8 research outputs found

    Architectures and Algorithms for Intrinsic Computation with Memristive Devices

    Get PDF
    Neuromorphic engineering is the research field dedicated to the study and design of brain-inspired hardware and software tools. Recent advances in emerging nanoelectronics promote the implementation of synaptic connections based on memristive devices. Their non-volatile modifiable conductance was shown to exhibit the synaptic properties often used in connecting and training neural layers. With their nanoscale size and non-volatile memory property, they promise a next step in designing more area and energy efficient neuromorphic hardware. My research deals with the challenges of harnessing memristive device properties that go beyond the behaviors utilized for synaptic weight storage. Based on devices that exhibit non-linear state changes and volatility, I present novel architectures and algorithms that can harness such features for computation. The crossbar architecture is a dense array of memristive devices placed in-between horizontal and vertical nanowires. The regularity of this structure does not inherently provide the means for nonlinear computation of applied input signals. Introducing a modulation scheme that relies on nonlinear memristive device properties, heterogeneous state patterns of applied spatiotemporal input data can be created within the crossbar. In this setup, the untrained and dynamically changing states of the memristive devices offer a useful platform for information processing. Based on the MNIST data set I\u27ll demonstrate how the temporal aspect of memristive state volatility can be utilized to reduce system size and training complexity for high dimensional input data. With 3 times less neurons and 15 times less synapses to train as compared to other memristor-based implementations, I achieve comparable classification rates of up to 93%. Exploiting dynamic state changes rather than precisely tuned stable states, this approach can tolerate device variation up to 6 times higher than reported levels. Random assemblies of memristive networks are analyzed as a substrate for intrinsic computation in connection with reservoir computing; a computational framework that harnesses observations of inherent dynamics within complex networks. Architectural and device level considerations lead to new levels of task complexity, which random memristive networks are now able to solve. A hierarchical design composed of independent random networks benefits from a diverse set of topologies and achieves prediction errors (NRMSE) on the time-series prediction task NARMA-10 as low as 0.15 as compared to 0.35 for an echo state network. Physically plausible network modeling is performed to investigate the relationship between network dynamics and energy consumption. Generally, increased network activity comes at the cost of exponentially increasing energy consumption due to nonlinear voltage-current characteristics of memristive devices. A trade-off, that allows linear scaling of energy consumption, is provided by the hierarchical approach. Rather than designing individual memristive networks with high switching activity, a collection of less dynamic, but independent networks can provide more diverse network activity per unit of energy. My research extends the possibilities of including emerging nanoelectronics into neuromorphic hardware. It establishes memristive devices beyond storage and motivates future research to further embrace memristive device properties that can be linked to different synaptic functions. Pursuing to exploit the functional diversity of memristive devices will lead to novel architectures and algorithms that study rather than dictate the behavior of such devices, with the benefit of creating robust and efficient neuromorphic hardware

    A Survey on Reservoir Computing and its Interdisciplinary Applications Beyond Traditional Machine Learning

    Full text link
    Reservoir computing (RC), first applied to temporal signal processing, is a recurrent neural network in which neurons are randomly connected. Once initialized, the connection strengths remain unchanged. Such a simple structure turns RC into a non-linear dynamical system that maps low-dimensional inputs into a high-dimensional space. The model's rich dynamics, linear separability, and memory capacity then enable a simple linear readout to generate adequate responses for various applications. RC spans areas far beyond machine learning, since it has been shown that the complex dynamics can be realized in various physical hardware implementations and biological devices. This yields greater flexibility and shorter computation time. Moreover, the neuronal responses triggered by the model's dynamics shed light on understanding brain mechanisms that also exploit similar dynamical processes. While the literature on RC is vast and fragmented, here we conduct a unified review of RC's recent developments from machine learning to physics, biology, and neuroscience. We first review the early RC models, and then survey the state-of-the-art models and their applications. We further introduce studies on modeling the brain's mechanisms by RC. Finally, we offer new perspectives on RC development, including reservoir design, coding frameworks unification, physical RC implementations, and interaction between RC, cognitive neuroscience and evolution.Comment: 51 pages, 19 figures, IEEE Acces

    On the development of slime mould morphological, intracellular and heterotic computing devices

    Get PDF
    The use of live biological substrates in the fabrication of unconventional computing (UC) devices is steadily transcending the barriers between science fiction and reality, but efforts in this direction are impeded by ethical considerations, the field’s restrictively broad multidisciplinarity and our incomplete knowledge of fundamental biological processes. As such, very few functional prototypes of biological UC devices have been produced to date. This thesis aims to demonstrate the computational polymorphism and polyfunctionality of a chosen biological substrate — slime mould Physarum polycephalum, an arguably ‘simple’ single-celled organism — and how these properties can be harnessed to create laboratory experimental prototypes of functionally-useful biological UC prototypes. Computing devices utilising live slime mould as their key constituent element can be developed into a) heterotic, or hybrid devices, which are based on electrical recognition of slime mould behaviour via machine-organism interfaces, b) whole-organism-scale morphological processors, whose output is the organism’s morphological adaptation to environmental stimuli (input) and c) intracellular processors wherein data are represented by energetic signalling events mediated by the cytoskeleton, a nano-scale protein network. It is demonstrated that each category of device is capable of implementing logic and furthermore, specific applications for each class may be engineered, such as image processing applications for morphological processors and biosensors in the case of heterotic devices. The results presented are supported by a range of computer modelling experiments using cellular automata and multi-agent modelling. We conclude that P. polycephalum is a polymorphic UC substrate insofar as it can process multimodal sensory input and polyfunctional in its demonstrable ability to undertake a variety of computing problems. Furthermore, our results are highly applicable to the study of other living UC substrates and will inform future work in UC, biosensing, and biomedicine

    An Initial Framework Assessing the Safety of Complex Systems

    Get PDF
    Trabajo presentado en la Conference on Complex Systems, celebrada online del 7 al 11 de diciembre de 2020.Atmospheric blocking events, that is large-scale nearly stationary atmospheric pressure patterns, are often associated with extreme weather in the mid-latitudes, such as heat waves and cold spells which have significant consequences on ecosystems, human health and economy. The high impact of blocking events has motivated numerous studies. However, there is not yet a comprehensive theory explaining their onset, maintenance and decay and their numerical prediction remains a challenge. In recent years, a number of studies have successfully employed complex network descriptions of fluid transport to characterize dynamical patterns in geophysical flows. The aim of the current work is to investigate the potential of so called Lagrangian flow networks for the detection and perhaps forecasting of atmospheric blocking events. The network is constructed by associating nodes to regions of the atmosphere and establishing links based on the flux of material between these nodes during a given time interval. One can then use effective tools and metrics developed in the context of graph theory to explore the atmospheric flow properties. In particular, Ser-Giacomi et al. [1] showed how optimal paths in a Lagrangian flow network highlight distinctive circulation patterns associated with atmospheric blocking events. We extend these results by studying the behavior of selected network measures (such as degree, entropy and harmonic closeness centrality)at the onset of and during blocking situations, demonstrating their ability to trace the spatio-temporal characteristics of these events.This research was conducted as part of the CAFE (Climate Advanced Forecasting of sub-seasonal Extremes) Innovative Training Network which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813844

    Online learning of physics during a pandemic: A report from an academic experience in Italy

    Get PDF
    The arrival of the Sars-Cov II has opened a new window on teaching physics in academia. Frontal lectures have left space for online teaching, teachers have been faced with a new way of spreading knowledge, adapting contents and modalities of their courses. Students have faced up with a new way of learning physics, which relies on free access to materials and their informatics knowledge. We decided to investigate how online didactics has influenced students’ assessments, motivation, and satisfaction in learning physics during the pandemic in 2020. The research has involved bachelor (n = 53) and master (n = 27) students of the Physics Department at the University of Cagliari (N = 80, 47 male; 33 female). The MANOVA supported significant mean differences about gender and university level with higher values for girls and master students in almost all variables investigated. The path analysis showed that student-student, student-teacher interaction, and the organization of the courses significantly influenced satisfaction and motivation in learning physics. The results of this study can be used to improve the standards of teaching in physics at the University of Cagliar

    Exploring the potential of brain-inspired computing

    Get PDF
    The gap between brains and computers regarding both their cognitive capability and power efficiency is remarkably huge. Brains process information massively in parallel and its constituents are intrinsically self-organizing, while in digital computers the execution of instructions is deterministic and rather serial. The recent progress in the development of dedicated hardware systems implementing physical models of neurons and synapses enables to efficiently emulate spiking neural networks. In this work, we verify the design and explore the potential for brain-inspired computing of such an analog neuromorphic system, called Spikey. We demonstrate the versatility of this highly configurable substrate by the implementation of a rich repertoire of network models, including models for signal propagation and enhancement, general purpose classifiers, cortical models and decorrelating feedback systems. Network emulations on Spikey are highly accelerated and consume less than 1 nJ per synaptic transmission. The Spikey system, hence, outperforms modern desktop computers in terms of fast and efficient network simulations closing the gap to brains. During this thesis the stability, performance and user-friendliness of the Spikey system was improved integrating it into the neuroscientific tool chain and making it available for the community. The implementation of networks suitable to solve everyday tasks, like object or speech recognition, qualifies this technology to be an alternative to conventional computers. Considering the compactness, computational capability and power efficiency, neuromorphic systems may qualify as a valuable complement to classical computation
    corecore