ON LINEAR STRUCTURE AND PHASE ROTATION INVARIANT PROPERTIES OF BLOCK 2^{l}-PSK MODULATION CODES

	GODDRRD GRNNT
Technical Report	$1 N-32-c R$
to	260741
NASA	148.

Goddard Space Flight Center
Greenbelt , Maryland 20771

Grant Number NAG 5-931
Report Number NASA 90-001

Shu Lin
Principal Investigator
Department of Electrical Engineering
University of Hawaii at Manoa
Honululu, Hawaii 96822

January 31,1990
(NASA-CR-186308) ON LINEAR STRUCTURE AND
N90-19429
PHASE ROTATION INVARIANT PROPERTIES OF PLOCK
2(SUP 1)-PSK MONULATION COOES (Hawail
Univ.) $14 \mathrm{p} \quad$ CSCL $20 \mathrm{~N} \quad \mathrm{G3/32}$ Unclas 0200741

ON LINEAR STRUCTURE AND PHASE ROTATION INVARIANT PROPERTIES OF BLOCK 2^{ℓ}-PSK MODULATION CODES*

Abstract

In this correspondence, we investigate two important structural properties of block 2^{2} ary PSK modulation codes, namely: linear structure and phase symmetry. For an AWGN channel, the error performance of a modulation code depends on its squared Euclidean distance distribution. Linear structure of a code makes the error performance analysis much easier. Phase symmetry of a code is important in resolving carrier-phase ambiguity and ensuring rapid carrier-phase resynchronization after temporary loss of synchronization. It is desirable for a modulation code to have as many phase symmetries as possible. In this paper, we first represent a 2^{ℓ}-ary modulation code as a code with symbols from the integer group, $S_{2^{\ell} \text {. PSK }}=\left\{0,1,2, \ldots, 2^{l}-1\right\}$, under the modulo- 2^{l} addition. Then we define the linear structure of block 2^{ℓ}-ary PSK modulation codes over $S_{2^{\ell} \text {-PSK }}$ with respect to the modulo- 2^{ℓ} vector addition, and derive conditions under which a block 2^{l}-ary PSK modulation code is linear. Once the linear structure is developed, we study phase symmetry of a block 2^{l}-ary PSK modulation code. In particular, we derive a necessary and sufficient condition for a block 2^{\prime}-ary PSK modulation code, which is linear as a binary code, to be invariant under $180^{\circ} / 2^{\ell-h}$ phase rotation, for $1 \leq h \leq \ell$. Finally, a list of short 8 -PSK and 16 -PSK modulation codes is given together with their linear structure and the smallest phase rotation for which a code is invariant.

ON LINEAR STRUCTURE AND PHASE ROTATION INVARIANT PROPERTIES OF BLOCK 2^{ℓ}-PSK MODULATION CODES

1. Introduction

As the application of coded modulation in bandwidth-efficient communications grows, there is a need of better understanding of the structural properties of modulation codes, especially those properties which are useful in: error performance analysis, implementation of optimum (or suboptimum) decoders, efficient resolution of carrier-phase ambiguity, and construction of better codes. In this paper, we investigate two important structural properties of block 2^{2}-ary PSK modulation codes, namely: linear structure and phase symmetry. For an AWGN channel, the error performance of a modulation code depends on its squared Euclidean distance distribution [1-4]. Linear structure of a code makes the error performance analysis much easier $[2,4]$. Furthermore, it may lead to a simpler implementation of encoder and decoder. Phase symmetry of a code is important in resolving carrier-phase ambiguity and ensuring rapid carrier-phase resynchronization after temporary loss of synchronization [1, 5-8]. It is desirable for a modulation code to have as many phase symmetries as possible.

Suppose the integer group $\left\{0,1,2, \ldots, 2^{\ell}-1\right\}$ under the modulo- 2^{ℓ} addition, denoted $S_{2^{2}-\text {-PSK }}$, is chosen to represent a two-dimensional 2^{l}-PSK signal set. Then a block 2^{l}-ary PSK modulation code C of length n may be regarded as a block code of length n over the integer group $S_{2^{t} \text {-PSK }}$, and a codeword in C is simply an n-tuple over $S_{2^{\ell} \text {-PSK }}$. If each integer in $S_{2^{\ell} \text {-PSK }}$ is represented by its binary expression of ℓ bits, then a block code of length n over $S_{2^{\ell} \text { - PSK }}$ can be considered as a binary block code of length ℓn. The resultant binary code is linear if it is closed under the component-wise modulo-2 addition. Most of the known block 2^{l}-ary PSK modulation codes are linear as binary codes. A linear code in this sense is not necessarily closed under the component-wise modulo- 2^{l} addition. For two integers s and s^{\prime} in $S_{2 \text { t.pSK }}$, the squared Euclidean distance between two signal points represented by s and s^{\prime} respectively depends only on $s-s^{\prime}$ (modulo 2^{\prime}), but is not always determined by the Hamming distance between the binary expressions of s and s^{\prime}. For an additive white Gaussian noise (AWGN) channel, error performance of a modulation code is determined by its squared

Euclidean distance distribution. If a code C over $S_{2^{t} \text {.PSK }}$ is either closed under the componentwise modulo- 2^{\prime} addition or a union of relatively small number of cosets of a subcode which is closed under the component-wise modulo-2 2^{l} addition, then the error performance analysis of C is much easier than a code without such a property [2, 4]. In this paper, we present a condition for a code over $S_{2^{\ell} \text { - PSK }}$, which is linear as a binary code, to be closed under the component-wise modulo- 2^{l} addition. In particular, we present a necessary and sufficient condition for a basic multilevel block code over $S_{2^{\iota} \text { - PSK }}$, which is linear as a binary code, to be closed under the component-wise modulo- 2^{l} addition.

An important issue in coded modulation is the resolution of carrier-phase ambiguity. Several methods have been proposed to resolve the carrier-phase ambiguity for coded PSK modulations [$6,8,9$]. In these methods, the phase-rotation invariant property of a code over $S_{2} \ell$.PSK plays the central role. Tanner [8] has proposed a simple phase ambiguity resolution method for 2^{l}-ary PSK modulation codes which are invariant under $360^{\circ} / 2^{l}$ phase shift. In this paper, we present a necessary and sufficient condition for a code over $S_{2^{\ell} \text {-PSK }}$, which is linear as a binary code, to be invariant under $180^{\circ} / 2^{\ell-h}$ phase shift with $1 \leq h \leq \ell$.

Finally, we give a list of short block 8-PSK and 16 -PSK modulation codes together with their closure (or linear) properties under the component-wise modulo- 2^{\prime} addition, the smallest phase shifts for which these codes are invariant, and other parameters.

2. Linear Block 2^{ℓ}-PSK Modulation Codes

Let ℓ be a positive integer. Suppose the integer group $\left\{0,1,2, \ldots, 2^{\ell}-1\right\}$ under the modulo 2^{ℓ} addition, denoted $S_{2^{\ell} \text {-PSK }}$, is used to represent a two-dimensional 2^{ℓ}-PSK signal set. We define the distance between two integers s and s^{\prime} in $S_{2^{2}-\text { PSK }}$, denoted $d\left(s, s^{\prime}\right)$, as the squared Euclidean distance between the two 2^{t}-PSK signal points represented by s and s^{\prime} respectively. Then $d\left(s, s^{\prime}\right)$ is given below:

$$
\begin{equation*}
d\left(s, s^{\prime}\right)=4 \sin ^{2}\left(2^{-1} \pi\left(s-s^{\prime}\right)\right) \tag{2.1}
\end{equation*}
$$

Let d_{i} denote $d\left(2^{i-1}, 0\right)$. From (2.1), we see that

$$
d_{i}=4 \sin ^{2}\left(2^{1-l-1} \pi\right)
$$

For a positive integer n, let $S_{2^{\prime}-P S K}^{n}$ denote the set of all n-tuples over $S_{2^{\prime} \text { - PSK }}$. Define the distance between two n-tuples $\overline{\mathbf{v}}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $\overline{\mathbf{v}}^{\prime}=\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right)$ over $S_{2^{\prime} \text {. PSK }}$, denoted $d\left(\overline{\mathbf{v}}, \overline{\mathbf{v}}^{\prime}\right)$, as follows:

$$
\begin{equation*}
d\left(\overline{\mathbf{v}}, \bar{v}^{\prime}\right) \triangleq \sum_{j=1}^{n} d\left(v_{j}, v_{j}^{\prime}\right) \tag{2.2}
\end{equation*}
$$

Then it follows from (2.1) and (2.2) that

$$
\begin{equation*}
d\left(\overline{\mathbf{v}}, \overline{\mathbf{v}}^{\prime}\right)=d\left(\overline{\mathbf{v}}-\overline{\mathbf{v}}^{\prime}, \overline{\mathbf{0}}\right) \tag{2.3}
\end{equation*}
$$

where "-" denotes the component-wise modulo- 2^{t} subtraction and $\overline{0}$ denotes the all-zero n-tuple over $S_{2^{\ell} \text {-PSK }}$. For an n-tuple $\overline{\mathbf{v}}$ over $S_{2^{\ell} \text {. PSK }}$, define $|\overline{\mathbf{v}}|_{d}$ as follows:

$$
\begin{equation*}
|\overline{\mathbf{v}}|_{d} \triangleq d(\overline{\mathbf{v}}, \overline{\mathbf{0}}) \tag{2.4}
\end{equation*}
$$

We may regard that $|\overline{\mathbf{v}}|_{d}$ is the squared Euclidean weight of $\overline{\mathbf{v}}$.
Consider a block code C of length n over $S_{2 \ell \text {-PSK }}$. The minimum distance of C, denoted $D[C]$, with respect to the distance measure $d(\cdot, \cdot)$ given by (2.2) is defined as follows:

$$
\begin{equation*}
D[C] \triangleq \min \left\{d\left(\overline{\mathbf{v}}, \overline{\mathbf{v}}^{\prime}\right): \overline{\mathbf{v}}, \overline{\mathbf{v}}^{\prime} \in C \text { and } \overline{\mathbf{v}} \neq \overline{\mathbf{v}}^{\prime}\right\} \tag{2.5}
\end{equation*}
$$

If each component of a codeword $\overline{\mathbf{v}}$ in C is mapped into the corresponding signal point in the two-dimensional 2^{ℓ}-PSK signal set, we obtain a block 2^{ℓ}-PSK modulation code with minimum squared Euclidean distance $D[C]$. The effective rate of this code is given by

$$
\begin{equation*}
R[C]=\frac{1}{2 n} \log _{2}|C| \tag{2.6}
\end{equation*}
$$

which is simply the average number of information bits transmitted per dimension.
Let $\overline{\mathbf{u}}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\overline{\mathbf{v}}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be two n-tuples over $S_{2^{\prime} \iota \text {.PSK }}$. Let $\overline{\mathbf{u}}+\overline{\mathbf{v}}$ denote the following n-tuple over $S_{2^{\ell} \text {-PSK }}$:

$$
\overline{\mathbf{u}}+\overline{\mathbf{v}} \triangleq\left(u_{1}+v_{1}, u_{2}+v_{2}, \cdots, u_{n}+v_{n}\right)
$$

where $u_{i}+v_{1}$ is carried out in modulo -2^{l} addition. A code over the integer group $S_{2^{\ell} \text {. PSK }}$ is said to be linear with respect to (w.r.t.) " + ", if C is closed under the component-wise modulo- 2^{2} addition, i.e., for any $\overline{\mathbf{u}}$ and $\overline{\mathbf{v}}$ in $C, \overline{\mathbf{u}}+\overline{\mathrm{v}}$ is also in C. It follows from (2.3) to (2.5) that, for a linear code C w.r.t. + , we have

$$
\begin{equation*}
D[C]=\min \left\{|\overline{\mathbf{v}}|_{d}: \overline{\mathbf{v}} \in C-\{\overline{0}\}\right\} . \tag{2.7}
\end{equation*}
$$

As a result, for a linear code C over $S_{2 \iota}$.pSK w.r.t. + , the error performance analysis of C based on the distance measure $d(\cdot, \cdot)$ is reduced to that of C in terms of the weight measure $|\cdot|_{d}$. This simplifies the error performance analysis and computation of code C [2, 4].

Let $\left(b_{1}, b_{2}, \ldots, b_{l}\right)$ be the binary representation of an integer s in $S_{2^{l} \text {-PSK }}$, where b_{1} and b_{l} be the least and most significant bits respectively. Then $s=\sum_{i=1}^{l} b_{1} 2^{i-1}$. Let $\overline{\mathbf{v}}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be an n-tuple over $S_{2^{\ell} \text {-PSK }}$ with $v,=\sum_{i=1}^{\ell} v_{i}, 2^{i-1}$ and $v_{i}, \in\{0,1\}$ for $1 \leq i \leq \ell$ and $1 \leq i \leq n$. Then $\overline{\mathbf{v}}$ can be expressed as the following sum:

$$
\begin{equation*}
\overline{\mathbf{v}}=\overline{\mathbf{v}}^{(1)}+2 \overline{\mathbf{v}}^{(2)}+\cdots+2^{\ell-1} \overline{\mathbf{v}}^{(\ell)} \tag{2.8}
\end{equation*}
$$

where $\overline{\mathbf{v}}^{(i)}=\left(v_{1 i}, v_{2 i}, \ldots, v_{n i}\right)$ is a binary n-tuple, for $1 \leq i \leq \ell$. We call $\overline{\mathbf{v}}^{(i)}$ the i-th binary component n-tuple of $\tilde{\mathbf{v}}$. The sum of (2.8) may be regarded as the binary expansion of the n-tuple $\overline{\mathbf{v}}$. For $1 \leq i \leq \ell$, let C_{i} be a binary $\left(n, k_{1}\right)$ code with minimum Hamming distance δ_{i}. Define the following block code C over $S_{2^{\ell}}$.PSK,

$$
\begin{align*}
C & \triangleq C_{1}+2 C_{2}+\cdots+2^{\ell-1} C_{\ell} \\
& \triangleq\left\{\overline{\mathbf{v}}^{(1)}+2 \overline{\mathbf{v}}^{(2)}+\cdots+2^{\ell-1} \overline{\mathbf{v}}^{(\ell)}: \overline{\mathbf{v}}^{(i)} \in C_{i} \text { for } 1 \leq i \leq \ell\right\} \tag{2.9}
\end{align*}
$$

The code C defined by (2.9) is called a basic multi-level code. Basic multilevel codes were first introduced by Imai and Hirakawa [10] and then studied by other [3, 11, 12]. For $1 \leq i \leq \ell$, C_{1} is called the i -th binary component code of C. The minimum distance of C is

$$
\begin{equation*}
D[C]=\min _{1 \leq i \leq l} \delta_{i} d_{i} \tag{2.10}
\end{equation*}
$$

where $d_{i}=d\left(2^{i-1}, 0\right)$. If every component of a codeword in C is mapped into a signal point in a two-dimensional 2^{l}-PSK signal constellation, then C is a basic multi-level 2^{l}-PSK modulation code with a minimum squared Euclidean distance,

$$
D[C]=\min _{1 \leq i \leq \ell}\left\{4 \delta, \sin ^{2}\left(2^{i-l-1} \pi\right)\right\}
$$

For n-tuples $\overline{\mathbf{u}}$ and $\overline{\mathbf{v}}$ over $S_{2^{\iota} \text {.PSK }}$, let $\overline{\mathbf{u}} \oplus \overline{\mathbf{v}}$ denote the n-tuple over $S_{2^{\prime} \text {.pSK }}$, such that the i-th binary component n-tuple of $\overline{\mathbf{u}} \oplus \overline{\mathbf{v}}$ is the modulo-2 vector sum of the i-th binary component n-tuple of $\overline{\mathbf{u}}$ and the i-th binary component n-tuple of $\overline{\mathbf{v}}$. A code C over $S_{2^{t} \text {. PSK }}$ is said to be linear w.r.t. \oplus, if C is closed under addition \oplus. Most of the known block codes for
2^{\prime}-PSK modulation are linear w.r.t. \oplus. A linear code w.r.t. \oplus is not necessarily linear w.r.t. + . In the following, we will derive a condition for a linear code w.r.t. \oplus to be linear w.r.t. + .

Let $\overline{\mathbf{u}}$ and $\overline{\mathbf{v}}$ be two n-tuples over $S_{2^{\prime}-\mathrm{PSK}}$, and let $\overline{\mathbf{w}}$ denote $\overline{\mathbf{u}}+\overline{\mathbf{v}}$. For $1 \leq i \leq \ell$, let the i th binary component n-tuples of $\overline{\mathbf{u}}, \overline{\mathbf{v}}$ and $\overline{\mathbf{w}}$ be represented as $\overline{\mathbf{u}}^{(i)}=\left(u_{1 i}, u_{2 i}, \ldots, u_{n i}\right), \overline{\mathbf{v}}^{(i)}=$ $\left(v_{1 i}, v_{2 i}, \ldots, v_{n i}\right)$, and $\bar{w}^{(i)}=\left(w_{1 i}, w_{2 i}, \ldots, w_{n i}\right)$, respectively. Then the following recursive equations hold [13]:

$$
\begin{array}{ll}
w_{j i}=u_{j i} \oplus v_{j i} \oplus x_{j i}, & \text { for } 1 \leq i \leq \ell, \\
x_{j i}=u_{j i-1} v_{j i-1} \oplus\left(u_{j i-1} \oplus v_{j i-1}\right) x_{j i-1}, & \text { for } 1<i \leq \ell \\
x_{j 1}=0 . & \tag{2.13}
\end{array}
$$

For $1 \leq i \leq \ell$, let $c^{(i)}(\overline{\mathbf{u}}, \overline{\mathbf{v}})$ be defined as

$$
\begin{equation*}
c^{(i)}(\overline{\mathbf{u}}, \overline{\mathbf{v}}) \triangleq\left(x_{1 i}, x_{2 i}, \ldots, x_{n i}\right) \tag{2.14}
\end{equation*}
$$

For two binary n-tuples, $\overline{\mathbf{a}}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\overline{\mathbf{b}}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, let $\overline{\mathbf{a}} \cdot \overline{\mathbf{b}}$ be defined as

$$
\overline{\mathbf{a}} \cdot \overline{\mathbf{b}} \triangleq\left(a_{1} \cdot b_{1}, a_{2} \cdot b_{2}, \ldots, a_{n} \cdot b_{n}\right)
$$

where a, b, denotes the logical product of a, and b,
It follows from (2.11) to (2.14) that for $1 \leq i<\ell$,

$$
\begin{equation*}
c^{(i+1)}(\overline{\mathbf{u}}, \overline{\mathbf{v}})=\overline{\mathbf{u}}^{(i)} \cdot \overline{\mathbf{v}}^{(i)} \oplus\left(\overline{\mathbf{u}}^{(i)} \oplus \overline{\mathbf{v}}^{(i)}\right) \cdot c^{(i)}(\overline{\mathbf{u}}, \overline{\mathbf{v}}) \tag{2.15}
\end{equation*}
$$

Let $c(\overline{\mathbf{u}}, \overline{\mathbf{v}})$ be defined as

$$
\begin{equation*}
c(\overline{\mathbf{u}}, \overline{\mathbf{v}}) \triangleq c^{(1)}(\overline{\mathbf{u}}, \overline{\mathbf{v}})+2 c^{(2)}(\overline{\mathbf{u}}, \overline{\mathbf{v}})+\cdots+2^{\ell-1} c^{(\ell)}(\overline{\mathbf{u}}, \overline{\mathbf{v}}) \tag{2.16}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\overline{\mathbf{u}}+\overline{\mathbf{v}}=\overline{\mathbf{u}} \oplus \overline{\mathbf{v}} \oplus c(\overline{\mathbf{u}}, \overline{\mathbf{v}}) \tag{2.17}
\end{equation*}
$$

Now consider a block code C over $S_{2^{2} \text {-PSK }}$ which is linear w.r.t. \oplus. Let $\overline{\mathbf{u}}$ and $\overline{\mathbf{v}}$ be two codewords in C. Then it follows from (2.17) that $\overline{\mathbf{u}}+\overline{\mathrm{v}} \in C$ if and only if

$$
\begin{equation*}
c(\overline{\mathbf{u}}, \overline{\mathbf{v}}) \in C \tag{2.18}
\end{equation*}
$$

For $1 \leq i \leq \ell$, let $C^{(i)}$ and C, be defined as

$$
\begin{align*}
& C^{(i)} \triangleq\left\{\overline{\mathbf{v}}^{(i)}: \overline{\mathbf{v}}^{(1)}+\cdots+2^{i-1} \overline{\mathbf{v}}^{(i)}+\cdots+2^{l-1} \overline{\mathbf{v}}^{(l)} \in C\right\} \tag{2.19}\\
& C_{i} \triangleq\left\{\overline{\mathbf{v}}^{(i)}: 2^{i-1} \overline{\mathbf{v}}^{(i)} \in C\right\} \tag{2.20}
\end{align*}
$$

By definition

$$
\begin{equation*}
C_{\mathrm{i}} \subseteq C^{(\mathrm{i})} . \tag{2.21}
\end{equation*}
$$

Since C is linear w.r.t. $\oplus, C^{(i)}$ and C_{i} are also linear w.r.t. \oplus and

$$
\begin{equation*}
C_{1}+2 C_{2}+\cdots+2^{\ell-1} C_{\ell} \subseteq C \tag{2.22}
\end{equation*}
$$

where the equality holds if C is a basic multilevel code. For binary codes C and C^{\prime} of the same length, let $C \cdot C^{\prime}$ be defined as

$$
C \cdot C^{\prime} \triangleq\left\{\overline{\mathbf{u}} \cdot \overline{\mathbf{v}}: \overline{\mathbf{u}} \in C \text { and } \overline{\mathbf{v}} \in C^{\prime}\right\}
$$

Now we present two lemmas regarding to the closure property of a 2^{t}-PSK code.
Lemma 1: Suppose that C is a linear code over $S_{2^{\ell} \text {-PSK }}$ w.r.t. \oplus and for $1 \leq i \leq \ell$,

$$
\begin{equation*}
C^{(i)} \cdot C^{(i)} \subseteq C_{i+1} \tag{2.23}
\end{equation*}
$$

Then C is closed under the component-wise modulo- 2^{l} addition, and hence is linear w.r.t. + .
Proof: By induction, we show that for $1 \leq i \leq \ell$

$$
\begin{equation*}
c^{(i)}(\overline{\mathbf{u}}, \overline{\mathbf{v}}) \in C_{\mathrm{i}} . \tag{2.24}
\end{equation*}
$$

Since $c^{(1)}(\overline{\mathbf{u}}, \overline{\mathbf{v}})=\overline{\mathbf{0}}, c^{(1)}(\overline{\mathbf{u}}, \overline{\mathbf{v}}) \in C_{1}$. Suppose that $c^{(j)}(\overline{\mathbf{u}}, \overline{\mathbf{v}}) \in C$, for $1 \leq j \leq i<\ell$. Since $C^{(i)}$ and C_{i+1} are linear w.r.t. \oplus, it follows from (2.15), (2.21) and (2.23) that $c^{(i+1)}(\overline{\mathbf{u}}, \overline{\mathrm{v}}) \in C_{i+1}$. Consequently (2.18) follows from (2.16), (2.22) and (2.24), and this lemma holds.

Lemma 2: Suppose that C is a linear basic multilevel code over $S_{2^{\ell} \text {-PSK }}$ w.r.t. \oplus. Then $C\left(=C_{1}+2 C_{2}+\cdots+2^{\ell-1} C_{\ell}\right)$ is closed under the component-wise modulo- 2^{ℓ} addition, if and only if

$$
\begin{equation*}
C_{i} \cdot C_{i} \subseteq C_{i+1}, \quad \text { for } 1 \leq i<\ell \tag{2.25}
\end{equation*}
$$

Proof: Only if part: Let $\overline{\mathbf{u}}$ (or $\overline{\mathbf{v}}$) denote the n-tuple over S_{2} t. PSK whose i-th binary component n-tuple is $\overline{\mathbf{u}}^{(i)} \in C_{\mathbf{i}}$ (or $\overline{\mathbf{v}}^{(i)} \in C_{\mathrm{i}}$) and whose other binary component n-tuples are the all-zero n-tuple $\overline{\mathbf{0}}$. Assume that $\overline{\mathbf{u}}+\overline{\mathrm{v}} \in C$. It follows from (2.11) to (2.13) that for these specific $\overline{\mathbf{u}}$ and $\overline{\mathbf{v}}$,

$$
\begin{equation*}
x_{j i+1}=u_{j i} v_{j i}, \quad \text { for } \quad 1 \leq i \leq \ell . \tag{2.26}
\end{equation*}
$$

From (2.14),(2.18) and (2.26), we see that

$$
c^{(i+1)}(\overline{\mathbf{u}}, \overline{\mathrm{v}})=\overline{\mathbf{u}}^{(i)} \cdot \overline{\mathbf{v}}^{(i)} \in C_{i+1}
$$

That is, $C_{i} \cdot C_{i} \subseteq C_{i+1}$.
If part: Since C is a basic multilevel code, $C_{i}=C^{(i)}$ for $1 \leq i \leq \ell$. Then if part follows from Lemma 1.

3. A Necessary and Sufficient Condition for a $\mathbf{2}^{\ell}$-PSK Modulation

 Code to be Invariant Under $180^{\circ} / \mathbf{2}^{\ell-h}$ Phase Shift with $1 \leq h \leq$ ℓNow we consider the phase symmetry of a block 2^{l}-ary PSK modulation code. To determine the phase symmetry of a code, we need to know the smallest rotation under which the code is invariant.

For $1 \leq h \leq \ell$, let $2^{h-1} \overline{1}$ denote the n-tuple over $S_{2^{\ell} \text {. PSK }}$ whose h-th binary component n-tuple is the all-one n-tuple and whose other binary component n-tuples are the all-zero n-tuple. A code C of length n over $S_{2^{\ell} \text {-PSK }}$ is said to be invariant under $180^{\circ} / 2^{\ell-h}$ phase shift if for any codeword $\overline{\mathbf{v}}$ in C,

$$
\begin{equation*}
\overline{\mathbf{v}}+2^{h-1} \overline{\mathbf{1}} \in C \tag{3.1}
\end{equation*}
$$

By letting $\overline{\mathbf{u}}=2^{h-1} \overline{1}$ in (2.11) to (2.16), we obtain the following equations:
(1)

$$
\begin{equation*}
w_{j i}=v_{j i} \oplus x_{j i}, \quad \text { for } \quad 1 \leq i \leq \ell \tag{3.2}
\end{equation*}
$$

(2) If $h<\ell$, then

$$
\begin{equation*}
x_{j i}=v_{j i-1} x_{j i-1}, \quad \text { for } \quad h<i \leq \ell \tag{3.3}
\end{equation*}
$$

(3)

$$
\begin{equation*}
x_{\rho_{h}}=1 \tag{3.4}
\end{equation*}
$$

(4) If $1<h$, then

$$
\begin{equation*}
x_{j i}=0, \quad \text { for } \quad 1 \leq i<h \tag{3.5}
\end{equation*}
$$

It follows from (3.2) to (3.5) that we have Lemma 3.

Lemma 3: For $1 \leq h \leq \ell$, a linear code C over $S_{2^{\prime} \text {.-PSK }}$ w.r.t. \oplus is invariant under $180^{\circ} / 2^{\ell-h}$ phase shift if and only if for any codeword $\overline{\mathbf{v}}^{(1)}+2 \overline{\mathbf{v}}^{(2)}+\cdots+2^{\ell-1} \overline{\mathbf{v}}^{(\ell)}$ in C,

$$
\begin{equation*}
2^{h-1} \overline{\mathbf{1}}+2^{h} \overline{\mathbf{v}}^{(h)}+2^{h+1}\left(\overline{\mathbf{v}}^{(h)} \cdot \overline{\mathbf{v}}^{(h+1)}\right)+\cdots+2^{\ell-1}\left(\overline{\mathbf{v}}^{(h)} \cdot \overline{\mathbf{v}}^{(h+1)} \cdots \cdot \overline{\mathbf{v}}^{(l-1)}\right) \in C, \tag{3.6}
\end{equation*}
$$

where $\overline{1}$ denotes the all-one n-tuple.

$\Delta \Delta$

If C is a linear basic ℓ-level code w.r.t. \oplus, denoted $C_{1}+2 C_{2}+\cdots+2^{\ell-1} C_{\ell}$, then the necessary and sufficient condition (3.6) is expressed as follows:

$$
\begin{equation*}
\overline{1} \in C_{h}, \quad \text { and } \tag{1}
\end{equation*}
$$

(2)

$$
\begin{equation*}
\text { if } h<\ell \text {, then } C_{h} \cdot C_{h+1} \cdots \cdots C_{j-1} \subseteq C_{3} \text {, for } h+1<j \leq \ell . \tag{3.8}
\end{equation*}
$$

Obviously, a linear code C over $S_{2^{t} \text {.PSK }}$ w.r.t. + is invariant under $180^{\circ} / 2^{\ell-h}$ phase shift, if and only if $\overline{1}_{h} \in C$.

4. Code Examples

In Table 1, seven basic multilevel block codes [3] and four nonbasic block codes for 8-PSK and 16-PSK modulations are given. The number of states of a trellis diagram for each basic multilevel block code is computed based on the numbers of states of trellis diagrams for its binary component codes [14]. Among four nonbasic codes, two zero-tail Ungerboeck trellis codes for 8-PSK modulation [1] are shown. In Table 1, $V_{n}, P_{n}, P_{n}^{\perp}, R M_{i j}, s-R M_{i j}$ and ex-Golay denote the set of all the binary n-tuples, the set of all even weight binary n-tuples, the dual code of P_{n} which consists of the all-zero and all-one n-tuples, the j-th order Reed-Muller code of length 2^{i}, a shortened j-th order Reed-Muller code of original length 2^{1}, and the extended $(24,12)$ code of binary Golay code. F_{1} and F_{2} denote two codes over $\{0,1,2,3\}$ which are defined as following [4]. Let $p\left(x_{1}, x_{2}, \cdots, x_{h}\right)$ be a boolean polynomial which is used to represent the binary 2^{h}-tuple whose i-th bit is given by $p\left(i_{1}, i_{2}, \cdots, i_{h}\right)$ where ($i_{1}, i_{2}, \cdots, i_{h}$) is the binary representation of the integer $i-1$, i.e. $i-1=\sum_{j=1}^{h} i, 2^{,-1}$. Let $\overline{\mathrm{g}}_{h, t}$ denote the

Next we consider the phase rotation invariant property of codes given in Table 1. Since codes $C[1], C[4], C[5], C[6]$ and $C[11]$ are linear w.r.t. + and $\overline{1}$ is contained in $P_{n}^{\perp}, R M_{i, j}$ or ex-Golay, there codes are invariant under $180^{\circ} / 2^{\ell-1}$ phase shift. It follows from the properties (i) and (ii) of Reed-Muller codes that codes $C[8], C[9]$ with $n \equiv 0 \bmod 4$ and $C[10]$ are readily shown to meet the conditions given by (3.7) and (3.8) with $h=1$. Code $C[2]$ is shown to contain $2 \overline{1}$, and therefore is invariant under 90° phase shift. Code $C[3]$ contains $2^{2} \overline{1}$ only and is invariant only under 180° phase shift, and code $C[7]$ does not contain even $2^{2} \overline{1}$.

References

[1] G. Ungerboeck, "Channel Coding with Multilevel/Phase Signals," IEEE Trans. on Information Theory, Vol. IT-28, No. 1, pp. 55-67, January 1982.
[2] S. Ujita, T. Takata, T. Fujiwara, T. Kasami and S. Lin, "Structural Properties of 2^{\prime}-ary PSK modulation Block Codes and their Performance Analysis," Proceedings of the 11th Symposium on Information Theory and Its Applications, Beppu, Japan, pp. 807-812, December 1988.
[3] T. Kasami, T. Takata, T. Fujiwara and S. Lin, "A Concatenated Coded Modulation Scheme for Error Control," IEEE Trans. on Communications, to be published.
[4] T. Kasami, T. Takata, T. Fujiwara and S. Lin, "On Multilevel Block Modulation Codes," submitted to IEEE Trans. on Information Theory, 1989.
[5] L.F. Wei, "Rotationally Invariant Convolutional Channel Coding with Expanded Signal Space - Part I: 180° degrees and Part II: Nonlinear Codes," IEEE Journal of Select. Areas Communications, Vol. SAC-2, No. 5, pp. 672-686, September 1984.
[6] E.E. Nemirovskii and S.L. Portnoi, "Matching block codes to a channel with phase shifts," Problemy peredachi Informatsii, Vol. 22, No. 3, pp. 27-34, 1986.
[7] G. Ungerboeck, "Trellis-Coded Modulation with Redundant Signal Sets, Part I: Introduction," IEEE Communications Magazine, Vol. 25, No. 2, pp. 5-11, February 1987.
[8] R.M. Tanner, "Algebraic Construction of Large Euclidean Distance Combined Coding Modulation Systems," Abstract of Papers, 1986 IEEE International Symposium on Information Theory, Ann Arbor, October 6-9, 1986, also IEEE Trans. on Information Theory, to be published.
[9] S.S. Pietrobon, R.H. Deng, A. Lafanechere, G. Ungerboeck and D.J. Costello Jr., "Trellis Coded Multi-Dimensional Phase Modulation," IEEE Trans. on Information Theory, to be published.
[10] H. Imai and S. Hirakawa, "A New Multilevel Coding Method Using Error Correcting Codes," IEEE Trans. on Information Theory, Vol. IT-23, No.3, pp. 371-376, May 1977.
[11] V.V. Ginzburg, "Multidimensional Signals for a Continuous Channel," Problemy peredachi Informatsii, Vol. 20, No. 1, pp. 28-46, 1984.
[12] S.I. Sayegh, "A Class of Optimum Block Codes in Signal Space," IEEE Trans. on Communications, Vol. COM-30, No. 10, pp. 1043-1045, October 1986.
[13] C.H. Roth, Jr., Fundamentals of Logic Design, 3rd Edition, West Publishing Company, 1985.
[14] G.D. Forney, Jr., "Coset Codes-Part II: Binary Lattices and Related Codes," IEEE Trans. on Information Theory, Vol. IT-34, No. 5, pp 1152-1187, September 1988.
[15] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, NorthHolland, 1977.
Table 1: Some Short 8-PSK, 16-PSK Codes

modulation	definition	n	$R[C]$	$D[C]$	The number of states of a trellis diagram	linearity w.r.t. +	phase shift invariancy
8-PSK	$C[1] \triangleq P_{8}^{\perp}+2 P_{8}+4 V_{8}$	8	1	4	2^{2}	Yes	45°
	$C[2] \triangleq F_{1}+4 V_{8}$	8	1	4	2^{2}	Yes	90°
	$C[3] \triangleq$ zero-tail Ungerboeck code	n	$\frac{n-1}{n}$	4	2^{2}	No	180°
	$C[4] \triangleq R M_{4,1}+2 P_{16}+4 V_{16}$	16	$\frac{9}{8}$	4	2^{4}	Yes	45°
	$C[5] \triangleq F_{2}+4 V_{16}$	16	9/8	4	2^{4}	Yes	45°
	$C[6] \triangleq$ ex-Golay $+2 P_{24}+4 V_{24}$	24	$\frac{59}{48}$	4	2^{7}	Yes	45°
	$C[7] \triangleq$ zero-tail Ungerboeck code	n	$\frac{2 n-3}{2 n}$	4.586	2^{3}	No	360°
	$C[8] \triangleq P_{16}^{1}+2 R M_{4,2}+4 P_{16}$	16	$\frac{27}{32}$	8	2^{5}	No	45°
	$C[9] \triangleq P_{n}^{\perp}+2 \mathrm{~s}-R M_{5,3}+4 P_{n}$	$16<n \leq 32$	$\frac{n-3}{n}$	8	2^{6}	No	45° for $n \equiv 0 \quad(\bmod 4)$
	$C[10] \triangleq R M_{5,1}+2 R M_{5,3}+4 P_{32}$	32	$\frac{63}{64}$	8	2^{9}	No	45°
16-PSK	$C[11] \triangleq P_{32}^{1}+2 R M_{5,2}+4 P_{32}+8 V_{32}$	32	$\stackrel{5}{5}$	4	2^{8}	Yes	$22.5{ }^{\circ}$

