Technical Report

to

NASA

Goddard Space Flight Center

Greenbelt, Maryland 20771

Grant Number NAG 5-931

Report Number NASA 90-001

Shu Lin

Principal Investigator Department of Electrical Engineering University of Hawaii at Manoa Honululu, Hawaii 96822

January 31,1990

(NASA-CR-186308) ON LINEAR STRUCTURE AND N90-19429 PHASE ROTATION INVARIANT PROPERTIES OF BLOCK 2(SUP 1)-PSK MODULATION CODES (Hawaii Univ.) 14 p CSCL 20N Unclas G3/32 0260741

CORE

GODDARD GRANT 1N-32-CR 260741 148.

ON LINEAR STRUCTURE AND PHASE ROTATION INVARIANT PROPERTIES OF BLOCK 2^l-PSK MODULATION CODES*

ABSTRACT

In this correspondence, we investigate two important structural properties of block 2'ary PSK modulation codes, namely: linear structure and phase symmetry. For an AWGN channel, the error performance of a modulation code depends on its squared Euclidean distance distribution. Linear structure of a code makes the error performance analysis much easier. Phase symmetry of a code is important in resolving carrier-phase ambiguity and ensuring rapid carrier-phase resynchronization after temporary loss of synchronization. It is desirable for a modulation code to have as many phase symmetries as possible. In this paper, we first represent a 2^{t} -ary modulation code as a code with symbols from the integer group, $S_{2^{\ell}-PSK} = \{0, 1, 2, \dots, 2^{\ell} - 1\}$, under the modulo- 2^{ℓ} addition. Then we define the linear structure of block 2'-ary PSK modulation codes over $S_{2'-PSK}$ with respect to the modulo-2' vector addition, and derive conditions under which a block 2^{ℓ} -ary PSK modulation code is linear. Once the linear structure is developed, we study phase symmetry of a block 2^{t} -ary PSK modulation code. In particular, we derive a necessary and sufficient condition for a block 2^{t} -ary PSK modulation code, which is linear as a binary code, to be invariant under $180^{\circ}/2^{t-h}$ phase rotation, for $1 \le h \le \ell$. Finally, a list of short 8-PSK and 16-PSK modulation codes is given together with their linear structure and the smallest phase rotation for which a code is invariant.

ON LINEAR STRUCTURE AND PHASE ROTATION INVARIANT PROPERTIES OF BLOCK 2^l-PSK MODULATION CODES

1. Introduction

As the application of coded modulation in bandwidth-efficient communications grows, there is a need of better understanding of the structural properties of modulation codes, especially those properties which are useful in: error performance analysis, implementation of optimum (or suboptimum) decoders, efficient resolution of carrier-phase ambiguity, and construction of better codes. In this paper, we investigate two important structural properties of block 2^{ℓ} -ary PSK modulation codes, namely: linear structure and phase symmetry. For an AWGN channel, the error performance of a modulation code depends on its squared Euclidean distance distribution [1-4]. Linear structure of a code makes the error performance analysis much easier [2, 4]. Furthermore, it may lead to a simpler implementation of encoder and decoder. Phase symmetry of a code is important in resolving carrier-phase ambiguity and ensuring rapid carrier-phase resynchronization after temporary loss of synchronization [1, 5-8]. It is desirable for a modulation code to have as many phase symmetries as possible.

Suppose the integer group $\{0, 1, 2, ..., 2^{t} - 1\}$ under the modulo-2^t addition, denoted $S_{2^{t}, PSK}$, is chosen to represent a two-dimensional 2^t-PSK signal set. Then a block 2^t-ary PSK modulation code C of length n may be regarded as a block code of length n over the integer group $S_{2^{t}, PSK}$, and a codeword in C is simply an n-tuple over $S_{2^{t}, PSK}$. If each integer in $S_{2^{t}, PSK}$ is represented by its binary expression of ℓ bits, then a block code of length n over $S_{2^{t}, PSK}$ can be considered as a binary block code of length ℓn . The resultant binary code is linear if it is closed under the component-wise modulo-2 addition. Most of the known block 2^t-ary PSK modulation codes are linear as binary codes. A linear code in this sense is not necessarily closed under the component-wise modulo-2^t addition. For two integers s and s' in $S_{2^{t}, PSK}$, the squared Euclidean distance between two signal points represented by s and s' respectively depends only on s - s' (modulo 2^t), but is not always determined by the Hamming distance between the binary expressions of s and s'. For an additive white Gaussian noise (AWGN) channel, error performance of a modulation code is determined by its squared

Euclidean distance distribution. If a code C over $S_{2^{\ell}.PSK}$ is either closed under the componentwise modulo-2^{\ell} addition or a union of relatively small number of cosets of a subcode which is closed under the component-wise modulo-2^{\ell} addition, then the error performance analysis of C is much easier than a code without such a property [2, 4]. In this paper, we present a condition for a code over $S_{2^{\ell}.PSK}$, which is linear as a binary code, to be closed under the component-wise modulo-2^{\ell} addition. In particular, we present a necessary and sufficient condition for a basic multilevel block code over $S_{2^{\ell}.PSK}$, which is linear as a binary code, to be closed under the component-wise modulo-2^{\ell} addition.

An important issue in coded modulation is the resolution of carrier-phase ambiguity. Several methods have been proposed to resolve the carrier-phase ambiguity for coded PSK modulations [6, 8, 9]. In these methods, the phase-rotation invariant property of a code over $S_{2^{\ell}\text{-PSK}}$ plays the central role. Tanner [8] has proposed a simple phase ambiguity resolution method for 2^{\ell}-ary PSK modulation codes which are invariant under 360°/2^{\ell} phase shift. In this paper, we present a necessary and sufficient condition for a code over $S_{2^{\ell}\text{-PSK}}$, which is linear as a binary code, to be invariant under $180^{\circ}/2^{\ell-h}$ phase shift with $1 \leq h \leq \ell$.

Finally, we give a list of short block 8-PSK and 16-PSK modulation codes together with their closure (or linear) properties under the component-wise modulo- 2^{t} addition, the smallest phase shifts for which these codes are invariant, and other parameters.

2. Linear Block 2^t-PSK Modulation Codes

Let ℓ be a positive integer. Suppose the integer group $\{0, 1, 2, \ldots, 2^{\ell} - 1\}$ under the modulo-2^{*l*} addition, denoted $S_{2^{\ell}.PSK}$, is used to represent a two-dimensional 2^{*l*}-PSK signal set. We define the distance between two integers s and s' in $S_{2^{\ell}.PSK}$, denoted d(s, s'), as the squared Euclidean distance between the two 2^{*l*}-PSK signal points represented by s and s' respectively. Then d(s, s') is given below:

$$d(s,s') = 4\sin^2\left(2^{-t}\pi(s-s')\right).$$
(2.1)

Let d_i denote $d(2^{i-1}, 0)$. From (2.1), we see that

$$d_i = 4\sin^2(2^{i-\ell-1}\pi).$$

For a positive integer *n*, let $S_{2^{\ell}-PSK}^{n}$ denote the set of all *n*-tuples over $S_{2^{\ell}-PSK}$. Define the distance between two *n*-tuples $\bar{\mathbf{v}} = (v_1, v_2, \dots, v_n)$ and $\bar{\mathbf{v}}' = (v'_1, v'_2, \dots, v'_n)$ over $S_{2^{\ell}-PSK}$, denoted $d(\bar{\mathbf{v}}, \bar{\mathbf{v}}')$, as follows:

$$d(\bar{\mathbf{v}}, \bar{\mathbf{v}}') \stackrel{\Delta}{=} \sum_{j=1}^{n} d(v_j, v_j')$$
(2.2)

Then it follows from (2.1) and (2.2) that

$$d(\bar{\mathbf{v}}, \bar{\mathbf{v}}') = d(\bar{\mathbf{v}} - \bar{\mathbf{v}}', \bar{\mathbf{0}})$$
(2.3)

where "-" denotes the component-wise modulo-2^{*l*} subtraction and $\overline{\mathbf{0}}$ denotes the all-zero *n*-tuple over $S_{2^{l}\text{-PSK}}$. For an *n*-tuple $\overline{\mathbf{v}}$ over $S_{2^{l}\text{-PSK}}$, define $|\overline{\mathbf{v}}|_{d}$ as follows:

$$|\bar{\mathbf{v}}|_d \stackrel{\triangle}{=} d(\bar{\mathbf{v}}, \bar{\mathbf{0}}). \tag{2.4}$$

We may regard that $|\bar{\mathbf{v}}|_d$ is the squared Euclidean weight of $\bar{\mathbf{v}}$.

Consider a block code C of length n over $S_{2^{\ell}.PSK}$. The minimum distance of C, denoted D[C], with respect to the distance measure $d(\cdot, \cdot)$ given by (2.2) is defined as follows:

$$D[C] \stackrel{\Delta}{=} \min \left\{ d(\bar{\mathbf{v}}, \bar{\mathbf{v}}') : \bar{\mathbf{v}}, \bar{\mathbf{v}}' \in C \text{ and } \bar{\mathbf{v}} \neq \bar{\mathbf{v}}' \right\}.$$
(2.5)

If each component of a codeword $\bar{\mathbf{v}}$ in C is mapped into the corresponding signal point in the two-dimensional 2'-PSK signal set, we obtain a block 2'-PSK modulation code with minimum squared Euclidean distance D[C]. The effective rate of this code is given by

$$R[C] = \frac{1}{2n} \log_2 |C|, \qquad (2.6)$$

which is simply the average number of information bits transmitted per dimension.

Let $\bar{\mathbf{u}} = (u_1, u_2, \dots, u_n)$ and $\bar{\mathbf{v}} = (v_1, v_2, \dots, v_n)$ be two *n*-tuples over $S_{2^{\ell}, \text{PSK}}$. Let $\bar{\mathbf{u}} + \bar{\mathbf{v}}$ denote the following *n*-tuple over $S_{2^{\ell}, \text{PSK}}$:

$$\bar{\mathbf{u}} + \bar{\mathbf{v}} \stackrel{\Delta}{=} (u_1 + v_1, u_2 + v_2, \cdots, u_n + v_n),$$

where $u_i + v_i$ is carried out in modulo-2' addition. A code over the integer group $S_{2'-PSK}$ is said to be linear with respect to (w.r.t.) "+", if C is closed under the component-wise modulo-2' addition, i.e., for any \bar{u} and \bar{v} in C, $\bar{u} + \bar{v}$ is also in C. It follows from (2.3) to (2.5) that, for a linear code C w.r.t. +, we have

$$D[C] = \min\left\{ |\bar{\mathbf{v}}|_d : \bar{\mathbf{v}} \in C - \{\bar{\mathbf{0}}\} \right\}.$$
(2.7)

As a result, for a linear code C over $S_{2',PSK}$ w.r.t. +, the error performance analysis of C based on the distance measure $d(\cdot, \cdot)$ is reduced to that of C in terms of the weight measure $|\cdot|_d$. This simplifies the error performance analysis and computation of code C [2, 4].

Let $(b_1, b_2, \ldots, b_\ell)$ be the binary representation of an integer s in $S_{2^\ell, \text{PSK}}$, where b_1 and b_ℓ be the least and most significant bits respectively. Then $s = \sum_{i=1}^{\ell} b_i 2^{i-1}$. Let $\bar{\mathbf{v}} = (v_1, v_2, \ldots, v_n)$ be an n-tuple over $S_{2^\ell, \text{PSK}}$ with $v_j = \sum_{i=1}^{\ell} v_{ij} 2^{i-1}$ and $v_{ij} \in \{0, 1\}$ for $1 \le i \le \ell$ and $1 \le i \le n$. Then $\bar{\mathbf{v}}$ can be expressed as the following sum:

$$\bar{\mathbf{v}} = \bar{\mathbf{v}}^{(1)} + 2\bar{\mathbf{v}}^{(2)} + \dots + 2^{\ell-1}\bar{\mathbf{v}}^{(\ell)}, \qquad (2.8)$$

where $\bar{\mathbf{v}}^{(i)} = (v_{1i}, v_{2i}, \dots, v_{ni})$ is a binary n-tuple, for $1 \leq i \leq \ell$. We call $\bar{\mathbf{v}}^{(i)}$ the *i*-th binary component *n*-tuple of $\bar{\mathbf{v}}$. The sum of (2.8) may be regarded as the binary expansion of the n-tuple $\bar{\mathbf{v}}$. For $1 \leq i \leq \ell$, let C_i be a binary (n, k_i) code with minimum Hamming distance δ_i . Define the following block code C over $S_{2^{\ell}, \text{PSK}}$,

$$C \stackrel{\Delta}{=} C_1 + 2C_2 + \dots + 2^{\ell-1}C_\ell$$
$$\stackrel{\Delta}{=} \left\{ \bar{\mathbf{v}}^{(1)} + 2\bar{\mathbf{v}}^{(2)} + \dots + 2^{\ell-1}\bar{\mathbf{v}}^{(\ell)} : \bar{\mathbf{v}}^{(i)} \in C_i \text{ for } 1 \le i \le \ell \right\}.$$
(2.9)

The code C defined by (2.9) is called a basic multi-level code. Basic multilevel codes were first introduced by Imai and Hirakawa [10] and then studied by other [3, 11, 12]. For $1 \le i \le \ell$, C, is called the i-th binary component code of C. The minimum distance of C is

$$D[C] = \min_{1 \le i \le \ell} \delta_i d_i, \tag{2.10}$$

where $d_i = d(2^{i-1}, 0)$. If every component of a codeword in C is mapped into a signal point in a two-dimensional 2'-PSK signal constellation, then C is a basic multi-level 2'-PSK modulation code with a minimum squared Euclidean distance,

$$D[C] = \min_{1 \le i \le \ell} \{ 4\delta, \ \sin^2(2^{i-\ell-1}\pi) \}.$$

For n-tuples $\bar{\mathbf{u}}$ and $\bar{\mathbf{v}}$ over $S_{2^{\ell}.\text{PSK}}$, let $\bar{\mathbf{u}} \oplus \bar{\mathbf{v}}$ denote the n-tuple over $S_{2^{\ell}.\text{PSK}}$, such that the *i*-th binary component n-tuple of $\bar{\mathbf{u}} \oplus \bar{\mathbf{v}}$ is the modulo-2 vector sum of the *i*-th binary component n-tuple of $\bar{\mathbf{u}}$ and the *i*-th binary component n-tuple of $\bar{\mathbf{v}}$. A code C over $S_{2^{\ell}.\text{PSK}}$ is said to be linear w.r.t. \oplus , if C is closed under addition \oplus . Most of the known block codes for 2'-PSK modulation are linear w.r.t. \oplus . A linear code w.r.t. \oplus is not necessarily linear w.r.t. +. In the following, we will derive a condition for a linear code w.r.t. \oplus to be linear w.r.t. +.

Let $\bar{\mathbf{u}}$ and $\bar{\mathbf{v}}$ be two *n*-tuples over $S_{2^{\ell}, \text{PSK}}$, and let $\bar{\mathbf{w}}$ denote $\bar{\mathbf{u}} + \bar{\mathbf{v}}$. For $1 \leq i \leq \ell$, let the *i*th binary component *n*-tuples of $\bar{\mathbf{u}}$, $\bar{\mathbf{v}}$ and $\bar{\mathbf{w}}$ be represented as $\bar{\mathbf{u}}^{(i)} = (u_{1i}, u_{2i}, \ldots, u_{ni})$, $\bar{\mathbf{v}}^{(i)} = (v_{1i}, v_{2i}, \ldots, v_{ni})$, and $\bar{\mathbf{w}}^{(i)} = (w_{1i}, w_{2i}, \ldots, w_{ni})$, respectively. Then the following recursive equations hold [13]:

$$w_{ji} = u_{ji} \oplus v_{ji} \oplus x_{ji}, \qquad \text{for } 1 \le i \le \ell, \qquad (2.11)$$

$$x_{ji} = u_{ji-1}v_{ji-1} \oplus (u_{ji-1} \oplus v_{ji-1})x_{ji-1}, \quad \text{for } 1 < i \le \ell,$$
(2.12)

$$x_{j1} = 0.$$
 (2.13)

For $1 \leq i \leq \ell$, let $c^{(i)}(\bar{\mathbf{u}}, \bar{\mathbf{v}})$ be defined as

$$c^{(i)}(\bar{\mathbf{u}}, \bar{\mathbf{v}}) \stackrel{\Delta}{=} (x_{1i}, x_{2i}, \dots, x_{ni}).$$
(2.14)

For two binary *n*-tuples, $\bar{\mathbf{a}} = (a_1, a_2, \dots, a_n)$ and $\bar{\mathbf{b}} = (b_1, b_2, \dots, b_n)$, let $\bar{\mathbf{a}} \cdot \bar{\mathbf{b}}$ be defined as

$$\mathbf{\bar{a}}\cdot\mathbf{\bar{b}}\triangleq(a_1\cdot b_1,a_2\cdot b_2,\ldots,a_n\cdot b_n),$$

where $a_1 \cdot b_1$ denotes the logical product of a_1 and b_2 .

It follows from (2.11) to (2.14) that for $1 \le i < \ell$,

$$c^{(i+1)}(\bar{\mathbf{u}},\bar{\mathbf{v}}) = \bar{\mathbf{u}}^{(i)} \cdot \bar{\mathbf{v}}^{(i)} \oplus \left(\bar{\mathbf{u}}^{(i)} \oplus \bar{\mathbf{v}}^{(i)}\right) \cdot c^{(i)}(\bar{\mathbf{u}},\bar{\mathbf{v}}).$$
(2.15)

Let $c(\bar{\mathbf{u}}, \bar{\mathbf{v}})$ be defined as

$$c(\bar{\mathbf{u}}, \bar{\mathbf{v}}) \stackrel{\Delta}{=} c^{(1)}(\bar{\mathbf{u}}, \bar{\mathbf{v}}) + 2c^{(2)}(\bar{\mathbf{u}}, \bar{\mathbf{v}}) + \dots + 2^{\ell-1}c^{(\ell)}(\bar{\mathbf{u}}, \bar{\mathbf{v}}).$$
(2.16)

Then,

$$\bar{\mathbf{u}} + \bar{\mathbf{v}} = \bar{\mathbf{u}} \oplus \bar{\mathbf{v}} \oplus c(\bar{\mathbf{u}}, \bar{\mathbf{v}}). \tag{2.17}$$

Now consider a block code C over $S_{2^{\ell}PSK}$ which is linear w.r.t. \oplus . Let $\bar{\mathbf{u}}$ and $\bar{\mathbf{v}}$ be two codewords in C. Then it follows from (2.17) that $\bar{\mathbf{u}} + \bar{\mathbf{v}} \in C$ if and only if

$$c(\bar{\mathbf{u}}, \bar{\mathbf{v}}) \in C. \tag{2.18}$$

For $1 \leq i \leq \ell$, let $C^{(i)}$ and C_i be defined as

$$C^{(i)} \triangleq \left\{ \bar{\mathbf{v}}^{(i)} : \bar{\mathbf{v}}^{(1)} + \dots + 2^{i-1} \bar{\mathbf{v}}^{(i)} + \dots + 2^{\ell-1} \bar{\mathbf{v}}^{(\ell)} \in C \right\},$$
(2.19)

$$C_i \stackrel{\Delta}{=} \left\{ \bar{\mathbf{v}}^{(i)} : 2^{i-1} \bar{\mathbf{v}}^{(i)} \in C \right\}.$$
(2.20)

By definition

$$C_i \subseteq C^{(i)}. \tag{2.21}$$

Since C is linear w.r.t. \oplus , $C^{(i)}$ and C_i are also linear w.r.t. \oplus and

$$C_1 + 2C_2 + \dots + 2^{\ell-1}C_\ell \subseteq C, \tag{2.22}$$

where the equality holds if C is a basic multilevel code. For binary codes C and C' of the same length, let $C \cdot C'$ be defined as

$$C \cdot C' \triangleq \left\{ \mathbf{\tilde{u}} \cdot \mathbf{\tilde{v}} : \mathbf{\tilde{u}} \in C \text{ and } \mathbf{\tilde{v}} \in C'
ight\}.$$

Now we present two lemmas regarding to the closure property of a 2^{t} -PSK code.

Lemma 1: Suppose that C is a linear code over $S_{2^{\ell},\text{PSK}}$ w.r.t. \oplus and for $1 \leq i \leq \ell$,

$$C^{(i)} \cdot C^{(i)} \subseteq C_{i+1}. \tag{2.23}$$

Then C is closed under the component-wise modulo- 2^{ℓ} addition, and hence is linear w.r.t. +. **Proof:** By induction, we show that for $1 \le i \le \ell$

$$c^{(i)}(\bar{\mathbf{u}}, \bar{\mathbf{v}}) \in C_i. \tag{2.24}$$

Since $c^{(1)}(\bar{\mathbf{u}}, \bar{\mathbf{v}}) = \bar{\mathbf{0}}, c^{(1)}(\bar{\mathbf{u}}, \bar{\mathbf{v}}) \in C_1$. Suppose that $c^{(j)}(\bar{\mathbf{u}}, \bar{\mathbf{v}}) \in C_j$ for $1 \leq j \leq i < \ell$. Since $C^{(i)}$ and C_{i+1} are linear w.r.t. \oplus , it follows from (2.15), (2.21) and (2.23) that $c^{(i+1)}(\bar{\mathbf{u}}, \bar{\mathbf{v}}) \in C_{i+1}$. Consequently (2.18) follows from (2.16), (2.22) and (2.24), and this lemma holds. $\Delta \Delta$

Lemma 2: Suppose that C is a linear basic multilevel code over $S_{2^{\ell}.PSK}$ w.r.t. \oplus . Then $C(=C_1 + 2C_2 + \cdots + 2^{\ell-1}C_{\ell})$ is closed under the component-wise modulo- 2^{ℓ} addition, if and only if

$$C_i \cdot C_i \subseteq C_{i+1}, \quad \text{for } 1 \le i < \ell.$$

$$(2.25)$$

Proof: Only if part: Let $\bar{\mathbf{u}}$ (or $\bar{\mathbf{v}}$) denote the *n*-tuple over S_{2^{i} -PSK</sub> whose *i*-th binary component *n*-tuple is $\bar{\mathbf{u}}^{(i)} \in C_{i}$ (or $\bar{\mathbf{v}}^{(i)} \in C_{i}$) and whose other binary component *n*-tuples are the all-zero *n*-tuple $\bar{\mathbf{0}}$. Assume that $\bar{\mathbf{u}} + \bar{\mathbf{v}} \in C$. It follows from (2.11) to (2.13) that for these specific $\bar{\mathbf{u}}$ and $\bar{\mathbf{v}}$,

$$x_{ji+1} = u_{ji}v_{ji}, \quad \text{for } 1 \le i \le \ell.$$
 (2.26)

From (2.14), (2.18) and (2.26), we see that

$$c^{(i+1)}(\bar{\mathbf{u}},\bar{\mathbf{v}})=\bar{\mathbf{u}}^{(i)}\cdot\bar{\mathbf{v}}^{(i)}\in C_{i+1}.$$

That is, $C_i \cdot C_i \subseteq C_{i+1}$.

If part: Since C is a basic multilevel code, $C_i = C^{(i)}$ for $1 \le i \le \ell$. Then if part follows from Lemma 1. $\Delta \Delta$

3. A Necessary and Sufficient Condition for a 2^{ℓ}-PSK Modulation Code to be Invariant Under 180°/2^{$\ell-h$} Phase Shift with $1 \le h \le \ell$

Now we consider the phase symmetry of a block 2^{l} -ary PSK modulation code. To determine the phase symmetry of a code, we need to know the smallest rotation under which the code is invariant.

For $1 \leq h \leq \ell$, let $2^{h-1}\overline{1}$ denote the *n*-tuple over $S_{2^{\ell}.PSK}$ whose *h*-th binary component *n*-tuple is the all-one *n*-tuple and whose other binary component *n*-tuples are the all-zero *n*-tuple. A code *C* of length *n* over $S_{2^{\ell}.PSK}$ is said to be invariant under $180^{\circ}/2^{\ell-h}$ phase shift if for any codeword \overline{v} in *C*,

$$\bar{\mathbf{v}} + 2^{h-1}\bar{\mathbf{1}} \in C. \tag{3.1}$$

By letting $\bar{\mathbf{u}} = 2^{h-1}\bar{\mathbf{1}}$ in (2.11) to (2.16), we obtain the following equations: (1)

$$w_{ji} = v_{ji} \oplus x_{ji}, \quad \text{for} \quad 1 \le i \le \ell.$$
 (3.2)

(2) If $h < \ell$, then

$$x_{ji} = v_{ji-1} x_{ji-1}, \quad \text{for} \quad h < i \le \ell.$$
 (3.3)

(3)

$$x_{jh} = 1. \tag{3.4}$$

(4) If 1 < h, then

$$x_{ji} = 0, \quad \text{for} \quad 1 \le i < h.$$
 (3.5)

It follows from (3.2) to (3.5) that we have Lemma 3.

Lemma 3: For $1 \le h \le \ell$, a linear code C over $S_{2^{\ell}\text{-PSK}}$ w.r.t. \oplus is invariant under $180^{\circ}/2^{\ell-h}$ phase shift if and only if for any codeword $\bar{\mathbf{v}}^{(1)} + 2\bar{\mathbf{v}}^{(2)} + \cdots + 2^{\ell-1}\bar{\mathbf{v}}^{(\ell)}$ in C,

$$2^{h-1}\mathbf{\tilde{1}} + 2^{h}\mathbf{\tilde{v}}^{(h)} + 2^{h+1}\left(\mathbf{\tilde{v}}^{(h)} \cdot \mathbf{\tilde{v}}^{(h+1)}\right) + \dots + 2^{\ell-1}\left(\mathbf{\tilde{v}}^{(h)} \cdot \mathbf{\tilde{v}}^{(h+1)} \cdot \dots \cdot \mathbf{\tilde{v}}^{(\ell-1)}\right) \in C, \quad (3.6)$$

where $\overline{1}$ denotes the all-one *n*-tuple.

 $\Delta\Delta$

If C is a linear basic ℓ -level code w.r.t. \oplus , denoted $C_1 + 2C_2 + \cdots + 2^{\ell-1}C_\ell$, then the necessary and sufficient condition (3.6) is expressed as follows:

(1)

$$\bar{1} \in C_h$$
, and (3.7)

(2)

if $h < \ell$, then $C_h \cdot C_{h+1} \cdot \cdots \cdot C_{j-1} \subseteq C_j$, for $h+1 < j \le \ell$. (3.8)

Obviously, a linear code C over $S_{2^{\ell}.PSK}$ w.r.t. + is invariant under $180^{\circ}/2^{\ell-h}$ phase shift, if and only if $\bar{1}_h \in C$.

4. Code Examples

In Table 1, seven basic multilevel block codes [3] and four nonbasic block codes for 8-PSK and 16-PSK modulations are given. The number of states of a trellis diagram for each basic multilevel block code is computed based on the numbers of states of trellis diagrams for its binary component codes [14]. Among four nonbasic codes, two zero-tail Ungerboeck trellis codes for 8-PSK modulation [1] are shown. In Table 1, V_n , P_n , P_n^{\perp} , RM_{ij} , s- RM_{ij} and ex-Golay denote the set of all the binary *n*-tuples, the set of all even weight binary *n*-tuples, the dual code of P_n which consists of the all-zero and all-one *n*-tuples, the *j*-th order Reed-Muller code of length 2ⁱ, a shortened *j*-th order Reed-Muller code of original length 2ⁱ, and the extended (24,12) code of binary Golay code. F_1 and F_2 denote two codes over $\{0, 1, 2, 3\}$ which are defined as following [4]. Let $p(x_1, x_2, \dots, x_h)$ be a boolean polynomial which is used to represent the binary 2^h-tuple whose *i*-th bit is given by $p(i_1, i_2, \dots, i_h)$ where (i_1, i_2, \dots, i_h) is the binary representation of the integer i - 1, i.e. $i - 1 = \sum_{j=1}^{h} i_j 2^{j-1}$. Let $\tilde{g}_{h,i}$ denote the Next we consider the phase rotation invariant property of codes given in Table 1. Since codes C[1], C[4], C[5], C[6] and C[11] are linear w.r.t. + and $\overline{1}$ is contained in P_n^1 , $RM_{n,r}$ or ex-Golay, there codes are invariant under $180^{\circ}/2^{\ell-1}$ phase shift. It follows from the properties (i) and (ii) of Reed-Muller codes that codes C[8], C[9] with $n \equiv 0 \mod 4$ and C[10] are readily shown to meet the conditions given by (3.7) and (3.8) with h = 1. Code C[2] is shown to contain $2\overline{1}$, and therefore is invariant under 90° phase shift. Code C[3] contains $2^{2}\overline{1}$ only and is invariant only under 180° phase shift, and code C[7] does not contain even $2^{2}\overline{1}$.

References

- G. Ungerboeck, "Channel Coding with Multilevel/Phase Signals," IEEE Trans. on Information Theory, Vol. IT-28, No. 1, pp. 55-67, January 1982.
- [2] S. Ujita, T. Takata, T. Fujiwara, T. Kasami and S. Lin, "Structural Properties of 2'-ary PSK modulation Block Codes and their Performance Analysis," Proceedings of the 11th Symposium on Information Theory and Its Applications, Beppu, Japan, pp. 807-812, December 1988.
- [3] T. Kasami, T. Takata, T. Fujiwara and S. Lin, "A Concatenated Coded Modulation Scheme for Error Control," IEEE Trans. on Communications, to be published.
- [4] T. Kasami, T. Takata, T. Fujiwara and S. Lin, "On Multilevel Block Modulation Codes," submitted to IEEE Trans. on Information Theory, 1989.
- [5] L.F. Wei, "Rotationally Invariant Convolutional Channel Coding with Expanded Signal Space — Part I: 180° degrees and Part II: Nonlinear Codes," IEEE Journal of Select. Areas Communications, Vol. SAC-2, No. 5, pp. 672-686, September 1984.
- [6] E.E. Nemirovskii and S.L. Portnoi, "Matching block codes to a channel with phase shifts," Problemy peredachi Informatsii, Vol. 22, No. 3, pp. 27-34, 1986.
- [7] G. Ungerboeck, "Trellis-Coded Modulation with Redundant Signal Sets, Part I: Introduction," IEEE Communications Magazine, Vol. 25, No. 2, pp. 5-11, February 1987.
- [8] R.M. Tanner, "Algebraic Construction of Large Euclidean Distance Combined Coding Modulation Systems," Abstract of Papers, 1986 IEEE International Symposium on Information Theory, Ann Arbor, October 6-9, 1986, also IEEE Trans. on Information Theory, to be published.
- [9] S.S. Pietrobon, R.H. Deng, A. Lafanechere, G. Ungerboeck and D.J. Costello Jr., "Trellis Coded Multi-Dimensional Phase Modulation," IEEE Trans. on Information Theory, to be published.
- [10] H. Imai and S. Hirakawa, "A New Multilevel Coding Method Using Error Correcting Codes," IEEE Trans. on Information Theory, Vol. IT-23, No.3, pp. 371-376, May 1977.
- [11] V.V. Ginzburg, "Multidimensional Signals for a Continuous Channel," Problemy peredachi Informatsii, Vol. 20, No. 1, pp. 28-46, 1984.
- [12] S.I. Sayegh, "A Class of Optimum Block Codes in Signal Space," IEEE Trans. on Communications, Vol. COM-30, No. 10, pp. 1043-1045, October 1986.
- [13] C.H. Roth, Jr., Fundamentals of Logic Design, 3rd Edition, West Publishing Company, 1985.
- [14] G.D. Forney, Jr., "Coset Codes—Part II: Binary Lattices and Related Codes," IEEE Trans. on Information Theory, Vol. IT-34, No. 5, pp 1152–1187, September 1988.
- [15] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, 1977.

					The		
				1	number		
modulation	definition	u	R[C]	D[C]	of states	linearity	phase shift
					of a trellis	w.r.t. +	invariancy
					diagram		
	$C[1] \stackrel{\Delta}{=} P_8^{\rm L} + 2P_8 + 4V_8$	~	1	4	22	Yes	45*
	$C[2] \stackrel{\Delta}{=} F_1 + 4V_8$	œ	1	4	22	Yes	•06
	$C[3] \stackrel{\Delta}{=} \operatorname{zero-tail}$ Ungerboeck code	u	<u> u</u>	4	22	No	180°
	$C[4] \stackrel{\Delta}{=} RM_{4,1} + 2P_{16} + 4V_{16}$	16	တၢထ	4	24	Yes	45°
8-PSK	$C[5] \stackrel{\Delta}{=} F_2 + 4V_{16}$	16	9/8	4	24	Yes	45°
	$C[6] \stackrel{\Delta}{=} \text{ex-Golay} + 2P_{24} + 4V_{24}$	24	8 20	4	27	Yes	45°
. <u>.</u>	$C[7] \stackrel{\Delta}{=} \operatorname{zero-tail}$ Ungerboeck code	r	$\frac{2n-3}{2n}$	4.586	23	No	360*
	$C[8] \stackrel{\Delta}{=} P_{16}^{\perp} + 2RM_{4,2} + 4P_{16}$	16	32	8	2^{5}	No	45°
	$C[9] \stackrel{\Delta}{=} P_n^{\perp} + 2s \cdot RM_{5,3} + 4P_n$	$16 < n \leq 32$	n-3 1	æ	26	No	45° for $n \equiv 0 \pmod{4}$
	$C[10] \stackrel{\Delta}{=} RM_{5,1} + 2RM_{5,3} + 4P_{32}$	32	ଥାୟ	æ	29	No	45*
16-PSK	$C[11] \stackrel{\triangle}{=} P_{32}^{\perp} + 2RM_{5,2} + 4P_{32} + 8V_{32}$	32	-01 -4	4	2 ⁸	Yes	22.5

,

Table 1: Some Short 8-PSK, 16-PSK Codes

2

÷