK, the signal set partitions can

be obtained for L ffi 2 to 4. Tables 2.5, 2.6, and 2.7 give a summary of

the partitions for Lx4PSK, Lx8PSK, and Lxl6PSK, respectively.



Part itioni
Level (p)

0

1

2

3

4

5

6

7

8

9

TABLE 2.3(c)
?

3x8PSK SIGNAL SET PARTITION (III)

k'_P

f (C0,C0,C 0)

f (Co,Co,C )

f2(Co,C0,C 3)

4,

_2(C3,C3,C 3)

Minimum squared (A_)subset distance

min(4,2,0.586) = 0.586

min(4,2,0.586) = 0.586

min(4,2,1.757) = 1.757

min(4,2,o*) = 2.0

min(4,2,o*) = 2.0

rain(4,6,_*) -- 4.0

rain(8,6,o*) = 6.0

min(8,o*,**) = 8.0

rain(8,0-,0-) = 8.0

min(,,*, 0-,,_) = 0-

GeneratQr
(tP)"

[o o 1]

[0 1 1]

[11 1]

[o o 2]

[0 2 2]

[4 4 4]

[2 2 2]

[4 4 O]

[0 4 4]

34

2.1.5 Larger Dimensional MPSK Signal Sets and the Squaring

Construction

One way to obtain larger dimensional MPSK signal sets is to take

an L×MPSK signal set partition (with its corresponding MSSD's relabeled

as _i.z, for 0 <i< IL) and form a 2LL' dimensional MPSK signal set
I

which we label as L'xL×MPSK. Thus if we have a 2×8PSK signal set, the

MSSD's A 2, 0 < p < 6L', for L'x2×8PSK are given by
P

A 2 > rain (8d ,4d ,4d ,2d ,1.172d ,0.586d ),
P m 5 m4 m 3 m2 m I m 0

(2.11)

where the d's are the Hamming distances of (L',L'-m i) block codes.
ITI.

1

If

L'= 2 we can form the 2x2x8PSK signal set, which is equivalent to the
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w

Part ition

Level (p)

0

1

2

3

4

5

6

7

8

9

10

11

12

Partition

Level (p)

0
1
2
3
4
5
6
7

Po Pm

TABLE 2.4

4x8PSK SIGNAL SET PARTITION

q

fl(Co,Co,l .o)

fVCo,Co,i 1I)

_'_(Co, Co,i :2 )

f_(CoJ, '_-o J-3 )

Q(Co,(- l, 4)

_'_(Co,i_2,C 4)

__(Co,i_3,C 4)

_(_,,_" c"3' 4 )

_'2(C 1,i_.4,C4)

_')(_2,C4,C4)

_'_(_3, C4, C4)

_'_(_4,C4,C4)

Minimum squared 2psubset di stance (A)

4

4

8

8

=8

=16

0. 586

1. 172

1. 172

2.0

2. 343

4.0

.0

.0

.0

.0

.0

.0

-" OO

GcneratQr
(tP)"

min(4,2,0. 586) =

min(4,2 , 1 . 172) =

min(4,2 , 1 . 172) =

min(4,2,2.343) =

min(4,4 , 2 . 343) -"

min(4,4 , o.) =

min(4,4 , o,) =

min(4,8 , oo) =

min(8,8,oo) =

min(8 ,**, o.) =

min(8 ,**, o.)

min(16, o,, 0.)

min(**,**, o. )

[0001]

[0011]

[0101]

[0002]

[1111]

[0022]

[0202]

[0004]

[2222]

[0044]

[0 4 o4]

[4444]

TABLE 2.5

SUMMARY OF Lx4PSK PARTITIONS

L=2

gcn.
A 2

p (tP_

2 01
4 11
4 02
8 22

1 3

L=3 (I)

gcn.
A 2

p (tP_

2 111
4 110
4 011
4 222
8 220
8 022

0

L=3 (II) L=3

gen.
A 2 A 2p (t"_ ,,

2 001
2 011
4 222
6 111
8 220
8 022

3 21

(III)

2 001
2 011
4 002
4 022
6 111

12 222

4 5]

L=4

A 2 gen.
,, (tP_

2 0001
4 0011
4 0101
4 0002
8 1111
8 0022
8 0202

1 6 2222

4 7
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TABLE 2.6

SUMMARY OF Lx8PSK PARTITIONS

L = 2 L=3 (I) L=3 (II) L=3 (III) L=4

Par t i t ion gen. gen. gen. gen. gen.

A 2 P_ A2 2 A 2 2Level (p) p (t p (tp_ Ap(t_p p(tP_ Ap (tp _

0
1
2
3
4
5
6
7
8
9

10
11

0.586 01 0.586 111 0.586 001 0.586 001 0.586 0001
1.172 11 1.172 110 0.586 011 0.586 011 1.172 0011

02 1.172 011 1.757 111 1.757 111 1.172 0101
22 2 222 2 222 2
04 4 220 4 220 2
44 4 022 4 022 4

4 4444 4446

8 i4408 4408
8 044 8 044 8

2
4
:4
8

002 2 0002
022 2.343 1111

i 1P0 Pl P2 1 3 5 I 0 3 6 2 3 6 2__ 6 5 4 8 11

444 4 0022
222 4 0202

440 4 0004
044 8 2222

8 O044
- 8 0404
- 16 4444

4x8PSK signal set. "Fable 2.8: illustrates this partitioning. Note that

the MSSD's obtained are exactly the same as those found with the 4x8PSK

partitioning given in Table 2.4. Figure 2.5 shows a block diagram of a

signal set mapper for the partition of 2x2x8PSK. The function T 1

corresponds to the mapping given by the generators in Table 2.8 and T 2

to the generators in Table 2.4.
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Figure 2.5: Block diagram of 2x2x8PSK signal set mapper.
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For L'= 2, the above method of obtaining larger dimensional MPSK

is essentially equivalent to the squaring or two-construction described
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w

TABLE 2.7

SUMMARY OF Lxl6PSK PARTITIONS

L=2 L=3 (I) L=3 (II) L=3 (III) L = 4

i

Partitioni

Level (p) A2p

gen. gen. gen. gen. gen.

(tP_ A2 A 2 A2 2p (tp_ p (tp_ p (tp S Ap (tp_

0
1
2

3
4
5
6
7
8
9

10
11
12

13
14
15

0.152 01 0.152 111 0.152 001 0. 152 001 0.152 0001
0.304 11 0.304 1100.152 011 0.152 011 0.304 0011
0.5861 02 0.304 011 0.457 111 0.457 111 0.304 0101
1.172! 22 0.586 2220.586 222 0.586 002 0.586 0002
2 04 1.172 220 1.172 220 0.586 022 0.609 1111
4 44 1.172 022 1.172 022 1.757 222 1.172 0022
4 444 1.172 0202
8 440 2 0004

044 2.343 2222

08 2 444 2 444 2
88 4 440 4 440 4

- 4 044 4 044 4
- 4 888 4 888 4

- 8 880 8 880 8
- 8 088 8 088 8

888_ 4 0044
880 4 0404
088 4 0008

- 8 4444
- 8 0088

- 8 0808
- 16 8888

__ poplp2p3 1 3 5 7 0 3 6 9 2 3 6 9 2 5 6 9 4 8 12 15

w

w

by Forney [23]. The cubing or three-construction corresponds to L'= 3.

One can continue squaring or cubing various multi-D signal sets in an

iterative fashion to obtain many larger dimensional signal sets. If we

desire an LxMPSK signal set, all that is required is to factor L to

determine which constructions are needed. For example, if L = 24, we

could factor this into a 2x2x2x3xSPSK signal set. If L is a prime

number, then the appropriate length L block codes and their

corresponding generators must be found.

Table 2.9 gives the generators for L = 5 and 7. Also given are

the Hamming distances and the number of nearest neighbors for each

length L block code. Note that there are three different partitions for

L = 5 and four different partitions for L = 7. This seems to suggest



TABLE 2.8

2x2x8PSK SIGNAL SET PARTITION

P

0

1

2

3

4

5

6

_'2p

'I

f (Co,C0,C0,C0,C0,(- 0)

O(C0,Co,C0,C0,Co,i)l)

_(Co,Co,Co,Co,Co,{_2 )

1,C2)

A 2 gen.
p (tP) T

min(8,4,4,2, 1 . 172,0.586)= 0.586

min(8,4, 4,2, 1 . 172,1.172)= 1. 172

min(8,4,4,2, 1 . 172,0-) = 1. 172

min(8,4, 4,2,2 343,**)

n(c.,c ,co,i'., ,c, ,c,)
U u u C I ,b_

_"_(Co, Co, C 0 , 1,C2,C2 )

7 _'_(Co, Co,i_ 1,C2,C2,C2)

8 _')(Co,_ 1 ,(._ 1 ,C2,C2,C2 )

min( 8

min( 8

min( 8

min( 8

min( 8

,4

,4

,4

,4

,8

,4,4

,4,4

_4, _

,2

oo

• 3 43,0-)

,oo)

,oo)

, 8 ,o,,o,,o,)

8 o. o. o.)

9

0

1

2

_-_(Co, C 1 ,(!2, C2, C2,C2 )

_')(C0,_2,C2,C2,C2,C 2)

_')(_ 1 ,C2,C2, C2, C2,C2 )

_')(_2, C2,C2,C2,C2,C2 )

min(8,8, o0, o., o,,, o.)

min(8 ,o., ,,,, ,**, oo, o.)

min(16, o0, o., o., o., 0.)

min(oo,,,*, _, o,, oo, o. )

=2.0

= 2. 3431

=4.0

=4.0

=4.0

=8.0

=8.0

=8.0

=16.0

--" oO

[0 1]

[1 1]

[0 2]

[0 4]

[2 2]

[4 4]

[0 8]

[0 16]

[8 8]

[16 16]

[0 32]

[32 32]

that the number of useful partitions increases by one for each

successive prime number. Thus, L = 11 is expected to have five useful

partitions, and so on. These partitions were constructed by hand and

probably represent the practical limit of hand constructions. For

L = 11 and above, an algorithmic or mathematical method is required. In

forming each partition, we have tried to maximize the Hamming distance

and minimize the number of nearest neighbors. For example, the type IV

partition maximizes the Hamming distance and minimizes the number of

nearest neighbors for the (7,4) block code while the type HI partition

maximizes the Hamming distance and minimizes the number of nearest

neighbors for the (7,3) and (7,2) block codes.

For larger dimensions, these methods may produce block codes

38 U

m

It

m

imm

I

m

m

m

z

m

g

m

i

n
m

mmm
m

J

g

Ul

m

D
I

B

l



39

ml

0
1
2
3
4
5
6

TABLE 2.9

BINARY GENERATORS FOR L - 5 AND 7

L - 5 (I)

d m N m (X_) T

5 [llllll
2 10 [000111

2 4 [00101]I [11000]

4 I [01111]

L- 5 (II)

dm N m (x2) T

I 5 [11111]

1 2 [00001]

2 2 [00110]
3 2 [10101]
4 1 [01111]

L = 5 (III)

d m N m ('c3)T

1 5 [00001]
1 1 [00010]
2 3 [00101]
2 1 [01001]
5 1 [11111]

L = 7 (1)

d N (x_) r
!11 m

I 7 [1111111]
2 21 [00000111
2 9 [00010011
2 3 [0010010]
2 I [0001 I00]
4 2 [lll i000]
6 1 [0111111]

L = 7 (II)

d N (XT) T
m m

1 7 [1111111]
1 2 [0000001 ]
2 5 [0000101]
2 1 [0100010]
3 3 [0011100]
4 2 [0001111]
6 1 [1110111]

L = 7 (III)

d N
m m

1 7
1 1
2 6
2 2
3 2
4 1
5 1

(_3)T

[0000001]

[0001000]

[1111111]

[0000101]

[0101010]

[1100011]

[0011111]

L = 7 (IV)

d N (XT) T
m m

1 7 [0000 001]
1 3 [0001 000]
1 1 [ 1000 000]
3 7 [0110 100]
3 3 [0011 0 10]

3 1 [0001 1011
7 1 [1111111]

which do not have the largest possible minimum distance. For example,

the largest Hamming distance that can be obtained for the (24,12) coset

code is six. However, the (24,12) Golay code has a Hamming distance of

eight. For L = 2, 3, and 4, the block codes are relatively simple.

Thus, we are fairly certain that the best partitions for these LxMPSK

signal sets have been found.

2.2 Trellis Coded Multi-D MPSK Design

This section describes how convolutional codes are constructed

for the LxMPSK signal sets described previously. We first show how to

construct signal sets which have good phase rotation properties.

= .
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Following this, a method used to find good convolutional codes based on

parity check equations is presented.

2.2.1 Construction of Signal Sets

Equation (2.9) can be used to describe a signal point in an

LxMPSK signal set. The number of bits z i needed to describe each signal

point is IL. If the lsb is used for coding, we can form a rate

(IL-1)/IL code. A more convenient measure of rate is to use the average

number of information bits transmitted per 2-D symbol. This is called

the bandwidth efficiency of the code, K = (IL-1)/L (bit/sym). The unit

bit/s/Hz can also be used, but this assumes that perfect Nyquist

filtering is used in th e receive and transmit filters. Since this is

not the case in many practical systems, we make a distinction between

the units bit/sym and bit/s/Hz.

Other rates can be achieved by setting the q lsb's of the mapping

to 0. We do this to insure that the MSSD's are as large as possible, so

that the best codes can be found. In this case (2.9) can be rewritten

as

yq(z) =

Yl IL -1

= Y_ zJ'qt j, (2.12)

j=q

for 0 < z < 2a'-q't-1, 0 < q < L-l, and where yq(z) represents a point

z in an LxMPSK signal set such that the first q bits of (2.9) are 0. As

before, we do not restrict the type of addition that is used. We now

let z = [z mqq ..... zl,z°], where z is the binary representation of z,

and the lsb of z is always the coding bit. This notation insures that

the parity check equations of a convolutional code can always be
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expressed in terms of the Isb's of z without depending on the type of

signal set used or its partitioning. From (2.12), codes with

K = (IL-q-1)/L can be formed. An upper limit of q--L-1 is set because

for q > L the signal set is partitioned such that d = 00, i.e., an
m

0

M/2J-PSK, for j _> 1, signal set is being used (one exception is the

4x8PSK signal set (Table 2.4) where d = 4 for q = L). The MSSD's
m 0

range from A 2 to A 2 and the uncoded minimum squared Euclidean distance
q IL

(MSED) is A2 since uncoded transmission uses only half as many
q+l'

signals as coded transmission.

L

Example 2.1

We can form a rate 4/5 code with a K of 2.0 bit/sym from a 2x8PSK

(L = 2, I = 3) signal set with q = 1. Then

w

w

y_(z) = z414] + z3[0] + z212] + zt[0] + z°[ 11 ] (mod 8).

The uncoded MSED is Az = 2.0, which is the same as uncoded 4PSK.
2

2.2.2 Effect of a 360°/M Phase Rotation on a Multi-D MPSK

Signal Set

Using modulo-M arithmetic in (2.12), multi-D signal sets can be

constructed such that there are at most I bits in z affected by a

signal set rotation of P- 360°/M. For 4PSK, 8PSK, and 16PSK, this

corresponds to rotations of 90 ° , 45 ° , and 22.5 ° , respectively.

Initially, we consider all possible mapped bits, i.e., q = 0.

Consider that a lxMPSK signal set has been rotated by _P. Since we

are using natural mapping, the integer representation of the rotated
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signal point is Yr = y + 1 (mod M), where y is the integer

representation of the signal point before rotation. If y is in binary

notation, then

I

0 0
yr = y • 1 = y0, (2.13a)

1 1
Y_ _- Y _ yO, (2.13b)

2 2 0 i
y_ = y • y.y, (2.13c)

If there are I = log 2 M bits in a signal set, then we see from (2.13)

that all I bits are affected by a phase rotation of _.

Consider the 2xSPSK signal set, with the mapping given by (2.8).

The phase rotation equations of this mapping can be determined as

follows. From (2.8), the signal outputs can be written in terms of z as

Jr1 ]=y2 (4z5+ 2z3+ zl)[ I ] +(4z4+ 2z2+ z°)[0] (mod 8). (2.14)

After a 45 ° phase rotation we have yj,_ =yj + 1 (mod 8), for j = 1,2.

From (2.14), we can form the following phase rotation equations,

[Yl_]Y2_- (4z5+ 2z3+ zl+ 1)[ I ] + (4z4+ 2z2+ z°)[ 0 ] (m°d 8)"

Note that a 1 is added to the term whose coset is [1 1] r. Hence this

term "absorbs" the effect of the phase rotation, leaving the remaining

term unaffected. As can be seen, bits z5, z3, and z _ are affected in a

y2,manner similar to yl, and y0 in (2.13), and bits z4, z 2, and z° are

unaffected by the phase rotation. Thus, we can form the phase rotation

equations
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Z 0 zO, 2 2 4 4---- Z = Z, Z ---- Z,
r r r

I I 3 Z 3 5 5 Z I"Z 3"z -- z _ 1, z = _ z I, z =z
r r r

(2.15)

w

If the signal set had been constructed using modulo-2 addition (instead

of modulo-8), only z° would have remained unchanged by a 45 ° phase

rotation.

Using general notation, we can express (2.14) as

[iI]: 2I-'zpI-IL2:1
+ 21_(g_._}+-..+ 2(g_)+ (go)(mod M),

(2.16)

where pj, for 0 < j < I-l, corresponds to those partition levels where

tp equals the vector [2J,2 j ..... 2J] T. The term gj, for 0 < j < I-1,

corresponds to those remaining terms that have at least one (but not

all) component in tp with value 2j. For (2.14) we would have P0 = 1,

Pl = 3, and P2 = 5. These values of pj are given for all the signal set

partitions shown in Tables 2.5-2.7. We can now write the phase rotation

equations as

P0 Pl
PO :2 _ Z "Z ,...Z pO -" Z pO _ I, Z pl -- Z pl I_ Z , Zp2 ----

r r t

(2.17)

and for all other partition levels, zp = zp.
r

For L = 2, there is only one term in each gj. However, for L > 3,

there are two or more terms in each gj. Since the terms in gj do not

contribute to the phase rotational properties of the signal mapping,

these terms can be added modulo-2 before being added modulo-M to the
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other terms. This is best illustrated with an example. For the 3×8PSK

(I) signal set in Table 2.3(a), we have the following mapping equation:

Y2 = z8 + z7 + Z6 + Z5 + z4 +

3

+ z 3 + z 2 + z I + z 0

= (4Z6+ 2z3+ z°) + zs _ z7 +

  tz[Y] t[i] [111z4 + z2 • z I (mod 8)

= (4z6+ 2z3+ z°)[ ]1
+ 4 z s z7 + 2 z5 + 2

8

(mod 8).

The reason for this combination of modulo-2 and modulo-M arithmetic is

that it reduces the number of logic circuits required in a signal set

mapper. For small IL, it may be simpler to use ROM's for signal set

mapping, but for large IL this dual addition becomes preferable. Figure

2:6 gives a block diagram of the three 3x8PSK signal set mappers and

Figure 2.7 illustrates the mapper for 4x8PSK. This combination of

modulo-2 and modulo-M addition has no effect on the MSSD's (at least

for L < 4). In a similar manner, we can also obtain the signal set

mappers for Lx4PSK and Lxl6PSK.

Due to the phase rotational properties and simplified hardware

that the combined modulo-2 and modulo-M mapping allows, these are the

signal sets that are used to find all the trellis codes in this

chapter.
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Figure 2.6(a): 3x8PSK signal set mapper (I).
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Figure 2.6(b): 3x8PSK signal set mapper (IT).
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Figure 2.6(c): 3x8PSK signal set mapper (Ill).

We have shown that for q = 0, the bits that are affected by a
P.

phase rotation of • are z J, for 0 <j < I-1. For q > 0 the bits that
p.-q

are affected are z j , for 0 _< j < I-1. However, depending on the

signal set, pj-q for some j may be less than zero. If this is true,
p

the minimum phase transparency is 2a_, where d' is the number of terms

pj- q that are less than zero, and the number of bits that are affected
!

by a 2a_ phase rotation is s'= I- d'. For example, the 3x8PSK signal

set in Table 2.3(a) has P0 = 0, Pl = 3, and P2 = 6. Thus if q = 1, then

Po" q ---1, which is less than zero, implying that d' = 1, and thus

only s'= I- d'= 2 bits are affected by a 2_ = 90 ° phase rotation. (A

phase rotation of W = 45 ° of this signal set produces its coset.)

Fortunately, for the codes and signal sets considered in this

chapter, the above complication does not occur. This is partly due to

the fact that for many signal sets with q = 0, the first L-1 Isb's are
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not affected by a phase rotation of _F. Since we consider only signal

sets with 0 _< q < L-l, d' = 0 in these cases. For those signal sets

where this is not true (e.g., in some 3xMPSK signal sets), it has been

found that the convolutional codes produced are inferior (in either

df,_ or number of nearest neighbors) to an alternative signal set with

d'=0.

When a signal set is combined with a convolutional encoder we

must consider the effect of rotating coded sequences. A similar result

to above is obtained so that, depending on the code and the signal set,

the signal set can be rotated in multiples of 2du/ and still produce

valid code sequences (where d defines the degree of transparency). The

actual determination of d is described in Section 2.2.4. The number of

bits that are affected by a 2d_ phase rotation is s = I - d.

For 0 _< q < L-l, the actual bits that are affected by a phase
b.

rotation of _F are z J, where bj = pj- q, for 0 < j _< I-1. More

gene1"al_ly, the b!ts that are affected by a phase rotation of _2a_W a,re
C

z J, where c. q, for 0 < j < s-1 These two separate notations
j = Pj+d- - "

(b and c) are used because the determination of d depends on b., asJ J

will be shown in Section 2.2.4.

2.2.3 The General Encoder System

From the above information we can now construct a suitable

encoder system, as illustrated in Figure 2.8. The general encoder

system consists of five sections. These sections are the differential

encoder (or precoder), the binary convolutional encoder, the multi-D

signal set mapper, the parallel to serial converter, and the 2-D signal

set mapper.
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The precoder codes only those bits which are affected by a phase

rotation. The input bits into the encoder which are precoded are

c0 c I Cs. I W 0, ,..., -- 0, we replace (which does notdenoted w w w If c o

exist) by z°, as shown in Figure 2.8 by the dashed line (a different

precoder must then be used). For example, an encoder for a rate 8/9

code which uses the 3×8PSK (I) signal set given in Table 2.3(a) may

(depending on the phase transparency) need this modification. This is

because this signal set has b0 = 0, and thus if the code has d = 0,

then z ° will need to be precoded.

The multi-D signal set mapper can be implemented as described in

Section 2.2.2. We must insure that the correct labels are used to map

the signal set if q is greater than zero. All the labels in Figures

2.4, 2.7, and 2.8 assume that q = 0.

The second to last section of the encoder is the parallel to

serial convener, which takes the L groups of I bits and forms a stream

with I bits in each group. That is, we assume that the channel is

limited to transmitting one 2-D signal point at a time. Finally, the

2-D signal set mapper takes the I bits for each 2-D signal point and

produces the required real and imaginary (or amplitude and phase)

components for a modulator.

At this point, we summarize the notation and indicate the limits

on the parameters used in the search for good codes. For a rate

(IL-q- 1)/(IL-q) code,

J
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D

I -- no. of bits in each 2-D signal (2 _< I < 4),

M - 21 = no. of signal points in each 2-D signal set,

L = no. of 2-D signal sets (1 < L < 4),
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p = partition level of signal set (0 < p _< IL),

q = the partition level p where mapping begins (0 < q < L-l),

z = signal set mapping parameter (0 < z <: 2P-q-l),

k = IL-q-1 = no. of input bits to encoder,

= no. of bits checked by encoder (1 < _ < k),

q_ = 360°/M = minimum phase transparency with q = 0,

P.

pj = the bits z J affected by a _P phase rotation with q = 0,

d = degree of phase transparency (2'kP, for 0 < d < I),

s = I-d = no. of bits in z affected by a 2atg phase rotation,
c

c.j = pj+d- q = the bits z j affected by a 2a_F phase rotation.

The following two sections describe the

more detail.

precoder and encoder design in

2.2.4 Differential Encoding and Decoding

Let the bit streams that are differentially encoded
C C

w l(D) .... , w"i(D), where D is the delay operator.. We

that co > 0 (i.e., the convolutional encoder output z°(D)

affected by a phase rotation of 2dw, where d = I-s). Let

C

be w °(D),

first assume

is not

! - l c.

w(D) = E 2iw_(D).
i=0

(2.18)

The precoder outputs are the bit streams
¢

x"l(D) which go into the convolutional

let

¢ ¢

encoder. Similar to (2.18), we

s - I . ¢.

x(D) = X 2'x'(D).
i=0

(2.19)
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For the noiseless channel, we let the Viterbi decoder output

which goes into the differential decoder (or postdecoder) be xr(D), and

the output from the postdecoder be w(D). After a 2a_ phase rotation,
r

we have from Section 2.2.2 that

x(D) = x(D) + I(D) (mod S), (2.20)

where S = 2' and I(D) is the all ones sequence. For the postdecoder, we

desire that Wr(D)= w(D) for all multiples of 2d_F phase rotations. This

is achieved by defining the postdecoder equation as

I

im
I

I

[]

w fD) = ((S-1)D + 1)xr(D) (rood S). (2.21)
i

Substituting (2.20) into (2.21) we obtain

w (D)= ((S-I)D + l)(x(D) + I(D))
l"

= ((S-I)D + l)x(D) + ((S-I)D + I)I(D)

= w(D) + (S-I)I(D) + 103)

= w(D) + (S)I(D)

= w(D),

(mod S)

(mod S)

(mod S)

(mod S)

as required. Notice that since I(D) is defined to be I for all time,

then Dil(D) = I_) for all i. In practical situations, the sequence

added to x(D) to form xr(D ) is not constant, and will change with time

(e.g., random phase slips within a demodulator). This will introduce

short error bursts in w(D) whenever a phase slip occurs due to the
r

combined effect of decoding and postdecoding. The precoder equation can

be derived from (2.21) as

i

aim

U

i

i

W

m

INI

i

x(D) = Dx(D) + w(D) (mod S). (2.22)
i

i

g
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We shall now consider the case when co = 0, i.e., z°(D) is

affected by a 2'kF phase rotation. In this case we redefine w(D) to be

and x(D) to be

s - I c.

w(D) = ]_ 2iqw'(D), (2.23)
i--I

, -I 2i.lx¢i(D).x(D) = E (2.24)
i--I

For this case, we have 2xr(D ) + z°(D) - 2x(D) + z°(D) + I(D),

where xr(D) and z°(D)r are the inputs to the postdecoder for a noiseless

channel. Thus, similar to (2.21), the postdecoder equation is defined

to be

2w(D) = ((S-1)D + 1)(2xr(D) + z°(D)) (mocl S). (2.25)

Rearranging (2.25), we obtain the precoder equation

2xfD) = 2Dx(D) + 2w(D) + (D + S-1)z°(D) (mod S). (2.26)

w

= :

,,...,

Figure 2.9 illustrates the two types of precoders. Note that the

storage elements have a delay of LT. Figure 2.9(a) illustrates the

precoder with c0 > 0, where there are s inputs that are precoded. The

basic component of the precoder is the modulo-2' adder. For most codes

this is the precoder to be used. For the bits that are not precoded,

x i = w i, fori#c..
J

Figure 2.9(b) shows the other case, where c o = 0 and s-1 input

bits are preeoded (the other preeoded bit is z°). The adder circuit for

this case is different from Figure 2.9(a).

w
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Figure 2.9(a)c _ntial encoder for Co > O.
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2.2.5 Convolutional Encoder

The convolutional encoder is assumed to be in feedback systematic

form, as in [65]. That is, zJ(D)= xJ(D) for 1 <j < k, where D is the

delay operator and polynomial notation is used. The parity sequence,

z°(D), will be some function of itself and the xi(D), for 1 < j < k.

The Parity Check Equation (PC'E) of an encoder describes the

relationship in time of the encoded bit streams. It is a very useful

and efficient means of describing high rate convolutional codes, since

it represents the input/output encoder relationships in a single

equation. For an R = k/(k+l) code, the parity check equation is

H_'(D)z_(D) _...@ HI(D)zI(D) _ H°(D)z°(D) = 00D), (2.27)

where _, 1 < _ "_ k, is the number of input sequences that are checked

by the encoder, HI(D), for 0 < j < _, is the parity check polynomial of

zi(D), and 0(D) is the all zero sequence.

.... There are two types of systematic convolutional encoders that can

be constructed. Before proceeding with the description of these

encoders, we return to the parity check equation given in (2.27). As in

[65], we define the constraint length v to be the maximum degree of all

the parity check polynomials Hi(D), for 0 < j < _. For _ < j < k,

Hi(D) = 0, since the bits corresponding to these polynomials are not

checked by the encoder. The parity check polynomials are of the form

Hi(D) : 0 @ h_.tD v'' _'--@ hiD _B h jo, I <j _< _,

re<o>-D • • ,.

(2.28a)

(2.28b)

If _ < v, we let h j = 0, for 1 < j < _. This insures that the squared
0
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Euclidean distance (SED) between paths in a trellis leaving or entering

a state is at least A2 Thus all codes in this class have a MSED
q+l"

between all possible non-parallel coded sequences of at least 2A_+.i.

The parallel transitions provide an upper bound on the df_ of a code.

A theoretical justification for constructing codes in this manner can

be found in [60] where it is shown, using random coding arguments, that

these codes have a large free MSED on the average.

A minimal systematic encoder can be implemented from (2.28),

since h ° = 1 [65]. The encoding equations are
0

zi(D) = xJ(D), 1 _< j < k, (2.29a)

z°(D) = Hk(D)xk(D) _..._ Ht(D)xt(D) _ (H°(D) _ 1)z°(D). (2.29b)

An encoder implementation using (2.29) is shown in Figure 2.10.
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For all codes with v = 1 and for some codes with v > 1, k = v.

J for 1 < j < _. This is becauseFor these codes we cannot restrict h 0, - -

checked bits require at least _ terms in Hi(D), for 1 < j < _, that are

variable. If there are not enough variables, then there will be some

non-zero x _ " _ 2 _1= tx ..... x ,x l such that _k HJ(D)x "/ = 0 (mod 2). That
j= 1

is, there will be more than 2 k_ parallel transitions between states in

the trellis. To avoid this problem, when _ = v, we use (2.28) without

any restrictons. In this case, the MSED between all possible

non-parallel coded sequences is at least A2 + A2q since the MSEDq +l'

between paths leaving a state is A 2 (since hJ e {0,1}, for 1 <j < k)
q 0

and between paths entering a state is A2 (since J = 0, forq+l hv

1 __j _<

An algorithm in [57] allows the conversion of the systematic form

of the encoder to a non-systematic form. There are usually a number of

non-systematic encoders to choose from which give the same PCE as the

systematic encoder. The encoder selected should have the same effect on

a phase rotation as the systematic encoder, in order to be compatible

with the precoder.

Example 2.2

In this example, we describe how to implement a particular code.

The code is used with a 3x8PSK signal set. Thus L = 3 and I = 3. We

also choose q---1, so that a 2.33 bit/sym (rate 7/8) code is formed.

The partition that is used is given in Table 2.3(b), from which we

obtain P0 = 2, Pt = 3, and P2 = 6. The code is 90 ° transparent, so that

d --- 1 and s = 2. Therefore co = Pt" q = 2, and cl = P2- q = 5. Thus

bits w 2 and w _ are precoded using a modulo-4 adder. Since c o > 0, the
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precoder given in Figure 2.9(a) is used. For this code, _. = 2 and the

parity check polynomials are H°(D) = D4 (9 D2 (9 D (D 1, HI(D) = D, and

H2(D) = D3(D D 2. Excluding the parallel to serial convener and the 2-D

signal mapper, the encoder is shown in Figure 2.11. This code has 16

states (v = 4). Note that the multi-D signal set mapper does not

correspond exactly to Figure 2.6(b), since q = I.

g

m

I

i

2.2.6 Convolutional Encoder Effects on Transparency

The convolutional encoder can affect the total transparency of

the system. The method used to determine transparency is to examine the

parity check equation and the bits that are affected by a phase

rotation. A code is transparent if its parity check equation, after

substituting zi(D) with _(D), for 0 < j < _ (the rotated sequences),

remains the same. There are normally at most I bits that are affected
b b

by a phase rotation, z 0, .... z I-1, b.j = pf q, for 0 <_ j _< I-1. That

is,

b b
0 0

z = z (9 1, (2.30a)
r

b b b
1 1 0

z = z _ z , (2.30b)
r

b2 b2 b0 bl
z = z _ z .z , (2.30c)

r

Assume that the largest value of b. < _ is b0. This implies that onlyJ

one term in the parity check equation is affected by a phase rotation.

The other bits have no effect since they are not checked by the

encoder, i.e., b. > _ for 1 < j < I-1. The parity check equation after
J

a phase rotation of W then becomes
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b b

H_(D)zk'(D) @-.-@ H °(D)[z °(D) @ I(D)] _.--@ H°(D)z°(D) = 0(D),

b0 b0 b
H_(D)z_(D) (9..-6) H (D)z (D) (9---6t H°(D)z°(D) = E[H °(D)](D), (2.31)

I

g

b b

where E[H °(D)] is the modulo-2 number of non-zero terms in H °(D) and
b

I(D) = 1_. ** D i is the all one sequence (i.e., E[H °(D)](D) =
j= . oo

b b

H°(D)I(D)). Thus if there is an even number of terms in H°(D), (2.31)

is the same as (2.27). That is, the code is transparent to integer

multiples of tF phase rotations of the signal set. However, if there is
b b

an odd number of terms in H °(D), then E[H °(D)] = 1 and the coset of

the convolutional code is produced. Even though the two equations are

closely related, the codes are quite different and a decoder is not

able to produce correctly decoded data from a tF phase rotation of the

signal set.

Now assume that the fh'st two terms are affected by a phase

rotation, i.e., the Iargest value of b. < k is b 1. The terms in the
b b b J b

parity check polynomial H °(D)z °(D) (9 H l(D)z l(D) now become

b b b b b b

[H °(D) (9 H l(D)]z °(D) (9 H l(D)z I(D) (9 E[H °(D)](D).

_s

In this case the parity check equation is different after a phase
b

rotation (even if E[H °(D)] = 0). This means that the code is not

transparent to a tF phase rotation, but it could be transparent to 2tF or

4tF phase rotations. This is because the phase rotation equations reduce

tO

bo bo bd- I zbd-I bd bd bd+ I bd÷ I bdz = z ,.... z = , z =z @ l,z = z @ z ....
r r r r
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for a 2dW phase rotation, where d = 1 or 2. If there is an even number
b

of terms in H _(D), then d = 1. This is because an even number of terms
b b

in HI(D) cancels the effect on z _(D) when the signal set is rotated

by 2W. That is, the code is transparent to integer multiples of 2_

phase rotations, but not to multiples of W. If there is an odd number
b

of terms in H I(D), this cancellation effect does not occur, implying

that d = 2 and the phase transparency is 4W.

In general, if the largest value of b. <
J

b

d = f + E[H f(D)]. We can then determine those bits

is bf, then
c.

zJ which are

affected by a 2d_ phase rotation, i.e., c. = b+d = Pj÷d" q' forJ

0 < j < s-l, where s = I-d.

w

w

Example 2.3

For the code given in Example 2.2, _ = 2, I--3, and q = 1. Thus

b ° = 1, b 1 = 2, and b 2 = 5. Sinceb the largest value of b.j <_ 2 is bt,

then f = 1. Therefore d = 1 + E[HI(D)] = 1 + E[D 3 • D 2] = 1. Thus the

code is 90 ° transparent, and co = 2 and c = 5.

2.2.7 Systematic Search for Good Small Constraint Length Codes

An approximate lower bound for the symbol error probability [651

of a multi-D code is given by

/l ljN d2frccK E b

P(e) > f r_ Q , (2.32)
- L 2 N o

where Eb/N 0 is the energy per information bit to single sided noise

density ratio and Q(.) is the complementary error function. In (2.32),
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the division by L normalizes the average number of errors per multi-D

signal to that of a 2-D signal set.

For each multi-D signal set considered, there are a number of

code rates which can be achieved. As v is increased, a comprehensive

code search becomes time consuming due to the greater complexity of

each code. We have thus limited our search to v + _ < 10. (The number

of checked bits k also affects the complexity of the code search.) As

indicated by (2.32), the criteria used to find the best codes are the

free MSED (d2f_) and the number of nearest neighbors (Nf). We have

also included the code transparency (d) as a criteria in the code

serach. The code search algorithm that was implemented is similar to

that in [65], but with a number of differences which include the extra

criteria mentioned above.

The actual code search involves using a rate _/(_+1) code. Thus

two separate notations are used to distinguish the rate k/(k+l) encoder

and the simplified rate _/(_+1) encoder. For the rate k/(k+l) encoder,

we have x, = [x_ ..... xl] (the input to the encoder) and

z ; [z k..... zl,z°l (the mapped bits or encoder output) at time n.
n rl 1_ n

Also, e = [e k.... ,el,e °] is the modulo-2 difference between two
n n n rl

encoder outputs z and z' at time n, i.e., e = z _ z'. Note that
11 n rl N rl

there are 2 k+l combinations of z and z' that give the same e. For the
rl n rl

rate _(I_+l) code, we denote reduced versions of x, z, and e as
fi n n

= [x k, .... xtl, _ = [z ..... z,z°], and = [e .... ,e,e ,
I1 I1 n n I1 n n

respectively.

In order to find d 2 for a particular code, the squared
free

Euclidean weights (SEW) w2(e) are used. As defined in [65], w2(e) is

the MSED between all combinations of a(z n) and a(z_) such that
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e --z • z' and a(z n) is the actual LxMPSK signal point. This can be
tl n n

defined as

w2(e) = mill d2[a(zn), a(z • e )], (2.33)
n 11 I1

all Z
I1

¢...,,

where d2[a(zn), a(z_)] is the SED between a(z) and a(z_). One can then

use the all zero path as a reference to find d 2 in a code search,
fnm

i,e._

d2free = min _ w2(en), (2.34)
n

w

w

where the minimization is over all allowable code sequences with the

exception of the all-zero sequence. We can use (2.34) to find d 2
f_

provided that the minimization of (2.33) does not depend on z°, as
n

shown by Ungerboeck [65].

Although the minimization of (2.33) does not depend on z° for
n

lxMPSK signal sets, it cannot be assumed that this also applies to

LxMPSK for L __ 2. By expressing d2[a(Zn ), a(z n • e)] directly in terms

of z and e, it can be shown that 3x4PSK (I), 3x8PSK (I and II), and
n n

3xl6PSK (I, II, and III) all depend on z°. This implies that (2.34)
n

becomes a lower bound in these cases. However, due to the large number

of parallel transitions for these codes, we can still determine d 2
fret

(and Nf,,_) using a slightly modified version of (2.34).

Sillce therg are 2 k+l values of e, there are a total of 2 _÷2
n

computations required to find all the values of w2(e). For example, a

rate 11/12 code with 4x8PSK modulation requires nearly 17 million

computations. This can be reduced by letting z° = 0 (or 1) and
n

minimizing (2.33) over all z = [Zk,...,Zl,0]. This reduces the number
n 11 n
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of computations to 22k+1. In fact, it is possible to even further

decrease the number of computations. Using some difficult algebraic

manipulations, it can be shown that the L output bits zp correspondingn

to cosets tp with some components equal to 2 I_ can all be set to zero.

For example, the 4x8PSK signal set with q = 0 can have bits z7 z9,I1 n

10 and z II all set to 0 when minimizing (2.33). This is due in part
Z ,

n n

to the MPSK signals being antipodal for these values. Thus the total

number of computations can be reduced to 2 zkL*l.
7

In order to reduce the time needed to find dfre,, we note that

the trellis is equivalent to a rate _d(_+l) code with 2k[ parallel

2[+Itransitions. Also, there are different sets of parallel

transitions. If the minimum SEW is found for each of these sets of

parallel transitions, the code search is greatly simplified, since the

search for a rate _/(_+1) code is all that is needed and k is usually

small. Thus, the SEW's required for a rate _/([+1) code search are

w2(_n) = rnin w2(en), (2.35)

where the minimization is over all [et,,...,ek+t]. We define the free
n rl

MSED of this rate _d(E+l) code as

_f,_ = rain 7. w2(e), (2.36)
n

where the minimization is over all allowable code sequences (_(D))

defined by

[(D) = _D • e2D 2 _9-..@e_D N,

for et' eN ;_ 0, and N >--2. The code sequences of length N = 1 are the

r
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parallel transitions, where the MSED is the MSSD of the parallel

transitions. A code might have _[2 larger than the MSSD of the
free

parallel transitions, implying that d 2 occurs along the parallel
free

transitions. With _ checked bits and a rate _/(_+1) code, the MSSD of

the parallel transitions is A 2 - Thus we can express d 2 as
q+k+ 1" free

d 2 = rain (_fr_' A2+k+l )"
free q

(2.37)

The best value of _ can be determined from the free MSED of the

best code for the previous value of v. The search starts with v = 1 and

= 1, and we find the code with the best d 2 and N We then
free free"

increase v by one and determine k as follows. If d z for the previous
free

best code was _[2 then _ remains the same. This is because the limit
free'

of the parallel transitions (A2÷_._) has not yet been reached and theq

trellis connectivity needs to be reduced in order to increase d z or
free

A 2 _
reduce Nf_ If d z for the previous best code was then _ is• free q+k+l'

increased by one from the previous value; otherwise, d z andfree Nfree

would remain the same. If [t2 = A 2- for the previous best code,
free q+k+ 1

then _ can remain the same or increase by one. Both values of _ should

be tried in order to find the best code. The best code is then found

for this value of v and _, and the above process is repeated for each

increasing value of v.

As can be seen from (2.33), thcre may be some values of e and z
n n

for which w2(e) < d2[a(z), a(z _ en)]. The "number of nearest

neighbors" for en (denoted re(e)) is defined as the avcrage number of

times that w2(en ) equals d2[a(zn), a(z • en)]. If w2(en ) equals

d2[a(Zn ), a(z n _ en) ] for all values of zn, then m(en) = 1. For

example, in naturally mapped 8PSK it is found that for e, = [0 1 1] and
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[1 1 1], d2[a(zn),a(zn _ en)] = 0.586 for four values of zn and 3.414

for the other four values of z. Thus m(e)= 0.5 for e = [0 1 1] and
I1 n n

[1 1 1]. For all other values of e, it can be shown that m(e) = 1.
n n

Zehavi and Wolf [79] give a general approach to determining the full

code distance spectrum, whereas we are only interested in the number of

nearest neighbors.

We can state this generally as follows. Let the number of bits in

z that are varied to find w2(e ) be b. Then
I/1 n

(2.38)

where u(.) is the unit step function and the summation is over all the

bits in z that are varied to find w2(e). Normally b = k + 1, but this
11 IPl

can be reduced to b = k - L for the reasons mentioned previously.

For the simplified rate _(_+1) code, m(e) is the sum of all the

m(e)'s for which w2(en ) = w2(en), i.e.,

m(_) = Y. u[w2(e) - w2(e))m(e), (2.39)

where the summation is over all [e t ..... ek+t]. We can think of m(_) as
I! n rl

the total average number of nearest neighbors along each set of

parallel transitions.

The number of nearest neighbors for the MSSD A2 - is
q+k+l

= A 2
N A _ u( q+_+l w2(en)} m(en ) , (2.40)

where the summation is over all e = [e k..... ek+l,0, .... 0]. The number
n i1 !1

of nearest neighbors for paths with SED _f,,= can be calculated using

m(_) as follows:
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A N0_

_'fw.o "-E TT m(_),
(2=1 n=i

(2.41)

where Net is the length of a path o_ that has a SED of _12f,_ and A is the

number of paths that have a SED of _f,,.. If d 2f_ occurs along the

parallel transitions, Nfree = N A, and we define the next nearest free

SED and number of nearest neighbors as d 2 = _f and N = lq
rlcXt r_ rlext ft_ _

respectively. (Note that d 2 and N may not be the true next
next next

nearest paths, since there may be some closer paths occuring along the

parallel transitions.) When there are several codes that have the same

free MSED and number of nearest neighbors, the "next nearest" values

are used in code selection. When d 2 occurs along paths with SED
fme

_free' Nfree = lqf,. The next nearest values in this case are not

given in the code tables. If _f_ = A2~q÷k+l'then Nfree = N A + lqf .

Example 2.4

In Example 2.2 we have a _--2, q--1, rate 7/8 (2.33 bit/sym)

code with a 3x8PSK (II) signal set. After determining the mapping of

the signal set, (2.33) was used to find the SEW's for each signal

point. Equation (2.35) determines the w2(en)'S that were used to find

the best rate 2/3 codes. For these codes d2free -- Aq+k+12 = A42 = 4.0.

Using (2.40) we determined that Nf,_ is 15 (after normalizing, there

are only 5 paths per 2-D symbol). In the code search for the best rate

2/3 codes, there were many codes which had d 2 -_f = 4.343. Thus
next l_e

(2.41) was used to determine N for each best code. Table 2.10 gives
ne_tt

the values of w2(_ n) and m(_') for each g that were used in the code

search. The best code with a transparency of 90 ° was found to have

N = 24.
next



TABLE 2.10

SQUARED EUCLIDEAN WEIGHTS USED IN THE CODE SEARCH FOR

RATE 718 (2.33 bit/sym) CODES WITH 3x8PSK (II) AND _ = 2

en W2(en)

000 0.0
001 1. 172
010 1.757
011 0.586
100 2.0
101 1. 172
110 1.757
111 0.586

!m(e n)

1
2
4
1

6
2
4
1

In order to reduce the number of codes that must be tested in our

code search algorithm, rejection rules were used. As in Rule 1 of [65],

time reversal of the parity check polynomials was used to reject codes.

Even though wZ(e) and m(e) are used to find the best codes, Rule 2 in
n rl

[65] can still be exploited, provided that wE('e) = A 2- wherer(e )+q'
n

r(_) is the number of trailing zero's in en" When this is not true, it

may still be possible to find some combinations of the parity check

polynomials that can be rejected (this was also implemented in our code

search). Rule 3 in [65] was also used to eliminate codes.

In the code search, a rate _J(_+l) code is searched for a

particular v. Before finding _ , the code search program checks to

make sure that the code only produces sequences with length N > 2. If

for some input x # 0, the inputs to the systematic encoder are all
n

zero, the state of the encoder goes from one state to the next as if a

zero input had occurred. Thus parallel transitions will occur in the

rate _/(_+1) code, which should not have parallel transitions.

Therefore, in the code search, codes at level i (1 < i < _) were
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rejected if for some [x i..... x i] ¢ 0, E i xJHJ(D) (mod 2) = 0(D).
j=l

Two programs written in pascal were used in the code search, one

for codes with v > _ and the other for codes with v = _. For specific

values of I, L, and q, yq(z), for 0 < z < 2req-l, was generated using

the coset representatives tp, for 0 < p <_-IL-1, that are given in

Tables 2.5, 2.6, and 2.7. The squared Euclidean weights w2(e) were

then calculated using (2.33) for all en. Since the value of _ can

change with each v, wE(e) and m(e n) were computed, if necessary, as

the program went from the smallest to the largest v.

The code search used the various rejection rules before the time

consuming tasks of finding _f,_ (using the bi-directional search

algorithm [38]) and Nfrec (using a technique based on the Viterbi

algorithm). The rejection rules were organized so that the best codes

for each of the two possible phase transparancies were found. The code

search found those codes which had the largest free distance (for a

particular transparency). If a code was found to have its free MSED

equal to or greater than the previous best code, lqf_ was determined

and this code was listed if either its _]2f,_ or lqf,_ had improved over

the previous best code.

The octal code generators were then listed along with their

_, , l_t_, and phase transparency d. A small list of codes was

produced (for each code search) from which the best codes could be

chosen. Every time that _ is increased by one in the code search (which

is done automatically), the program determines and lists A 2- and N A
q+k+l

for use in the code tables.

The asymptotic coding gain y of each code compared to the uneoded

case, as shown in the code tables, is
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y = 10 logio(d2f /d_) (dB), (2.42)

.............. 7 .... :

where d 2 is the smallest MSSD of an equivalent uncoded 2-D or multi-D
U

scheme. In nearly all cases, d 2= A2 . For codes with a non-integer K,
u q+l

no equivalent lxMPSK scheme exists which has the same K, and so the

equivalent uncoded multi-D signal set is used instead. For the 4x8PSK

signal set with q = 3, K = 2 bit/sym. Thus, a natural comparison would

be against uncoded 4PSK, which has d 2= 2. (In this case, A2 --2.343,
u q+l

which is inconsistent with other codes that also have K = 2 bit/sym.)

The asymptotic coding gains compared to uncoded (M/2)-PSK are found by

adding to y the appropriate correction factor

M
I

m
m

I

I

I

I

Y,'_'2 = 10 log,o [(I-1)5_
(dB), (2.43)

as shown in the code tables. The transparency (in degrees) is also

given for each code. The parity check polynomials are expressed in

octal notation in the code tables, e.g., H°(D) = D 6 + D 4 + D 2 + D + 1 ---

(001 010 111) 2 - (127) 8.

In Tables 2.11, 2.15, and 2.19, codes for TC-lx4PSK (rate 1/2

4PSK), TC-lxSPSK (rate 2/3 8PSK), and TC-lxl6PSK (rate 3/4 16PSK),

respectively, are presented. These tables give the best code for each

phase transparency, which (to the best of our knowledge) have not been

previously published. The best codes, without regard for phase

transparency, were originally published by Odenwalder [43] for 4PSK

(with the codes in non-systematic form), by Ungerboeck [65,68] for

8PSK, and by Wilson, et. al. [76] for 16PSK.
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TABLE 2.11

TRELLIS CODED lx4PSK.

K = 1.0 bit/sym, d 2 -- 4.0, N = 1 (lx2PSK).
u U

v _ h I h° Inv. d 2 d2 N
frecl Nfree next next

1 1 1 3 360 ° 6 1 - 1.76

2 1 2 5 360 ° 10 1 - - 3.98

3 1 06 13 180 ° 12 2 - - 4.77

1 04 13 36001 12 1 - - 4.77

4 1 06 21 180 ° 12 1 - - 4.77

1 10 23 360 ° 14 2 - - 5.44

5 1 36 45 180 ° 16 2 - - 6.02

1 26 53 360 ° 16 1 - - 6.02
O

6 1 042 117 180 20 11 - 6.99
O

7 1 126 235 180 20 2 - 6.99
O

1 144 223 360 20 1 6.99
O

8 1 262 435 180 24 11 - 7.78
O

1 362 515 360 24 9 - 7.78
O

9 1 0644 1123 180 24 2 - 7.78
O

1 0712 1047 360 24 1 7.78

y (dB)

Tables 2.12, 2.16, and 2.20 list the TC-2x4PSK codes (rates of

1.5 and 1.0 bit/syrn), the TC-2xSPSK codes (2.5 and 2.0 bit/sym), and

the TC-2xl6PSK codes (3.5 and 3.0 bit/sym), respectively. Tables 2.13,

2.17, and 2.21 list the TC-3x4PSK codes (1.67, 1.33, and 1.0 bit/sym),

the TC-3x8PSK codes (2.67, 2133, and 2.0 bit/sym), and the TC-3xl6PSK

codes (3.67, 3.33, and 3.0 bit/sym), respectively. Tables 2.14, 2.18,

and 2.22 list the TC-4x4PSK codes (1.75, 1.5, 1.25, and 1.0 bi0'sym),

the TC-4x8PSK codes (2.751 2.5, 2.25, and 2.0 bit/sym), and the

TC-4xl6PSK codes (3.75, 3.5, 3.25, and 3.0 bit/sym), respectively.



TABLE 2.12(a)

TRELLIS CODED 2x4PSK

K = 1.5 bit/sym, q-----0,dz = 4, N = 6 (2×4PSK).
U U

1 1

22

32

42

53

3

63

3

73

h 3 h 2 h I h 0 Inv. d 2
free Nfree

1 3 5

04 06 11

10 06 23

14 30 02 41

16 24 06 53

030 042 014 103

076 024 010 157

044 022 114 211

1 3 180 °

90 °

90 °

90 °

180 °

360 °

180 °

360 °

180 °

4 2

6 6

8 5

8 1

10 8

10 7

12 40.25

12 30.75

12 8

Y2 = 1.76 dB

d 2
nextl

6

10

N 7 (dB)
next

8 0.00

- 1.76

- 3.01

16 3.01

- 3.98

- 3.98

- 4.77

- 4.77

- 4.77
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TABLE 2.12(b)

TRELLIS CODED 2x4PSK

K = 1.0 bit/sym, q=l, d 2 = 4.0, N = 1 (lx2PSK).
ti U

1 1 - 1 3

2 1 - 2 5

32 04 02 11

4 2 14 06 23

5 2 30 16 41

h 2 h 1 h ° Inv. d 2 N d 2 N
free free next next

6 21 036 052 115

7 2 044 136 203

8 2 110 226 433

90°i 8 5

90 ° 8 1 12

360 ° 12 5

180 ° 12 1

180 ° 16 8

180 ° 16 1

180 ° 20 6 -

180 ° 24 33 -

72 = 0 dB

), (dB)

3.01

3.01

4.77

4.77

6.02

6.02

6.99

7.78
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TABLE 2.13(a)

TRELLIS CODED 3x4PSK

K = 1.67 bit/sym, q--0, d 2 = 4.0, N = 15 (3x4PSK I).
U U

V _ h 3 h 2 h I h ° Inv. d 2 d 2 IN y (dB)free Nfree next next

sig.
set

1 1 -

22

2

32

2

- 1 3 90 °

2 1 5 90 °

2 1 5 360 °

04 02 11 90 °

04 02 11 360 °

3 05 04 02 11 90 °

4 2 14 02 21 180 °

3 3 01 02 06 11 360 °

4 3 10 04 02 21 90 °

3 12 04 02 21 180 °

5 3 24 14 02 41 180 °

6 3 024 042 010 105 180 °

4 7 6

4 3 6

4 2 -

4 1 6

6 11 -

4 0.25 -

6 6 -

6 4 -

6 5.5 -

8 19 -

8 7 -

8 3 10

32 0.00 I

24 0.00 I

- 0.00 II

6 0.00 III

- 1.76 II

0.00 III

1.76 II

1.76 II

1.76 III

3.01 I

3.01 I

16 3.01 I

)'2 = 2.22 dB

w

Equivalent R = 5/6, TC-2x8PSK (2.5 bit/sym) codes with up to 16

states have been found independently by Lafanech_re and Costello [37]

and by Wilson [76], although with reduced phase transparency. The 2

state TC-Lx8PSK and TC-Lxl6PSK codes were also found by Divsalar and

Simon [15].

In the code tables it can be seen that for the same complexity,

there are usually two codes (and in some cases three codes) that are

given. Note that the code with the worst phase transparency has a

better free distance or a fewer number of nearest or next nearest

neighbors. Thus, if phase transparency is not required, one should

choose the less phase transparent code in order to obtain the maximum

performance for a given complexity.

w
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TABLE 2.13(b)

TRELLIS CODED 3x4PSK

K = 1.33 bit/sym, q=l, d 2 = 4.0, N = 3 (3×4PSK II).
U U

2 d 2
h 3 h 2 h I h ° Inv. dfreeNfree next

1 1 - 1 3 90 °

1 - 1 3 360 °

2 1 - 2 5 360"

2 2 1 5 90 °

2 3 1 5 180 °

2 - 2 1 5 3600

3 2 - 04 02 11 90 °

2 - 02 06 11 180 °

3 06 04 03 11 90"

4 3 14 04 12 23 90 °

5 3 30 04 22 43 90 °

6 3 036 060 026 103 90 °

7 3 140 160 062 213 90 °

3 004 154 056 207 180 °

N )'(dB) sig.
next set

4 1 8 4 0.00 III

6 7 - - 1.76 II

6 4 10 9 1.76 II

6 2 8 4 1.76 III

8 21 - - 3.01 I

8 16 - - 3.01 II

6 2 8 1 1.76 III

8 3 12 100 3.01 II

8 1 - - 3.01 III

10 5 - - 3.98 III

12 13 - - 4.77 III

12 2 - 4.77 III

12 1 14 5 4.77 III

12 I 16 128 4.77 III

)'2 = 1.25 dB

2.2.8 Decoder Implementation

When the Viterbi algorithm is used as the decoder, a measure of

decoding complexity is given by 2V÷R/L. This is the number of distinct

transitions in the trellis diagram for any TCM scheme normalized to a

2-D signal set. The maximum bit rate of the decoder is kf d, where f is

the symbol speed of the decoder. Since k is quite large for multi-D

signal sets (at least (I-1)L), high bit rates can be achieved. For

example, a Viterbi decoder has been constructed for a rate 7/9

periodically time varying trellis code (PTVTC) with v = 4, _ = 2, and

8PSK modulation [30]. This decoder has fd- 60 MHz and a bit rate of
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O0

11

1

22

32

2

42

2

3

53

3

TABLE 2.13(c)

TRELLIS CODED 3x4PSK

K - 1.00 bit/sym, q=2, d z = 4.0, N -- 1 (lx2PSK).
U U

h 3 h 2 h 1 h ° Inv. d 2 d 2 N y (dB)
free Nfree next next

6 3 070 004 022 101 180 °

7 3 156 024 046 213 180 °

3 044 014 102 217 360 °

- - 90 ° 6 4

- 1 3 90 ° 6 2

- 1 3 180 ° 8 3

- 3 2 5 90 ° 10 4

06 02 11 90 ° 10 2

02 06 13 180 ° 12 5

12 16 21 90 ° 12 1

04 12 27 180 ° 12 1

10 04 02 21 1800 14 3

22 16 04 53 1800 16 2

24 14 02 43 360 ° 16 1

18 3

20 3

20 2

sig.
set

8

12

14

16

- 1.76

1 1.76

16 3.01

- 3.98

- 3.98

- 4.77

2 4.77

22 4.77

- 5.44

- 6.02

- 6.02

- 6.53

- 6.99

- 6.99

II

III

II

III

III

III

III

III

II

II

II

II

II

II

"/z = 0.0 dB

w

= =

w

1 1

22

33

43

53

63

TABLE 2.14(a)

TRELLIS CODED 4x4PSK

K = 1.75 bit/sym, q=0, d 2 -- 4.0, N - 28 (4x4PSK).
U U

h 3 h 2 h I h ° Inv. d 2 d 2 Nfree Nfree next next

- 1 3 90 ° 4 12 6 64

2 1 5 90 ° 4 4 6 48

04 02 01 11 90 ° 6 28

10 04 02 21 90 ° 8 78

24 14 02 41 90 ° 8 30

050 032 004 103 90 ° 8 14 10 160
J

= 2.43 dB

'/ (dB)

0.00

0.00

1.76

3.01

3.01

3.01



TABLE 2.14(b)

TRELLIS CODED 4x4PSK

K = 1.50bit/sym, q=l, d2 = 4.0, N = 6 (2x4PSK).
tl u

1 1 - - 1 3

22 2 1 5

32 - 04 02 11

4 2 - 12 04 23

5 3 14 34 06 41

3 - 04 14 22 43

h 4 h 3 h 2 h 1 h ° Inv. d 2 d 2
free Nfree next

6 4 014 006 056 022 103

y2 = 1.76 dB

90 ° 4 4 8

90" 8 78

90 ° 8 30

90 ° 8 16 12

90 ° 8 6 12

180 ° 8 6 12

90 ° 8 2 12

N Y (dB)
next

64 0.00

3.01

3.01

320 3.01

176 3.01

160 3.01

62 3.01

76
J

m

Ill

w

IS

g

m
l

N

vk

1 1

2 1

32

2

3

413

54

64

TABLE 2.14(c)

TRELLIS CODED 4x4PSK

K = t.25 bit/sym, q=2, d 2 = 4.0, N = 4 (4x4PSK).
U U

,==

2 Nfr d 2 Nh 4 113 h 2 h I h 0 Inv. dfree ee next next

- - 1 3 90 ° 8 30 -

- - 2 5 90 ° 8 14 12 64

- 06 02 11 90 ° 8 6 12 64

- 02 06 11 180 ° 8 6 12 32

- 01 03 06 11 90 ° 8 2 12 56

- 10 14 06 21 90 ° 8 2 12 8

10 04 06 22 41 90 ° 12 8 -

024 014 006 042 103 90 ° 16 109

3'2 =0.97 dB

y (dB)

3.01

3.01

3.01

3.01

3.01

3.01

4.77

6.02

m

U

----U

D

g

g

I

I

J

g

g



- 77

00

1 1

212

33

43

5 3

63

TABLE 2.14(d)

TRELLIS CODED 4x4PSK

K -- 1.00 bit/sym, q=3, d 2 = 4.0, N u = 1 (lx2PSK).
U

h 3 h 2 h 1 h ° Inv. d 2 d 2 N _ (dB)
free Nfree next next

- - 90 ° 8 14 - 3.01

- 1 3 180 ° 8 6 16 64 3.01

2 3 5 90 ° 8 2 16 64 3.01

02 04 03 11 90 ° 16 45 - 6.02

02 10 06 21 90 ° 16 17 - 6.02

22 10 06 41 90 ° 16 5 6.02

010 060 036 105 90 ° 16 1 20 4 6.02

_=0dB

TABLE 2.15

TRELLIS CODED lx8PSK

K = 2.0 bit/sym, d 2 = 2.0, N -- 2 (lx4PSK).
U U

1 1

2 1

32

42

2

52

2

62

72

2

82

2

2 d 2h 2 h I h ° Inv. dfree Nfree next

1 3 180 °12.586 2

2 5 180014.0 1 4.586

04 02 11 360 ° 4. 586 2

14 06 23 180 ° 5. 172 4

16 04 23 360 ° 5. 172 2.25 -

14 26 53 180 ° 5.172 0.25 -

20 10 45 360 ° 5.757 2

074 012 147 180 ° 6.343 3.25 -

146 052 225 180 ° 6.343 0.125 -

122 054 277 360 ° 6.586 0.5 -

146 210 573 180 ° 7.515 3.375 -

130 072 435 360 ° 7.515 1.5

N
next

4

_-- 0 dB

"/ (dB)

1.12

3.01

3.60

4.13

4.13

4.13

4.59

5.01

5.01

5.18

5.75

5.75



V

1

2

3

4

5

6

7

1 1

2 1

3

4

5

6

7

k

1

TABLE 2.16(a)

TRELLIS CODED 2x8PSK

K = 2.5 bit/sym, q---0, d: = 1.172, N -- 4 (2×8PSK).
U U

h 3 h 2 h 1 h °

1 3

2 5

04 O6 11

16 12 23

10 06 41

1

2

2

!2
2 004 030 113

2 044 016 107

3 110 044 016 317

Inv. d 2 d 2
free Nfree next

900 1.757

90 ° 2.0

45 ° 2.929

45 ° 3.515

45 ° 3.515

45 ° 4.0

90 ° 4.0

90 ° 4.0

8 !2.0

4 2.929

16 -

56 -

16 -

6 4. 101

6 4. 101

2 4. 101

N
rl _ XI.

4

32

80

48

25

Y4 = 1.35 dB

2

i3
!3

TABLE 2.16(b)

TRELLIS CODED 2×8PSK

K = 2.0 bit/sym, q=l, d 2 = 2.0, N = 2 (I×4PSK).
U U

h 3 h 2 h I h °

1 3

- 2 5

04 02 II

04 14 02 21

24 14 06 43

_3 012 050 004 125

3 110 044 016 317

Inv.

45 °

45 °

180 °

90 °

90 °

90 °

90 °

d 2 N
free free

3. 172 8

4.0 6

4.0 2

5.172 8

6.0 6

6.343 J 5.5

7.515 25

d 2
next

4.0

5.172

5. 172

N
rlext

6

32

16

y (dB)

1.76

2.32

3.98

4.77

4.77

5.33

5.33

5.33

"/ (dB)

2.00

3.01

3.01

4.13

4.77

5.01

5.75

78 m

II

I

imm

[]

l

[]
il

ii

W

g

I

D

g

g

m
i

I

74 = 0 dB =_

I

m

m

g

J
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w

11

21

32

43

3

53

63

73

3

TABLE 2.17(a)

TRELLIS CODED 3x8PSK

K = 2.67 bit/sym, q=0, d 2 = 1.172, N = 12 (3x8PSK I).
U U

h 3 h 2 h I h ° Inv. d 2 d 2
free Nfree next

- 1 3 45 ° 1. 172

- 2 5 45 ° 1.757

- 04 02 11 45 ° 2.0

14 04 02 21 90 ° 2.343

10 04 02 21 180 ° 2.343

30 14 02 53 90 ° 2.929

050 022 006 103 90 ° 3.172

056 112 004 225 90 ° 3.515

100 050 022 255 180 ° 3.515

N
next

4

16

6 2.343 16

12

8 - "

48 - -

12 - -

84 - -

76 - -

y (dB) sig-
set

0.00 II

1.76 II

2.32 I

3.01 I

3.01 I

3.98 I

4.33 I

4.77 I

4.77 I

"[4 = -1.07 dB

w

TABLE 2.17(b)

TRELLIS CODED 3x8PSK

K = 2.33 bit/sym, q=l, d 2 -- 1.757, N = 8 (3x8PSK II).
I1 U

2 d 2 N y (dB)
V _ h 4 h 3 h 2 h 1 h ° Inv. dfree Nfree ' next next

sig.
set

1 1 - - 1 3 90 ° 2.0 6 2.343

2 2 - 3 1 7 90 ° 2.586i 6

3 2 - 06 02 11 90 ° 3.515 16

2 - 04 02 11 180 ° 3.757 24

4 3 - 10 04 06 21 45 ° 3.757 12

2 - 14 02 27 90 ° 4.0 15 4.343

5 3 - 22 16 06 41 45 ° 4.0 7

6 3 - 010 046 060 105 45 ° 4.0 3 4.686

4 060 024 014 002 101 180°!4.0 2

y =0.11 dB

16 0.56

- 1.68

- 3.01

- 3.30

- 3.30

24 3.57

- 3.57

8 3.57

- 3.57

II

II

II

II

III

II

III

III

III
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TABLE 2.17(c)

TRELLIS CODED 3x8PSK

K = 2.00 bit/sym, q=2, d 2 = 2.0, N = 2 (I×4PSK).
O L1

V _ h 4 h 3 h 2 h t h ° Inv. d 2 N d 2
free free next

1

2

3

4

5

6

1

1

2

2

3

3

3

4

- 1 3

2 5

04 02 11

12 04 27

14 24 02 41

- 16 22 06 53

- 030 042 014 103

014 044 024 006 103

180 ° 3.757 24 -

180 ° 4.0 15 5.757

45 ° 4.0 7 -

45 ° 4.0 3 5.757

180 ° 5.757 17.5 -

360 ° 5.757 17 -

1800 6.0 11 -

180 ° 6.0 4 -

Y4 =0dB

N
next

144

32

y (dB) sig.
set

2.74 II

3.01 II

3.01 III

3.01 III

4.59 III

4.59 III

4.77 III

4.77 II

V

1

2

3

4

5

6

TABLE 2.18(a)

TRELLIS CODED 4×SPSK

K = 2.75 bit/sym, q=0, d 2 = 1.172, N = 24 (4x8PSK).
ii U

h 4 h 3 h _ h I h ° Inv. d 2 Nfreefree

1 - 1 3

2 - 2 1 5

2 - 04 02 11

3 10 04 02 21

:3 30 14 02 41

14 030 020 052 014 101

45 ° 1.172 8

45 ° 1.757 48

45 ° 2.0 8

45 ° 2.343 40

45 ° 2.343 8

45 ° 2.929 136

d 2
next

1.757

2.343

2.929

N
next

64

64

288

_4 = -0.94 dB

y (dB)

0.00

1.76

2.32

3.01

3.01

3.98

I

I

I

Q

W

I

I

m

I

g

I

j

g

I

I

m
Ill =
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TABLE 2.18(b)

TRELLIS CODED 4x8PSK

K = 2.50 bit/sym, q=l, d 2 = 1.172, N = 4 (2x8PSK).
I.I U

h 3 h 2 hi h 0 Inv. d 2 d 2 N y (dB)
free iNfreel next next

1 1 - 1 3

22 - 2 1 5

32 - 04 02 11

4 3 14 04 02 21

5 3 24 14 02 41

6 3 014 024 042 103

45012.0 8 2.343 64 2.32

45 ° 2.343 40 3.01

45 ° 2.343 8 3.172 32 3.01

45 ° 3. 172 16 4.33

45 ° 3.515 64 4.77

45 ° 4.0 28 4.686 1088 5.33

Y4 = -1.35 dB

w

1 1

22

32

2

43

54

TABLE 2.18(c)

TRELLIS CODED 4x8PSK

K = 2.25 bit/sym, q=2, d 2 -- 2.0, N = 8 (4x8PSK).
U U

h 4 h 3 h 2 h I h °

- - 1 3

- 3 1 5

- 06 02 11

- 02 06 11

- 04 06 12 21

10 04 06 22 41

Inv. d 2 N d 2 N
free free next next

45 ° 2.343

45 ° 3.172

45 ° 4.0

90 ° 4.0

45 ° 4.0

45 ° 4.0

8 13.172] 32

16 -

28 4.343 64

28 4. 686 64

12 4.686 32

4 4.686 16

74=0.51 dB

7 (dB)

0.69

2.00

3.01

3.01

3.01

3.01

w



TABLE 2.18(d)

TRELLIS CODED 4x8PSK

K = 2.00 bit/sym, q=3, d2u = 2.0, N u = 2 (lx4PSK).

82 u

U

m

V !k h 4 h 3 h 2 h I h ° Inv. d 2 d 2
• free Nfree next

1 1 - 1 3

22 - - 2 3 5

3 3 - 02 04 03 11

4 4 10 04 02 03 21

5 4 02 10 04 22 41

6 4 034 044 016 036 107

4 044 024 014 016 103

N 7 (dB)
next

90 ° 4.0 28 4.686 64 3.01

45 ° 4.0 12 4. 686 32 3.01

45 ° 4.0 4 4.686 16 3.01

45 ° 4. 686 8 - 3.7 0

45 ° 6. 343 16 - 5.01

45 ° 6.686 6 - 5.24

90 ° 7. 029 24 - 5.46

74 = 0 dB

TABLE 2.19

TRELLIS CODED lx16PSK

K = 3.0 bit/sym, d 2 = 0.586, N = 2 (lx8PSK).
11 U

1 1

2 1

3 1

1

4 1

1

5 1

1

61

1

7 1

82

2

h 2 hi h o Inv. d 2 d 2 N "/ (dB)free Nfree next next

1 3 90 ° 0.738 2 - 1.00

2 5 90 ° 1.324 4 - 3.54

06 13 45 ° 1.476 8 - 4.01

- 04 13 90 ° 1.476 4 - 4.01

- 06 21 45 ° 1.476 4 - 4.01

- 10 23 90 ° 1.628 4 - 4.44

- 24 43 45 ° 1.781 8 - - 4.83

- 10 45 90°i 1.910 8 - - 5.13

- 056 135 45 ° 2.0 2 2.085 16 5.33

- 032 107 90* 2.0 2 2.085 8 5.33

- 126 235 45 ° 2.0 2 2.366 16 5.33

344 162 717 90 ° 2.085 2.938 - 5.51

224 112 527 180 ° 2.085 1.219 - 5.51

_=0dB

|

II

m

II

i

Ii

m

I

m

m

i

g

I

I

ii

m

N



- 83

r

11

21

32

42

52

6'2

2

72

TABLE 2.20(a)

TRELLIS CODED 2x16PSK

K = 3.5 bit/sym, q--0, d 2 = 0.304, N = 4 (2x16PSK).
U U

h 2 h 1 h ° Inv. d 2 Nf d 2 N n
free tee next ext

1 3 45 ° 0.457 8 -

2 5 45 ° 0.586 4 0.761 32

04 06 11 22.5 ° 0.761 16 -

16 12 23 22.5 ° 0.913 56 -

10 06 41 22.5 ° 0.913 16 -

004 030 113 22.5 ° 1.066 80 -

044 016 107 45 ° 1.066 48 -

074 132 217 22.5 ° 1.172 4 1.218 228

y (dB)

1.76

2.84

3.98

4.77

4.77

5.44

5.44

5.85

y = -2.17 dB

TABLE 2.20(b)

TRELLIS CODED 2x16PSK

K = 3.0 bit/sym, q=l, d 2 = 0.586, N = 2 (lx8PSK)
u u

V _ h 3 h 2

1 1

2 1 -

3

4

5

6

7

h I h ° Inv. d 2 d 2 N
free Nfree next next

- 1 3 22.5 ° 0.890 8

- 2 5 22.5 ° 1.172 4 1.476

2 04 02 11 90 ° 1.476 16

2 14 06 23 45 ° 1.757 8

2 30 16 41 45 ° 1.781 16

2 044 016 107 45 ° 2.0 4 2.085

3 110044 016 317 45 ° 2.085 25

32

48

_=0dB

y (dB)

1.82

3.01

4.01

4.77

4.83

5.33

5.51



TABLE 2.2l(a)

TRELLIS CODED 3×16PSK

K = 3.67 bit/sym, q=0, d2 - 0.304, N = i2 (3×16PSK I).
1.1 U

2 d 2 Nv k h 3 h 2 h I h ° Inv. dfree Nfree next next

1 1 - 1 3 22.5 ° 0.304 4 -

2 1 - 2 5 22.5 ° 0.457 16 -

3 2 - 04 02 11 22.5 ° 0.586 6 0.609 16

4 3 14 04 02 21 45 ° 0.609 12 -

3 10 04 02 21 90 ° 0.609 8 -

5 3 30 14 02 53 45 ° 0.761 48 -

6 3 050 022 006 103 45" 0.890 12 -
i i

7 3 056 112 004 225 45 ° 0.913 84 -

3 100 050 022 255 90 ° 0.913 76 - -

sig.
y (dB) set

0.00 II

1.76 II

2.84 I

3.01 I

3.01 I

3.98 I

4.66 I

4.77 I

4.77 I

7s =0dB

84 g

D

m

m
m

i

W

I

vE

1 1

22

32

21

43

2

53

63

73

3

TABLE 2.21(b)

TRELLIS CODED 3xl6PSK

K = 3.33 bit/sym, q=l, d 2 = 0.457, N = 8 (3xl6PSK II).
tl U

h 3 h 2 h i h ° Inv. d 2 d 2 N
free Nfree next next

- 1 3 45<> 0.586 6 0.609 16

- 3 1 7 45 ° 0.738 6 -

- 06 02 11 45<> 0.913 16 -

- 04 02 11 90<> 1.043 24 -

I0 04 06 21 22.5" 1.043 12 -

- 14 02 27 45<> 1.172 12 1.195 24

34 16 06 41 22.5" 1.172 4 -

032 046 006 103 22.5 ° 1.218 8 - -

014 102 044 203 22.5" 1.370

006 072 062 223 45 ° 1.476

"is = -1.97 dB

32

8

7 (dB) sig.
set

1.08 II

2.08 II

3.01 II

3.58 II

3.58 III

4.09 II

4.09 III

4.26 III

4.77 III

5.09 III

m
m

W

g

i

I

I

I

=_
il

I

I
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w

1 1

2 1

32

42

52

2

62

3

3

73

3

TABLE 2.21(c)

TRELLIS CODED 3xl6PSK

K = 3.00 bit/sym, q=2, d 2 - 0.586, N = 2 (lx8PSK).
U U

h 3 h 2 h t h ° Inv. d 2 Nf d zfree ree next
N

next

- 1 3 90 ° 1.043 24 - -

- 2 5 90 ° 1. 172 12 1.628 144

- 04 02 11 22.5 ° 1.172 4 - -

- 12 04 27 22.5 ° 1.628 32 - -

- 14 02 41 22.5 ° 1.628 16 -

- 22 14 43 45 ° 1.757 16 -

- 054 020 115 22.5 ° 1.757 8 2.085 48

020 004 012 101 45 ° 2.0 6 2.085 72

050 030 026 101 90 ° 2.0 6 2.085 60

060 106 050 213 45 ° 2.0 6 2.214 56

016 110 052 203 90 ° 2.0 6 2.343 64

Ys =0dB

y (dB) sig.
set

2.50 II

3.01 II

3.01 III

4.44 III

4.44 III

4.77 III

4.77 III

5.33 II

5.33 II

5.33 III

5.33 III

w

__=

TABLE 2.22(a)

TRELLIS CODED 4x16PSK

K = 3.75 biffsym, q=0, d 2 = 0.304, N = 24 (4xl6PSK).
U U

V El h 4 h 3 h 2 h z

1

2

32

4!3

53

- 1

2 1

04 02

10 04 02 21

30 14 02 41

6 4 030 020 052 014 101

2 d 2h ° Inv. dttee N tee nexz

3 122.5 ° 0.304 8 0.457

5 22.5 ° 0.457 48 -

11 22.5 ° 0.586 8 0.609

22.5 ° 0.609 40 -

22.5 ° 0.609 8 0.761

22.5 ° 0.761 136 -

N
/I £,111

64

64

288

Y8 = -1.87 dB

Y (dB)

0.00

1.76

2.84

3.01

3.01

3.98



v_

1 1

22

32

2

43

54

6]4

TABLE 2.22(b)

TRELLIS CODED 4×16PSK

K = 3.50 bit/sym, q=l, d 2 0.304, N = 4 (2×16PSK).
U I1

V _ h 3 h 2 h I h °

1 1 - 1 3

22 2 I 5

3 2 04 02 11

4 3 14 04 02 21

5 3 24 14 02 41

6 3 014 024 042 103

Inv. d2
free

22.5 ° 0.586

22.50 0.609

22.5 ° 0.609

22.5 ° 0.890

22.5 ° 0.913

22.5 ° 1.172

Nf d 2
ree flex t

8 0.609

40 -

8 0.890

16

64 -

24 1.218

N
next

64

32

1088

y (dB)

2.84

3.01

3.01

4.66

4.77

5.85

78 = -2.17 dB

TABLE 2.22(c)

TRELLIS CODED 4xl6PSK

K = 3.25 bit/sym, q=2, d 2 = 0.586, N = 8 (4x16PSK).
U U

h 4 h 3 h 2 h! h ° 2 d 2 NInv. dfree Nfree next next

- 1 3 22.5°10.609

- 3 1 5 22.5 ° 0.890

- 06 02 11 i22.5 ° 1.172

- 02 06 11 45 ° 1.172

04 06 12 21 22.5 ° 1.172

10 04 06 22 41 22.5 ° 1.218

050 030 024 016 101 22.5 ° 1.499

8 0.890 32

16

24 1.195 64

24 1.218 64

8 1.218 32

16

72

7 (dB)

0.17

1.82

3.01

3.01

3.01

3.18

4.08

3,8 = 0.35 dB

86 gt

W

I

I

U

l

m

m

E

J

I

l

g

Ill

m

g

w

J
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TABLE 2.22(d)

TRELLIS CODED 4xl6PSK

K = 3.00 bit/sym, q=3, d 2 = 0.586, N = 2 (lx8PSK).
U U

2 d2 Nv _ h 3 h 2 h 1 h ° Inv. dfrt, Nfre, next next

1 1 1 3 45 ° 1.172 24 1.218 64

2 2 2 3 5 22.5 ° 1.172 8 1.218 32

3 3 02 04 03 11 22.5 ° 1.218 16

4 3 04 10 06 21 22.5 ° 1.781 48

5 3 22 16 06 41 22.5 ° 1.8041 24

3 24 14 02 43 45 ° 1.827 64

6 3 050 024 006 103 22.5°!2.0 8 2.343 64

7 (dB)

3.01

3.01

3.18

4.83

4.88

4.94

5.33

_=0dB

=.

w

w

140 Mbit/s. However, with the equivalent rate 7/8 code with 3x8PSK

modulation, the bit rate will be L = 3 times as fast, i.e., 420 Mbit/s.

The branch metric calculator, though, will be more complicated due to

the _ larger number 9 f _ p_arallel transitions between .... states.

Alternatively, one could build a decoder operating at a 20 MHz speed

and achieve the same bit rate of 140 Mbit/s. In addition to providing

decreased decoder complexity, this multi-D code has an asymptotic

coding gain which is 0.56 dB greater and is 90 ° transparent, compared

with a 180" transparency for the PTVTC [48].

Although the decoding complexity of the Viterbi algorithm is

measured in terms of 2V'k/L, for multi-D schemes the complexity of

subset (parallel transition) decoding must also be taken into account

due to the large number of parallel transitions.

The Viterbi decoder must f'md which of the 2 k'_ parallel

transitions is closest, in a maximum likelihood sense, to the received
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signal. A brute force method would be to determine the metric for each

of the 2k-_ paths and then find the minimum. This would involve at

least 2 k_- 1 comparisons. Since there are 2 _÷1 sets of parallel

transitions, a total of 2 k÷l- 2_+n comparisons would be required. For

large k and small _, this is an unacceptably large number of

computations.

Fortunately, as shown in [23] for binary lattices, it is possible

to gready reduce the number of computations required. In fact, the

decoding scheme becomes very similar to Viterbi decoding, except that

finite length sequences are used.

To illustrate this we will present the decoding scheme for

TC-2x8PSK parallel transitions with k = 2 and an efficiency of 2.5

bit/sym (a rate 5/6 code). There are eight sets of parallel

transitions, with eight paths in each set. Figure 2.12 shows the

parallel transition decoding trellis for z = [0 0 0] (i.e., the three

lsb's are set to zero). In Figure 1.2, we use the notation A0 to

indicate the whole 8PSK signal set, which divides into B0 and B1 (4PSK

signal sets rotated 45 ° from each other). B0 divides into CO and C2

(2PSK signal sets rotated 90 ° from each other), and B1 divides into C1

and C3. This notation is also used in [65] for partitioning an 8PSK

signal set. Each segment in Figure 2.12 thus represents two parallel

lines. The length of this trellis equals the dimensionality L = 2 of

the signal set.

The path C0xC0 corresponds to those four paths that have z3 = 0

and C2xC2 corresponds to those four paths that have z3= 1, giving a

total of eight paths. To decode, hard decisions can be made for CO and

C2 for each time period, from which the values of z4 and z5 can be
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m

Figure 2.12: The parallel transition decoding tr_Uis

forz = [0 0 0] and the 2x8PSK signal set.

w

w

determined. For example, say that C0xC0 decodes into the points 04,

with a metric of m 0, and C2xC2 decodes into the points 66, with a

metric of m t, where the metrics are the sum of the Euclidean distances

(or log-likelihood metrics for a quantized channel) from the flu:st and

second received points. After comparing the two metrics, if m 0 < m 1,

then z3 = 0 and the point 04 would give z4 = 1 and z s = 0 (see Table

2.1). If m ° > m, then z3 = 1, and the point 66 would give z4 = 0 and

5
z = 1. This is equivalent to the add-compare-select (ACS) operation

within a Viterbi decoder.

To decode the other sets of parallel transitions, the cosets

formed by z°, z I, and z2 can be added to the trellis paths C0xC0 and

C2xC2 to form the required trellis. This is illustrated in Figure 2.13,

where the ending state in the trellis indicates which set of parallel

transitions is being decoded. In this example, there are a total of

eight hard comparisons and eight ACS type comparisons. These 16

comparisons compare with the 56 comparisons required in a brute force

approach, a 3.5 times reduction.

The above maximum likelihood method can be applied to other codes

where a Viterbi like decoder can be used to decode the parallel

transitions. With this method, the complexity of decoding the parallel

transitions can approach the complexity of the rate _/(_+1) Viterbi
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Figure 2.13: The full parallel transition

decoding trellis for the 2x8PSK signal set.

decoder. A simpler approach may be with large look-up tables using

ROM's. The ROM itself would output the k- k bits of the chosen path,

along with the branch metric for that path. For the TC-2x8PSK example

given previ0usly, we could use one ROM for each set of parallel

transitions. If the ROM's had eight bit words, then three bits could be

used for the decision, and the remaining five bits for the branch

metric. A total of eight ROM's would then be required, one for each set

of the parallel transitions.

When using ROM's, it is desirable to reduce the number of bits

(b) required to represent each received 2-D signal point, since there

are a total of bL bits required to address the ROM. One way to reduce b

is to convert the "checkerboard" (rectangular) type decision boundaries

that result from separate quantization of the inphase (D and

quadrature (Q) components to "pie chart" (radial) type decision

boundaries. For example, if four bits are used in I and Q for an 8PSK
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signal with checkerboard decision boundaries, a pie chart pattern as

shown in Figure 2.14 may be used instead with a total of five bits to

represent each point (a reduction of three bits). A ROM may be used to

do the conversion, or the pie chart pattern may be already available as

polar coordinates from a digital demodulator.

Figure 2.14: Pie chart decision
boundries for 8PSK (32 regions).

u

A problem with TC-L×MPSK is the need to synchronize the decoder

with the L 2-D symbols on each trellis branch. For q = 0, most codes

are fully transparent. The decoder performance can then be used to find

the correct synchronization with the received sequence. For q > 0, many

codes are not fully transparent, and the decoder will need to

synchronize to one of the 2dL possibilities (which can be quite large

for some codes). However, one can take advantage of the fact that not

all signal points are used for q > 0. For example, the 2x8PSK signal

set with q = 1 consists of the signal sets B0xB0 or BI×B1. The

synchronizer would find the smallest distance between a received pair

of points and the expected signal set. These distances would then be

accumulated over a sufficient length of time to make a reliable

decision on the symbol timing.

w
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If we let each signal point be represented by its phase (since

the amplitude is constant for 8PSK), we can write

1 2

B0 = {0°,90°,180°,270°}, and B1 = {45°,135°,225°,315°}. Let t) and 0n

represent the phase of the fhrst and second received symbols,

respectively. The synchronizer distance metric is then given by

• = min ['min ÷ min I_-_1)
n iE tO, tl _OC • Bi 13 e Bi

In the synchronized noiseless case, • will equal zero. In the
n

non-synchronized noiseless case, there are two possible outcomes for

• n, i.e., complete matchup (O = 0 °) and only one signal is matched

(O = 45°). If each possiblity is equally likely, then the average
n

value of • is 22.5 o. With noise, • can be accumulated over a
n n

sufficient length of symbols to take advantage of this average phase

distance between the non-synchronized and synchronized cases to

reliably determine symbol synchronization. This symbol synchronization

is independent of the Viterbi decoder, so the decoder must only

determine phase synchronization.

2.2.9 Discussion

In order to make a comparison of all the codes listed, a plot of

nominal coding gain _ = 10log10 d 2f,_ verses complexity

log2(2v+k/L) = v + _- log2L) for each code found is made. These

I

(13

plots are given in Figure 2.15 for effective rates of 1.0 (with 4PSK

modulation), 2.0 (8PSK), and 3.0 bit/sym (16PSK), Figure 2.16 for

effective rates of 1.5 (4PSK), 2.5 (SPSK), and 3.5 bit/sym (16PSK), and

Figure 2.17 (for the remaining rates). (Note that these graphs do not
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take into account the additional complexity due to parallel

transitions.) Some one state ("uncoded") codes are included as well.

These one state codes correspond to block coded (or multilevel) schemes

that have recently become an active research area

[5,11,13,27,31,34-36,41,59,61,63,80]. Although the multi-D one state

codes have negative complexity (compared to trellis codes), they can

achieve coding gains above 0 dB. There has also been research in

multi-level schemes which use convolutional codes [78].

Note from Figure 2.15 for TC-Lx8PSK, K = 2.0 bit/sym, and v = 1,

that as L increases the complexity decreases and y" increases,

eventually reaching 6.0 dB for L = 4. Thus, for the 8-D signal set, the

complexity factor can be reduced by a factor of four, while maintaining

ill

y, compared to the TC-I×SPSK code with v = 2. Beyond 13 = 4 ( and

y" = 6.0 dB), increases in asymptotic coding gain are achieved with the

new codes that have been found. With L = 4, a ceiling of y" = 9.0 dB

will be reached due to the nature of the set partitioning. It would

seem that very complex codes are required (13 >-15) if this 9.0 dB limit

is to be exceeded.

Figure 2.15 also shows the L×16PSK codes with effective rates of

3.0 bit/sym. For small 13, the same effect observed for TC-L×8PSK and

2.0 bit/sym occurs. That is, 13 decreases and y increases as L

increases. Between 13 = 3 and 13 = 9, the L = 1 and L = 2 codes are very

close.

Figure 2.17 illustrates the wide range of performance that can be

achieved with the codes found. One can choose from a high rate code

with 3.75 bit/sym (but requiring a large amount of power) to a low rate

code with 1.25 bit/sym. In choosing a code, a designer may start with a
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required K in order to obtain a certain bit rate through a bandwidth

constrained channel. A trade-off can then be made between decoder

complexity and the reduction in SNR that can be achieved with the codes

found. Simulations or theoretical calculations of a few selected codes

may also be made in order to obtain a more realistic assesment of the

performance available.

Note that many codes have the same asymptotic coding gain for

increasing complexity. In reality, these codes do increase in

performance with increasing complexity due to a decrease in number of

nearest neighbors. This is especially noticeable for low SNR where the

effect of nearest neighbors becomes more important.

2.3 Conclusions

w

An efficient method of partitioning multi-dimensional MPSK signal

sets has been presented that leads to easily implemeted multi-D signal

set mappers. When these signal sets are combined with trellis codes to

form a rate k/(k+l) code, significant asymptotic coding gains in

comparison to an uncoded system are achieved. These codes provide a

number of advantages compared to trellis codes with 2-D signal sets.

Most importantly, K can vary from I-1 to I-(1/L) bit/sym, allowing the

coding system designer a greater choice of data rates without

sacrificing data quality. As K approaches I, though, increased coding

effort (in terms of decoder complexity) or higher SNR is required to

achieve the same data performance.

The analytical description of multi-D signal sets in terms of

block code cosets, and the use of systematic convolutional encoding,
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has resulted in an encoder design (from the differential encoder to the

2-D signal set mapper) that allows many good codes to be found. This

approach has also led to the construction of signal sets that allow

codes to be transparent to multiples of 360°/M phase rotations. In

general, increasing phase transparency usually results in lower code

performance, due to more nearest or next nearest neighbors or smaller

free distance.

Another advantage is decoder complexity. As a Viterbi decoder

decodes k bits in each recursion of the algorithm, the large values of

k of codes using multi-D signal sets allows very high bit rates to be

achieved (compared to convolutional codes that map only into a 2-D

signal set). The large number of branch metric computations can be

reduced either through the use of a modified Viterbi algorithm or large

look up tables. A method has been presented that uses the redundancy in

some signal sets to achieve symbol synchronization at the decoder for

codesthat are not fully transparent.
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CHAPTER THREE

TRELLIS CODING WITH MULTIDIMENSIONAL QAM SIGNAL SETS

The first work on trellis coding with Quadrature Amplitude

Modulation (QAM) signal sets was presented by Ungerboeck in [65]. This

work was extended in [58,72] for two-dimensional (2-D) signal sets and

in [8-10,12,22-25,55,64,68,74] for multidimensional (multi-D) signal

sets. The reason for the large activity in this area is due to the

advantages that coding with an expanded signal set allows, viz., high

bandwidth efficiency at a reduced Signal-to-Noise-Ratio (SNR) compared

to an uncoded system.

Many of the codes presented in the literature have been found in

an ad hoe manner. There has been no attempt, as far as the author is

aware, to find the best codes with the fewest number of nearest

neighbors. Also, many authors use infinite size signal sets in the

design of their codes. Although this simplifies the search for good

codes and leads to an easier understanding of multi-D signal sets, the

codes produced may not be optimum for practical finite size signal

sets.

This chapter addresses this problem and presents the results of a

systematic code search for trellis codes with multi-D QAM signal sets.

The 2-D signal sets used in the construction of the multi-D signal sets

range from 16 to 512 points and were designed to have minimum energy,

be 90 ° rotationaUy symmetric, and be suitable for partitioning. Where

99
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possible, the signal set selected is the same as that commonly used in

the literature and practical implementationsof TCM schemes.

Only rate k/(k+l) codes are used in the code search. Rotationally

invariant nonlinear codes for the 2-D signal sets presented in this

chapter are given in Chapter 5. Also, the codes presented all have

signal sets with 21 signal points, where I is an integer greater than

zero. Some of the advantages of multi-D signal sets are: possible 90°

phase invariance, lower coding complexity, and non-integer bandwidth

efficiency (K bits per 2-D symbol, or bit/sym). The multi-D signal sets

were constructed by a method similar to that in Chapter 2, i.e.,

through the use of cosets.

In our code search we sought to find the codes which have the

largest minimum free Euclidean distance (dr,,.,) and of those codes, the

code with the smallest number of nearest neighbors (Nfr_e). In this way

we maximize the asymptotic coding gain (_,) and minimize the probability

of event error (P) at high SNR. There are usually two different
--C ........ .......

possible phase transparencies for a linear code, and the best codes for

each phase transparency are presented. The values of K range from 3 to

8 bit/sym, with signal sets up to eight dimensions for 16QAM and

32CROSS, six dimensions for 64CIRC, four dimensions for 128CROSS and

256CIRC, and two dimensions for 512STAR. (The 64CIRC, 256CIRC, and

512CRO$S are new 2-D signal sets.) The codes have _, ranging up to 6 dB.

3.1 Construction of 2-D QAM Signal Sets
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In designing the 2-D signal sets used in this chapter we

considered three criteria. The most important is that the signal set
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can be partitioned such that the minimum squared subset distance (MSSD)

at partition level i, _52, is as large as possible. The values of i
1

range from 0 for the full signal set to i = I where there are M = 2 I

subsets, with each subset having a single point (and 52= o,). We willI

be using a binary partitioning where each subset is divided into two

equal size subsets (in terms of the number of points) at the next

partition level.

This can be achieved with rectangular or QAM signal sets. These

signal sets are finite subsets of the X2 + (0.5,0.5) infinite size

2
signal set (Z is the set of all integers). Letting 8 o be normalized to

one, we then have 8 2 ---- 28_, for 0 < i < I-1 (for finite signal setsi+!

there is usually some i for which this is not true). As shown later, we

can obtain good codes as long as _i2 2, 2 2i = 82 = 4, and 83 = 8.

The second criterion is to choose the shape of the signal set to

maximize the shaping gain, i.e., determining where the signal points

are placed so as to minimize the energy of the constellation. From

[65], we note that the lower bound on d 2 for many trellis codes is
fnm

28_. This indicates that we should first design a 2 I1 point signal set

2
that has minimum energy (and thereby maximize dr=,).

The third criterion is that the signal set should have 90 °

rotational symmetry. This allows a demodulator to only have to lock

within a 90 ° range, resulting in faster lock times [24]. This criterion

can be incorporated into the above criteria by designing a 2 H point

constellation that is 180 ° rotationally symmetric. By rotating this

signal set 90 ° to form the Second subset, a 90 ° symmetric 21 point

signal set is obtained. The 2 I'l point subset should not have any

points that map onto points in the subset produced by a 90 ° rotation.
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This preventsthe 21point signal set from having 82 = 0.0

The method followed was to design the 2Il point subset from a

finite subset of the 2°5('_ + (0,0.5)) infinite lattice. This signal

set has points along the vertical axis, but none along the horizontal

axis. In practice, a subset of the 2_ + (1,0) infinite lattice is used

in order to avoid working with fractions.

After obtaining the 21 point signal set, we rotate the entire

signal set by 45° to obtain our final rectangular signal set. The

reason for this 45° rotation is to reduce the number of points in the

inphase and quadrature components of the signal set. This results in a

simpler modulator design.

m

I

I

i

I

3.1.1 Construction of 4, 8, 16, and 32 Point Signal Sets

Although codes are not given for the four and eight point signal

sets, we will present their construction since they provide insight

into the problem of constructing good signal sets. To construct a four

point signal set, we start with the BPSK signal set and rotate it by

90 ° to form the second subset. Rotating these two subsets by 45 ° gives

the QPSK signal set.

Figure 3.1 shows the three steps needed to obtain the eight point

signal set. This signal set does not produce good codes because of its

2 1). This results in d 2high energy (the energy E s = 1.5 with 8 0 = free

having a lower bound of 28_/E 8 = 2.667 (signal set energy normalized to

one). Compare this with naturally mapped 8PSK where d 2 has a lower
free

bound of 4. The 8PSK signal set can be constructed in a similar fashion

to the rectangular signal sets. That is, we start with the QPSK signal

set (where there are no points on the vertical or horizontal axis),
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w

w

rotate the set by 450 (instead of 90 ° ) to obtain the second subset, and

then rotate these two subsets by 22.5 ° to obtain the final signal set.

| | i | | ! | !

(a) (b) (c)

Figure 3.1: Construction of an eight point signal set.

Another eight point signal set is 8AMPM (which is 180 °

rotationaUy symmetric). This signal set has an energy of E_ - 1.25

x 1). Thus, the lower bound for codes using this signal set is(for 50 =

2521_ = 3.2. This is better than the 8QAM signal set constructed

previously, but still worse than 8PSK. The 8AMPM signal sct has

8_/E_ = 0.8, compared with 0.586 for 8PSK. Thus, it appears that for a

suffucicntly large memory cncodcr, the 8AMPM codes may bc ablc to

"catch up" to the 8PSK codes due to larger "in-bctwccn" distances

2
(i.e., 2-D symbols that are scpcmted by 8o between trellis path

pairs). A total of (4-3.2)/(0.8-0.586)= 3.7 in-between distances would

bc required to make up the diffcrcnce.

The eight point signal set seems to be the only case where the

best signal set is not rectangular. For I >_.4, our construction method

works very well. Figure 3.2 illustrates the construction sequence of

the 16 point signal set. In this case we start with the 8AMPM signal

set to form the standard 16QAM signal set. This example illustratesthe

reason for rotating the signal set by 45°. In the unrotatcd signal set
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there are seven different amplitude levels along each axis (requiring 3

bits to represent each axis), whereas the rotated signal set has four

amplitude levels (requiring only 2 bits per axis).

m u i |
A
v

g gI

D

i'i

(a) (b) (c)

Figure 3.2: Construction of a 16 point signal set (16QAM).

For the 32 point signal set, the starting signal set is 16CROSS

(which has the same energy as 16QAM). This gives the standard 32CROSS

signal set. The 16QAM and 32CROSS signal sets are illustrated in

Figures 3.3 and 3.4, respectively.
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Figure 3.3: Partitioning of 16QAM Signal set. iS

The bits y0,yl ..... yI-t are used to represent each point in the

signal set and correspond to the 1st, 2 "a ..... I 'h levels of

partitioning. We use three shadings of points to illustrate the first
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Figure 3.4: Partitioning of 32CROSS signal set.

L.
w

w

three levels of partitioning. The black points represent the f'u'st

level subset with yO= 1 while the white and gray points represent the

fin'st level subset with y0 = 0. The gray points represent the second

level subset with yO = 0 and yZ = 0.

Bits yO and y_ are used to label the first two levels of

partitioning. The remaining bits, y2,...,yI-t are given in integer

notation (y, = _I-I 2i-2yi) next to the points in the grey second level
i--2

subset. Let 0_2(2y_ + y0) represent a subset at the second partition

level. Thus, _2(0) is the first subset (which is given by the gray

points). By rotating c02(0) 90" we obtain 0_2(1). Rotating _2(1) by 90 °

gives t02(2), and so on. In this way, the whole signal set can be

constmet_ from c02(0). We call this a "natural" mapping since the bits

0 yty and are changed in exactly the same manner as in naturally mapped

QPSK.

Let coZ(2ylr + yr°) represent the subset that results from rotating

o_2(2yt + yO) by 90 °, where yt and y° are the bits correponding to the
r

rotated subset. Then



v I o yO-Yr + Yr = 2yt + + 1 (mod 4).

106

(3.1)

We can also express yi and y°r in binary notation. That is,

0 0

Yr = y _ 1 = y0, (3.2)

i I yO.y_ = y • (3.3)

Since the y' bits stay with their signal sets after a rotation, the

bits y2 ..... yr.1 are unaffected by a phase rotation (i.e., yir = y_, for

2 < i _< I-1).

The y' labels an Figures 3.3 and 3.4 are such that we try to

double 5Z with each partition. The 16QAM signal set has 5 _. = 2_ for all
! 1

i. The 32CROSS signal set has 52" -- 2 i for i = 0 to 3 and 52 = 8
l 4

(instead of 16). All the signal sets in this section (QPSK, 8PSK,

16QAM, and 32CROSS) are well known and have been used in practical

communication systems. The following section describes the construction

of four larger signal sets, three of which are new.
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3.1.2 Construction of 64, 128, 256, and 512 Point Signal Sets

Using the method described at the beginning of this chapter, we

obtain the 64 point signal set as shown in Figure 3.5. This is

basically a 64QAM signal set, except that we have taken a point from

each corner and placed it at a less energetic point. The energy of this

new signal set (which we have named 64CIRC) is 10.25. This is less than

the energy of 64QAM which is 10.5 (a 0.105 dB difference). This signal

2

set has 52. = 2 i for i = 0 to 4 and 65 = 16 (instead of 32).
1

For the 128 point signal set, the construction was more

difficult. The minimum energy 64 point signal set was found to have
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Figure 3.5: Partitioning of 64CIRC signal set.

w

2
53 = 4. Some of the outer points had the same energy, and so there were

several _ways to construct different signal sets with the same minimal

energy. All of these were found to have 52 = 4 (instead of 8). A
3

suboptimum signal set was then found (with the next smallest energy).

There were two constellations, one of which is the 128CROSS signal set.

This is the signal set given in Figure 3.6. The 128CROSS signal set has

an energy of 20.5 (compared with 20.4375 for the minimal energy signal

set). The difference between the two signal sets is only 0.013 dB, a

negligible amount. The 128CROSS signal set has 5.z -2 i for i = 0 to 5
1

and 5_ = 32 (instead of 64).

The 256 point signal set has only one solution. Figure 3.7

illustrates the constellation which we have named 256CIRC. The 256CIRC

signal set has an energy of 40.6875 compared to the 42.5 for 256QAM.



I

108

• 120

• 300 • 190

0 • 0 •

• 50 • 80

0 • 0 • 0 •

• 270 • 2 0 • 230

0 • 0 • 0 •

! ! i i ! i ! i i i !

• 160

0 •

• 310

0 •

• 90 • 20O

0 • 0 •

• 60 • 30

0 • 0 •

• 13 0 • 240

0 • 0 •

• 260 • 150

0 • 0 •

@ i0 • 40 • 29O

0 • 0 • 0 •

• 220 • I10 • 180

0 • 0 • 0 •

• 210 • O0

0 • 0 @

• 100 • 70

0 • 0 @

@ 170 • 280

0 • 0 •

• 250

0 @

• 14 0

0 •

I

I

m
I

I

I

iiI

z
I

I

m
I

Figure 3.6: Partitioning of 128CROSS signal set.

The difference in energy is 0.189 dB. We have 52 = 2 i for i = 0 to 3,
1

2 2
with 53 = 8 for i = 4 to 6, and fi7 = 64.

As for other signal sets with an odd number of points, the

"optimum" signal set for 512 points (in terms of energy) could not be

z= 4). A "suboptimum" signal set wasfound with 52 = 8 (the best was 83 _3

found with an energy of 81.6875. The optimum signal set has an energy

of 81.546875, a difference of only 0.007 dB. Figure 3.8 gives the

signal set and its partial two-way partition. We have called this

signal set 512STAR. This signal set has 82 = 2 i for i = 0 to 4,
1

2 2 16, 2 285 = 16, 56 = 57 = 80, and k s = 128.
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Figure 3.7: Partitioning of 256CIRC signal set.

w



II0 m

I

• 0 •

• 12_ • 990 • 66o

• 0 • 0 • 0 •

• 1160 • 450 • 720 • 730

0 • 0 • 0 • 0 •

• 540 • 270 • 420 OllgO • 380

• 0 • 0 • 0 • 0 • (2 •

• 600 oLOlo • 16o • tTo • 4.40 • 21o

0 • 0 • 0 • 0 • 0 • 0 •

• 670 • 980 • 6,3o • 14o • 830 • 150

• 0 • 0 • 0 • 0 • 0 • 0 •

7'70 01040 0[050 • 40 • 290 • 880 • 890

• 0 • 0 • 0 • 0 • 0 • 0 •

740 .i7; .i0o .ii• .i60 • 7o ._;

• o • • • o • o • o • o •

690 • 760 • 530 • 320 • 330 • 920 • 50

0 • 0 • 0 • 0 • 0 • 0 •

• 510 • 500 •Ill• • 300 • 350 • 20

0 • 0 • 0 • 0 • 0 • 0 •

12.00 01210 • 200 elO0. o • 80 • 90

0 • 0 • 0 • 0 • 0 •

• 1230 • _06@ • 550 • 102o

0 • 0 • 0 • 0 •

480 • 490 • L08O • 830

0 • 0 • 0 •

710 • 820

0 • 0

• 950 ellOo eLlS•

0 • 0 @ 0 • 0

• 100o • 12.5o • 56• • 570

0 • O • 0 • 0 •

• 430 01220 • J90 • P.20 • 590

0 • 0 • 0 • 0 • 0 • 0

• Oo • lo • 28o • 370 01120 01130

• • 0 • 0 • 0 • 0 • 0 •

• 150 • 940 • 30 • 340 O1270 • 780

0 • 0 • 0 • 0 • 0 • 0 • 0

• 8aO • 130 • 400 • 410 • 680 • 930 •

0 • 0 • 0 • 0 @ 0 • 0 • 0

• ;1o .i0* .+"o .'+o .750 ._, ,

• • 0 • 0 • 0 • 0 • 0 • •

• 800 • 810 • 120 0117• • 96O • 970 •

0 • 0 • • • 0 • 0 • 0 •

• 310 • 460 • 190 •1140 • 470 • 620

0 • 0 • 0 • 0 • 0 • 0 •

• 360 • 610 • Z4O • 2.50 • 520 •

0 • • • 0 • 0 • 0 •

01070 • 580 • L(13O •LlSo

0 @ 0 • 0 • 0 •

• 640 • 650 • 124o •

• • 0 • 0 •

• 790 •

mm

m
m

e

Ug

m

elm

= =

Ug

m

mm

mm

mo

m

Figure 3.8: Partitioning of 512STAR signal set.

I

g

J

g

8g

IOta



iii

3.2 Trellis Coded Multi-D QAM Design

In this section we will describe how mulfi-D QAM signal sets are

constructed. Also, the general encoder system and the results of our

code search are presented.

w

3.2.1 Construction of Multidimensional QAM Signal Sets

The method used to construct the 4-D, 6-D, and 8-D signal sets is

very similar to that described in Chapter 2 for multidimensional M.PSK

signal sets. We will assume that the reader is familiar with this

construction method.

The length L block codes used in our construction are the same as

those given in Chapter 2. Table 3.1 gives the minimum squared subset

distance (A2p) and the generator (t p) at partition level p for the

multi-D 16QAM signal sets. To obtain the cosets for the larger size

signal sets, the generators in Table 3.1 are used along with an extra ......

(I-4)L cosets. For example, the extra cosets for 4-D 32CROSS would be

(ts) a" = (0 16) T and (t9) T = (16 16) T. For the 8-D signal sets, the

order of the cosets changes slightly. For 8-D 32CROSS we have (tls) T=

(0 0 0 16) r, (tl_ T = (8 8 8 8) r, (ttT) T = (0 0 16 16) T, (tls) r =

(0 16 0 16) r, and (tl9) T = (16 16 16 16) r.

The total number of bits used to map a multi-D signal set is

equal to IL (where L is the number of 2-D signal sets). This may be

reduced by q bits (q < L) for lower code rates. In the search for good

trellis codes, the computation of the Euclidean weights is proportional

to 22_'_). We have limited IL-q to at most 17 (234 computations);

otherwise the code searches would have taken too long.
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TABLE 3.1

SUMMARY OF Lxl6QAM PARTITIONS

L = 2 L---3 (I) L=3 (II) L=3 (III) L = 4

Partition MSSD gen. MSSD gen. MSSD gen. MSSD gen. MSSD gen.
Level (p) ( A 2 ) (tP_ " ( A 2 ) (tP_ " ( A 2 ) (tP_ ( A 2 ) (tP_ ( A 2 ) (tP]_

P P P P P

0 1 01 1 111 1 001 1 001 1 0001
1 2 11 2 110 1 011 1 0114 2 0011
2 2 02 2 011 2 222 2 002 2 0101
3 4 22 2 2221 3 111 2 022 2 0002
4 4 04 4 220 4 220 3 111 4 1111
5 8 44 4 022 4 022 4 444 4 0022
6 8 08 4 444 4 444 6 222 4 0202
7 1 6 88 8 4401 8 440 8 440 4 0004
8 8 044 ii 8 044 8 044 8 2222
9 8 888 8 888 8 888 8 0044
I0 1 6 880 1 6 880 1 6 880 8 0404
11 1 6 088 1 6 088 1 6 088 8 0008
12 .... 1 6 4444
13 - tl - - - 16 0088

14 .... 1 6 0808
15 .... 3 2 8888

i i

po pl I 1 3 0 3 I 3 2 4 6 1 4 8

==
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u
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m
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u
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The main difference m terms of signal mapping between MPSK and

QAM is the effect of phase rotations on the mapping_ For MPSK, all bits

y0,y_ ..... yr-1 are affected. For QAM signal sets, as shown in Section

3.1.1, only the two least significant bits are affected.

To describe how the generators are added to form the multi-D

signal set, we fin'st introduce some notation. Let z° to zmq_ be the

IL-q bits that map into the multi-D signal set. The integers y_ ..... YL

are the representations of each 2-D point in the 2L-D signal set. That

is,

I

J

I

m

I

B
g

I-i

yj = i__Y.,O2iy], (3.4) g

al

u
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5

where Yl _ {0,1}. In general, a multi-D point y = [yl,...,yL IT is

expressed as follows,

iL] IL- 1

= 2: zJqtJ, (3.5)
y = j__q

where 0 < q < L. The summation in (3.5) can be taken in a number of

ways. Since the signal sets in this chapter are 90 ° symmetric (that is,

there are four rotational symmetries), some of the cosets in (3.5) are

added modulo-4, while the remaining cosets are added bit-wise modulo-2.

Using the preferred method of addition, and assuming q = 0, we

can express (3.5) as

= (2zPl + zp°) + 2{gl1 + {go} (mod 4) +

t.

2z-l{hi.l} +...+ 8{h31 + 4{h2}, (3.6)

where Po and p_ correspond to those partition levels where tp° and tpl

equal the vectors [1,1 ..... 1]T and [2,2, .... 2] T, respectively. The

terms go and gl correspond to the modulo-2 sum of cosets with some t but

not all) one's or two's in the coset. All the other cosets are added

modulo-2 and are indicated by the terms h 2 to hi. t.

After a 90 ° phase rotation and assuming q = 0 we have

I:]I 1= (2z pl + zp° + 1) + 2{gl} + {go } (mod 4)

L,

2z't{hi.1} +...+ 8{h3} + 4{h2},

"4-

(3.7)

PO PO

where Yl.r to YL_ are the rotated 2-D symbols. That is, Zr = z • i

PO
and ft= zPl _ Z . All the other mapping bits are unaffected by the

I"
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phase rotation.

Equation (3.6) can best be illustrated by an example. This will

show how we can use the mod-4 and mod-2 additions to form our multi-D

signal set. We will use the 3x16QAM (I) signal set from Table 3.1.

Thus, the mapping equation is (with q = 0),

Iyl ] [i] zl° [i] [i] [i] [i] [i]
Y2 = Zll + + Z9 + Z8 + Z7 + z6 +

Y3

'[!1[i] [!][i] [i]Z + Z4 + Z 3 + Z2 + Z 1 + Z0

[ [i] ]= (2Z 3 + Z°) + 2 Z4 5z + Z! @2Z 2 (mod 4) +
z /

" " V

,0 1 Ez6 ]

U

I

u

i

i

ii

I
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i

m

I

g
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Figure 3.9 shows how this mapper may be implemented. The values of P0

and Pl for each type of multi-D signal set are also given in Table 3.1.

3.2.2 Encoder System

The encoder system is essentially the same as that given in

Chapter 2. The only differences are in the construction of the multi-D

signal set mapper (described in section 3.2.1) and the differential

eneoder (or precoder). Since only two bits are affected by a rotation,

i
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the precoder and differential decoder (or postdecoder) equations are

relatively easy to describe.

The encoders have rate (I-L-q- 1)/(IL-q) and can transmit I-(q+l)/L

bit/sym. The value q indicates how many least significant bits (lsb) in

the multi-D signal mapping are set to zero, as indicated in (3.5). A

block diagram of the encoder system that is used in this chapter is

given in Figure 2.8. We use the same notation, with wi(D) as the binary

input sequences to the precoder, xi(D) as the binary input sequences to

the systematic encoder, zi(D) as the binary output sequences of the

encoder, and y.(D) as the integer output sequences of the signal set
J

mapper.

In order to determine which precoder to use for a code, we need to

determine the code transparency. Again, the technique used has been

previously described in Chapter 2. We will summarize the important

points here. Letting b ° = po- q and b t = pt- q, the transparency d = f +
b

E[H f(D)], where the largest value of b. <_ k is bf, _ is the number of

checked encoder bits, Hi(D), for 0 _< i <_ _, are the parity check

polynomials of the code, and E[Hi(D)] is the modulo-2 number of

non-zero delay terms in Hi(D). A code is then transparent to 2dX90 °

phase rotations.

The mapping bits that are affected by a 2ax90 ° phase rotation are

b 0 b I b0 b 0 b 1 b bo) b 1z and z (with z = z _ 1 and z = z' _ z for d = 0, z
1" r

(with zbl = zbl _ 1) for d = 1, and no bits for d = 2. For codes with
r

d = 2, no prccoder is required. When d = 1, no precoder is required if

b I = 0. This is because zt'l = z° is the encoded bit for the encoder.

When b t > 0, the precoder equation is (from Chapter 2)

m

2 _-

mm
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b b b

x t(D) = Dx I(D) _ w 1(D), (3.8)

where wi(D), for I <__i < IL-q, are the inputs to the precoder and

xi(D) = wi(D) for all i not equal to b 1. The postdecoder equation is

wbI(D) = (D @ 1)xbl(D), (3.9)

bl(D) bwhere x is the estimated sequence for x 1(D) from the decoder and

^b

w _(D) is the resulting postdecoded sequence.

For d = 0 (full transparency), there are two types of precoders.

From Chapter 2, we have for b 0 > 0 the precoding and postdecoding
b b b b

equations (letting x(D) = 2x :(D) + x °(D) and w(D) = 2w :(D) + w °(D))

and

x(D) = Dx(D) + w(D) (mod 4),

A A

w(D) = (3D + 1)x(D) (mod 4).

(3.10)

(3.11)

The precoding and "postdecoding
b b

x(D) = x t(D) and w(D) = w t(D)),

equations for b 0 = 0 are (letting

and

2x(D) = 2Dx(D) + 2w(D) + (D + 3)°(13) (rood 4),

A A
2w(D) = (3D + 1)(2x(D) + z%(D)) (mod 4).

(3.12)

(3.13)

w

3.2.3 Code Search Results

The code search was basically the same as in Chapter 2. The main

difference was in how the 2-D signal set is affected by a phase

rotation. The code search program was modified so as to read in a

subset and then rotate it by the required number of rotations to form
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the 2-D signal set. For the QAM codes, these subsets are given in U

Figures 3.3 to 3.8, and rotations of 0 °, 90 ° , 180 ° , and 270 ° were made __

I
to form the signal set. (An MPSK signal set is generated by rotating

the subset point [0 1] M times in increments of 360/M degrees.) The --
I

construction of the multi-D signal sets and the different code

transparencies were also incorporated into the program.

As in Chapter 2, we limited our code search to a code complexity

of v + _ < 10 (v is the number of binary memory elements in the i

encoder). The systematic encoder is the same as is Chapter 2. The _.
ql

results of our code search are listed in Tables 3.2 to 3.17. Each table

provides the following information:

The spectral efficiency of the codes K (in bit/sym).

The minimum squared distance of the uncoded signal set (d_) used

for comparison. This signal set is taken to be the smallest 2-D or =:
im

multi-D signal set which has the same K as the codes. In most cases

this signal set is the fa'st subset of the f'n'st partition level ......
I

The number of nearest neighbors for the uncoded signal set (N).
U

When comparing N for signal sets with different dimensionalities, one
n

should divide each N by the L of its signal set. This normalizes N to
tl U

two dimensions.

The memory (v), number of checked bits (_), parity check -_m

polynomials in octal notation (h ° to hk), phase invariance, minimum =

free squared Euclidean distance (d_,_), number of nearest neighbors w

(N), and asympototic coding gain ('/= logl0(d2f/d_) dB) of each
lip

code is given. For comparison purposes, Ne, = should be divided by L to

Nfr _ _normalize to two dimensions, - m

When d 2 occurs along parallel transitions, the next nearest _
f_

lIB
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Euclidean distance (d_t) and number of next nearest neighborssquared

(Nm) are also given.

For comparison to 2-D signal sets with an integer value of K, the

terms at the bottom of each table can be added to y. This will give the

adjusted asymptotic coding gain.

In Tables 3.2, 3.3(a), and 3.5(a) we have also given the number

of nearest neighbors for infinite size constellations (Nf,,_), taken

from [68].

w

TABLE 3.2

TRELLIS CODED 1x 16QAM

K = 3.0 bit/sym, d2 = 2, N = 2.25 (lx8AMPM).
I1 U

v _ h 2 h I h ° Inv. d2 d z N_reefree Nfree next Nfree f y (dB)

5 7.594

1 1 1 3 360 ° 3 3.375

2 1 2 5 360 ° 4 2.0

3 2 02 06 11 180 ° 5 3.781

2 04 02 11 360 ° 5 3.656

4 2 16 12 27 180 ° 6 9.594

2 16 04 23 360* 6 9.156

5 2 02 14 41 180" 6 1.891

2 36 02 55 360* 6 1.812

6 2 026 042 117 180" 7 6.172

2 060 004 123 360* 7 4.828

7 2 050 132 255 180°! 8 19.238

2 164026 253 360 ° 8 15.574

8 2 070 322 411 180" 8 2.387

- 1.76

4 3.01

- 3.98

16 3.98

- 4.77

56 4.77

16" 4.77

- 4.77

- 5.44

56" 5.44

344" 6.02

6.02

44" 6.02

"Different code. 78psK = 1.35 dB, 7S_m,U = 0.0 dB.

As the number of points in each 2-D signal set increases, the

maximum number of dimensions for which we give codes decreases, until

w

J
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1 1

22

32

42

53

3

64

TABLE 3.3(a)

TRELLIS CODED 2xl6QAM

K = 3.5 bit/sym, q---0, d z = 2, N = 13.5 (2xl6QAM).
tl U

h 4 h 3 h 2 h I h °

- 1 3

1 3 5

- 04 02 11

10 06 23

14 30 02 41

16 24 06 53

_020 030 046 014 113

4 004 010 024 042 111

2

Inv. df tee

180 ° 2

90 ° 3

180 ° 4

90 ° 4

180 ° 4

360 ° 4

180 ° 5

360 ° 5

N
free

4.5

20.25

29.312

9.062

4.0

4.0

31.641

3 1.328

d 2
next

3

5

5

5

N
next

27.0

121.5

60.75

53. 156

_

f tee

88

24 °

!1

8

144"

Y (dB)

0.00

1.76

3.01

3.01

3.01

3.01

3.98

3.98

"Different code. Ysr,sK = 2.02 dB, Ys_n'M = 0.67 dB.

V

1

2

3

4

TABLE 3.3(b)

TRELLIS CODED 2xl6QAM

K = 3.0 bit/sym, q=l, d 2 2, N = 2.25 (lx8AMPM).
U U

h 3 h 2 h I h ° Inv. d 2 d 2
free Nfree next

1

1

2

3

3

3

3

3

3

- 1 3

- 2 5

- 04 02 11

04 14 06 23

02 04 12 21

06 14 22 43

024 030 056 103

034 044 106 203

044 070 106 203

90 ° 4 29.312 -

90 o 4 9.062 6

360 ° 4 4.0 6

180 ° 6 3 2.453 -

360 ° 6 3 1.844 -

180 ° 6 9.062 -

180 ° 8 1 14.605 -

180 ° 8 2 8.5 -

360 ° 8 2 3.797 -

7sps K = 1.35 dB, 78_ar, M = 0 dB

N Y (dB)
ilex t

- 3.01

91.125 3.01

56.953 3.01

- 4.77

- 4.77

- 4.77

- 6.02

- 6.02

- 6.02
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=

TABLE 3.4(a)

TRELLIS CODED 3x16QAM

K - 3.67 bit/sym, q--0, d 2 = 2, N - 33.75 (3xl6QAM I).
L1 LI

2 NV _ h 3 h 2 h I h ° Inv. dfr_i free

1 1 -

2 1 -

2 -

32 -

2 -

42 -

1 3 90 °

2 5 90 °

2 1 5 360 °

04 02 11 90 °

04 02 11 360 °

14 02 21 180 °

3 3 O1 02 06 11 360 °

4 3 12 04 02 21 180 °

5 3 24 14 02 41 180 °

6 3 024 042 010 105 180 °

d 2 N
next nex t

2 15.75 3 108.0

2 6.75 3 27.0

2 4.5 - -

2 2.25 3

3 37.125 - -

3 20.25 - -

3 1 3.5 - -

4 102.188 - -

4 41.438 - -

4 21.188 5 121.5

T (dB) sig.
se t

0.00 I

0.00 II

0.00 II

20.25 0.00 III

1.76 II

1.76 II

1.76 II

3.01 I

3.01 I

3.01 I

TapsK = 2.23 dB, TSAMVM = 0.87 dB

we only give codes for the 2-D signal set for 512STAR. As mentioned in

Section 3.2.1, the reason for this is due to the large number of

computations associated with determining the Euclidean weights of each

multi-D signal point.

When N or N is taken into consideration in doing a code
free next

search, different codes can result from different signal sets. For

example, the best v = 8 codes for 16QAM, 32CROSS, 64CIRC, 256CIRC, and

512STAR are all different. Therefore separate tables for each type of

signal set are given. With multi-D signal sets, codes with full

transparency appear due to the "spreading out" of the two bits that are

affected by a phase rotation.

Figure 3.10 is a plot of the asymptotic coding gains of various

codes with multi-D 16QAM signal sets compared to uncoded 8AMPM versus
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TABLE 3.4(b)

TRELLIS CODED 3xl6QAM

K = 3.33 bit/sym, q=l, dz = 2, N = 6.75 (3xl6QAM II).
U tl

V k h 4 h 3 h 2 h I h ° Inv. d 2 N d 2
free free next

1 1

1

2 1 -

2 -

2 -

2 -

32 -

3 -

43 -

1 3 90 ° 2 2.25

1 3 360 ° 3 2 3.625

2 5 360 ° 3 1 3.5

2 1 5 90 ° 3 6.75 4

3 1 5 180 ° 4 112.313 -

2 1 5 360 ° 4 8 7.0 -

4 21.188

4 1 1.062

4 6.0

5 2 1.875

6 17 7.547

6 149.797

02 06 11 180 °

06 04 03 11 90 °

14 04 12 23 90 °

5 4 04 30 10 22 47 90 °

6 4 022 006 066 010 133 90 °

4 014 052 024 056 115 180 °

4

N y (dB) sig.
next set

20.25

68.344

20.25

6 1139.062

5 3 7.969

0.00

1.76

1.76

1.76

3.01

3.01

3.01

3.01

3.01

3.98

4.77

4.77

III

II

II

III

I

II

II

III

III

III

III

III

YaPSK = 1.81 dB, _/SAMPM = 0.46 dB

decoder complexity (v + _ log2L). Only the highest rate codes for

each L are plotted, otherwise the figure would become too complicated.

The highest gains are achieved for the 2-D codes (which also has the

lowest K), Increasing L results in a decrease in coding gain since K

increases. However, the 3.75 bit/sym codes appear to perform slightly

better than the 3.67 bit/sym codes.

In Tables 3.2, 3.3(a), and 3.5(a), note that the Nfr's obtained

for the finite signal sets are much less than for the infinite size

signal sets. For the more complex codes, where the codes in [68] are

different than the ones we found, very large differences between the

Nfr's can again be seen. This illustrates the advantages obtained
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¥ (d.B)

o 3 bit/sym (2-D)

+ 3.5 bit/sym (4-D)

ZX3.67 birdsym (6-D)

Q 3.75 bit/sym (8-D)

-- 0 1 2 3 4 5 6 7 8

v +k - log2L

9 lO

w

J

Figure 3.10: Plot of asymptotic coding gain (against uncoded 8AMPM)
versus complexity for some trellis codes with multi-D 16QAM signal sets.

when a code search finds the codes with minimum Nf, . As we increase

the size of the signal set, the Nf, 's asymptotically approach the

values for the infinite size signal sets. A good example are the v = 2

codes for 2-D signal sets. We start with Nt,,_- 2 for 16QAM and reach

Nfr _ = 3.594 for 512STAR, where N 7,_ = 4.

An interesting code is the v- 4 code in Table 5(d). This code

uses the 4xl6QAM signal set and has K = 3 bit/sym. This sixteen state

code has y equal to 6.02 dB and is 90* invariant. Although the code has



TABLE 3.4(c)

TRELLIS CODED 3×16QAM

K = 3.00 bit/sym, q=2, d2 = 2, N = 2.25 (I×SAMPM).
ti U

124
mm

EB

El

vk_

00

1 1

22

33

4

5

6

3

_3

4

h 4 h 3 h 2 h 1 h ° Inv. d 2 N
fre_ free

- 90"

1 3 180 °

90 °

90 °

90 °

90 °

- 3 2 5

04 03 02 11

04 06 12 27

30 14 16 43

20 10 04 02 41 180 °

4 024 010 004 042 101 180 °

4 044 050 024 002 103 360 °

3 1 3.5

4 2 1.188

4 6.0

5 1 4.875

6 3 1.015i

6 5.703

7 3 4.43

8 7 7.805

8 40.316

d 2 N
next rlext

6 1 82.25

5 3 0.375

7 44.0

Y (dB)

1.76

3.01

3.01

3.98

4.77

4.77

5.44

6.02

6.02

sig.
set

II

II

III

III

III

III

II

II

II

I

m

I

ii

I

m

YsPSK = 1.35 dB, )'SAMPM = 0 dB m

V

1

2

3

4

5

6

1

2

3

3

3

3

TABLE 3.5(a)

TRELLIS CODED 4xl6QAM

K = 3.75 bit/sym, q=0, d 2 = 2, N = 63 (4xl6QAM).
U U

h 3 h 2 h I h °

- 1 3

- 2 1 5

04 02 01 11

10 04 02 21

24 14 02 41

050 032 004 103

2

Inv. dfrt, Nfree

90 ° 2 2 7.0

90 ° 2 9.0

90 ° 3 9 4.5

90 ° 4 40 2.875

90 ° 4 159.875

90 ° 4 7 8.875

d 2
next

3

3

5

N
next

216.0

1 62.0

1215.0

_

f ree

496 °

2 40"

y (dB)

0.00

0.00

1.76

3.01

3.01

3.01

"Different code, 7sps K = 2.32 dB, Ysma,M = 0.97 dB
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TABLE 3.5(b)

TRELLIS CODED 4xl6QAM

K = 3.50 bit/sym, q=l, d 2 = 2, N = 27 (4xl6QAM).
U U

2 d 2 NV _ h 4 h 3 h 2 h t h ° Inv. dfr _ Nfree next next

1 1 - - 1 3

22 - - 2 1 5

32 - 04 02 11

42 - 12 04 23

5 3 - 14 34 06 41

3 - 04 14 22 43

6 4 014 006 056 022 103

90 ° ! 2 9.0

90 ° 4 40 2.875

90 ° 4 15 9.875

90 ° 4 7 8.875

90 ° 4 3 8.375

180 ° 4 3 8.375

90 ° 4 1 8.125

")'sr,si<= 2.02 dB, YSAMPM= 0.67 dB

4 3 24.0

6 3645.0

6 2004.75

6 1822.5

6 637.875

y (dB)

0.00

3.01

3.01

3.01

3.01

3.01

3.01

w

TABLE 3.5(c)

TRELLIS CODED 4xl6QAM

K = 3.25 bit/sym, q=2, d 2 = 2, N = 9.0 (4xl6QAM).
1.1 U

2 d 2 N
v _, h 4 h 3 h 2 h I h ° Inv. dfr _ Nfr¢, next next y (dB)

1 1 -

2

3

4

5

- 1 3 90"

1 - - 2 5 90 ° 4

2 - 06 02 11 90 ° 4

2 - 02 06 11 180 ° 4

3 - 10 14 06 21 90 ° 4

4 10 04 06 22 41 90 ° 4

4 159.875

78.875 6 729.0

38.375! 6 729.0

38.375 6 364.5

1 8.125 6 9 1. 125

8.0 6 9 1. 125

3.01

3.01

3.01

3.01

3.01

3.01

YsPsK = 1.70 dB, YSAMPM = 0.35 dB



TABLE 3.5(d)

TRELLIS CODED 4x16QAM

K = 3.00 bit/sym, q=3, d 2 = 2, N = 2.25 (lx8AMPM).
U U

V _ h 4 h 3 h 2 h I h ° Inv. d 2 Nfr e d 2 N
free • next next

Y (dB)

00 -

1 1 -

22 - 2 3 5

3 3 - 02 04 03 11

4 4 12 10 04 03 21

5 4 26 22 i0 06 41

6 4 056 042 020 006 101

_ 90 °

1 3 180 °

4 7 8.875

4 3 8.375

90 ° 4 18.125

90 °! 4 8.0

90 °! 8 734.628

90°i 8 320.832

90°i 8 142.066 -

1.35 dB, YSAMPM= 0 dB

8 1640.25

8 1640.25

8 1127.672

3.01

3.01

3.01

3.01

6.02

6.02

6.02

vie

1 1

2 1

32

2

42

2

52

2

TABLE 3.6

TRELLIS CODED 1x32CROSS

K = 4.0 bit/sym, d 2 = 2, N = 2.875 (lxl6CROSS).
I1 U

2 d 2 N y (dB)h 2 h I h ° Inv. dfree Nfree next free

1 3 360 °

2 5 360 °

02 06 13 180 °

04 02 1I 360 °

16 12 27 180 °

16 04 23 360 °

16 22 45 180 °

34 16 45 360 °

026 042 117 180 °

036 064 115 360 °

050 162 211 180 °

056 150 223 360 °

070 226 431 180 °

272 304 455 360*

3 4.672 - -

4 2.5 5 13.432

5 6.715 - -

5 6.693 - -

6 19.427 - -

6 19.109 - -

6 3.75 - -

6 3.438 - -

7 13.003 - -

7 11.118 - -

8 45.124 - -

8 38.338 - -

8 5.154 - -

8 4.900 - -

1.76

3.01

3.98

3.98

4.77

4.77

4.77

4.77

5.44

5.44

6.02

6.02

6.02

6.02

_'t_cRoss "- 0.0 dB.
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TABLE 3.7(a)

TRELLIS CODED 2x32CROSS

K = 4.5 bit/sym, q=0, d 2 = 2, N = 16.312 (2x32CROSS).
U U

h 4 h 3 h 2 hl h o Inv. d 2 d 2 N 7 (dB)
freei Nfree next next

- 1 3 180 ° 2 5.75 3 34.328

- - 1 3 5 90 ° 3 26.508 - -

- - 06 02 11 1800 4 41.266 -

- I0 06 23 90° 4 13.266 5 189.341

14 30 02 41 180° 4 5.0 5 94.671

- 16 24 06 57 360 ° 4 5.0 5 83.34

004 014 020 046 I13 180° 5 50.659 -

004 010 024 042 IIi 360 ° 5 50.620 -

0.00

1.76

3.01

3.01

3.01

3.01

3.98

3.98

7_6cRoss = 0.51 dB.

TABLE 3.7(b)

TRELLIS CODED 2x32CROSS

K = 4.0 bit/sym, q=l, d 2 = 2.0, N -- 2.875 (lxl6CROSS).
U U

v_

1 1

2 1

32

43

3

53

63

73

3

h 3 h 2 h ! h °

- 1 3

- 2 5

- 04 02 11

04 14 02 21

10 04 02 21

24 14 06 43

024 014042 103

034 044 106 233

044 070 106 203

Inv. d_ Nr_ free

90 ° 4 4 3.633

90 ° 4 1 3.266

360 °' 4 5.0

180 ° 6 62.411

360 ° 6 6 1.893

180 ° 6 1 8.240

180 ° 8 257.357

180 ° 8 59.178

360 ° 8 5 5.477

d 2 N
nex|' nex t

6 174.611

6 11 1.069

7 (dB)

3.01

3.01

3.01

4.77

4.77

4.77

6.02

6.02

6.02

716cRoss = 0 dB

=

w

w
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TABLE 3.8(a)

TRELLIS CODED 3×32CROSS

K = 4.67 bit/sym, q--0, d 2 = 2, N = 40.312 (3x32CROSS I).
U U

2 d 2 NV _ h 3 h 2 h i h ° Inv. deft, Nfrce next next
t ....

1 1 -

2 1 -

2 - 3

2 - 2

3 2 - 04 02 11 90°

2 04 02 11 360 °

4 2 14 02 21 180"

1 3 90`" 2 1 9.188

2 5 90 ° 2 8.625

1 5 180" 2 7.922

1 5 360 ° 2 4.5

2 2.875

3 48.344

3 2 5.746

17.1643 3 01 02 06 11 360`" 3

4 3 12 04 02 21 180" 4 143.566

5 3 24 14 02 41 180" 4 60.189

6 3 024 042 010 105 180" 4 32.297

3 137.312

3 3 4. 328

3 2 6. 508

5 1 8 1.295

y (dB) sig.
set

0.00 I

0.00 II

0.00 II

0.00 II

0.00 III

1.76 II

1.76 II

1.76 II

3.01 I

3.01 I

3.01 I

lib

m

I

m

m

i

m

Yl6c_oss = 0.67 dB W

= 4 (sixteen paths into every state) and a large Nf,_ (183.657 when

normalized to two dimensions) this code may be useful at high SNR where

its large free distance will be very important. Its decoder complexity

is six, the same as the 16 state code with a 2-D signal set, which has

1.25 dB less asymptotic coding gain and is 180 ° invariant.

For the larger size signal sets not given, the same codes found

for the corresponding smaller size signal sets can be used. For small

complexity, the codes are very likely to be optimum (for the criteria

used). However, the larger the complexity, the more likely it is that

the existing codes are not optimum. However, these codes are still

likely to be better than a code with maximum d 2 chosen at random
f_

without regard to Nfr_.

[]

I

g

m

I

I
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TABLE 3.8(b)

TRELLIS CODED 3x32CROSS

K --- 4.33 bit/sym, q=l, d 2 = 2, N -- 8.625 (3x32CROSS II).
ti II

V _ h 4 h 3 h 2 h I h ° Inv. d 2 d 2
free Nfree next

1 1 - 1 3 90 °

1 - 1 3 360 °

2 1 - 2 5 360 °

2 - 2 1 5 90 °

2 - 3 1 5 180 °

2 - 2 1 5 360 °

3 2 - 02 06 11 180 °

3 06 04 03 11 90 °

4 3 - 14 04 12 23 90 °

5 4 10 12 32 04 41 90 °

6 4 022 006 044 010 133 90 °

4 014 052 030 056 115 180 °

N y (dB) sig.
nex t set

2 2.875 4 30.367 0.00 III

3 3 1.180 - - 1.76 II

3 17.164 5 120.885i 1.76 II

3 8.582 4 31.041 1.76 III

4 161.523 - - 3.01 I

4 128.515 - - 3.01 II

4 32.297 6 2042.616 3.01 II

4 15.092 - - 3.01 III

4 7.5 5 62.778 3.01 III

5 37.935 - - 3.98 III

6 32 1.508 - - 4.77 III

6 273.836 - 4.77 III

71¢,CgOSs = 0.35 dB

......................

Changing the signal set mapping may also result in better codes.

For example, there is another 128 point signal set with the same energy

as 128CROSS. A code search with this signal set resulted in some codes

with a lower Nf,_ than with 128CROSS. There arc other multi-D signal

sets that have 2x points in each 2-D signal set where I is not an

integer [10,12,24,74]. The codes presented here can be used with these

signal sets as well. These signal sets arc designed to map 2 m+t points

into 2L dimensions with minimum energy. The codes usually have

d2f,_ ._ 4, which gives a fundamental coding gain of 3 dB. Extra gain is

achieved through the smaller size (and smaller energy) of the signal

sets. Cosets can be partially used in the construction of these signal
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00

1 1

22

33

43

5
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TABLE 3.8(c)

TRELLIS CODED 3x32CROSS

K = 4.00 bit/sym, q=2, d2 -- 2, N = 2.875 (lxl6CROSS).
I1 U

h 4 h 3 h 2 h I h ° Inv. d 2 N d 2 N iy (dB)
free free next next

- 3 2 5

04 05 02 11

04 06 12 23

3 30 24 16 41

!4 02 10 04 22 41 180 °

4 034 024 014 042 101 180 °

4 044 050 024 002 103 360 °

- 90 ° 1 7.164

1 3 180 ° 32.297 6 294.605

90 ° 7.5 5 4 9. 347

90 ° 2 4.668

90 ° 5 4.379

90 ° 1 1.881

6 9.262

sig.
set

3

4

4

5

6

6

7

8 17 1.597

8 92.192

7 84.531

1.76

3.01

3.01

3.98

4.77

4.77

5.44

6.02

6.02

II

II

III

III

III

III

II

II

II

m

i

I

i

I

-z

!
I

Yt6c_oss = 0 dB

TABLE 3.9

TRELLIS CODED 4x32CROSS

K = 4.00 bit/sym, q=3, d2u = 2, N u = 2.875 (lxl6CROSS).

2

V k h 4 h 3 h 2 h I h ° Inv. dfr _

00

1 1

22

33

44

- 1 3

- 2 3 5

02 04 03 11

16 12 06 03 21

5!4 26 22 14 06 41

6 4 056 042 020 006 101

d 2 N
Nfree next next

90 ° 4 1 15.377

180 ° 4 59.594 8 311 1.766

90 ° 4 26.531 8 3400.215i

90 ° 4 10.0 8 2434.473

90 ° 8 157 1.475

90 ° 8 68 6.798 i

90 ° 8 29 0.952

y (dB)

3.01

3.01

3.01

3.01

6.02

6.02

6.02

71_xos s = 0 dB

g

_ tm
W

g

til

z

m

m

I

g

m
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TABLE 3.10

TRELLIS CODED lx64CIRC

K = 5.0 bit/sym, d z - 2, N = 3.188 (lx32CIRC).
U I1

h 2 h t h ° Inv. d 2 d 2
free Nfree next

1 1 1 3 360 ° 3 5.379 1.76

2 1 2 5 360 ° 4 2.875 5 17.145 3.01

3 2 02 06 11 180 ° 5 8.573 3.98

!2 02 04 13 3600! 5 8.566 3.98

4 2 16 12 23 180 ° 6 25.815 4.77

2 16 04 23 360°i 6 !25.637 4.77

5 2 16 22 45 180 ° 6 4.672 4.77

2 34 16 45 360 ° 6 4.492 4.77

6 2 064 042 115 180 ° 7 17.668 5.44

2 036 064 123 360 ° 7 15.634 5.44

7 2 024 116 205 180 ° 8 67.858 6.02

2 164 026 253 360 ° 8 59.375 6.02

8 2 124 204 413 180 ° 8 10.147 6.02

2 272 304 523 360 ° 8 9.760 6.02

Nfree 7 (dB)

_32CIRC = 0.0 dl.

sets also.

In implementing the codes given in the tables one may wish to

change various aspects of a code in order to simplify the encoder and

Viterbi decoder. One desirable aspect is the conversion of the

systematic (feedback) convolutional encoder to non-systematic

(feedforward) form. An algorithm for this conversion is given in [57].

The cosets may also be changed. Since all the codes presented

have parallel transitions, some of the cosets for the parallel

transitions can be simplified since they do not play any part in
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TABLE 3.11(a)

TRELLIS CODED 2x64CIRC

K = 5.5 bit/sym, q--0, dz = 2, N = 17.766 (2x64CIRC).
U L1

11

22

32

42

5!3

3

h 4 h 3 h 2 hi h o Inv. d 2
freei

- 1 3 180 ° 2

- 1 3 5 90 _ 3

- 06 02 11 180 ° 4

- 10 06 23 90 ° 4

14 30 02 41 180 ° 4

16 24 06 57 360 ° 4

5

5

6 4 004 014 020 046 111 180 °

4 004 010 024 042 111 360 °

d 2
Nfree next

6.375 3

2 9.979 -

4 8.347 -

1 5.910 5

5.75 5

5.75 5

62.280 -

62.268 -

732cmc = 0.41 dB.

N 7 (dB)
next

38.443: 0.00

- 1.76

- 3.01

232.012 3.01

116.006 3.01

102.322 3.01

- 3.98

- 3.98

TABLE 3.1 l(b)

TRELLIS CODED 2x64CIRC

K = 5.0 bit/sym, q=l, d 2 = 2.0, N = 3.188 (lx32CIRC).
................. 1.1 U

=

1 1

2 1

32

43

3

53

63

73

3

h 3 h 2 h t h °

- 1 3

- 2 5

04 02 11

04 14 02 21

10 04 02 21

24 14 06 43

024 014 042 103

034 044 106 233

044 070 106 203

Inv. d 2
ft_

90 ° 4

90" 4

360 ° 4

180 ° 6

360 ° 6

180 ° 6

180 ° 8

180 ° 8

360 ° 8

N
free

52.218

15.910

5.75

8 3.043
8 2.725

24.860

3 6 8.382

8 3.408

7 9.962

T32ctac = 0 dB

d 2 N
rlcxI nex t

6

6

23 1.461

148.116

7 (dB)

3.01

3.01

3.01

4.77

4.77

4.77

6.02

6.02

6.02

i

u

m

U

i

Ill

=,_

U

B

z
I

m
m

g

I

ii

W

m
m

g

z

Ill

I

m

U
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TABLE 3.12

TRELLIS CODED 3x64CIRC

K = 5.00 bit/sym, q=2, d 2 = 2, N = 3.188 (lx32CIRC).
U U

h 4 h 3 h 2 h I h ° Inv. d 2 Nfree free

0 - - - 90 ° 3 19.222

1 - - 1 3 180 ° 4 39.105

2 - 3 2 5 90 °

3 - 04 03 02 11 90 °

3 - 04 06 12 23 90 °

3 - 30 14 16 41 90 °

4 20 10 04 02 41 180 °

4 034 024 014 042 101 180 °

4044 050 024 002 103 360 °

4 8.625

5 30.634

6 70.312

6 1 6.193

7 93.954

8 245.520

8 197.143

d 2 N
next rlex t

6 369.473

5 6 1.269

7 1 14.183

'y (dB)

1.76

3.01

3.01

3.98

4.77

4.77

5.44

6.02

6.02

sig.
set

II

II

III

III

III

III

II

II

II

732CLRc = 0 dB

TABLE 3.13

TRELLIS CODED 1x128CROSS

K = 6.0 bit/sym, d 2 = 2, N = 3.344 (lx64CROSS).
U U

V _ h 2 h I h ° Inv. d 2 N d 2 N y (dB)
free free next free

1 1 - 1 3 360 °

2 1 - 2 5 360 °

3 2 02 06 11 180 °

2 04 02 11 360 °

4 2 16 12 27 180 °

5 2 16 22 45 180 °

6 2 064 042 115 180 °

2 036064 123 360 °

7 2 024 132 205 180 °

2 164 026 253 360 °

8 2 070 322 411 180"

2 124 320 413 360 °

3 6.061

4 3.250

5 10.132

5 10.103

6 32.033

6 5.281

7 2 3.434

7 20.429

8 96.202

8 79.119

8 13.646

8 13.289

5 20.265

1.76

3.01

3.98

3.98

4.77

4.77

5.44

5.44

6.02

6.02

6.02

6.02

76,_oss = 0.0 dB.

w
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TABLE 3.14(a)

TRELLIS CODED 2x128CROSS

K = 6.5 bit/sym, q=0, d 2 = 2, N -- 19.828 (2x128CROSS).
U U

V _ h 4 h 3 h 2 h 1 h ° Inv. d 2
fr_

1 1 - - 1 3

22 - 1 3 5

32 - 06 02 11

4 2 - 10 06 23

5 3 - 14 30 02 41

3 - 16 24 06 57

6 4 020 030 062 004 115

4 004 010 024 042 111

180 ° 2

90 ° 3

180 ° 4

90 ° 4

180 °' 4

360 ° ! 4

180 ° 5

360 ° 5

d 2
Nfree next

6.688 3

35.938

60.850

17.681 5

6.5 5

6.5 5

83.886

8 3.792

?64CROSS = 0.35 dB.

N 1, (dB)
nl;X t

47.635 0.00

- 1.76

- 3.01

315.766 3.01

157.883 3.01

138.322 3.01

3.98

3.98

TABLE 3.14(b)

TRELLIS CODED 2x128CROSS

K = 6.0 bit/sym, q=l, d 2 = 2, N -- 3.344 (lx64CROSS).
I1 U

v _ h 3 h 2 h 1 h ° Inv. d 2 N
fr_

1 1 - 1 3 90 °

2 1 - 2 5 90 °

3 2 - 04 02 11 360 °

4 3 04 14 06 23 180 °

3 02 04 12 21 360 °

5 3 06 14 22 43 180 °

6 3 024 030 056 103 180 °

7 3 034 044 106 203 180 °

3 044 070 106 203 360 °

free

4 6 1.620

4 17.681

4 6.5

6 102.715

6 102.192

6 28.731

8 530.186

8 1 12.917

8 10 7.250

Ys_moss = 0 dB

d 2 N
t1_Xt n_X t

6 293.842

6 1 84.306

y (dB)

3.01

3.01

3.01

4.77

4.77

4.77

6.02

6.02

6.02

m
m

m

I

I

I

g

B

B
I

I

n

u

g

u

I

l

I

g

I
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TABLE 3.15

TRELLIS CODED 1x256CIRC

K = 7.0 bit/sym, d 2 = 2, N = 3.609 (lx128CIRC).
U U

h 2 h I h ° Inv. d 2
fr_

- 1 3 360 ° 3

- 2 5 360 ° 4

02 06 11 180 ° 5

04 02 11 360 ° 5

16 12 27 180 ° 6

16 04 23 360 °

1 1

21

32

2

42

2

5 2 16 22 45 180 °

2 34 16 45 360 °

6 2 026 042 117 180 °

2 036 064 115 360 °

7 2 050 162 211 180 °

2 056 150 223 360 °

8 2 124 204 537 180 °

2 272 304 455 360 °

d 2 N 7 (dB)
Nfree next free

6.711 - 1.76

3.4381 5 24.2231

12.112

12.110

39.681

6 39.611

6 6.2301

6 6.177!

7 29.313

7 26.276i

8 125.480_

8 106.540!

8 17.755 i

8 17.514

3.01

3.98

3.98

4.77

4.77

4.77

4.77

5.44

5.44

6.02

6.02

6.02

6.02

_'_28cmc = 0.0 dB.

w

determining the free distances of the codes given. For example, in the

3xl6QAM signal sets, we could change t9, t 1°, and t 11 to [0 0 8] v,

[0 8 0] r, and [8 0 0] r. This simplifies both the signal set mapper and

the branch metric calculator within a Viterbi decoder without having

any affect on d 2 (since most codes have d 2 < 8). Only very
free free

complex codes with d2r,_ > 8 would require the full set of cosets that

are given, ff the cosets are changed (thereby changing the signal set

mapping) one should perform another code search in order to find the

codes with the smallest Nrr_.

For codes that are either 180 ° or 360 ° invariant it is not
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1 1

22

32

42

53

3

64
4

TABLE 3.16(a)

TRELLIS CODED 2×256CIRC

K = 7.5 bit/sym, q=0, d2 = 2, N = 21.048 (2×256CIRC).
tl 1,1

h 4 h 3 h 2 h I h ° Inv. d2free Nfree

- 1 3 180 °

- - 1 3 5 90 °

- 06 02 11 180 °

- 10 06 23

- 14 30 02 41

- 16 24 06 57

004 014 020 046 113

004 010 024 042 111

2 7.219

3 39.136

4 67.714

90 ° 4 19.903

180 ° 4 6.875

360 ° 4 6.875

180 ° 5 96.908

360 ° 5 96.895

d 2
next

3

5

5

5

N [Y (dB)ncxt

5 1.427 0.00

- 1.76

- 3.01

363.416 3.01

181.708 3.01

159.484 3.01

- 3.98

- 3.98

y12scm c = 0.30 dB.

TABLE 3.16(b)

TRELLIS CODED 2x256CIRC

K = 7.0 bit/sym, q=l, d 2 -- 2.0, N -- 3.609 (lx128CIRC).
U U

v _ h 3 h 2 h t h ° Inv. d 2 d 2
free Nfree next

1 1 - 1 3 90 °

2 1 - 2 5 90 °

3 2 - 04 02 11 360 °

4 3 04 14 02 21 180 °

3 10 04 02 21 360 °

5 3 24 14 06 43 180 °

6 3 024 014 042 103 180 °

7 3 034 044 106 203 180 °

3 044 070 106 203 360 °

4 69.817

4 1 9.903

4 6.875

6 125.944

6 1 2 5.842

6 3 5.762

8 6 8 3.545

8 140.894

8 13 8.492

N
ncx t

6 i360.320

6 ]227.181

y (dB)

3.01

3.01

3.01

4.77

4.77

4.77

6.02

6.02

6.02

Y12_IXC = 0 dB

r_
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TABLE 3.17

TRELLIS CODED lx512STAR

K = 8.0 bit/sym, d 2 = 2, N = 3.711 (lx256STAR).
U U

v k h 2 h 1 h ° Inv. dfree

1 1 1 3 360°! 3 7.045

2 1 2 5 360 ° 4 3.594

3 2 02 06 11 180 °! 5 13.072

2 04 02 11 360°1 5 13.071

4 2 16 12 27 180°! 6 43.571

5 2 16 22 45 180 ° 6 6.626

6 2 064 042 115 180 °' 7 32.749

2 036 052 115 360 ° 7 29.821

7 2 024 132 205 180 ° 8 143.926

2 056 106 275 360 ° 8 123.283

8 2 130 306 513 180 ° 8 20.078

N d 2 N
free next free

5 26.143

y (dB)

1.76

3.01

3.98

3.98

4.77

4.77

5.44

5.44

6.02

6.02

6.02

'Y256STAR = 0.0 dB,

necessary to add any cosets modulo-4. Instead, all the cosets can be

added modulo-2, simplifying the signal set mapper. Again, to find the

best codes, one should repeat the code search with the new signal set.

w

w

3.3 Conclusions

A method has been described for obtaining 2-D constellations

suitable for trellis coding and for use in constructing

multi-dimensional signal sets. A variety of codes, some of which are

fully invariant to 90 ° phase rotations, have been found using a

systematic code search.

These codes can be used with other multi-D signal sets. However,
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they may r:ot be optimum in terms of the minimum number of nearest

neighbors. The ,;mall size signal sets (especially 16QAM'I may be useful

in satellite communication systems where high bandwidth efficiency is

required at the expense of more linear amplifiers. The large size

signal sets (up to 512 points) should be useful for high capacity

microwave links and telephone modems where high data rates are required

in limited bandwidth channels.
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CHAPTER FOUR

IMPLEMENTATION OF A VITERBI DECODER

As a demonstration of the performance capabilities of trellis

codes using multidimensional signal sets, a Viterbi decoder for one of

the codes given in Chapter 2 was designed. The choice of code was based

on two factors.

The first factor was its application as a possible replacement

for the coding scheme currently used on the Hubble Space Telescope

(HST). The HST at present uses the rate 1/3 v = 6 convolutional code

with BPSK modulation. With the modulator restricted to 3 Msym/s, this

implies a data rate of only 1 Mbit/s, since K = 1/3 bit/sym. This is a

very bandwidth inefficient scheme, although the system has the

advantage of simplicity and large coding gain.

The basic requirement from NASA was for a scheme that has as

large a K as possible. Since a satellite channel was being used, 8PSK

modulation was selected. This allows a K of between 2 and 3 bit/sym.

The next influencing factor was the 2.33 bit/sym Periodically Time

Varying Trellis Code (PTVTC) that was implemented by COMSAT [30]. This

16 state code was designed for 140 Mbit/s cable restoration service

over the 72 MHz transponders onboard INTELSAT satellites.

As mentioned in Chapter 2, the equivalent 16 state 6D-8PSK

trellis code has many advantages over this PTVTC. For this reason the

rate 7/8, 2.33 bit/sym, 6D-8PSK, 90" invariant trellis code was chosen.

139
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A direct comparison can then be made between the two codes,

illustrating the advantages that the muhi-D signal set provides.

m

J

4.1 Encoder Implementation
I

At first, the systematic encoder in Figure 2.11 was used in the

design. However, it was found that in designing a Viterbi decoder, it

would be simpler if a non-systematic convolutional encoder was used.

This is because the state transitions in a non-systematic encoder are

highly structured, compared with the almost "random" transitions of a

systematic encoder.

To convert the systematic encoder to a non-systematic form, the

technique described in [57] is used. This method uses the fact that the

impulse response of each shift register in a non-systematic encoder

will produce output sequences that are equivalent to the generator

poly.nornials. Since a systematic encoder must also produce the same

sequences, it is relatively easy to find r2 linearly independent output

sequences from a systematic encoder that can be used as generators of a

non-systematic encoder.

There is usually more than one set of possible generator

polynomials. The polynomials are chosen so that the inputs x_(D) and

x2(D) are affected by a 90 ° phase rotation in the same way as in a

systematic encoder. Thus, the differential encoder for the systematic

code can also be used for the non-systematic encoder. The

non-systematic encoder equations that were found for the 6D-SPSK code

are

m
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z2(D) = x2(D) (_ (D 2 ® D)xI(D),

zi(D) = (D 2 @ D)x2(D) G (D @ 1)xl(D),

zO(D) = DxI(D).

(4.1a)

(4.1b)

(4.1c)

w

Figure 4.1 illustrates the new non-systematic encoder. After a

90 ° phase rotation, we have zi(D) = z2(D) @ I(D), z1(D) = zl(D), and
r r

z°(D) = z°(D). Rotating the equations in (4.1) gives xa(D) =
r r

x2(D) _ I(D) and xl(D) = x_(D), the same as for the systematic encoder.
r

The encoder uses a Phase Locked Loop (PLL) to generate the three

times clock for transmitting the three 2D symbols. This PLL is based on

the 74HC4046 Integrated Circuit (IC). The encoder is able to accept

data either serially or in seven bit bytes.

4.2 Decoder Implementation

w

=

=

w

Due to the complexity of the decoder design, only a brief

description is given here. As such, only the important design decisions

are described.

To reduce the cost of the codec, a serial implementation of the

decoder was chosen. That is, one clock cycle would be required for each

state of the code. Since there are 16 states, at least 16 clock cycles

are required to process each received 6D point. As will be described in

more detail later, an extra seven clock cycles are required for

start-up purposes. Thus, a total of 23 clock cycles are required for

each iteration of the Viterbi algorithm.

The technology and clock speed in our design is the same as used

in another Viterbi decoder designed by the author [47,48]. This gave us

greater confidence that the design would work, even though the actual

=
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design is twice as complicated. Our design uses a I0 MHz clock (giving

100 ns clock cycles) and Schottky TrL logic for its ease of use and

large variety of functions. The actual technologies used are 74LS

(Low-power Schottky TrL) for non-time critical sections of the circuit

and 74F (Advanced Schottky TrL) for time critical sections. Other

technologies are used for functions not available in 74F or 74LS.

The decoder is operated asynchronously to the received data

clock. This requires one of the seven extra clock cycles described

above. Internally, the decoder operates synchronously to the 10 MI--Iz

clock. The decoder starts operation after detecting the first rising

edge of the received 6D symbol clock. After 23 clock cycles, the

decoder stops and waits for the next rising edge of the 6D symbol

clock. This allows the decoder to operate at any data rate from 0 to 3

Mbit/s.

Each iteration of the Viterbi algorithm decodes seven bits for

each received 6D signal point (since the code rate is 7/8). The maximum

6D symbol rate of the decoder is the internal clock speed divided the

number of clock cycles required to decode the seven bits, i.e.,

4.35x105 6D symbols per second. Therefore, the maximum bit rate of the

decoder is 3.04 Mbit/s. For the HST, this code could achieve a data

rate up to 7 Mbiffs. For actual use on the HST, it is intended that the

decoder would be implemented on a VLSI chip, where the required

decoding speed would be achieved.

There are six main sections in the Viterbi decoder. These are

• Branch Metric Calculator (BMC)

• State Metric Calculator (SMC)
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• Survivor Sequence Memory (SSM)

• Signal Set Synchronizor (SSS)

• Minimum State Metric Selector (MSMS)

• Branch Point Selector (BPS)

g

I

g

Figure 4.2 illustrates a block diagram of the

sections are described as follows.

decoder. The above

4.2.1 Branch Metric Calculator

For each transition of the trellis there are 32 parallel paths

(due to the five unchecked bits in the encoder). The BMC must determine

which of the paths is closest to the received 6D signal point (the

Branch Point (BP)) as well as the Branch Metric (BM) for this path. The

BM can be calculated in a number of ways. The optimum BM's for AWGN

channels with quantization are log-likelihood metrics [48].

Alternatively, one _ could make an approximation based on the squared

Euclidean distance between the received point and the points along the

transitions.

In our design we have chosen to use Read Only Memory's (ROM's) to

store the precalculated BP (five bits are used to represent each

parallel path) and BM (based on log-likelihood metrics). The encoder

can produce one of eight (i.e., 2 _÷1) sets of parallel paths (each

containing 32 paths). The BP and BM must be determined for each of

these eight sets of parallel paths.

We have chosen four bits to represent the BM value. This gives a

BM range from 0 (closest to the received 6D point) to 15 (furthest from

the 6D point). Decoder simulations in [28] indicate that this amount of
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quantizationresults in little performancedegradation.

To minimize the number of address bits to the ROM, each received

2D signal point has been quantized to five bits. After extensive

simulations in [28], it was found that pie-chart or angular

quantization results in the least performance degradation (0.2 to 0.3

dB). The simulations included the "dartboard" quantization pattern

proposed in [56]. Cut-off rate calculations in [42] have also confirmed

this result.

Each ROM therefore has an address space of 15 bits (five bits for

each 2D symbol). The ROM's used for the BMC are 32Kx8 27C256's. A total

of nine ROM's are required, five for determining the eight BP's and

four for the eight BM's.

Alternative BMC schemes which exploit the finite length trellis

structure of the parallel transitions were also considered. That is, a

Viterbi like decoder can be used to decode the parallel transitions.

However, their large complexity (in a discrete implementation) led us

to choose the simpler ROM look-up method. For a VLSI implementation,

though, the trellis decoding method would be preferable due to the

flexibility that VLSI provides in designing circuits. Thus, the Viterbi

decoder (with the BMC) could be implemented on a single chip.

4.2.2 State Metric Calculator

The SMC updates the State Metrics (SM) for each state of the code

in each iteration of the Viterbi algorithm. A SM is an indication of

how close the received sequence is to the closest path of all paths

leading into a particular state. Since the code has two checked bits,

there are four paths leading into each state (since we choose the
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w

closest path among the 32 parallel paths in the BMC). For each of the

four paths, we must add the BM for that path to its corresponding SM

(also known as the old SM) from the previous iteration. The new SM for

the four paths leading into a state is the smallest of these

summations. This path is selected and all other paths are eliminated.

This is called the Add-Compare-Select (ACS) operation.

With four paths into each state a 4:1 ACS circuit is required.

With 16 states in our code, the ACS operation needs to be performed 16

times (explaining the need for 16 clock cycles). The ACS circuit also

produces two Path Decision (PD) bits which indicate which of the four

paths was chosen. This information is passed to the SSM where it is

stored.

Since the decoder operates serially, only one ACS circuit is

required. The 16 SM's are stored in two 74AS870 dual 16x4 static Random

Access Memory (RAM) chips. Eight bits are used to represent each SM. As

shown in [28], this is more than enough bits when two's complement

arithmetic is used in the ACS circuit to prevent overflow [29,48].

Before the first new SM can be calculated, four old SM's are read out

from the RAM's. This takes four clock cycles. It takes another two

clock cycles to perform the ACS operation. To achieve a slightly higher

speed, we could have done the ACS operation in one clock cycle.

However, this would have required six comparator chips to find the

minimum SM. An increase of one clock cycle and the use of three

comparator chips was chosen to decrease the complexity of the design.

Another clock cycle is used to write to the other half of the

dual 16×4 RAM's. Since aU the read and ACS operations are pipelined,

an additional 15 clock cycles are required to write the 15 remaining
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new SM's. In the next iteration of the algorithm we read from where the

SM's were written in the previous iteration and write to where the old

SM's had been stored. The process then repeats.

For the ACS circuit, the appropriate BM's must be added to the

correct old SM's. Twelve 2:1 multiplexers and a copy of the

convolutional encoder are needed to accomplish this task.

u

II

m

z
I

4.2.3 Survivor Sequence Memory

The SSM has two tasks. It must store the Path Decisions (PD's)

generated by the SMC and "traceback" through the previously stored PD's

to determine the final decoded bits for x 2 and x _. This requires

alternating write and read (for the traceback) operations on the

memory. The traceback depth is the required number of PD sets (each set

consists of 16 two bit PD's) that the SSM must trace back through.

The PD's must be stored in the remaining 16 clock cycles that are

available. There are two ways this can be achieved. Storing two PD bits

in each clock cycle or storing four PD bits in every other cycle,

leaving the alternate cycle to perform part of the traceback. With the

first method at least two separate memories are required since the

traceback operation cannot be performed simultaneously with the storage

of the new set of PD's (due to the design of memory chips). Since there

is a finite amount of memory, the oldest PD set must be written over.

There is usually a point where one method is better than the

other (in terms of the total memory size required) based on the number

of clock cycles available and the traceback depth. A traceback depth of

around 25 to 30 results in little performance degradation [28,42].

Comparing the implementation complexity of the two methods, the
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w

w

alternating read/write method proved superior.

With this design only eight clock cycles are available to perform

a traceback. To maintain integer power of 2 address spaces for the

memories (and thus efficiently use practical memory designs), a

traceback depth of seven is used for each SSM memory chip. To achieve

the required traceback depth, four 64x4 memories are required. This

gives a traceback depth of 28. The traceback is performed in a

pipelined fashion, switching between memories when required and waiting

for the next received set of data to continue with the traceback. Four

separate memories are required since there are four tracebacks in

operation at any one time.

Since there are no 64x4 RAM's commercially available, larger

256x4 93422A RAM's were used. This chip has separate input and output

data buses which simplifies the SSM design. We use the state with the

smallest SM to start the traceback. This is the best state the SSM

could start with (since it corresponds to the path that is closest to

the received signal) and helps give the decoder a slight performance

improvement over choosing a random or a fixed state. The Minimum State

Metric Selector (MSMS) provides the information needed to achieve this.

At the correct time and place in the circuit, the two decoded

bits x I and x 2 are produced. The two bits are passed to the Branch

Point Selector (BPS) where they are re-encoded to select one of the

eight 5 bit branch points. The branch points are delayed by 34 6D

symbol periods, 28 due to the traceback, 4 due to the pipeline delay in

the traceback, and 2 due to the re-encoding of the decoded data.

The seven decoded bits are then differentially decoded (optional)

and then parallel to serial converted for the final decoder output.

= _
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Precoding and postdecoding are optional as there are some communication

systems that do not require phase synchronization. For example, a burst

modem can provide phase information in the preamble of a burst. A

74HC4046 PLL is used to generate the required seven times clock for the

serial data. This PLL is tuned to lock within 0 to 3 MHz, but as

expected for PLL's the lower frequency limit will be somewhat greater

than DC. The decoded data is also available in seven bit bytes.

4.2.4 Signal Set Synchronizer

The SSS has the task of synchronizing the decoder to the received

sequence of 2D symbols. Since the signal set consists of three 2D

symbols, the decoder must synchronize to one of the three possible ways

the received data can arrive. Also, since the code is only 90 °

invariant, the decoder must synchronize to either a 0 ° or a 45 °

rotation of the received signal set. Thus, there are a total of six

possible combinations of delay and rotation for the received signal.

The decoder is asynchronously locked to DATCLK, which is the

received 2D symbol clock whose frequency has been divided by three. A

delay of zero, one, or two 2D symbol periods of DATCLK is used for

timing synchronization. Since the received Inphase (I) and Quadrature

(Q) samples can be converted to polar format (or are already in polar

format), the received signal can easily be rotated by 0 ° or 45 ° for

phase synchronization.

To achieve phase synchronization, the method of using the

received 6D signal set as described in Chapter 2 was considered. As

pointed out in [28], this method is quite complex. By slightly

increasing the complexity of the SSS used for timing synchronization, a
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w

separate synchronizer for phase is avoided.

The SSS works by examining the rate of increase of the minimum SM

from the MSMS. If the rate is high, this indicates that the decoder is

out of synch and needs to be resynchronized. A variable threshold in

the SSS is used for this purpose. If the threshold is exceeded, the SSS

will toggle the current phase rotation.

The phase rotation is toggled fast since it is more likely that

a phase slip has occurred within the demodulator than a 2D symbol slip.

The SSS then ignores the decoder for 128+V 6D symbol periods (V is a

variable from 0 to 63) to allow the decoder to settle into its new

signal set configuration. If the decoder still displays an abnormally

high rate of increase for the minimum SM, the SSS will again toggle the

Otherwise the decoder goes back to its original monitoringphase.

state.

We toggle the phase for a second time under the assumption that

the d_emodulator h_as experienced a second phase slip (or a burst of

noise on the channel created a false alarm, causing the SSS to place

the decoder in the incorrect phase). After waiting for 128+V 6D symbol

time periods, if the threshold is again exceeded in the next V 6D

symbol periods, we toggle the phase for a third time. If the threshold

is exceeded again (for the fourth time) we assume that a symbol delay

has occurred and we increase the DATCLK delay by 1 (rood 3).

The whole process then repeats until we have the correct 2D

symbol delay and phase rotation (indicated by a normal rate of increase

of the minimum SM). As can be seen, we give the decoder every

opportunity to correct for the more likely phase slip (or even a false

alarm from the decoder) than a 2D symbol slip. This implies that phase
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slips are corrected quickly, while symbol slips take a very long time

to correct.

4.3 Other Decoder Features

I

w

I

The decoder can be mounted within a 3U high 19 inch rack. On the

front panel, three Light Emitting Diodes (LED's) are used to indicate

the 2D symbol delay and two LED's are used to display the current phase

rotation of the SSS.

To test the decoder, the 2D symbol delay and phase rotation can

be independently set to manual control. In this way, the SSS can be

isolated from the rest of the circuitry so that any problems with the

rest of the decoder can be fixed without the SSS interfering. It can

also be used to test the SSS by manually introducing phase rotations

and delays into the received signal. There are four switches used for

this. For 2D symbol control, there is a manual/automatic switch and a

three position switch to manually select one of the symbol delays. The

phase control also has a manual/automatic switch and a two position

switch to select one of the phase rotations.

Two rotary type switches are used to select the format of the

received data. One switch is used to select between 3, 4, or 5 bit

quantization while the other switch selects between signed magnitude,

reverse binary, straight binary, two's complement, and phase data

formats. The fin'st four types of data format are used with I & Q

samples while the phase data format is used when only quantized phase

information is received from the demodulator.

There are also switches for disabling the postdecoder from the
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decoder and the precoder from the encoder. The encoder has another

switch to select between seven bit parallel or bit serial data. One

final switch is used to loopback the data produced by the "encoder to

the Viterbi decoder. This provides a useful self-test for the

encoder/decoder system. The encoder/decoder interface diagram is given

in Figure 4.3.

R.x_I/Rx_Phase _.
Rx_Q _--

Rx_sym_clk _ []

Rx_data_parallel
"_ Rx__data_serial

P,x_c 

Auto/Man_sym_synch
Sym_l/2/3

Auto/Man_phase_synch
Phase_0O/45 ° ----.

Synchronizer threshold
S ynchromzer_span

Quantization_3/4/5_bits

Input_type
Postdecoder_select

Loopback_select -------

Tx_data_p araUel
Tx_data_sefial

Tx_clk

Prccodcr_select

S erial/parallel_data---.--_

Viterbi decoder

>

m" _©

Sym_synch_state
Phase_synch_state

IntemaJ loop back connection

Tx_sym

Tx_sym_clk

__. Encoder

Figure 4.3: Viterbi decodcr/encodcr interface diagram
for 16 state 2.33 bit/sym 6D-8PSK trellis code.

The 176 integrated circuits of the design are placed on two

double height Spcedwirc Eurocards (233.4x220 ram). Speedwire allows

quick and reliable connections (if it is done correctly) between the

chips that can be easily changed. The spccdwirc boards also have good
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groundplanes, critical when operating at high clock speeds. The Viterbi

decoder (which operates at 10 MHz) is placed on one board (taking 96

chips) while the encoder, SSS, and various interface chips are placed

on the other board.

BNC connectors are used at the back of the rack for external data

and clock connections. It is assumed that all received data changes on

the rising edge of its clock. Similarly, the codec produces its signals

in the same format. TTL 50/70 I'_ interface signals are used for these

external interfaces.

4.4 An Alternative Viterbi Decoder
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The decoder described above can be modified to implement the 16

state 2.5 bit/sym 4D-8PSK trellis code given in Table 2.16(a). This

code has the advantage of being fully transparent and of using a

smaller size signal set (4D instead of 6D). This implies that decoder

synchronization is much easier to perform. Its disadvantage is a

decrease in coding gain of 0.7 dB at Pb = 105 compared to the 2.33

bit/sym code [46].

The 2.5 bit/sym code could be used for the new SONET standard

requiring 155.52 Mbit/s through a 72 MHz transponder. With a parallel

implementation of the decoder (requiring only one clock cycle to decode

five bits in each iteration of the Viterbi algorithm) an internal

decoder speed of 31.104 MHz (1/5 the bit rate) is required. The 2D

symbol rate is equal to the bit rate divided by K, i.e., 62.204 Msym/s.

With 72 MHz of bandwidth available, a bandwidth expansion factor of no

more than 1.157 (equal to the bandwidth divided by the 2D symbol rate)
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needs to be met by the modulation system. Converting the parity check

polynomials from Table 2.16(a) to non-systematic form we obtain,

z2(D) _- x2(D) _ (D 2 _ 1)xI(D),

zI(D) = D2x2(D) _ (D2 _ D @ 1)xl(D),

z°('D) = Dx2(D).

(4.2a)

(4.2b)

(4.2c)

An implementation of the non-systematic encoder for the 2.5

bit/sym code is given in Figure 4.4. Converting the 2.33 bit/sym design

will require changes to the BMC and various interface circuitry as well

as a new simpler SSS. Due to the smaller size signal set, the total

chip count can be expected to decrease. Also, since only five bits are

decoded during each iteration, the decoder speed will decrease to 2.17

Mbit/s.

4.5 Conclusions

A serial implementation of a Viterbi decoder for the 16 state

2.33 bit/sym code with a 6D-8PSK signal set has been described. This

decoder can provide high data rates (up to 3 Mbit/s) and is intended

for future use on the Hubble Space Telescope. Due to its serial

implementation the decoder design is quite complex, but could be

implemented on a single VLSI integrated circuit.

The Branch Metric Calculator has been implemented through the use

of large look-up table ROM's. A VLSI implementation may use a Viterbi

type decoding algorithm to allow single chip implementation. An

alternative 2.5 bit/sym 4D-8PSK code has been proposed for use in the

new SONET 155.52 Mbit/s transmission system.
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CHAPTER FIVE

ROTATIONALLY INVARIANT TRELLIS CODES

w

r

w

w

One aspect of trellis codes that has come under increasing study

is the search for codes that are invariant to phase rotations of the

received signal set [1,3,19,32,40,44,48,56,70,73-75,81]. The rotations

that we are considering are those caused by a demodulator in a

communications system. When the signal set has rotational symmetries,

e.g., MPSK or 16QAM, the demodulator has no knowledge of which of the

symmetries were transmitted. Thus, the demodulator selects one of the

symmetries in which to demodulate the received signal, regardless if it

is the correct or incorrect symmetry.

In uncoded systems, this problem is easily corrected by

differentially encoding (precoding) the data before transmission. After

demodulation, differential decoding (postdecoding) of the received data

is then used to return the data to its original form. The precoding of

the data also allows the recovery of data caused by phase slips within

the demodulator. This occurs when noise in the received signal causes

the demodulator to lose lock and results in another of the signal set

symmetries being selected.

For trellis codes the situation is much more complicated. Here,

we axe dealing with sequences of symbols in the code space rather than

independent symbols, as in the uncoded case. In fact, convolutional and

trellis codes can be thought of as subclasses of sequence codes. Unlike

157
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block codes, sequence codes have code words of infinite length,

consisting of sequencesof symbols taken from a finite or infinite size

signal set. Any finite or infinite set of sequences can be considered

as a sequence code. If a coded sequence has been rotated, the resulting

code sequencemay or may not be in the code space.

The transparency or rotational invariance of a sequence code is

the minimum non-zero phase rotation that all code sequences in the code

space can be rotated such that the rotated sequences are still in the

code space of the sequence code. A sequence code is rotationally

invariant or transparent if the invariance of the code is equal to the

minimum non-zero phase symmetry of the two-dimensional (2-D) signal

set. If there are some sequences which are not in the code space after

a phase rotation, a decoder will produce erroneous data if the received

sequence has been rotated by this amount.

A good example of this is the industry standard (2,1,6)

convolutional code with Gray mapped QPSK modulation. This code is not

90 ° transparent (and is therefore not rotationally invariant), but it

is 180 ° transparent. A decoder will produce erroneous data after a 90"

or -90" rotation. To overcome this, the decoder needs to recognize that

a 90" rotation has occurred and rotate the received sequence. This

process can be slow, resulting in many errors being produced before the

decoder is properly synchronized. A rotationally invariant code,

however, will only produce a small number of errors after a phase

rotation, since there is no need to detect and then correct for a phase

rotation.

In order to describe and study rotationally invariant sequence

codes, we will be using parity check equations (PC'E). For rate k/(k+l)
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codes, a single PCE fully describes the relationship between the 2-D

symbols in a coded sequence. However, the PCE gives no information

about the input/output relationship of an encoder, i.e., it is

independent of the encoder implementation. This allows us to minimize

the number of variables in finding good rotationally invariant codes,

thus simplifying the code search.

Rotationally invariant rate 1/2 QPSK codes based on a non-linear

PCE have been found in [70]. This Chapter extends this work by

presenting a general PCE (actually, it is two equations that can be

combined into one), from which good rate k/(k+l) rotationally invariant

trellis codes can be found.

We first show that linear codes cannot be rotationally invariant.

This is followed by the presentation of the general PCE and how it is

used to find good rotationally invariant trellis codes. Finally, we

present the results of a systematic code search for rotationally

invariant QPSK, 8PSK, 16PSK, and QAM signal set codes.

5.1 Sequence Codes with Linear Parity Check Equations

L.

_

yi E

the

For a 2-D signal set with 2 k+l points, let (y0,yl ..... yk), where

{0,1} for 0 < i < k, be a binary representation of each point in

signal set. Also, let y°(D), yl(D),...,ylt(D) be the binary

sequences that form a sequence of signal set points (where D is the

delay operator).

We formally define a parity check equation (PCE) for a rate

k/(k+l) sequence code as an equation which defines the relationship

between the encoded binary sequences y°(D), yl(D), .... yk(D). A PCE is
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linear (under modulo-2 addition) if it is in the following form,
: =

I

Hk(D)yk(D) _..._ H_(D)y_(D) _ H°(D)y°(D) = 0(D), (5.1)
g

where Hi(D) for 0 < i < k are binary polynomials and 0(D) is the all

zero sequence. The Hi(D)'s are also known as parity check polynomials

and are of the form I

H_(D) = hVD v _..._ hl.D _ h°., (5.2)
1 1 1

where h! a {0,1} for 0 <iN k, 0 <j < v, and v is the maximum degree
1

of all the parity check polynomials. For practical codes, v is finite

and is called the constraint length of the code. The memory (m) of a

sequence code is the minimum number of delay elements required to

implement an encoder. It has been shown in [20] that m = v for linear

PCE's.

When a phase rotation of a signal set occurs, the binary

sequences representing the signal set sequence will change. We call

these the rotated sequences which are labeled by y°(D),
¢

ylr(D ) ..... ykr(D). These rotated sequences are a function of the original

unrotated sequences. To determine the effect of a phase rotation we

substitute these rotated sequences into the PCE (i.e., y'(D) is

replaced by yi(D)). If the resulting equation is exactly the same as

the original PCE, the code has a transparency equal to that phase

rotation.
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Example 5.1 Rate 1/2 convolutional code

Let us examine the standard rate 1/2, memory six convolutional

code with Gray QPSK mapping. Figure 5.1 shows the Gray mapped QPSK

signal set. This code is usually expressed in its encoder form, i.e.,

y°(D) = (D 6 @ D 4 _ D 3 @ D @ 1)x(D) = g°(D)x(D),

yl(D) = (D 6 _ D 5 @ D 4 @ D3@ I)x(D) = gI(D)x(D),

(5.3)

(5.4)

where x(D) is the binary input sequence of the encoder. Combining (5.3)

and (5.4) we obtain the PCE

g°(D)yl(D) _ g_(D)y°(D) = 0(D). (5.5)

That is HIfD) = g°(D) and H°(D) = gilD).

01

11

1 0
YY
00

10

W

Figure 5.1" Gray mapped QPSK.

We now investigate what happens when the signal set is rotated.

From Figure 5.1 we see that after a 90 ° rotation the rotated sequences

are

y_(D) = yl(D) @ I(D) = yl(D), (5.6)
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Ytr(D)= y°(D), (5.7)

D

D

where I(D) is the all ones sequence. Replacing y°(D) with y°(D) and
r

yl(D) with ylr(D ) we have

g°(D)y°(D) @ g_(D)(y_(D) @ I(D)) = 0(D),

g°(D)y°(D) @ gl(D)yl(D) = g_(D)I(D). (5.8)

m
g

ID

J

Since there is an odd number of non-zero terms in gt(D) and any delay

of I(D) is equal to I(D), then gl(D)I(D) = I(D). That is,

g°(D)y°(D) • f(D)y_(D) = I(D). (5.9)

Comparing (5.5) and (5.9), we see that they are not the same, thus

implying that this code is not 90" transparent. In fact, no good code

(i.e., g°(D) and gl(D) are at least different from each other) can be

90" transparent for a rate 1/2 code with a linear PCE and Gray QPSK

mapping. Using a_similar m eth_od, it can be shown that this code is 180 °

transparent.

As shown above, the effect a phase rotation has on the PCE

depends a great deal on the form of the rotated sequences. More

specifically, it depends on the particular signal set mapping that is

used. We discuss this matter in the next section.

5. I. I Signal Set Mappings

Since we can't have all the bits in a mapping unaffected by a

phase rotation, we should try to minimize the effect as: much as

possible. The mapping should also be consistent with the signal set
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partitioning schemes descibed in [65], since these partitions help us

to find good sequencecodes.

The so-called "natural" mapping has these properties. The

naturally mapped MPSK signal set is a good example of this. For

example, naturally mapped 8PSK. It has the desired partition properties

and the following rotated sequenceequations,

y_(D) = y°(D) • I(D) = y°(D),

y_r(D)= yl(D) • y°(D),

y2(D) = y2(D) • y_(D).y°(D).

(5.10a)

(5.10b)

(5.10c)

=

w

The multiplication in (5.10c) involve the bit wise logical AND of the

coefficients of the polynomials, e.g., if y°(D) = D2_ D _ 1 and

yl(D) = D _ 1 then y°(D).yl(D) = D • 1. That is, this polynomial

multiplication is a non-linear operation. Note that each rotated bit is

a function of itself plus some added term. Thus, when substituted into

a PCE, the original PCE is produced plus some extra terms. We will

discuss this in greater detail later.

A simpler way of describing what happens to the binary sequences

after a phase rotation is with integer notation and modulo-M addition.

We let the integer representation of y°(D), yl(D),..., yk(D) be

k

y(D) = _ 2iyi(D). (5.11)
i--0

L

E ?

Thus, with natural mapping,

notation) can be expressed as

the rotated sequence Yr(D)

Yr(D) = y(D) + I(D) (mod ND.

(in integer

(5.12)

7

w
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With rectangular signal sets we should also try to obtain a

"natural" mapping. We will show how this can be achieved by using the

16QAM signal set. Similar to MPSK, we use a mapping based on the

partitioning of the 16QAM signal set as an example. Figure 5.2

illustrates the first two levels of zhe partition. Note that the four

subsets are related to each other by an appropriate number of 90 ° phase

rotations. Each of these four subsets can be labeled by the first two

bits of the mapping, i.e., y0 and y_. After a 90 ° rotation the rotated

sequences for y0 and yl are given by (5.10a) and (5.10b), respectively.

The remaining two bits (y2 and y3) are used to define the four

way partition of each of the four subsets. However, as shown in Figure

5.2, these last two bits are mapped such that they are not affected by

a 90 ° rotation, i.e.,

y2(D) = y2(D), (5.13a)
r

y3(D) = y3(D). (5.13b)
T

This considerably simplifies finding a PCE, since only two sequences

are affected by a rotation. A similar approach can be used with other

rectangular signal sets (e.g., 32CROSS). For the 32CROSS mapping in [1]

(and which was accepted as =the V.32 modem :_Standard) ihe first three

bits are affected by a rotation. This results in a more complicated

encoder requiring two AND gates (all our codes require only one AND

gate).

We will be constructing codes based on these signal sets since

they have relatively simple rotation equations.
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5.1.2 More on Linear Parity Check Equations

We will now show that linear PCE's cannot be made invariant when

two or more binary sequences are affected by a rotation. We will use

the rotation equations given in Section 5.1.1. For simplicity, we will

only consider two bits are affected by a rotation, i.e., equations

(5.10a) and (5.10b). Substituting equations (5.10a) and (5.10b) for

y°(D) and yl(D) into the linear PCE (5.1) we obtain

HI(D)(yI(D) _ y°(D)) _ H°(D)(y°(D) _ I(D)) = 0(D),

HI(D)y_(D) _ (H°(D) _ Hl(D))y°(D) = E[H°(D)](D), (5.I4)

I

i

Bi

m

m

m

i

where E[H°(D)] is the modulo-2 number of non-zero terms in H°(D). Even

if E[H°(D)] = 0, (5.14) is not equal to the original PCE (5.1). This

shows that if two sequences being affected, we cannot have an invariant

linear code. When more than two sequences are affected, the situation

is even worse. For these cases, non-linear terms (such as y°(D)-y1(D))

are produced.

!

i

i

m
m

5.2 A General Parity Check Equation for Invariant Sequence Codes
B
B

We now introduce our general parity check equation(s) (GPCE) that

can be used to find any rotationally invariam rate k/(k+l) sequence

code. To simplify the derivation, we will assume that all k bits are

checked by the encoder and that all I = k+l bits in the signal set are

affected by a rotation. This basic equation can then be modified for

other sequence codes where these conditions are not true (e.g., rate

2/3 8PSK with one checked bit or rate 3/4 16QAM).

The GPCE is actually two equations, one that uses modulo-M

m

!

m
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arithmetic and the other modulo-2 arithmetic. The two equations need to

be combined in order to produce the final invariant PCE (IPCE). After

the introduction of the GPCE, we will illustrate its use by deriving

the rate 1/2 IPCE as found in [70]. This is followed by the derivation

of a rate 2/3 IPCE for 8PSK modulation and two checked bits.

5.2.1 The Equations

Our basic aim is the introduction of a non-linear term (as in

[70]) into the linear PCE so that after a rotation the non-linear term

"generates" additional terms which cancel the terms generated by the

linear part of the IPCE. We start by assuming that E[H°(D)] = 1. This

may seem contrary to what is desired (we have that H°(D)y°(D)
r

= H°fD)y°(D) _B I(D)),

simplification in the

E[H°(D)] = 0, but as

E[H°(D)] = 1.

but

final

shown

this assumption results in a small

IPCE. We could have started with

later, there is an equivalent IPCE with

Since the H°(D)y°(D) term generates I(D) after a rotation, the

non-linear term must also generate I(D). We also assume that all

I = k+l bits are affected by a rotation. The modulo-M GPCE is

z(D) = (D" + (M/2-1)D_)y(D) (mod M), (5.15)

where y(D) is def'med in (5.11), z(D) = _it 2izi(D), zi(D) are binary
i=0

sequences, and v > a > b > 0. The restriction on a and b allows us to

find good sequence codes.

Before presenting the modulo-2 GPCE, we examine what happens to

z(D) on a phase rotation. Substituting y(D) from (5.12) for y(D), we

obtain (all additions are modulo-M),



z (D) = (D" + (M/2-1)Db)yr(D)

= (D" + (M/2-1)Db)(y(D) + I(D))

= (D' + (M/2-1)Db)y(D) + D'I(D) + Db(M/2-1)(D)

= z(D) + M/2CD).

168

Note that a number before the term "(D)" is an infinite sequence of

that number, e.g., M/2(D) is an infinite sequenceof the number M/2.

We see that z(D) has the M/2(D) sequenceadded to it. In terms of

the binary sequences,we have zir(D) = zi(D) for 0 <i< k-1 and zk(D)r

= zk(D) (9 I(D), i.e., all the binary sequences in z(D) are unaffected,

except the most significant binary sequence, which is inverted. In the

modulo-2 GPCE all the terms in the equation must be unaffected by a

rotation or produce terms that cancel each other.

Since zk(D) is the most significant bit of z(D), it is a function

of all yi(D). Thus, by always including this term, the IPCE will check

all k input bits to the encoder and avoid parallel transitions. Also,

after a rotation, zk(D) generates a I(D) sequence which will cancel the

I(D) generated by H°(D)y°(D). Since the remaining zifD) terms are

unaffected by a phase rotation, we include a linear combination of

z_fD), 0 < i < k to increase the number of invariant codes that can be

examined in a code search. We don't include z°fD) since it is a linear

function of y°fD) (which is taken care of by H°(D)y°(D)).

The modulo-2 GPCE therefore is

zk(D) (9 h k tzk I(D) (9.-.(9 hlzl(D) (9 H°(D)y°(D) = 0(D),
it Z

(5.16)

where hi e {0,1} for 0 <i< k. From (5.15) we can obtain expressions
at
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for zi(D) in terms of yi(D) and substitute them into (5.16) to obtain

the IPCE.

If E[H°(D)] = 0 the modulo-M PCE will be of the form

z(D) = (D" + (M-1)Db)y(D)

= (D" + M/2D b + (M/2-1)Db)y(D)

= (D" + (M/2-1)Db)y(D) + M/2Dby(D)

= (D" + (M/2-1)Db)y(D) + M/2Dby°(D).

Thus, it can be seen that zk(D) will be the same as the zk(D) obtained

from (5.15), except that Dby°(D) will be added to it. When zk(D) is

substituted into (5.16), the extra Dby°(D) term will be added to

H°(D)y°(D) (forming the new parity check polynomial [l°(D)). This makes

iq°(D) have an odd number of non-zero terms, or E[I:I°(D)] = 1. Therefore,

the restriction E[I-I°(D)] = 1 covers all possible codes and also results

in a simpler IPCE.

Note that the form of (5.15) is not unique. Providing t_-af zk(D)

is a function of all yi(D), then three or more delay terms in (5.15)

could be used. For example, with E[I-I°(D)] = 1 and I = 3,

z(D) = (D" + 4D b + 7DC)y(D) (mod 8). (5.17)

For the codes found in this chapter we have used (5.15) for z(D).

The reason for this is to simplify the code search. Also, work done in

[48] for rotationally invariant QPSK codes indicates that having three

or more delay terms does not give an increase in free distance compared

to using only two delay terms. The affect on the number of nearest

neighbors is not known though.
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5.2.2 The Rate t/2 Invariant Parity Check Equation

The original rate 1/2 IPCE equation found by Ungerboeck was

obtained by hand. Here (in a slightly modified form) we present its

derivation using the GPCE. This equation can be used in rate k/(k+l)

MPSK codes where the encoder checks only one of the k input bits to the

encoder, in rate k/(k+l) QAM codes where there are four rotational

symmetries, and in other 2-D or multi-dimensional signal sets.

We let the binary, input sequence be

x(D) = xl(D), (5.18)

and the output sequence be

y(D) = y°(D) + 2yl(D). (5.19)

From (5.15) the modulo-4 GPCE is

ztD) = (D a + Db)y(D) (mod 4). (5.20)

The next step is to express z(D) in terms of y°(D)

Substituting (5.19) into (5.20) and expanding z(D), we obtain

and yl(D).

z°(D) + 2zl(D) = (D a + Db)y°(D) + 2(D _ + Db)yl(D) (rood 4). (5.21)

To find z°(D) and zl(D) in terms of y°(D) and yl(D), the logic

equations of a two bit adder are used. Figure 5.3 illustrates how two 2

bit adder blocks can be joined to give the required z°(D) and zl(D)

outputs.

We have for each 2 bit adder that
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Figure 5.3: Two bit adders used to form z(D) for rate 1/2 encoder.

S = A @ B _B C, (5.22a)
1

C = A.B • C.(A _B B). (5.22b)
O 1

We thus have

z°O3) = (D* @ Db)y°(D),

zl(D) = (D* EB Db)y1(D) @ D'y°(D).Dby°(D).

(5.23a)

(5.23b)

Notice that zl(D) contains a non-linear term. A logic AND gate is used

to implement this function. From (5.16) we obtain,

zl(D) EB H°(D)y°(D) - 0(D). (5.24)

Substituting (5.23b) into (5.24) the final IPCE is

(D* EB Db)yi0D ) _B D'y°(D).Dby°(D) _B H°0D)y°0D) = 0(I3). (5.25)

As for a linear PCE, the parity check polynomial of yl(D) is HI(D)=

D*EB D b. Since this polynomial gives the values of a and b, the code

can be completely described by H°(D) and HI(D).

Note that (5.25) is similar to the linear PCE (5.1), but with
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HI(D) having only two delay terms and a non-linear term that is added.

Codes for rate 1/2 QPSK based on (5.25) can be found in [70], where the

encoder implementation is discussed in detail.

forms of y°('D) and y l(D) into (5.25) will

equation is invariant.

Substituting the rotated

easily show that this

As in [70], we will use systematic encoders to implement the

IPCE. Since the IPCE is non-linear, it is not always possible to find a

minimal (i.e., m = v) implementation of the encoder. An equation to

determine m is given in [70]. It can be shown, however, that for

a- b < 2, a minimal implementation of the encoder can be found. For

a- b > 2, a restriction on H°(D) needs to be made in order to obtain a

minimal implementation.

Example 5.2 Rate 2/3 8PSK with one checked bit

In this example we present a simple eight state code for rate 2/3

8PSK and one checked bit, With v = 3, we must have a = 2 and b = 1.

Thus our parity check equation is

(D2@ D)yl(D) @ D2y°(D).Dy°(D)@ (D3@ h20D2@ h_0D @ 1)y°(D) ---0(D). (5.26)

There are no y2(D) terms since H2fD) = 0. An implementation of this

encoder is shown in Figure 5.4. It is similar to a linear systematic

encoder, except for the non-linear term that is added. Notice that the

AND gate multiplies the sequences y°(D) and Dly°(D) to form

y°(D).D'ly°(D). The output of the AND gate is then twice delayed to

obtain the correct non-linear term.

There are two possible codes, one with h ° = 13 s -- 10112

--D3 • D • 1 = H°(D) (all codes will be given in octal notation) and

u
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2 2
x (D) -_ y (D)

1 1
x (D) = y (D)

Q-

) D" y (D)

0
y (D)

=

w

Figure 5.4: Rotationally invatiant rate 2/3 8PSK encoder (k = 1, m = 3).

the other with h° = 15. Since the free distance of a code is the same

going forwards or backwards in time, these two codes must have the same

free distance (the bit reverse of h 1 = 06 is 06 and of h ° = 13 is 15).

This time reversal technique (first given in [65]) can be used to

reduce the number of codes that need to be examined in a search for

more complex codes. The minimum free squared Euclidean distance (d2f_e)

is 4.0, which occurs along parallel transitions. Thus an asymptotic

coding gain (Y) of 3.01 dB is achieved. The number of nearest neighbors

(Nf,) is equal to one. The smallest squared Euclidean distance that

occurs along non-parallel transitions (d_ext) is 4.586. Its average

multiplicity (Nn_tt) is 0.25. An eight state linear code has

d z = 4.586, but is only 180 ° transparent [56].
free

E

w

5.2.3 Rotationally Invariant QAM Codes

As shown in Section 5.1.1, only the two least significant bits of

a QAM signal set mapping are affected by a 90 ° phase rotation. With an

=: •

T
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appropriate mapping, these two least significant bits are affected in

the same way as the two bits in naturally mapped QPSK.

The IPCE in (5.25) can be used if there is only one checked bit.

However, the d 2 will be at most limited to 4 (with the minimum free
fre_

squared Euclidean distance of the uncoded signal set equal to 2). For

v = 3 and one checked bit, (5.26) gives a code with d 2 = 4 (along
free

the parallel transitions). To increase the free distance, the number of

checked bits (_) needs to be increased. The IPCE for this more general

case is

H[(D)y[(D) _..._ HZ(D)y2(D) _ (Da_ Db)y_(D) _ H°(D)y°(D)

= Day°(D).D_y°(D). (5.27)

The yk(D) to y2(D) terms can be added just as in the linear PCE since

these terms are unaffected by a phase rotation.
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Example 5.3 Rate 3/4 16QAM with _ = 2

We let v = 3, a = 2, b = 1, h °= 13, h _= 06, and h 2= 02. Figure

5.5 illustrates a systematic encoder implementation. This code is very

similar to the code given in [32] except that a 16QAM signal set is

used instead of 32CROSS. It has d 2 = 5 (when normalized to a signal
free

energy of one, the minimum free squared Euclidean distance is 2.0,

equal to that of uncoded QPSK), which gives an asymptotic coding gain

of 3.98 dB. The average number of nearest neighbors is 0.875, compared

with the best 180" invariant linear code, which has an Nfr _ of 3.781.

This indicates that the fully invariant code should perform better than

the best linear code.
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3
x (D)

2
x (D)

l
x (D)_

i

|

D y (D)

,_ y 3(D)

•._ y2(D)

•.-- y I(D)

y °(D)

Figure 5.5: RotationaUy invanant rate 3/4 16QAM encoder (k = 2, rn = 3).

==

5.2.4 The Rate 2/3 Invariant Parity Check Equation

Obtaining a rate 2/3 IPCE by hand is very difficult and was one

of the main reasons for finding the GPCE. The only use found thus far

for this equation is for rate 2/3 8PSK with two checked bits. The best

rate 3/4 16PSK codes have only one checked bit up to v = 7. Thus the

rate 1/2 IPCE can be used for 16PSK.

For the rate 2/3 IPCE, we start with the modulo-8 GPCE. We have

z(D) = (D" + 3Db)y(D)

z(D) = (Dr + D_y°(D) + 2((D a + Db)yl(D) + Dby°(D))

+ 4((D" + Db)y2(D) + Dbyt(D)).

(mod 8) (5.28a)

(mod 8) (5.28b)

Figure 5.6 illustrates how z(D) can be implemented with two bit logic

adders.

We have
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A Ci

B Co

Da yl (D)---_ A Ci S

D byl(D)? B C[o

St'" z°(D) 0

$
s (D)

Co

_]A Ci [S "_ w2(D)B C O

Figure 5.6: Two bit adders for rate 2/3 encoder.

z_(D) = (D" @ Db)yl(D) @ D*y°(D).Dby°(D),

z2(D) = (D* @ Db)y2(D) _ w2(D),
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(5.29a)

(5.29b)
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where
U

_ w2(D) = D'yl(_D)._Dbyl(D) _._

Dby°(D).((Da_ Db)y_(D).D'y°(D) _ D'y°(D)). (5.30)

The rate 2/3 IPCE is then

(D*@ Db)y2(D) EB w2(D) @ hlzX(D) _ H°(D)y°(D) = 0(D).
Z

(5.31)

Notice that in w2fD) we have non-linear terms involving yt(D). In an

encoder implementation we always have D'ly°(D), y°(D), and Dy°(D)

available to form non-linear terms involving y°(D). This is not true

for yl(D). Thus, delay terms need to be added to the encoder to produce

the required non-linear terms involving yi(D). In other words, a

minimal implementation is not possible and we have m >_. v + a- b (the

u

m

I

D

m

i

I

m

=,_

g

I

z



177

w
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w

inequality is due to the non-linear nature of these codes, similar to

the rate 1/2 IPCE described in Section 5.2.2).

Since both ylCD) and y°(D) are outputs of a delay element in this

case, the two least significant bits in a symbol are fixed in leaving a

state, i.e., only two of the eight possible signal points can be

chosen. However, there are four paths leaving a state, and so the

2
minimum squared distance leaving a state is 0 (not 51 as desired). The

2
minimum squared distance entering a state is 51 as expected. Therefore,

the minimum free squared distance is lower bounded by 5 2 (the same
1

minimum squared distance as the uncoded case).

Example 5.4 Rate 2/3 8PSK with two checked bits.

As in Example 5.2, we let v = 3, a = 2, and b--1. From (5.31),

the IPCE is

(DZ@D)ye(D) @ w2(D) _) hlz_(D)z @ (D3@h20D2@hl0D@l)y°(D) = 0(D). (5.32)

An implementation of this encoder is shown in Figure 5.7. Note the

extra delay element required to produce Dqyl(D) and yl(D). Also note

how w2(D) and zl(D) are obtained through the use of a times three

modulo-8 multiplier and a modulo-8 addition element. In this case we

have m = v + a-b = 4. The d _- of both of the two possible codes
free

(varying hlz) is 2, giving a 0 dB asymptotic coding gain compared to

uncoded QPSK. Nf,_ = 0.25 for both codes.

For an 8PSK signal set, it can be shown that d 2 will always be
free

2 z=0.equal to 5_ = 2, no matter how large v is. Let us assmune that h _

For this case any code that has (5.31) as its PCE will always have the
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Fimam 5.7: RotationaUy invatiant rate 2/3 8PSK encode, fk = 2, m =/1). mR

following sequences as valid code sequences. m

y(D,i) = 6Di+ 6Ditl+ 6D i.2 +..., for -o0 < i < _0.
m
g

t :

This can be seen from (5.28a) where

2D i*b +...+ 2D i*''l Thus we have y°(D) = 0(D)

z(D) = (D" + 3Db)y(D,i) =

and z2(D) = 0(D) which

satisfies the GPCE (5.16).

The squared Euclidean distance between the sequences y(D,i) and

y(D,i+l) is equal to 2. Since the minimum d 2 is always at least 2,
free

then d 2 = 2 for hi = 0 and any H°(D). For hi = 1, a similar argument
fme z z

can be used (with y(D,i) = 2Di+ 2Di+l+ 2D i+2 +--., for -_ < i < 0o), to

show that d 2 - 2.
fw.e

To try and overcome this problem we looked at other forms of

z(D). The only other practical z(D) (with two delay terms) is

(3D'_ Db)y(D), but this still gives d 2 = 2 for all codes. As shown
fme

by Example 5.4, however, Nf,_ is very small and this may compensate
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S E

for the small free distance at low signal to noise ratios. By letting

z(D) = (D* + D b + 2DC)y(D), it may be possible to have d 2 > 2.
f_

5.2.5 Precoding and Postdecoding

The function of the precoder is to differentially encode

(precode) the data so that phase rotations will not affect the data

after decoding and differential decoding (postdecoding). This subject

is covered in greater detail in [70] for the rate 1/2 IPCE.

Here we present a general method for obtaining a precoder and

postdecoder as well as show how the precoder can be combined with the

encoder. Let w(D) be the input to the precoder and x(D) be the input to

the encoder, where

k k

2i-ix iw(D) = iZl= 2ilwi(D)and x(D)= iZl= (D). (5.33)

From Chapter 2, the precoder equation is

2x(D) = 2Dx(D) + 2w(D) + (D + (M-I))y°(D) (mod M), (5.34)

and the postdecoder equation is

^ A A 0
2w(D) = ((M-I)D + l)(2x(D) + y (D)) (mod M), (5.35)

where the symbol ^ over a sequence indicates the decoder's estimate of

an original sequence. Equations (5.34) and (5.35) can be implemented in

a real system, with the precoder before the encoder and the postdecoder

after the decoder. However, since the eneoder is itself invariant to

phase rotations, it is possible to combine the encoder and precoder,

thus eliminating the need for a postdecoder. This allows the decoder to
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make the best estimate of the transmitted sequence without having extra

errors introduced by a postdecoder.

There are two steps in combining the precoder with the encoder.

The first involves the precoding of xk(D). The remaining input bits are

then precoded. Let the outputs of the systematic encoder binary delay

elements (not counting any extra delay elements) be labeled svl to so
I1 n

from left to right (or sv-l(D) to s°(D), respectively in sequence

notation). By examining the systematic encoder structure, it can be

shown that

Y°(D) = (Dbhbo @ Dblhb0 1 _..._ Dhlo)yO(D) @ Dbyk(D) @ DDsb(D), (5.36)

where b is defined in Section 5.2.1. To determine the equation needed

to precode xk(D), we rearrange (5.36) to obtain

I

m
g

z
m
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II
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II

m

I

I

where

sb(D) = yk(D) _ B(D)y°(D), (5.37)

-B(D) = D b • D'b+lh I _'"_ h b.
0 0

.... (5.38)

mm
m

:

g

In order that wk(D) is unaffected by a phase rotation, we now let our

precoding equation be

xk(D) -- yk(D) = wk(D) @ sb(D) @ E[B(D)]y°(D). (5.39)

I

U

m

m

Substituting (5.37) into (5.39) and assuming a noiseless channel we

obtain the postdecoding equation (not used in practise since

postdecoding occurs within the decoder) as

I

N

Wk(D) = (B(D) _ E[B(D)])y°(D). (5.40)
i

U

m

E
m
I
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After a phase rotation we have y_ = y0 @ 1. Thus,

w (D)= (B(D) 6) E[B(D)])y )
r

= (B(D) @ E[B(D)])(y°(D) @ I(D))

= (B(D) @ E[B(D)])y°(D) = wk(D),

w

which shows that the k th bit is correctly precoded.

remaining input bits, we use a modified form of

systematic encoder implementation and k > 2, we have that

i -b X -- --y (D) = D" i(D); 1 < i < k-I, a-b > 1.

These delayed sequences of x'(D) for 1 < i < k-1

precoder as follows. Let

To precode the

(5.34). For our

(5.41)

are used by the

k-I k-I

w'(D) = i_l 2i'lwi(D)and x'(D)= i_l 2ilxi(D)" (5.42)

F=

Our precoder equation now becomes

2x'0D) = 2Dx'(D) + 2w'(D) + (D + (M/2-1))y°(D) (mod M/2). (5.43)

w

w

All the sequences that x'(D) depends on in (5.43) are

encoder, thus allowing an implementation without any

number of delay elements.

available in the

increase in the

Example 5.5 Rate 2/3 8PSK

Let v-- 3, m=4, a--2, b-1, h I --0, and H°(D)=D 3 _D @ 1.
Z

To precode x2(D), first note that B(D) = 1 @ D i. From (5.39) we have

x2(D) = w2(D) _ sl(D). (5.44)



From (5.43) it follows that

182
u

I

2xl(D) = 2Dx1(D) + 2wl(D) + (D + 3)y°(D) (rood 4). (5.45)
m

Expressing (5.45) in binary notation, it can be shown that

xl(D) -- DxX(D) @ wt(D) @ Dy°(D).y°(D). (5.46)

D

m

Figure 5.8 illustrates an implementation of the complete

encoder.

2

wZ(D) x (D) y2(D)

precoder/

gl
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w
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Figure 5.8: RotationaUy invariant rote 2/3 8PSK encoder (k = 2, m = 4)

combined with diflL,mntial encoder (pmcoder).

5.3 Systematic Code Search

Our criteria for finding good rotationaUy invariant codes are

based on maximizing the asymptotic coding gain (y) and minimizing the

probability of an event error (Pc). y and Pe can be expressed in terms

=
B
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of the minimum free squared Euclidean distance (d2f,_) and the number

of nearest neighbors (Nfm), i.e.,

T -- 10 logt0

d 2
free

52
1

(dB) and Pe > Nf_Q[ / d_, KEb'//

L/ 2 N O

(5.47)

where d 2f= is normalized so that the average energy of the signal set

is equal to one, 52 is the minimum squared distance of the uncoded1

signal set, K is the number of information bits transmitted per 2-D

symbol, Eb/N ° is the energy per information bit to one sided noise

density ratio, and Q(.) is the Gaussian error probability function. The

expression for Pe approaches equality as EJN ° becomes large. For small

values of Eb/N0, additional terms in the distance spectrum of the code

must be taken into account.

Therefore, the code search is designed to find all the codes

which have the maximum d 2 (to maximize T), and from those codes to
fnm

select the code with the smallest Nf,_ (to minimize Pc). For some

classes of trellis codes, all the codes have the same d 2 and
fr_ Nfr_"

In this case we find the codes with the largest next nearest squared

2

Euclidean distance (_t), and from those codes the code with the

smallest number of next nearest neighbors (Next) is selected.

Since the codes arc non-linear, we cannot use algorithms such as

the bidirectional search algorithm to find d2ftte (or d_ext). Instead,

our algorithm must look at all pairs of paths produced in the trellis,

not just the path pairs which have the all zero path as one of the

paths. The Double Dynamic Programming Algorithm (DDPA) from Ungerboeck

[66] is an efficient algorithm to achieve this. This algorithm uses the
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properties of the trellis in order to reduce the computation time.

To find Nfr _ (or Nnext), 01.11" algorithm is designed to find the

number of nearest neighbors for paths starting at state I and ending at

J

I

state J of the trellis (Nfm(I,J)). We compute Nf_(I,J) for all

combinations of I and J and then take the average to determine Nf .

The computation of Nfrr.e(I,J') is determined from two different

characteristics of the trellis. The f'trst is the number of mergers at

state J of pairs of paths of length L (which have a distance of d 2
free

between them) diverging from state I (Nm(I,J,L)). The second is the

number of paths between state I and state J of length L (Np(I,J',L)).

The length L is the number of 2-D symbols between states I and J.

Knowing the number of mergers and the number of paths, the number

of nearest neighbors of paths of length L between states I and J

E
I

I

M

(Nf (I,J,L)) is
m

m

Nrr (I,J,L) -- 2N (I,J,L)/Np(I,J,L). (5.48)
N

Equation (5.48) is derived from the fact that each merger indicates

that there is one nearest neighbor for one path and another nearest

neighbor for the other path. Since the number of nearest neighbors is

defined as the total number of nearest neighbors seen by all paths

divided by the total number of paths, (5.48) results.

Nf=.(I,J) is calculated by summing Nf,,_(I,J,L) over all L up to

the length where the distance between paths from state I and I is

greater than d 2 Our implementation of this algorithm uses the
frtm"

structure of the trellis (similar to the DDPA) to reduce the number of

computations r_uired to find _N,,,..

Determining Nt, _ for these codes is not simple and requires many
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L

computations. Therefore, we have limited the code complexity (the

encoder memory (m) plus the number of checked input bits (_)) to a

maximum of eight. Also, the code search was limited to those codes

where m--v except the rate 2/3 8PSK codes with two checked bits where

m = v + 1 (where we limit codes to having a-b - 1).

When all the sequences in a code are reversed, the new code for

these sequences has the same d 2 as the original code. Thus, we have
f_

used the bit-reversal technique [65] to reduce the number of codes that

must be examined.

5.4 Results and Discussion

w

w

L

w

?

w

Table 5.1 lists the best rotationally invariant rate 1/2 codes

for QPSK modulation. Note that d 2 is twice as large as normally
free

given for these codes since we have normalized the energy of the QPSK

signal set to one. For v =.3 to 5, d 2 is 2 less and for v = 6 and 7,
. __ f_

d 2 is 4 less than the best linear codes [56] (some of which are only
free

360 ° invariant). The Nf's for the codes in Table 5.1 are quite

small, ranging from 3 to 10 times smaller than the Nf's of the best

linear codes [56]. This reduction in Nf_ partly compensates for the

smaller d2 of these codes.
frc¢

In Tables 5.2 and 5.3, our results for rate 2/3 8PSK are

presented. For I_ = 1, the parallel transitions result in d 2 = 4 and
fre.¢

N = 1 for all codes (Table 5.2). However, the next nearest
free

distances increase with increasing v. For v = 3 to 6, d 2 is the same
n_t

as d 2 for the best linear codes [56]. For v = 7, d 2 is 0.37 dB
free next

larger than d2 for the best v = 7 linear code [56]. The v = 6 code
f_



TABLE 5.1

ROTATIONALLY INVARIANT RATE 1/2 QPSK CODES

K = 1.0 biffsym, d 2 = 4, N = i (BPSK).
1.1 11

v _ h 1

3 1 06 13

4 1 06 23

5 1 30 45

6 1 050 105

7 1 120 253

90 ° I nv.

h ° d 2 Nffree ree

10 0.250

12 0.333

14 0.667

16 1.612

16 0. 201

180 ° Inv.

2 N
dfree free

12 2

12 1

16 2

20 11

20 2

360 ° Inv.

Nd
--free free

12 1

14 2

16 1

20 1

Inv.

? (dB)

3.98

4.77

5.44

6.02

6.02
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I

I
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g

b

may be an alternative to Viterbi's pragmatic rate 2/3 code (which is

90 ° invariant) [71]. It should perform as well or better than Viterbi's

code with the added advantage that synchronization of the receiver with

the signal set is not required. In addition, N is less than one, as
next

it is for all of the nonlinear codes listed in this table.

I

D

3 1

4

5

6

7

TABLE 5.2

ROTATIONALLY INVARIANT RATE 2/3 8PSK CODES

WITH ONE CHECKED BIT

K - 2.0 bit/sym, d 2 = 2.0, N = 2 (QPSK).
U U

h _ ho

06 13

1 06 23

1 30 45

1 060 105

1 030 203

45 ° Inv.

d 2 Nf d 2 Nfree ree next next

4.0 1.0 4.586 0.250

4.0 1.0 5. 172 0.333

4.0 i.0 5.757 0.417

4.0 1.0 6.343 0.467

4.0 1.0 7. 172 0.333

180 ° Inv.

d 2 N
free free

4.586 2

5. 172 4

5. 172 0.25

6.343 3.25

6.343 0.125

360 ° Inv.

2 N
dfree free

5. 172 2.25

5.757 2

6.586 0.5

Inv.

Y (dB)

3.01

3.01

3.01

3.01

3.01
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TABLE 5.3

ROTATIONALLY INVARIANT RATE 2/3 8PSK CODES

WITH TWO CHECKED BITS

K - 2.0 bit/sym, d 2 = 2.0, N = 2 (QPSK).
U U

v m _ h 2 h I h °

342 06 00 13

4 5 2 06 00 23

5 6 2 06 00 43

d 2 N d 2 N
free free next next

2.0 1/4 4.0 0. 375

2.0 1/8 4.0 0.333

2.0 1/16 4.0 0.167

y (dB)

0.00

0.00

0.00

o

The results for the rate 2/3 codes with _ = 2 appear

disappointing. The aim of going to two checked bits was to remove the

parallel transitions in the hope of increasing d 2 beyond 4. However,
free

as shown in Section 5.2.4, the reverse happened, and d 2 is only 2
fr_

when k = 2. The number of nearest neighbors though, divides by two with

each increase in v (beginning at 1/4 with v = 3). Also, the next

nearest distance is 4 with N being smaller than N for the _ = 1
next free

codes. Thus, it may be that these codes perform better than the _ = 1

codes at moderate EJN 0 ratios due to a lower number of nearest

neighbors. Another strange aspect of these codes is that all the

2 2

properties examined (dr,, Nf=e, dnext, and Nnext) were the same for

every code. The reason that h_ = 00 for all three codes is that h_ = 0
Z

(if h I = 1 then h I would be non-zero).
Z

The rate 3/4 16PSK codes in Table 5.4 follow a pattern similar to

the rate 1/2 QPSK codes. That is, d 2 is usually less than the best
fr_

linear codes, but Nf,_ is smaller [56]. The exception is the v = 7

code where d 2 occurs along parallel transitions. However, d 2 and
frte next

N follow the familiar pattern.
next
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TABLE 5.4

ROTATIONALLY INVARIANT RATE 3/4 16PSK CODES

K = 3.0 bit/sym, d2 = 0.586, N -- 2 (8PSK).
I1 tl

v _ h i h °

3 1 06 I3

4 1 06 23

5 1 30 45

6 1 060 105

7 1 030 203

22.5 ° Inv.

2 Nf d 2dfrec ree next

1.324 0.250 -

1.476 0.333 -

1.628 0.417 -

1.781 0.467

2.0 2.0

rN
nex t

2.062 0.333

45 ° Inv.

d 2 Nf teefree

1.476 8

1.476 4

1.781 8

2.0 2

2.0 2

90 ° Inv.

d 2 N
free free

1.476 4

1.628 4

1.910 8

2.0 2

Inv.

Y (dB)

3.54

4.01

4.44

4.83

5.33

D

M

g

u

D

g

In Table 5.5 we give the results for rate 3/4 16QAM. Unlike the

codes for MPSK modulation, most of the codes listed have the same d 2
frtm

as the best linear code. Only the memory 4 code has a smaller d 2
free"

's less than the linear codes given in Chapter 3. ForAlso the Nfree are

the codes where the d2f, 's are the same, this indicates that the best

rotationally _invafi'ant_ codes should be better (surprisingly) than the

best linear codes. For the v = 4 code, Nf,_ is 38 times smaller than

the best linear code. This may compensate for the reduction in d 2
fr_

for this code.

In Table 5.6, rotationally invariant codes for rate 4/5 32CROSS,

rate 5/6 64CIRC, rate 6/7 128CROSS, rate 7/8 256CIRC and rate 8/9

512STAR are given, respectively. The signal sets for these codes are

descri_ in Chapter 3. _in the code search all these signal sets

produced the same codes, although with different Nf, 's. Note that the

Nf, 's do not increase monotonicly with the size of the signal set

(for linear _ codes Nf,_ does increase monotonicly). This is probably

due to the unusual non-linear structure of the encoder.
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3

4

5

6

32

42

52

62

TABLE 5.5

ROTATIONALLY INVARIANT RATE 3/4 16QAM CODES

K --- 3.0 bit/sym, d 2°= 2, N = 2.25 (8AMPM).
U U

90 ° I nv.

h ° d 2 : N
fr • free

180 ° Inv.

2
dfr:e Nfree

360 ° Inv.

d 2 " N
free free

5 3.656

6 9. 156

6 1.812

7 4. 828

h 2 h I

2 02 06 13

2 06 14 23

2 10 30 45

2 020 014 103

5 0.875

5 0.25

6 0.547

7 2.668

5 3.781

6 9.594

6 1.891

7 6.1721

"Divide by 2.5 for normalized d 2
fr_"

Inv.

? (dB)

3.98

3.98

4.77

5.44

TABLE 5.6

ROTATIONALLY INVARIANT QAM CODES

h 2 h I h °

02 06 13

06 14 23

10 30 45

020 014 I03

32
d 2

fr_ N
fre_

5 4.5

5 1. 292

6 2. 875

7 19.992

64 512

N
free

3.350

0.957

2.135

14.109

128

N
free

2.847

0.811

1.817

256

Nfree

4.813

1. 370

3.266

N
free

4.329

1.230

2.929

1 1.695 23.650

7 (dB)

3.98

3.98

4.77

20.885 5.44

w

w

It is interesting comparing the eight state invariant QAM code

proposed in [1] which was accepted as the V.32 modem standard with the

equivalent code in Table 5.6. The V.32 code has 9.124 nearest

neighbors, double that of the code we have found. Also, the V.32 code

requires a seperate precoder, Whereas our code can combine the precoder

with the encoder, eliminating the need for a seperate postdecoder. The

reason for this difference in Nfr_ most likely lies in the extra

complexity of the V.32 code (which requires two AND gates). Complexity

also seems to have an affect on our codes as well. Nearly all codes
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have a-b = 1 and no codes were found that had a-b > 2. It appears that

the more non-linear a code is, the worse it will perform. The very

non-linear rate 2/3 8PSK codes with two checked bits performed very

poorly.

J

Ill

u

Wl
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5.5 Conclusions _=

D

A systematic method of obtaining rotationally invariant trellis

codes for a variety of signal sets has been presented. Since codes

based on linear parity check equations are not invariant (for signal

sets with more than two points) an alternative general parity check

equation was found. This GPCE allows the construction of invariant

codes for signal sets that are "naturally" mapped.

A general method of combining the precoder with a systematic

encoder without increasing the encoder memory was also given. This

eliminates the need for a postdecoder, since the precoder is pan the

encoder trellis.

When a signal set has 90 ° rotational symmetries or only one input

bit is checked by the encoder, the invariant parity check equation is

relatively simple, with only one non-linear term. The best codes for

the QPSK and 16PSK signal sets were found to have smaller free

distances when compared to the corresponding linear codes. However,

their low number of nearest neighbors may make up for this loss at

moderate Eb/N 0 ratios. The QAM codes were found to be very good. Most

of these codes had the same free distance as the best linear codes as

well as a smaller Nf .

The results for 8PSK with two checked bits seem to be
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disppointing. These codes have 0 dB asymptotic coding gain. However,

their low Nfrr.e may be useful at small Eb/N o ratios. The 8PSK codes

with one checked bit all have 3 dB asymptotic coding gains and so are

more likely to be of practical interest.
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CHAPTER SIX

CONCLUSIONS

w

1i

L_

In this dissertation we have explored two important aspects of

trellis coding. These are the use of multidimensional signal sets to

find new trellis codes and the construction of codes that are

rotationally invariant. Trellis codes that use multi-D signals for both

Phase Shift Keyed (PSK) and Quadrature Amplitude Modulation (QAM)

signal sets were found. Many of these codes were found to be

rotationally invariant.

However, trellis codes using 2-D signal sets and linear

convolutional encoders cannot be made rotationally invariant. A general

Parity Check Equation (PCE) was found which produced non-linear trellis

codes that are rotationally invariant.

The key to finding good trellis codes that use multi-D signal

sets is in the construction of the multi-D signal set mapper. The

mapper takes the n coded bits from the convolutional encoder and maps

them into L 2-D signals. To do this effectively, the multi-D signal set

must be partitioned. Due to the large number of signal points in the

multi-D signal set, doing the partitioning by hand becomes impractical.

The use of length L block codes, the partitoning of the basic 2-D

signal set, and the concept of subcodes and cosets led to a method of

easily partitioning a multi-D signal set. By adding the cosets either

modulo-M/modulo-2 for MPSK signal sets and modulo-4/modulo-2 for QAM

192
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signal sets, it became possible to find good rotationally invariant

codes using multi-D signal sets.

These codes provide large coding gains while allowing fractional

values of K and high decoding speeds, as demonstrated by a serial

implementation of a 16 state, 2.33 bit/sym, 6D-8PSK code. In our code

search, we have presented the best codes (in terms of d 2 and
free N free)

for each of the two (and sometimes more) possible phase transparencies

of a coded system. Thus, the code most suited to the communication

requirement can be found.

With the general PCE, the key to finding good rotationally

invariant codes with 2-D signal sets was in splitting the parity check

equation into two equations. One equation used modulo-M arithmetic,

while the other equation used modulo-2 arithmetic. By writing the

modulo-M equation in terms of its binary sequences and combining these

sequences with the modulo-2 equation, an invariant PCE (with the

required non-linear terms) can be found.

Using the invariant PC'E, rotationally invariant codes for 2-D

MPSK and QAM signal sets have been found. For MPSK signal sets, the

code performance in terms of d2 was found to be inferior to trellis
fms

codes using linear convolutional encoders. These codes, however, should

still be useful in channels where the phase needs to be corrected often

and a constant signal amplitude is required. The mobile satellite

channel is a good example.

Unfortuantely, we have not been able to find rotationally

invariant rate 2/3 8PSK codes with d2 > 4.0. If such codes could be
f_

found, their non-parallel transitions, large free distance, constant

amplitude, bandwidth efficiency, and rotational invariance would make
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them especially well suited to the fading channel enviroment of mobile

satellite systems.

Surprisingly, the non-linear rotationally invariant 2-D QAM codes

performed better than the best linear codes. Nearly all the non-linear

codes had the same d 2 and a smaller N compared to the best
ftv.¢ free

linear codes. This better performance and the rotational invariance

makes these codes very attractive for telephone modems and

microwave-links where high values of K are required.

For the rotational invariant codes, a method of combining a

differential encoder with the convolutional encoder is given. Thus, the

receiver does not require a seperate differential decoder. This may

lead to a small increase in performance since there is no postdecoder

making "hard decisions".

Codes with only moderate complexity have been found. It is

expected that only small increases in coding gain can be obtained with

more complex codes. This is due to the fact that the existing codes are

already fairly close to the theoretical Shannon limit. However, we do

not expect this to impede a further search for more complex codes. The

increasing performance capabilities of computers (to find the codes)

and miniaturization of integrated circuits (for implementing the

decoders) will insure that more complex codes will eventually be used.

There may even be machines that are constructed specifically to search

for extremely complex codes.

ram,
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