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We report the first experimental demonstration of a transmission mode micro-mechanical 

beam steering device for use in stand-off terahertz imaging and spectroscopy. The device 

was constructed by laminating laser-cut 96% alumina sheets to form two plates with 

interlocking rectangular gratings of 762 µm period and characterised at 94 GHz in a free-

space measurement set-up with an automated elevation scan. Plate tilts of up to 6o, 

deflected the transmitted beam by 6o for the transverse electric (TE) polarisation, and 4o for 

the transverse magnetic polarisation. Finite difference time domain simulations of the TE 

performance were in good agreement with the measurements. © 2007 Optical Society of 

America 

          OCIS codes: 120.5060  Phase modulation 230.3990  Microstructure devices, 260.1440  

Birefringence, 350.4010  Microwaves 
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Terahertz source and detector technology continues to develop at a rapid pace, enabling an ever-

wider range of applications. Early systems emitted and detected broad-band pulses using 

ultrafast lasers and photo-conductive switches [1] or non-linear crystals [2] and had the 

disadvantage of being bulky and expensive. The development of quasi-monochromatic 

continuous wave systems based on the photo-mixing of two diode laser sources of dissimilar 

wavelength [3] has demonstrated the potential for compact, inexpensive terahertz systems. 

Further size reductions are likely to come from solid-state approaches such as quantum cascade 

lasers [4]. In order to fully exploit such technology at the system level, it is necessary to have full 

control over the emitted quasi-optical beams.  An important application is that of beam steering, 

with a requirement to image a 1m target at 10m (implying a beam steering through ±2.8o) [5]. 

Phased array techniques typically used at microwave frequencies [6].  Unfortunately they are 

impractical for use at terahertz frequencies since the required precision in the control of phase is 

unattainable. This difficulty is avoided in optics by the use of micro-electro-mechanical systems 

(MEMS) devices, such as reflection-mode spatial modulators [7] based on arrays of micro-

actuated mirrors. Similar benefits are expected to accrue to present and future terahertz systems 

through using MEMS devices, with the further advantage of being able to make even more 

compact transmission mode devices due to the low loss at terahertz frequencies of typical 

micromachining substrates.  

A number of terahertz micromechanical devices have been demonstrated already, 

including fixed Fresnel lenses [8] and variable polarisation compensators [9]. Tuneable filters 

have been successfully applied to a commercial terahertz system [3]. As stand-off distances 

increase, the ability to compactly steer a beam without shifting the delicately-aligned generation 

or detection optics becomes important. For example, two-axis scanning mirrors are acceptable 
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for image formation in a lab-based contact-imaging system but may be inappropriate for future 

non-contact imaging systems that may be used in the field. We recently proposed a solution to 

this problem in the form of a transmission-mode beam steering device based on an interlocking 

artificial dielectric [10] that can be microfabricated in silicon or any other readily-machinable 

low-loss, low-dispersion dielectric material. In this Letter, we report the first experimental 

demonstration of such a device. Due to the relatively recent development of metamaterial based 

devices for terahertz quasi-optics, the characterization of micromechanical implementations is an 

important step towards the ultimate goal of achieving MEMS devices with integrated electro-

mechanical actuators.   

The beam steering device comprises two plates with interlocking rectangular gratings, as 

shown in Fig. 1. The gratings are chosen to have subwavelength period Λ, and groove depth d on 

the order of a wavelength. The tilt angle θt is 0o when the plates are parallel and fully 

interlocked. By tilting one plate such that the plates are fully interlocked at one end and partially 

interlocked at the other, a graded phase delay medium is created. The greater θt, the greater the 

increase in phase delay from one side of the device to the other, thus the greater the normally 

incident beam is deflected, or steered, θs, upon transmission.  The transverse electric (TE) and 

transverse magnetic (TM) linear polarisations are defined with respect to the grating vector k. 

The TE electric field (ETE) is perpendicular to k, while the TM electric field (ETM) is parallel to 

k. TE polarisations experience a positive steer (θs > 0) whilst TM polarisations experience a 

negative steer (θs < 0), due to the birefringence of the rectangular gratings.  

A detailed quasi-analytical and numerical analysis of the performance can be found 

in [10], including the discrete array factor (AF) calculation. The AF calculation provides the 

insight of a simple analytical model but allows for improved accuracy through the incorporation 
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of simple numerical techniques. Summarising the method briefly, we consider the discretised, 

angular distribution of the transmission coefficient of the device, T(θ):     

! 

T(") =
1

N
A(m)e

j k0m#z cos" +$(m )+% (z )( )

m=1

N

&  

where N is the number of points modelled across the device, Δz  is the distance between the mth
 

and m +1th points, k0 is the propagation constant in air, A(m) is the magnitude and α(m) the phase 

of the transmission coefficient for the mth section of the device and β(x) is a phase correction 

factor to account for the wedge shape of the device. The transmission coefficient is calculated 

separately for each of the m sections of the device, using second order effective medium theory 

to homogenise the gratings and a 1-dimensional T-matrix method account for multiple internal 

reflections [10].  

A prototype device was constructed from laser cut sections of 381 µm thick ceramic. By 

laminating together sections of alternating size (4 × 33 mm, and 8 × 33 mm), a device of 33 mm 

by 33 mm was produced with b = 4 mm, d = 4 mm and Λ = 762 µm.  The laminations in the 

plates were semi-permanently glued by allowing a thin cyano-acrylate adhesive to wick into the 

joints. In order to ensure that the plates could be fully interlocked in this, the bottom plate was 

assembled and glued in a specially made plastic clamp, then the top plate was assembled using 

the bottom plate as a guide.  The plastic clamp was removed for the experiment. For mass 

production, we envisage the use of moulds to directly create plates using either powdered 

alumina or high-refractive index plastics.  For the batch fabrication of devices designed to 

operate at higher frequencies, e.g. 1 THz, it would be more appropriate to use conventional bulk 

micromachining techniques [11]. The tilt angle between the plates was adjusted manually. 
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The experimental setup is shown in Fig. 2. It comprised a Gunn diode oscillator 

producing 0 dBm of power at 94 GHz into a standard gain WR-10 pyramidal horn antenna with 

the boresight oriented vertically. The source and transmitting horn were enclosed in absorbing 

foam, except for an aperture above the transmitting horn. A correctly aligned aperture eliminated 

stray fields and did not significantly alter the transmitted beam pattern, whereas deliberate 

misalignment resulted in an asymmetrical beam pattern. Fan-forced air cooling was used to avoid 

thermal drift of the oscillator’s output frequency and power.  Due the narrow-band operation of 

the available source, we only show results for a single frequency.    

 

The device was mounted over a mechanically stable absorbing foam aperture on the axis 

of rotation of a motorised rotation stage. A second horn antenna was mounted on a foam-covered 

metal arm attached to rotation stage, at a radius of 20 cm, to allow automated elevation scans. A 

commercially available laser level tool was used to check and carefully adjust the alignment of 

the system. An Agilent 8564E spectrum analyser with an external diplexer and harmonic mixer 

(conversion loss 30 dB) was used to record the magnitude of the transmitted beam. Both the 

rotation stage and spectrum analyser were computer controlled, allowing automated capture of 

the radiation pattern. For each device setting in the range °!!° 60
t
" , the radiation pattern was 

recorded between - °45 and + °45  in °5.0 steps. Measurements were conducted for the TE 

polarisation first, then for the TM polarisation.  

 

Since the material and dimensions of the device were different to the example in [10], 

simulations were performed with a rigorous full vector electromagnetic solver tool using the 

finite-difference time-domain (FDTD) algorithm [12]. The 3-dimensional simulation domain 
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comprised 120 × 490 × 460 (x × y × z) cubic mesh cells of side length 40 µm, with an additional 

10 layers of perfectly matched layer (PML) boundary conditions. See Fig. 1(a) for the orientation 

of the FDTD simulation axes relative to the device. Five periods of the device (3.8 mm) were 

modelled in the x direction and 16 mm in the z direction. For TE polarisation, a single Ez field 

component located opposite the middle of the fixed plate but 10 cells away from the device was 

stimulated. The dipole nature of this type of source gives a rotationally invariant pattern in the 

TM polarisation so simulation results are only presented for TE polarisation. Using continuous 

wave excitation at 94 GHz with a raised sine envelope, each simulation was run until 

convergence (typically 160,000 time steps). Far field patterns were calculated using the steady 

state field patterns recorded in the last period of the simulation, 6 cells inside the PML boundary.  

 

Examples of the measured TE and TM radiation patterns are shown in Fig. 3, for the case 

of the maximum 6o tilt. The magnitude of the two radiation patterns has been normalised to aid 

comparison. The TE pattern steers by °6 while the TM pattern steers by °4 in the opposite 

direction. The TE pattern shows the steered E-plane radiation pattern of the horn antenna, hence 

it has a narrower main lobe but more prominent side lobes compared to the TM (H-plane) 

pattern. The difference in the E-plane and H-plane radiation pattern of the horn antenna is a 

consequence of the dimensions of the horn’s aperture and not related to the device performance 

[13].  

 

The measured tilt-steer performance of the device is plotted in Fig. 4 for TE and TM 

polarisations, along with the simulated TE tilt-steer performance and the results of the discrete 

array factor calculations.  While the measured data points are indicated by symbols, lines have 
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been added to guide the reader. We estimate the error in the measurement to be ±1o. The mid 

point of the measured radiation patterns was determined by calculating the centre point of a 

curve fitted between the -3dB points of the main lobe. While we show single scans in Fig. 3, we 

calculated the centre point using data averaged across several scans taken in each carefully 

measured positional setting. This averaging helped further reduce the noise floor of the 

measurement, but did not compensate for any slight error in the device’s positional setting. The 

discrete array factor (AF) calculations were performed after the experiment, using the aperture 

size and fill factor as fitting parameters. The AF results plotted in Fig. 4 used a 16 mm aperture 

in the centre of the device and a fill factor of 0.517. The fill factor implies that the longer teeth 

were constructed from alumina sheets that were, on average, 3.5% thicker than the nominal 

value, and the shorter teeth from sheets that were 3.5% thinner. This is plausible because the 

manufacturer’s data sheet indicates the sheet thickness tolerance is ±7%. 

 

The TM steer shows a near linear dependence upon tilt as would be expected by 

comparison to the results in [10], whereas the TE steer is greater, but less linear. The AF 

calculation shown in Fig. 4 exaggerates the non-linearity in the TM performance because it only 

accounts for internal reflections that are parallel to the direction of propagation of the incident 

wave and has reduced accuracy when the magnitude of the internal reflections is increased by 

omitting the anti-reflection coatings. The slight ‘opposite steer’ for both TE and TM arising at a 

tilt of °1  is a measurement artifact arising from error in adjusting the tilt of the device to such a 

small angle. The local maximum for TE and TM at a tilt of °2  is a consequence of multiple 

internal reflections between the tilted inner faces of the device. The simulated performance for 

TE agrees reasonably well with the measured data. The presence of the non-linearity at °2  in the 
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simulated data confirms that this is not a measurement error. In order to obtain maximum 

steering performance in an application using the TE polarisation, the effect of any non-linearity 

could be mitigated with an appropriate control algorithm. 

 

In conclusion, we present the first experimental realisation of a beam steering device for 

use at millimetre wave and terahertz frequencies. The device was constructed from laminated 

laser cut ceramic sheets, and the beam steering performance characterised in a computer-

controlled setup at 94 GHz. The plate tilt was controlled by hand. As expected, the steering 

performance differed for TE and TM polarisations. The  TE polarisation steering up to °6  for a 

relative plate tilt of °6 , whereas for the same tilt the TM polarisation steered less, at 4o, and in 

the opposite direction. Such a device can be configured to give deflections over a working range 

of 12o by orienting for the TE polarisation and tilting the plates in both directions, i.e. 

°!!°" 66
t
# . These deflections exceed the already identified performance requirement of ±2.8o 

deflection that is required to image a 1 m target area that is 10 m distant [5]. 
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Figure Captions 

 

Fig. 1.  Diagram of a section of the beam steering device: (a) side view, (b) front view (not to 

scale). 

 

Fig. 2.  Diagram of the experimental setup, comprising an absorbing foam aperture upon which 

the beamsteering device is placed, a Gunn diode continuous wave source of 94 GHz illumination 

under the aperture and a receiving horn on a rotation stage above the aperture. The axis of 

rotation of the receiving horn is located at the centre of the beamsteering device. 

 

Fig. 3.  Lobe pattern of TM and TE with a 6° plate tilt. 

 

Fig. 4.  Steering performance of the measured device as a function of relative plate tilt. Finite 

difference time domain (FDTD) simulation results are shown for the TE polarisation, while 

discrete array factor (AF) calculation results are shown for both polarisations.  
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