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ON LINEAR STRUCTURE AND

PHASE ROTATION INVARIANT PROPERTIES OF

BLOCK 2e-PSK MODULATION CODES*

ABSTRACT

In this correspondence, we investigate two important structural properties of block 2t-

ary PSK modulation codes, namely: linear structure and phase symmetry. For an AWGN

channel, the error performance of a modulation code depends on its squared Euclidean distance

distribution. Linear structure of a code makes the error performance analysis much easier.

Phase symmetry of a code is important in resolving carrier-phase ambiguity and ensuring

rapid carrier-phase resynchronization after temporary loss of synchronization. It is desirable

for a modulation code to have as many phase symmetries as possible. In this paper, we

first represent a 2t-ary modulation code as a code with symbols from the integer group,

S2,.ps K = {0, 1,2,...,2 t- 1}, under the modulo-2 t addition. Then we define the linear

structure of block 2t-ary PSK modulation codes over S2_.PSK with respect to the modulo-2 t

vector addition, and derive conditions under which a block 2t-ary PSK modulation code is

linear. Once the linear structure is developed, we study phase symmetry of a block 2t-ary

PSK modulation code. In particular, we derive a necessary and sufficient condition for a block

2t-ary PSK modulation code, which is linear as a binary code, to be invariant under 180"/2 t-h

phase rotation, for 1 < h < L Finally, a list of short 8-PSK and 16-PSK modulation codes is

given together with their linear structure and the smallest phase rotation for which a code is

invariant.
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1. Introduction

As the application of coded modulation in bandwidth-efficient communications grows, there

is a need of better understanding of the structural properties of modulation codes, especially

those properties which are useful in: error performance analysis, implementation of optimum

(or suboptimum) decoders, efficient resolution of caxrier-phase ambiguity, and construction

of better codes. In this paper, we investigate two important structural properties of block

2t-ary PSK modulation codes, namely: linear structure and phase symmetry. For an AWGN

channel, the error performance of a modulation code depends on its squared Euclidean distaace

distribution [1-4]. Linear structure of a code makes the error performance analysis much easier

[2, 4]. Furthermore, it may lead to a simpler implementation of encoder and decoder. Phase

symmetry of a code is important in resolving carrier-phase ambiguity and ensuring rapid

carrier-phase resynchronization after temporary loss of synchronization [1, 5-8]. It is desirable

for a modulation code to have as many phase symmetries as possible.

Suppose the integer group {0, 1,2,...,2 t - 1} under the modulo-2 t addition, denoted

_t.PsK, is chosen to represent a two-dimensional 2t-PSK signal set. Then a block 2t-ary

PSK modulation code C of length n may be regarded as a block code of length n over the

integer group S_,.psK, and a codeword in C is simply an n-tuple over Szt.ps K. If each integer

in S2t.PSK is represented by its binary expression of g bits, then a block code of length n

over S2,.ps K can be considered as a binary block code of length gn. The resultant binary

code is linear if it is closed under the component-wise modulo-2 addition. Most of the known

block 2t-ary PSK modulation codes are linear as binary codes. A linear code in this sense

is not necessarily closed under the component-wise modulo-2 t addition. For two integers s

and s' in S2_-PSK, the squared Euclidean distance between two signal points represented by s

and s _ respectively depends only on s - s' (modulo 2t), but is not always determined by the

Hamming distance between the binary expressions of s and s _. For an additive white Gaussian

noise (AWGN) channel, error performance of a modulation code is determined by its squared
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Euclideandistance distribution, ff a code C over ...q2t.PSK is either closed under the component-

wise modulo-2 ! addition or a union of relatively small number of cosets of a subcode which

is closed under the component-wise modulo-2 t addition, then the error performance analysis

of C is much easier than a code without such a property [2, 4]. In this paper, we present

a condition for a code over S2_-PSK, which is linear as a binary code, to be closed under

the component-wise modulo-2 t addition. In particular, we present a necessary and sufficient

condition for a basic multilevel block code over S:,.ps x , which is linear as a binary code, to

be closed under the component-wise modulo-2 t addition.

An important issue in coded modulation is the resolution of carrier-phase ambiguity.

Several methods have been proposed to resolve the carrier-phase ambiguity for coded PSK

modulations [6, 8, 9]. In these methods, the phase-rotation invariant property of a code over

S2t.psK plays the central role. Tanner [8] has proposed a simple phase ambiguity resolution

method for 2t-ary PSK modulation codes which are invariant under 360°/2 t phase shift. In

this paper, we present a necessary and sufficient condition for a code over S_*.PSK, which is

finear as a binary code, to be invariant under 180'/2 t-h phase shift with 1 _< h < g.

Final]y, we give a list of short block 8-PSK and 16-PSK modulation codes together with

their closure (or linear) properties under the component-wise modulo-2 t addition, the smallest

phase shifts for which these codes are invariant, and other parameters.

2. Linear Block 2t-PSK Modulation Codes

Let g be a positive integer. Suppose the integer group {0, l, 2,..., 2 t - 1} under the modulo-

2t addition, denoted S2<PSK, is used to represent a two-dimensional 2CPSK signal set. We

define the distance between two integers s and s' in S2<psK, denoted d(s, s'), as the squared

Euclidean distance between the two 2t-PSK signal points represented by s and s' respectively.

Then d(s, s') is given below:

d(s,s') = 4sin_ (2-tTr(s- s')). (2.1)

Let d, denote d(2i-l,0). From (2.1), we see that

di = 4 sin2(2'-t-17r).
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For a positive integer n, let S_,_ps K denote the set of all n-tuples over S2,.psK. Define

!
the distance between two n-tuples 9 = (vl,vs,...,v,,) and 9' = (v_, vs,..., v_) over S2,.PSK,

denoted d(9, _'), as follows:
n

d(_,¢) -__2 d(_,,_j) (2.2)
j=l

Then it follows from (2.1) and (2.2) that

d(9, 9') = d(9 - 9', 0) (2.3)

where "-" denotes the component-wise modulo-2 t subtraction and 6 denotes the all-zero

n-tuple over S_.psK. For an n-tuple 9 over Ss,.psI<, define ]gla as follows:

[9[_ z_ d(9, 6). (2.4)

We may" regard that [_'[d is the squared Euclidean weight of 9.

Consider a block code C of length n over S2t.ps_¢. The minimum distance of C, denoted

D[C], with respect to the distance measure d(-, .) given by (2.2) is defined as follows:

D[C]_ min {d(9,'_'): 9,_7' e C and _' ¢ 9'}. (2.5)

If each component of a codeword 9 in C is mapped into the corresponding signal point in the

two-dimensional 2t-PSK signal set, we obtain a block 21-PSK modulation code with minimum

squared Euclidean distance D[C]. The effective rate of this code is given by

1

R[C]= E logsICI, (2.6)

which is simply the average number of information bits transmitted per dimension.

Let fi = (ul, us,...,u,,) and _' = (vl, vs,...,v,,) be two n-tuples over S2_.ps K. Let fi + 9

denote the following n-tuple over Sst PSK:

fi + 9 a__(ul + v_, us + vs,..', u, + v,,),

where u, + v, is carried out in modulo-2 t addition. A code over the integer group Ss*.psK is said

to be linear with respect to (w.r.t.) "+", if C is closed under the component-wise modulo--2 t

addition, i.e., for any fi and 9 in C, fi + 9 is also in C. It follows from (2.3) to (2.5) that, for

a linear code C w.r.t. +, we have

D[C] = rain {Ivl_: v 6 c-{O} }. (2.7)
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As a result, for a linear code C over S2L.pSK w.r.t. +, the error performance analysis of C

based on the distance measure d(.,.) is reduced to that of C in terms of the weight measure

I" la. This simplifies the error performance analysis and computation of code C [2, 4].

Let (bx, b2,..., bt) be the binary representation of an integer s in S2*.PsK, where bl and bt
l

X--"b 2 i-1 v,)be the least and most significant bits respectively. Then s = z., , . Let '7 = (vl, v_ .... ,
i=l

l

= 2 -1 and % E {0,1} for 1 <i<gand 1 <i<n.be an n-tuple over S2,-PSK with v_ _ vij ....
i=l

Then ? can be expressed as the following sum:

q = 9(i)+ 29(_) + ... + 2t-l,;,(t), (2.8)

where q_il = (vii, v2,,..., v,,) is a binary n-tuple, for 1 < i < g. We call _,(i) the i-th binary

component n-tuple of ,_. The sum of (2.8) may be regarded as the binary expansion of the

n-tuple _'. For 1 < i < g, let C, be a binary (n, k,) code with minimum Hamming distance 3,.

Define the following block code C over S_.psr<,

C _- Ca + 2C2 + ... + 2t-lct

{_.(1) + 29(2) + ... + 2t-lq(t) • _7(i) ECi for 1 <i<g}. (2.9)

The code C defined by (2.9) is called a basic multi-level code. Basic multilevel codes were first

introduced by Imai and Hirakawa [10] and then studied by other [3, 11, 12]. For 1 _< i < g,

C, is called the i-th binary component code of C. The minimum distance of C is

D[C] = min _,di, (2.10)
l<_i<_t

where d, = d(2 i-1, 0). If every component of a codeword in C is mapped into a signal point in a

two-dimensional 2t-PSK signal constellation, then C is a basic multi-level 2t-PSK modulation

code with a minimum squared Euclidean distance,

D[C] = rain {46, sin2(T-t-'Tr)}.
l_<i<t

For n-tuples a and g' over S2t.PSK, let a _ q denote the n-tuple over S_*.psa, such that

the i-th binary component n-tuple of fi _ g" is the modulo-2 vector sum of the i-th binary

component n-tuple of a and the i-th binary component n-tuple of q. A code C over S2t.PSK is

said to be linear w.r.t. _, if C is closed under Mdition _. Most of the known block codes for
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2"-PSK modulation are linear w.r.t. _. A linear code w.r.t. _ is not necessarily linear w.r.t.

+. In the following, we will derive a condition for a linear code w.r.t, q_ to be linear w.r.t. +.

Let fi and _, be two n-tuples over S_,.psK, and let q,, denote fi+_. For 1 < i < _, let the i-

th binary component n-tuples of u, v and ",V be represented as 1i") = (u],, u2,,..., u,,), _,(0 =

(vl,,v2,,...,v,,,), and _,(0 = (wl,,w2,,..., w,,), respectively. Then the following recursive

equations hold [I3]:

wj, = uj,_v._,_zji, for l<i<g, (2.11)

z., = uj,-lv:,-1 • (uji-1 • vi,-1)z_,-l, for 1 < i < g, (2.12)

zj1 = O. (2.13)

For 1 < i < £, let c(O(fi, _') be defined as

c">(Q,v)=a (_x,,_,..., =,,). (2.i4)

For two binary n-tuples, _ = (al, az..., a,,) and 13 = (hi, b2,..., b,,), let A. 13 be defined as

_. 6 ___a(al- bl,a2. b_,..., a,. b,),

where aj • bj denotes the logical product of a s and b_.

It follows from (2. II) to (2.I4) that for I < i < g,

Let c(fi, i,) be defined as

c(,a,_,)-_c(_(a,_,)+ 2c(_(a,_,)+...+ 2'-_c_(a,v). (2.16)

Then,

Q+ ,_= a $ e _ c(a,_). (2.]7)

Now consider a block code C over S_,.psK which is hnear w.r.t. $. Let 1i and _, be two

codewords in C. Then it follows from (2.17) that O + _ E C if and only if

c(fi, _,) E C. (2.1S)

For 1 < i < g, let C (i) and C, be defined as

c('__ {¢'_: ¢'>+... +2,-,¢o+... +2'-'¢'_ec} , (2.19)
c, _={¢0: Z-'¢'__c}. (2.20)
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By definition

c, c c co. (2.21)

Since C is linear w.r.t. _, C (i) and C, are also linear w.r.t. _ and

C1 + 2C2 +... + 2t-ZCz C_ C, (2.22)

where the equality holds if C is a basic multilevel code. For binary codes C and C' of the

same length, let C. C' be defined as

C.C'ZX { }.= [1.9 " Q6C and 96C'

Now we present two lemmas regarding to the closure property of a 2t-PSK code.

Lemma 1: Suppose that C is a linear code over S2<r, sK w.r.t. $ and for 1 < i < t,

C (0- C (i)C_ C,+z. (2.23)

Then C is closed under the component-wise modulo-2 t addition, and hence is linear w.r.t. +.

Proof: By induction, we show that for 1 < i <

c(i)(Q, 9) 6 C,. (2.24)

Since c(1)(fi, 9) = 0, c(1)(fi, _') 6 C1. Suppose that c(J)(fi, 9) 6 Cj for 1 < j < i < t. Since C (0

and C_+1 are linear w.r.t. _, it follows from (2.15), (2.21) and (2.23) that c(;+_)(Q, 9) 6 C,+].

Consequently (2.18) follows from (2.16),(2.22) and (2.24), and this lemma holds. AA

Lemma 2: Suppose that C is a linear basic multilevel code over S2t.PS K w.r.t. _. Then

C(= C1 + 2C2 + "" + 2t-lCt) is closed under the component-wise modulo-2 t addition, if and

only if

C,. C, C C,+1, for 1 _< i < L (2.25)

Proof: Only if part: Let fi (or 9) denote the n-tuple over S2z.PS K whose i-th binary

component n-tuple is 1](i) 6 C, (or 9 (0 6 C,) and whose other binary component n-tuples are

the all-zero n-tuple 0. Assume that fi + "_ 6 C. It follows from (2.11) to (2.13) that for these

specific fi and 9,

z_+s = u.,,v.,, for 1 < i < L (2.26)
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From (2.14),(2.18) and (2.26), we see that

c(i+l)(O., .,;.) = fi(i). _.(0 E C,+i.

That is, C,. C, C_ C,+1.

If part: Since C is a basic multilevel code, Ci = C (i) for 1 < i < l. Then if part follows from

Lemma 1. AA

3. A Necessary and Sufficient Condition for a 2t-PSK Modulation

Code to be Invariant Under 180°/2 t-h Phase Shift with 1 g h g

Now we consider the phase symmetry of a block 2t-ary PSK modulation code. To determine

the phase symmetry of a code, we need to know the smallest rotation under which the code

is invariant.

For 1 _< h _< t, let 2h-li denote the n-tuple over S2*.PSK whose h-th binary component

n-tuple is the all-one n-tuple and whose other binary component n-tuples are the all-zero

n-tuple. A code C of length n over S2t.PSK is said to be invariant under 180"/2 t-h phase shift

if for any codeword _, in C,

9 + 2h-'i E C. (3.1)

By letting fi = 2h-li in (2.11) to (2.16), we obtain the following equations:

(1)

w_i=v v@zji, for 1 <i<£. (3.2)

(2) If h < t, then

z¢i = vji-lzji-1, for h < i < L (3.3)

(3)

xjh = 1. (3.4)

(4) If 1 < h, then

zji=O, for 1 <i<h. (3.5)

It follows from (3.2) to (3.5) that we have Lemma 3.
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Lemma 3: For 1 __ h _< t, a linear code C over S:cpsz w.r.t. _ is invariant under 180"/2 l-h

phase shift if and only if for any codeword _,(1) + 2_7(2) + ... + 2t-l@(t) in C,

where i denotes the all-one n-tuple.

AA

If C is a linear basic e-level code w.r.t. _, denoted C1 + 2C2 +... + '2t-lCt, then the necessary

and sufficient condition (3.6) is expressed as follows:

(1)
i E Ch, and (3.7)

(2)

if h < i, then Ch • Ch+l ..... C i-1 C_ Cj, for h + 1 < j < t.

Obviously, a linear code C over S2tps K w.r.t.

and only if ih E C.

(3.8)

+ is invariant under 180"/2 t-h phase shift, if

4. Code Examples

In Table 1, seven basic multilevel block codes [3] and four nonbasic block codes for 8-PSK

and 16-PSK modulations are given. The number of states of a trellis diagram for e_h basic

multilevel block code is computed based on the numbers of states of trellis diagrams for its

binary component codes [14]. Among four nonbasic codes, two zero-tail Ungerboeck trellis

codes for 8-PSK modulation [1] are shown. In Table 1, Vn, P,,,P_,RM,:,s-RM,j and ex-Golay

denote the set of all the binary n-tuples, the set of all even weight binary n-tuples, the dual

code of P,, which consists of the all-zero and all-one n-tuples, the j-th order Reed-Muller

code of length T, a shortened j-th order Reed-Muller code of original length 2', and the

extended (24,12) code of binary Golay code. F1 and F2 denote two codes over {0, 1,2, 3}

which are defined as following [4]. Let p(zl, z_,..., zh) be a boolean polynomial which is used

to represent the binary 2h-tuple whose i-th bit is given by p(q, is,..., {h) where (il, i2," ", ih)
!,

is the binary representation of the integer i- 1, i.e. i- 1 = _ ij2 J-1 . Let g_,., denote the
3=1
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Next we consider the phase rotation inv_riant property of codes given "in Table 1. Since

codes C[1], C[4], C[5], C[6] and C[ll] are linear w.r.t. + and i is contained in P_, RM,,,, or

ex-Golay, there codes are invariant under 180"/2 t-1 phase shift. It follows from the properties

(i) a_ad (ii) of Reed-Muller codes that codes C[8], C[9] with n = 0 rood 4 and C[10] are readily

shown to meet the conditions given by (3.7) and (3.8) with h = 1. Code C[2] is shown to

contain 2i, and therefore is invariant under 90* phase shift. Code C[3] contains 2_i only and

is invariant only under 180" phase shift, and code C[7] does not contain even 2uJ..
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