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ON LINEAR STRUCTURE AND
PHASE ROTATION INVARIANT PROPERTIES OF
BLOCK 2-PSK MODULATION CODES"

ABSTRACT

In this correspondence, we investigate two important structural properties of block 2!-
ary PSK modulation codes, namély: linear structure and phase symmetry. For an AWGN
channel, the error performance of a modulation code depends on its squared Euclidean distance
distribution. Linear structure of a code makes the error performance analysis much easier.
Phase symmetry of a code is important in resolving carrier-phase ambiguity and ensuring
rapid carrier-phase resynchronization after temporary loss of synchronization. It is desirable
for a modulation code to have as many phase symmetries as possible. In this paper, we
first represent a 2‘-ary modulation code as a code with symbols from the integer group,
Syepsk = {0,1,2,...,2° — 1}, under the modulo-2* addition. Then we define the linear
structure of block 2¢-ary PSK modulation codes over Sy psx with respect to the modulo-2¢
vector addition, and derive conditions under which a block 2L ary PSK modulation code is
linear. Once the linear structure is developed, we study phase symmetry of a block 2-ary
PSK modulation code. In particular, we derive a necessary and sufficient condition for a block
2l-ary PSK modulation code, which is linear as a binary code, to be invariant under 180° /2%
phase rotation, for 1 < h < {. Finally, a list of short 8-PSK and 16-PSK modulation codes is
given together with their linear structure and the smallest phase rotation for which a code is

invariant.



ON LINEAR STRUCTURE AND
PHASE ROTATION INVARIANT PROPERTIES OF
BLOCK 2:-PSK MODULATION CODES

1. Introduction

As the application of coded modulation in bandwidth-efficient communications grows, there
is a need of better understanding of the structural properties of modulation codes, especially
those properties which are useful in: error performance analysis, implementation of optimum
(or suboptimum) decoders, efficient resolution of carrier-phase ambiguity, and construction
of better codes. In this paper, we investigate two important structural properties of block
2¢.ary PSK modulation codes, namely: linear structure and phase symmetry. For an AWGN
channel, the error performance of a modulation code depends on its squared Euclidean distance
distribution [1-4]. Linear structure of a code makes the error performance analysis much easier
[2, 4). Furthermore, it may lead to a simpler implementation of encoder and decoder. Phase
symmetry of a code is important in resolving carrier-phase ambiguity and ensuring rapid
carrier-phase resynchronization after temporary loss of synchronization [1, 5-8]. It is desirable
for a modulation code to have as many phase symmetries as possible.

Suppose the integer group {0,1,2,...,2° — 1} under the modulo-2¢ addition, denoted
S,epsk, is chosen to represent a two-dimensional 2-PSK signal set. Then a block 2l-ary
PSK modulation code C of length n may be regarded as a block code of length n over the
integer group S, psk, and a codeword in C is simply an n-tuple over S, psk. If each integer
in S,epsx is represented by its binary expression of £ bits, then a block code of length n
over S, psi can be considered as a binary block code of length fn. The resultant binary
code is linear if it is closed under the component-wise modulo-2 addition. Most of the known
block 2¢-ary PSK modulation codes are linear as binary codes. A linear code in this sense
is not necessarily closed under the component-wise modulo-2* addition. For two integers s
and s’ in S,cpsk, the squared Euclidean distance between two signal points represented by s
and s’ respectively depends only on s — s’ (modulo 27), but is not always determined by the
Hamming distance between the binary expressions of s and s’. For an additive white Gaussian

noise (AWGN) channel, error performance of a modulation code is determined by its squared



Euclidean distance distribution. If a code C over Sy psy is either closed under the component-
wise modulo-2! addition or a union of relatively small number of cosets of a subcode which
is closed under the component-wise modulo-2! addition, then the error performance analysis
of C is much easier than a code without such a property [2, 4]. In this paper, we present
a condition for a code over S, psk, which is linear as a binary code, to be closed under
the component-wise modulo-2 addition. In particular, we present a necessary and sufhicient
condition for a basic multilevel block code over S;.psk , which is linear as a binary code, to
be closed under the component-wise modulo-2! addition.

An important issue in coded modulation is the resolution of carrier-phase ambiguity.
Several methods have been proposed to resolve the carrier-phase ambiguity for coded PSK
modulations [6, 8, 9]. In these methods, the phase-rotation invariant property of a code over
S,epsk plays the central role. Tanner [8] has proposed a simple phase ambiguity resolution
method for 2¢-ary PSK modulation codes which are invariant under 360°/2' phase shift. In
this paper, we present a necessary and sufficient condition for a code over S, psk, wWhich is
linear as a binary code, to be invariant under 180°/2/~" phase shift with 1 < h < £.

Finally, we give a list of short block 8-PSK and 16-PSK modulation codes together with
their closure (or linear) properties under the component-wise modulo-2¢ addition, the smallest

phase shifts for which these codes are invariant, and other parameters.

2. Linear Block 2-PSK Modulation Codes
Let £ be a positive integer. Suppose the integer group {0,1,2,...,2" — 1} under the modulo-

2! addition, denoted S,:psk, is used to represent a two-dimensional 2¢.PSK signal set. We
define the distance between two integers s and s’ in Syepsi, denoted d(s, s'), as the squared
Euclidean distance between the two 2/-PSK signal points represented by s and s’ respectively.

Then d(s, s') is given below:
d(s,s') = 4sin® (2"’7r(s - s')) : (2.1)
Let d; denote d(2'~!,0). From (2.1), we see that

d; = 4sin®(2~"" ).



For a positive integer n, let S}_psx denote the set of all n-tuples over Sy psx. Define
the distance between two n-tuples v = (vy,v2,...,v,) and ¥' = (v}, v, ..., ;) over Syepsk,

denoted d(v, V'), as follows:
d(v,v') £ Y d(v,,v! (2.2)
)=1

Then it follows from (2.1) and (2.2) that
d(v,v') = d(v - ¥,0) (2.3)

where “—" denotes the component-wise modulo-2¢ subtraction and 0 denotes the all-zero

n-tuple over Sy psk. For an n-tuple V over Sy psk, define ||, as follows:
A A
914 2 d(%,0). (2.4)

We may regard that |v|; is the squared Euclidean weight of v.
Consider a block code C of length n over Syepsx. The minimum distance of C, denoted

D[C], with respect to the distance measure d(-,-) given by (2.2) is defined as follows:
D[C) £ min {d(v,¥') : ¥,%' € C and ¥ # V'}. (2.5)

If each component of a codeword ¥ in C is mapped into the corresponding signal point in the
two-dimensional 2¢-PSK signal set, we obtain a block 2!-PSK modulation code with minimum
squared Euclidean distance D[C]. The effective rate of this code is given by
1
R[C] = —log, |C|, 2.6
{ ] n 082 I l ( )
which is simply the average number of information bits transmitted per dimension.

Let @ = (u;,uy,...,u,) and ¥ = (v1,v3,...,,) be two n-tuples over Syepsk- Leta+v

denote the following n-tuple over Sy psk:

ne

U+ V= (uy +vy,uz+ 02,0, Un + Un),

where u, + v, is carried out in modulo-2 addition. A code over the integer group S« psk is said
to be linear with respect to (w.r.t.) "+”, if C is closed under the component-wise modulo-2
addition, i.e., for any @ and ¥ in C, G + ¥ is also in C. It follows from (2.3) to (2.5) that, for

a linear code C w.r.t. +, we have

D[C] = min {[¥]¢: ¥ € C—{0} }. (2.7)
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As a result, for a linear code C over Sy psg W..t. +, the error performance analysis of C
based on the distance measure d(-,-) is reduced to that of C in terms of the weight measure
| - |a. This simplifies the error performance analysis and computation of code C [2, 4].

Let (b;,b,,...,b) be the binary representation of an integer s in S,epsk, where b; and b,

!
be the least and most significant bits respectively. Then s = z 5,271 Let ¥ = (v, v2,. .., Un)

=1
t
be an n-tuple over Sy psk with v, =Y 0,2 ' and v, € {0,1} for 1 <1< fand 1< i< n.

i=1
Then ¥ can be expressed as the following sum:
=420 4 ... 425150 (2.8)

where V() = (vy;,2,...,Vn,) is a binary n-tuple, for 1 <1 < £. We call v(®) the i-th binary
component n-tuple of ¥. The sum of (2.8) may be regarded as the binary expansion of the
n-tuple ¥. For 1 < i < ¢, let C, be a binary (n, k,) code with minimum Hamming distance 5.

Define the following block code C over S;e.pgk,

e

C+2C+ -+ 271G,
£ (#0420 4. 42790 v eCifor1<i < ¢} (2.9)

C

The code € defined by (2.9) is called a basic multi-level code. Basic multilevel codes were first
introduced by Imai and Hirakawa [10] and then studied by other [3, 11, 12]. For 1 <1 < ¢,

C, is called the i-th binary component code of C. The minimum distance of C is
D[C] = min é,d;, (2.10)

where d; = d(2'~!, 0). If every component of a codeword in C is mapped into a signal point in a
two-dimensional 2¢-PSK signal constellation, then C is a basic multi-level 2°-PSK modulation
code with a minimum squared Euclidean distance,

D[C] = '21{45, sin?(2' 1)}

1<i

For n-tuples @ and v over S, psk, let 0 & v denote the n-tuple over Sy psk, such that
the i-th binary component n-tuple of G & V is the modulo-2 vector sum of the i-th binary
component n-tuple of @ and the :-th binary component n-tuple of v. A code C over S;psi is

said to be linear w.r.t. @,i1f C is close:d under addition @. Most of the known block codes for
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2.PSK modulation are linear w.r.t. @. A linear code w.r.t. @ is not necess.an'ly linear w.r.t.
+. In the following, we will derive a condition for a linear code w.r.t. & to be linear w.r.t. +.

Let @ and ¥ be two n-tuples over Sye.psk, and let W denote @+v. For 1 < ¢ < ¢, let the i-
th binary component n-tuples of @, ¥ and W be represented as U = (uy,, Uz, - - ., Uni), vl) =
(vis, V24, - - -, Une), and W = (wy, wa, ..., Wn), Tespectively. Then the following recursive

equations hold [13]:

W, = U, By, By, for 1<1<¢, (2.11)
2, = Upm1Vyic1 @ (tyimy D vjis1) 25, for 1< <Y, (2.12)
z,, = 0. (2.13)

For 1 <1< ¢, let ¢)(q, ¥) be defined as
@, ) & (24, 220, -+ > Ta)- (2.14)
For two binary n-tuples, & = (a;,4s,...,3a,) and b = (by,bs,...,b,), let a- b be defined as
_ A
a'b= (a1 'bl,ag‘bg,...,a"'bn),

where a, - b, denotes the logical product of a, and b,.

It follows from (2.11) to (2.14) that for 1 < < ¢,

A, v) = a - v @ (ﬁ(i) & ‘-,(-)) (@, ¥). (2.15)

D@, v) + 2¢P(q, ¥) + -+ + 27 O(a, v). (2.16)

Then,
i4+v=a6vacyv). (2.17)

Now consider a block code C over S,z psx which is linear w.r.t. @. Let G and Vv be two

codewords in €. Then it follows from (2.17) that @ + v € C if and only if
c(u,v) € C. (2.18)
For 1 <i< ¢, let C! and C, be defined as
CW 2 (300 W 4. 42790 4 4210 c}, (2.19)

c, = {v9: 2 v e c}. (2.20)
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By definition
C,ccW, (2.21)

Since C is linear w.r.t. @, C) and C; are also linear w.r.t. @ and
C1+2C,+---+27'C, CC, (2.22)

where the equality holds if C is a basic multilevel code. For binary codes C and C’ of the
same length, let C - C' be defined as

c.c'éf{a-v:a€eC and veC}
Now we present two lemmas regarding to the closure property of a 2/-PSK code.
Lemma 1: Suppose that C is a linear code over Sy psk w.r.t. @ and for 1 <1</,
c®.c®C Cy. (2.23)
Then C is closed under the component-wise modulo-2! addition, and hence is linear w.r.t. +.
Proof: By induction, we show that for 1 <:< /¢
<H(a,v) € C.. (2.24)

Since ¢V(a, v) = 0,cM(, ¥) € C;. Suppose that (1, ¥) € C, for 1 < j < i < £. Since CV
and C;;, are linear w.r.t. @, it follows from (2.15), (2.21) and (2.23) that (**1)(qa, v) € Ciy,.
Consequently (2.18) follows from (2.16), (2.22) and (2.24), and this lemma holds. AA

Lemma 2: Suppose that C is a linear basic multilevel code over Sy psx w.r.t. &. Then
C(= Cy +2C, + ---+ 271C,) is closed under the component-wise modulo-2¢ addition, if and
only if

C;,-Ci;CCiyy, forl<i<d. (2.25)

Proof: Only if part: Let @ (or ¥) denote the n-tuple over S,.psx whose i-th binary
component n-tuple is @) € C; (or v(*) € C,) and whose other binary component n-tuples are
the all-zero n-tuple 0. Assume that i + v € C. It follows from (2.11) to (2.13) that for these
specific 4 and ¥,

Tyi41 = UyUy,, for 1 S 1 S L. (226)
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From (2.14),(2.18) and (2.26), we see that
(g, v) = 0¥ - v € iy

That iS, C,’ : C,‘ g C,‘+1.
If part: Since C is a basic multilevel code, C; = CW for 1 < ¢t < £. Then if part follows from
Lemma 1. AA

3. A Necessary and Sufficient Condition for a 2-PSK Modulation
Code to be Invariant Under 180°/2!~* Phase Shift with 1 <h <
14

Now we consider the phase symmetry of a block 2‘-ary PSK modulation code. To determine
the phase symmetry of a code, we need to know the smallest rotation under which the code
is invariant.

For 1 < h < ¢, let 2"'1 denote the n-tuple over S,.psx whose h-th binary component
n-tuple is the all-one n-tuple and whose other binary component n-tuples are the all-zero
n-tuple. A code C of length n over Syc.psk is said to be invariant under 180° /2" phase shift

if for any codeword Vv in C,

v+ 21 e (3.1)

By letting @ = 2°7'1 in (2.11) to (2.16), we obtain the following equations:

(1)

w,, = U, B I, for 1<:i<2 (3.2)
(2) If h < £, then
Tji = Yjyi-1Z5i-1, for h<1 < £ (33)
(3)
I,h = 1. (34)
(4) If 1 < h, then
z,,=0, for 1<i<h. (3.5)

It follows from (3.2) to (3.5) that we have Lemma 3.



Lemma 3: For 1 < h < ¢, a linear code C over Sy psk W.I.t. @ is invariant under 180°/2'~*

phase shift if and only if for any codeword ¥(V 4 2¢@ + ... 4+ 20719 in C,

oh-17 4 2hg(h) 4 gh+! (‘—,(h) . ,;,(’H'l)) 4 .- 4201 (‘-,(h) RE1CS 2 I {,(1-1)) €C, (3.6)

where 1 denotes the all-one n-tuple.

AA

If C is a linear basic ¢-level code w.r.t. @, denoted Cy +2C;+ - --+ 2!"1Cy, then the necessary
and sufficient condition (3.6) is expressed as follows:

(1)
1€ Ch, and (3.7)

(2)
ifh< ¢ then Ch-Chyr- - Cpo1 CCypfor h+1<j <L (3.8)

Obviously, a linear code C over S,epskg w.r.t. + is invariant under 180°/2'~" phase shift, if

and only if 1, € C.

4. Code Examples

In Table 1, seven basic multilevel block codes [3] and four nonbasic block codes for 8-PSK
and 16-PSK modulations are given. The number of states of a trellis diagram for each basic
multilevel block code is computed based on the numbers of states of trellis diagrams for its
binary component codes [14]. Among four nonbasic codes, two zero-tail Ungerboeck trellis
codes for 8-PSK modulation [1] are shown. In Table 1, V,, P,, P, RM,,, s-RM,, and ex-Golay
denote the set of all the binary n-tuples, the set of all even weight binary n-tuples, the dual
code of P, which consists of the all-zero and all-one n-tuples, the j-th order Reed-Muller
code of length 2', a shortened j-th order Reed-Muller code of original length 2*, and the
extended (24,12) code of binary Golay code. F; and F, denote two codes over {0, 1,2,3}
which are defined as following [4]. Let p(z,, z3,- - -, z4) be a boolean polynomial which is used
to represent the binary 2*-tuple whose i-th bit is given by p(4, ig, -+, 1) where (13,12, -+, 13)

is the binary representation of the integer i — 1, 1e. 1 —1= }: i,2271 . Let g, denote the
=1



Next we consider the phase rotation invariant property of codes given'in Table 1. Since
codes C[1], C[4), C[5), C[6] and C[11] are linear w.r.t. + and 1 is contained in Pl RM,, or
ex-Golay, there codes are invariant under 180°/ 2¢=1 phase shift. It follows from the properties
(i) and (ii) of Reed-Muller codes that codes C(8], C[9] with n = 0 mod 4 and C[10] are readily
shown to meet the conditions given by (3.7) and (3.8) with h = 1. Code C[2] is shown to
contain 21, and therefore is invariant under 90° phase shift. Code C[3] contains 2°1 only and

is invariant only under 180° phase shift, and code C[7] does not contain even 2°1.
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