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Abstract

Artificial Neural Networks (ANNs) appear increasingly and routinely to gain popularity
today, as they are being used in several diverse research fields and many different
contexts, which may range from biological simulations and experiments on artificial
neuronal models to machine learning models intended for industrial and engineering
applications. One example is the recent success of Deep Learning architectures (e.g.,
Deep Belief Networks [DBN]), which appear in the spotlight of machine learning
research, as they are capable of delivering state-of-the-art results in many domains.

While the performance of such ANN architectures is greatly affected by their scale,
their capacity for scalability both for training and during execution is limited by the
increased power consumption and communication overheads, implicitly posing a lim-
iting factor on their real-time performance. The on-going work on the design and
construction of spike-based neuromorphic platforms offers an alternative for running
large-scale neural networks, such as DBNs, with significantly lower power consumption
and lower latencies, but has to overcome the hardware limitations and model specialisa-
tions imposed by these type of circuits. SpiNNaker is a novel massively parallel fully
programmable and scalable architecture designed to enable real-time spiking neural
network (SNN) simulations. These properties render SpiNNaker quite an attractive neu-
romorphic exploration platform for running large-scale ANNs, however, it is necessary
to investigate thoroughly both its power requirements as well as its communication
latencies.

This research focusses on around two main aspects. First, it aims at characterising
the power requirements and communication latencies of the SpiNNaker platform while
running large-scale SNN simulations. The results of this investigation lead to the
derivation of a power estimation model for the SpiNNaker system, a reduction of the
overall power requirements and the characterisation of the intra- and inter-chip spike
latencies. Then it focuses on a full characterisation of spiking DBNs, by developing a set
of case studies in order to determine the impact of (a) the hardware bit precision; (b) the
input noise; (c) weight variation; and (d) combinations of these on the classification
performance of spiking DBNs for the problem of handwritten digit recognition. The
results demonstrate that spiking DBNs can be realised on limited precision hardware
platforms without drastic performance loss, and thus offer an excellent compromise
between accuracy and low-power, low-latency execution. These studies intend to
provide important guidelines for informing current and future efforts around developing
custom large-scale digital and mixed-signal spiking neural network platforms.
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Chapter 1

Introduction

Over many decades researchers from diverse scientific areas have used simulated
neural networks in their experimentation. For computational neuroscientists, the focus
is to create and test model hypotheses based on results retrieved from in-vivo or
in-vitro experimentation. Large-scale simulations [Markram, 2006; Eliasmith et al.,
2012] of neural tissue offer an attractive alternative methodology for investigating the
functionality of different brain regions as it allows greater observability, experimental
control and reproducibility. Computer scientists, on the other hand, inspired by the
brain’s inherent massive parallelism, energy-efficiency and tolerance to defects, seek to
explore novel computational paradigms by exploiting the computational capabilities
of networks of neurons for accelerating efficiently cognitive tasks [Aleksander, 1990;
Maass and Markram, 2004; Furber and Temple, 2007].

In 1943 Warren McCulloch and Walter Pitts [McCulloch and Pitts, 1943] introduced
the first artificial neuron model known as the Threshold Logic Unit (TLU). The TLU
was a basic unit that summed its weighted inputs and produced a binary output if
the sum exceeded a threshold. This model was used by researchers to investigate
biological processes in the brain, as well as, a new computational framework in the
field of artificial intelligence. Later in that decade, Donald Hebb in his book entitled
The organisation of behaviour [Hebb, 1949] described his theory on neural plasticity
known as Hebbian learning, which is often paraphrased as “Neurons that fire together
wire together”. His theory was not only significant to the field of neuropsychology but
also was later used as an unsupervised learning method in Artificial Neural Networks
(ANNs). Frank Rosenblatt in the late 1950s introduced a two-layer network composed
of TLUs, known as the perceptron [Rosenblatt, 1958], which was capable of classifying
linearly separable patterns. Interest in ANNs stagnated due to a publication from Minsky
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and Papert [1969] where they proved that two-layer neural networks were incapable
of solving nonlinear separable problems, such as the exclusive-or function. Gradually
the binary activation function was replaced with a nonlinear continuous function to
model the firing rates of biological neurons in the brain, and more layers were added.
The interest in ANNs revived with the development of the backpropagation algorithm
by Werbos [1974] that enabled Multi-Layered Perceptrons (MLPs), with a nonlinear
continuous activation functions, to be trained efficiently and in a supervised manner.
ANNs stagnated once again in the early 1990s when Boser et al. [1992] introduced the
Support Vector Machines (SVMs) as a way to create nonlinear classifiers. SVMs had
better theoretical properties and outperformed ANNs in many tasks for several years.

While ANNs are once again a very hot topic in the field of machine learning with
the advent of deep architectures [Hof, 2013], Spiking Neural Networks (SNNs), also
referred to as the third generation of ANNs [Maass, 1997], were introduced in order to
increase the level of biological realism in the neural network simulations. The main
difference between SNNs and ANNs is the concept of time. Typically in ANNs, all
neurons generate an output synchronously at each propagation cycle (MLP), which can
be seen as the normalised firing rate of a neuron within a period of time. In contrast,
each spiking neuron has a membrane potential which varies with time and input signals.
When the membrane potential reaches a threshold value a spiking neuron generates a
stereotypical event, also known as spike or action potential (AP), which travels along the
axon to the synapses and alters the membrane potential of the target neurons. The first
detailed model of a spiking neuron was described by Hodgkin and Huxley [1952], based
on the experiments they performed on the giant axon of the squid. Since then networks
of spiking neurons have been used to test and validate hypothesis of the functionality of
neuronal circuits [Eliasmith et al., 2012], and as a new computational framework [Maass
and Markram, 2004]. The interest in modelling the brain in greater detail is reflected by
the scientific community with efforts like the Human Brain Project (HBP) [HBP, 2013]
and the Brain Research through Advancing Innovative Neurotechnologies1 (BRAIN)
initiative. In addition, inspired by the parallel nature and efficiency of the human brain
and from the need to model analogies of the human brain in computers, a research
track has been spawned that investigates the idea of simulating neurons and synapses
directly on hardware. This is reflected by the industry with projects like SyNAPSE
[Sawada and Modha, 2013] from DARPA/IBM, aimed for executing cognitive tasks in
an energy efficient manner and in real-time and “to bring the sort of intelligence that

1http://www.braininitiative.nih.gov
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people usually associate with the cloud down to the handset” [Monroe, 2014]. In the
past several research groups have investigated the idea of simulating MLPs directly on
hardware in order to accelerate a number of applications efficiently and as a method
to address potential future power limitations of conventional computer architectures
known as the dark silicon2 effect [Esmaeilzadeh et al., 2012a]. Results revealed that
hardware accelerators based on ANNs are defect-tolerant [Temam, 2012] and have
shown speed-ups and energy savings [Esmaeilzadeh et al., 2012b] when compared to
conventional computers.

Spiking neural networks can be simulated with different levels of abstraction and
granularity. Single compartment models [Moratal, 2012] are neuron models that capture
the fundamental dynamics of biological neurons and due to their low computational cost
are suitable for large-scale simulations [Izhikevich, 2004]. They are also particularly
suited to biological real-time simulations, as this permits larger-scale neural networks to
be created, whilst minimising power consumption; for instance to run biological models
embodied in robots [Galluppi et al., 2012a] or use a retina to model the response of the
visual system [Galluppi et al., 2012c]. In the past, large-scale simulations of spiking
neural networks have been successfully executed on general-purpose supercomputers
[Markram, 2006; Izhikevich and Edelman, 2008; Ananthanarayanan et al., 2009]. How-
ever, while supercomputers offer significant parallelism and great opportunity for model
flexibility, they suffer from large electrical power demands, which are rarely reported,
and from communication bottlenecks when simulating spiking neural networks. Wong
et al. [2013] simulated 53⇥1010 neurons with 1.37⇥1014 synapses on a Sequioa - Blue-
Gene supercomputer. The simulation ran 1542⇥ more slowly than biological real-time
and the largest cost reported was communicating the spikes via MPI messaging. Power
dissipation was omitted, but the TOP500 [top] supercomputer list states that the peak
power dissipated by the Sequia - BlueGene/Q is 7,890 kW. There are also certain cases
where real-time performance of a neural simulation is a desirable feature. Once such
example is when cognitive neuroscientists and roboticists would like to test and validate
their hypotheses using embodied agents [Galluppi et al., 2012c,a] interacting with their
environment or by interfacing with biologically inspired sensors [Lichtsteiner et al.,

2Dark silicon is a term used to describe the amount of silicon that cannot be powered-on at the
nominal operating voltage for a given thermal design power (TDP) constraint. A study by Esmaeilzadeh
et al. [2012a], which employed two different scaling models for future technology nodes from 45 nm
to 8 nm and two different classes of multi-core CPUs, GPUs and hybrid topologies, while keeping the
power and area budget fixed, revealed that regardless of the chip architecture and topology, multi-core
scaling is power limited. At the 22 nm technology node 21% of the transistors would have to be powered
off, while at the 8 nm node the number of the switched off transistors increases to 50%.
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2008; Leñero-Bardallo et al., 2011; Liu et al., 2010].
Neuromorphic engineering, a term coined by Mead [1990], is an interdisciplinary

field which takes inspiration from biology, physics, computer science and engineering
to design hardware models of neural and sensory systems. Neuromorphic engineering
originally aimed at exploiting sub-threshold transistor dynamics to emulate neurons
in silicon, efficiently and in real-time. Today, this term has been expanded to include
mixed analogue/digital very large scale integration (VLSI) circuits, digital hardware
implementations and also biologically inspired sensory processing systems [Lichtsteiner
et al., 2008; Leñero-Bardallo et al., 2011; Liu et al., 2010]. By simulating neurons
directly on hardware it is possible to overcome the synchronisation and communication
overheads of conventional computers. Recently, TrueNorth [Merolla et al., 2014b]
simulated a million spiking neurons in real-time while consuming 63 mW; the identical
network executed on an optimised software simulator Compass [Preissl et al., 2012] was
100 to 200⇥ slower than real-time and consumed 100,000 to 300,000⇥ more energy
per synaptic event [Merolla et al., 2014b]. The neuromorphic approach can be very
power efficient, as neuron dynamics are implemented directly in silicon but many neu-
romorphic systems are highly optimised to a particular neural model and offer minimal
configurable interconnectivity, often limited by wiring density. Most large-scale systems
have overcome the latter by employing alternative communication approaches including
using an Address Event Representation (AER) packet-based infrastructure, where only
the address of the neuron that fired or the destination is transmitted, to enable connec-
tivity and propagate spikes. To overcome the expense and effort of producing a custom
chip, some research groups have focused their research on more off-the-shelf config-
urable systems. Whilst Graphical processing units (GPUs) and field programmable
gate arrays (FPGAs) are excellent platforms for parallel computation their memory
access bandwidth is a bottleneck. For very large-scale real-time simulations of SNNs
on general programmable platforms it is typically not the computational cost, but the
system communications that is the prime limiting factor [Brette and Goodman, 2012;
Moore et al., 2012].

1.1 Background

Interest in ANNs got renewed over the recent years mainly due to the development
of Deep Learning architectures, which are inspired by advances in neuroscience and
are loosely based on how information is processed in the human brain. Currently,
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deep neural networks represent the state-of-the-art solution for virtually all relevant
machine learning, computer vision, and speech recognition benchmarks [Schmidhuber,
2015; Hof, 2013]. Their advantage over shallow architectures lies in their ability to
extract hierarchies of increasingly abstract relevant features, which give rise to a data
representation that lends itself for task-specific optimisation. Whereas convolutional
networks [LeCun et al., 1998b; Sermanet et al., 2013] currently outperform other
architectures on many vision tasks, the alternative architecture of Deep Belief Networks
(DBNs) [Hinton and Salakhutdinov, 2006] remains very popular due to its ability to
learn from large unlabelled datasets [Le et al., 2012], and because of its dual role as
classifier and generative model of the data. In addition, DBNs have been shown to
improve theoretical performance bounds by adding additional layers of neurons [Hinton
and Salakhutdinov, 2006]. Although training larger and larger networks is currently
the focus of academic and industrial research, this has led to growing demands on
hardware platforms for deep learning. While training remains the biggest bottleneck,
and some of the biggest networks trained to date have required days or weeks on high-
performance computing infrastructure [Dean et al., 2012; Le et al., 2012], the sheer
size of the resulting network calls for special purpose or GPU hardware acceleration
to make the system run close to real-time [Farabet et al., 2011]. However, low-latency
and real-time execution are key demands for mobile and robotic systems, which have
limited computing resources and power but require quick system responses. A recently
proposed solution to overcome the energy demands, communication overhead, and high
response latencies of DBNs is to transform them into spiking neural networks, thereby
exploiting the energy efficiency of event-based updates and communication [O’Connor
et al., 2013]. Furthermore, the proposed framework, which has shown the desired low
latency and high efficiency is targeted for implementation on event-based neuromorphic
hardware platforms. Event-driven networks can have higher energy efficiency because
a clock is not used in the network simulation, and not every neuron updates in every
time step. The efficiency of the event-driven platform TrueNorth [Merolla et al.,
2014b] is around 46 GSops/W, where Sops stands for synaptic operations per second.
Implementing spiking DBNs on neuromorphic hardware will potentially enable them to
perform in a low-latency and energy-efficient manner paving the way for neuromorphic
hardware accelerators suitable for accelerating machine learning tasks. However, as
neuromorphic platforms come in a various forms [Liu et al., 2015] it is important to
investigate how their performance will be affected by hardware constraints imposed by
different hardware implementations and input sensor noise.
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The Spiking Neural Network Architecture, or SpiNNaker, is an application-specific
integrated circuit (ASIC) designed by the Advanced Processor Technologies (APT)
group, at the University of Manchester, to enable the energy-efficient and scalable
simulation of SNNs [Furber and Brown, 2009; Furber et al., 2014]. Each SpiNNaker
chip uses low-power, programmable embedded-type processors in conjunction with
an efficient novel interconnection fabric. By connecting together a great number
of SpiNNaker chips, a SpiNNaker machine is formed that is capable of providing
support for very large networks of flexibly modelled neurons and synapses. The
general programmability of SpiNNaker’s processors allows experimental investigation
of customised neural, synapse models, new plasticity rules [Galluppi et al., 2014b] and
the utilisation of neuromorphic sensors [Galluppi et al., 2012c]. Models with diverse
detail and precision are therefore supported, even heterogeneously within the same
simulation. This flexibility positions SpiNNaker as an excellent exploration platform
for the very active neuroscience and neuromorphic computing research area. In this
context SpiNNaker may be used as a tool for investigating the performance and real-time
requirements of spiking DBNs. Finally, it is estimated that a single SpiNNaker chip will
dissipate less than 1 W during neural simulations [Furber and Brown, 2009]; however, as
the size of the SpiNNaker machines scale up so does the total energy. A detailed power
characterisation of the SpiNNaker chips will allow to estimate the requirements of the
larger systems and also provide the necessary information for further optimisations.

1.2 Motivation and Research Aims

Benchmarking power figures for neurally-inspired hardware is challenging due to the
specificity of different architectures and of models simulated on them. The research
presented in this thesis aims to investigate the power requirements of the SpiNNaker
platform while running large-scale spiking neural network simulations. Areas of
particular interest are the power dissipated by the SpiNNaker chips at different stages
of execution, the energy required to simulate a neuron per millisecond and per synaptic
event. The outcome of this investigation will lead to the derivation of a power estimation
model for the SpiNNaker system. This research also aims to characterise the intra and
inter-SpiNNaker chip spike latencies imposed by the fabric and the software overheads,
and to optimise the overall energy usage.

Spiking DBNs offer an attractive approach to neuromorphic accelerators due to
their scalability, low-latency and potential energy-efficiency as recently demonstrated
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by a software implementation [O’Connor et al., 2013]. However, gains in efficiency
should not be outweighed by losses in classification performance due to computation
with spikes instead of real numbers, or due to limitations of the hardware compared
to conventional computers. The hope is that in networks of such large size, numerical
imprecision would rather cancel out than accumulate. In the conversion of [O’Connor
et al., 2013] from digital to spiking DBNs in software only small performance losses
were observed and overall very good performance was reached.

This thesis aims to perform a full characterisation of spiking DBNs by utilising a
reference software spiking neural network simulator [Goodman and Brette, 2008], and
by developing a set of case studies to determine the impact of the hardware bit precision,
the input noise, weight variance, and combinations on the classification performance
of a deep network for handwritten digit recognition [LeCun et al., 1998a]. These
studies will provide important guidelines for informing current and future efforts to
develop custom large-scale digital and mixed-signal spiking network platforms such as
SpiNNaker, TrueNorth, Neurogrid, Bluehive and BrainScales [Merolla et al., 2014b,a;
Benjamin et al., 2014; Pfeil et al., 2013, 2012; Moore et al., 2012], as well as hardware
learning circuits that can train synaptic weights in DBNs [Mitra et al., 2009; Neftci
et al., 2014]. The outcome of this research aims to demonstrate that spiking DBNs can
be realised on limited precision hardware platforms without drastic performance loss,
and thus offer an excellent compromise between accuracy and low-power, low-latency
execution. SpiNNaker will be used as an exploration platform to verify the correctness
of the results, classification latencies of the software simulator and to estimate the
scalability, in terms of power requirements, of the SpiNNaker platform.

1.3 Contributions and Publications

The main contributions of this Thesis include:

• A method to characterise the power dissipation of a SpiNNaker machine based
on the number of neurons, synapses and the activity of a neural network that
lead to a derivation of a power estimation equation [Stromatias et al., 2013], and
the implementation of a novel suspend mode for reducing the overall energy
usage [Stromatias et al., 2014]. In addition, it demonstrated the largest real-time
recurrent spiking neural network simulation at the time of publication [Stromatias
et al., 2013]. This is covered in Chapter 4.
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• A characterisation of the spike latencies of the SpiNNaker platform as imposed
by the communications fabric and the software overheads. This is the author’s
contribution to a work that has been published in the Journal of Frontiers in
Neuromorphic Engineering [Lagorce et al., 2015] and which investigated the
regimes where microsecond operation on SpiNNaker is possible. More details
regarding this are presented in Chapter 4.

• An investigation on how hardware constraints impact the performance of spiking
deep belief networks implemented on neuromorphic hardware. In particular how
the limited bit precision during execution, the impact of silicon mismatch in the
synapses and the noise in the spiking input signal impact the performance of
these neural networks. Results of this contribution are covered in more detail in
Chapter 5 and have been published in the Journal of Frontiers in Neuromorphic
Engineering [Stromatias et al., 2015c].

• An implementation of a real-time, energy-efficient handwritten digit classifica-
tion system on SpiNNaker by utilising spiking DBNs, and a comparison with
previously published hardware implementations. In addition, an estimation of
the power dissipation of larger spiking DBNs running on SpiNNaker machines.
Results of this contribution have been accepted in Stromatias et al. [2015a,b], and
are covered in Chapter 5.

1.3.1 Journal Papers

• F. Galluppi, X. Lagorce, E. Stromatias, M. Pfeiffer, L. Plana, S. B. Furber, and
R. Benosman, A framework for plasticity implementation on the SpiNNaker
neural architecture, Journal of Frontiers in Neuromorphic Engineering, 2014.
Contributed in designing experiments for testing the BCM learning rule and
analysing results.

• X. Lagorce, E. Stromatias, F. Galluppi, L. A. Plana, S-C Liu, S. B. Furber, R.
Benosman, Breaking The Millisecond Barrier On SpiNNaker: Asynchronous
Event-Based Models With Microsecond Resolution And Plasticity, Journal of
Frontiers in Neuromorphic Engineering, 2015. Contributed in characterising the
latencies of the SpiNNaker platform as imposed by the communication fabric
and the software overheads. Results from this Journal paper can be found in
Chapter 4.
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• E. Stromatias, D. Neil, M. Pfeiffer, F. Galluppi, S. B. Furber and S-C. Liu,
Robustness of spiking Deep Belief Networks to noise and reduced bit precision
of neuro-inspired hardware platforms, Journal of Frontiers in Neuromorphic
Engineering, 2015. Results from this Journal can be found in Chapter 5.

• Q. Liu, G. Pineda-Garcia, E. Stromatias, T. Serrano-Gotarredona, and S. B.
Furber, Benchmarking Spike-Based Visual Recognition: a Dataset and Evalua-
tion, submitted to the Journal of Frontiers in Neuromorphic Engineering, 2015.
Contributed by providing a review of the spike-based Deep Belief Networks and
SpiNNaker implementations, as well as, a brief comparison of neuromorphic
platforms in terms of their energy usage and precision.

1.3.2 Conference Papers

• E. Stromatias, F. Galluppi, C. Patterson, S. Furber, Power Analysis of Large-Scale,
Real-Time Neural Networks on SpiNNaker, in proceedings of International Joint
Conference on Neural Networks (IJCNN), Dallas, Texas, USA, August 4-9, 2013.
Results from this paper can be found in Chapter 4.

• E. Stromatias, C. Patterson, S. Furber, Optimising the Overall Power Usage on
the SpiNNaker Neuromimetic Platform, in proceedings of International Joint Con-
ference on Neural Networks (IJCNN), Beijing, China, July 6-11, 2014. Results
from this paper can be found in Chapter 4.

• E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S.C. Liu, S. Furber, Implementing
Low-Latency, Energy-Efficient Spiking Deep Belief Networks on SpiNNaker,
Accepted in the International Joint Conference on Neural Networks (IJCNN),
Killarney, Ireland, July 12-17, 2015. Results from this paper can be found in
Chapter 5.

• E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S.C. Liu, S. Furber, Live Demon-
stration: Handwritten Digit Recognition Using Spiking Deep Belief Networks on
SpiNNaker, Accepted in the International Symposium on Circuits and Systems
(ISCAS), Lisbon, Portugal, May 24-27, 2015. Results from this paper can be
found in Chapter 5.
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1.3.3 Workshops

Participation in various workshops enabled the author to collaborate with different
groups across the globe and built a wide network of contacts. The workshops also had an
important impact on the research presented in this thesis. Many early implementations
and experiments described in this thesis were developed during these workshops, in
particular:

• Capo Caccia Cognitive Neuromorphic Engineering Workshop 2012: Developed
a closed-loop interface between a SpiNNaker Board and a Mobile Robot by
utilising the on-board SpiNNaker links3.

• Capo Caccia Cognitive Neuromorphic Engineering Workshop 2013: Interfaced
SpiNNaker with a silicon cochlea and verified the correctness of the link through
a series of experiments. Also, co-organised the Running Neural Network Models
on SpiNNaker group4.

• Telluride Neuromorphic Cognition Engineering Workshop 2013: Implemented
spike-based Deep Belief Networks on SpiNNaker as part of the Universal Neu-
romorphic Devices and Sensors for Real-Time Mobile Robotics group5. Also,
contributed to the Sound Localisation group6. The results from this workshop
form parts of Chapters 4 and 5.

• Capo Caccia Cognitive Neuromorphic Engineering Workshop 2014: Optimised
the performance of the spike-based Deep Belief Networks on SpiNNaker and
compared results against a reference software simulator. The results from this
workshop form parts of Chapter 5. Also, contributed to the Deep Learning in
computers, chips, and brains discussion group7.

1.4 Thesis Outline

The thesis consists of 6 chapters:

• Chapter 2 presents how neurons and synapses can be mathematically modelled,
and how computational frameworks can be developed by utilising them.

3https://capocaccia.ethz.ch/capo/wiki/2012/mmsnm12
4https://capocaccia.ethz.ch/capo/wiki/2013/spinnaker13
5http://neuromorphs.net/nm/wiki/DBNonSpiNNaker
6http://neuromorphs.net/nm/wiki/sound_localization
7https://capocaccia.ethz.ch/capo/wiki/2014/deeplearning14
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• Chapter 3 describes the different software tools and hardware platforms for
simulating spiking neural networks and introduces the SpiNNaker platform.

• Chapter 4 presents a methodology to characterise the power and latency of a
SpiNNaker machine. Moreover, it presents a methodology to further reduce the
overall energy consumption of larger SpiNNaker systems.

• Chapter 5 investigates how hardware constraints impact the performance of spik-
ing neural network implementations of deep belief networks. It also demonstrates
two different topologies of such networks running on a SpiNNaker system in
real-time and investigates the classification latencies, as a function of the input
rates, and power requirements of larger networks.

• Chapter 6 summarises the research presented in this thesis and suggests how it
can be expanded in the future.



Chapter 2

Computing With Spiking Neural
Networks

2.1 Introduction

Computational neuroscientists have been using simulations of biological tissue as an
approach to understand how particular neural circuits work. Models of simulated neural
networks, based on anatomical data, aim at reproducing phenomena observed in-vivo
and in-vitro experiments. If the simulated network shows similar behaviour, it may
then be used to describe how computations take place in that particular region. In
addition, computational models provide greater observability and reproducibility. The
overall benefit is that a sufficiently accurate model can be simulated repeatedly and
in high-fidelity, without the noise of a biological recording and at whichever level of
detail is required [Sejnowski, 2003]. Neurophysiologists often assume that all useful
information about neural coding can be summarised in the form of Post-Stimulus Time
Histogram (PSTH), which plots firing rate as a function of time. This assumption goes
back to the late 1920s where Adrian [1928] showed that increasing the stimulus intensity
of sensory fibers increased their firing rate. The work of Hodgkin and Huxley [1952] has
given rise to the hypothesis that the precise time of action potential (spike) generation
of a neuron, rather than simply its firing rate could be the information coding in the
brain. Thorpe et al. [1996] demonstrated that humans respond selectively to complex
visual stimuli so rapidly (in the order of 100-150 ms) that they argued that the time
window is too small for rate coding [Thorpe et al., 2001]. Besides vision, other sensory
pathways reveal fast processing; for example neurons in the bat auditory cortex can
respond just 8 ms after the stimulus onset, which, based on the number of the subcortical

28
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processing stages involved, leaves only a couple of milliseconds at each level [Jen et al.,
1989]. Technological advancements in the computing industry allowed scientists to
experiment with larger models. In the past, large-scale simulations of spiking neural
networks were successfully executed on general-purpose supercomputers. The models
used biological data for neural parameters and connectivity patterns and results revealed
brain oscillations [Ananthanarayanan et al., 2009] and synchronisation between different
cortical areas [Izhikevich and Edelman, 2008] similar to Functional Magnetic Resonance
Imaging (fMRI) findings. Recently, Eliasmith et al. [2012] demonstrated the largest
functional model simulation of a brain using biological characteristics and parameters
estimated directly from neural data as constraints.

From an engineering point of view, SNNs, also referred to as the 3rd generation
of ANNs, are computationally more powerful than their predecessors [Maass, 1997]
(rate-based neuron models) and with the development of the field of neuromorphic
engineering [Mead, 1990; Liu et al., 2015] it has become possible to simulate neurons
and synapses directly on hardware. This paves the way for the development of low-
power, low-latency, defect-tolerant hardware circuits that are able to accelerate particular
algorithms which require large amounts of resources on general purpose computing
architectures [Merolla et al., 2014b; Monroe, 2014; Temam, 2012]. However, despite
the computational power of SNNs they still lack the success of their predecessors
and this is mainly because they lack sophisticated learning algorithms that have been
developed over the years and have also benefited from the technological progress
of conventional computers. To address this issue some research groups follow an
intermediate step: a neural network is trained off-line using rate-based neuron models
with state-of-the-art training algorithms [Hinton et al., 2006; LeCun et al., 1998b] and
then the trained network is mapped to a SNN [O’Connor et al., 2013; Perez-Carrasco
et al., 2013; Merolla et al., 2010], ready to be executed efficiently on a neuromorphic
platform [Camuñas-Mesa et al., 2010; Arthur et al., 2012]. Training directly with
spiking neurons is still an open research problem [Neftci et al., 2014].

The first part of this chapter aims to provide a brief biological background on
neurons, synapses as well as different mathematical models used to describe them.
The remainder of this chapter focuses on some of the current frameworks available
for computations using SNNs. Both the neuron and synapse models as well as the
spike-based computation frameworks presented here form just a small subset of those
in the rich research environment of the neuromorphic community.
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2.2 Biological Background

The neuron, which is the fundamental computational unit in the brain, is an electrically
excitable cell that uses electrical and chemical signals to process and transmit infor-
mation. Synapses are specialised connections that allow electrical or chemical signals
to flow between neurons. Neural networks are formed by connecting neurons to each
other.

As can be seen in Figure 2.1, a typical neuron consists of three distinct parts: the
dendrites, the cell body (soma), and the axon. Dendrites are structures that emerge from
the soma of a neuron and frequently reach out for hundreds of micrometers, branching
numerous times, offering ascend to a complex dendritic tree. The axon is a long, slender
cellular extension which starts from the soma, at a place known as the axon hillock,
and extends for some distance (up to one meter in humans). The soma of a neuron may
have several dendrites but only one axon, which can branch multiple times before it
terminates. In most cases signals are transmitted from the axon to a dendrite through
the synapse.

All neurons are electrically excitable, maintaining voltage gradients across their
membranes by means of metabolically driven ion pumps, which combine with ion
channels embedded in the membrane to generate intracellular-versus-extracellular
concentration differences of ions such as sodium (Na+), potassium (K+), chloride
(Cl�), and calcium (Ca++). Any alteration in the membrane voltage may modify the
functionality of the voltage-dependent ion channels. An all-or-none electrical pulse,
also known as action potential or spike, is generated every time the membrane voltage
changes sufficiently. This spike will travel along the axon, activating the synaptic
connections of other cells when it arrives [Dayan and Abbott, 2005; Gerstner and
Kistler, 2002].

2.3 Models of Neurons and Synapses

2.3.1 Spiking Neuron Models

Spiking neuron models provide more biological fidelity than traditional sigmoidal units
(rate-based). They take into account variations of the membrane potential caused by
the opening and closing of ionic currents, and are modelled by a set of differential
equations. If these equations model only a subportion of the neuronal membrane then
these models are called multi-compartmental neuron models, otherwise if they model
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Figure 2.1: Simplified structure of a neuron. A neuron fires by transmitting electrical
signals along its axon. When signals reach the end of the axon, they trigger the release
of neurotransmitters that are stored in pouches called vesicles. Neurotransmitters bind
to receptor molecules that are present on the surfaces of adjacent neurons. The point of
virtual contact is known as the synapse [Trappenberg, 2005].
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the whole neuron they are called single-compartment or point neuron models. This
section first introduces the Hodgkin-Huxley model which provides a detailed model of
the development of an action potential (spike) and then describes simplified models that
are more suitable for large-scale simulations [Izhikevich, 2004].

2.3.1.1 Hodgkin-Huxley Model

Sir Alan Lloyd Hodgkin and Sir Andrew Fielding Huxley were the first to record an
action potential from inside a giant squids nerve fibre in 1939 [Hodgkin and Huxley,
1939]. In 1952 they proposed the Hodgkin-Huxley (HH) neuron model [Hodgkin and
Huxley, 1952] based on empirical data they obtained from experimenting with the
squid giant axon. The HH model is based on the idea that the electrical properties of
a segment of nerve membrane can be modelled by an equivalent circuit of the form
shown in Figure 2.2. In the equivalent circuit, current flow across the membrane has
two major components, one associated with charging the membrane capacitance and
one associated with the movement of specific types of ions across the membrane. The
ionic current is further subdivided into three distinct components, a sodium current
INa, a potassium current IK , and a small leakage current IL that is primarily carried by
chloride ions.

The behaviour of an electrical circuit of the type shown in Figure 2.2 can be
described by a differential equation of the form:

I =Cm
dVm

dt
� Iion (2.1)

where Cm is the membrane capacitance, Vm is the intracellular potential (membrane
potential), Iion is the ionic current flowing across the membrane, and I is an externally
applied current.

The ionic current takes into account the contribution of the different ionic chan-
nels present in the membrane, and can therefore be subdivided according to the ion
transported such as:

Iion = INa + IK + Ileak = gNa(V �ENa)+gK(V �EK)+gleak(V �Eleak) (2.2)

where INa and IK represent the sodium and potassium ionic currents and Ileak represents
a leakage current caused prevalently by Cl� ions; the former two can be considered as
time-variable conductances, while the latter is constant. ENa, EK and Eleak are called
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Figure 2.2: Electrical equivalent circuit proposed by Hodgkin and Huxley for a short
segment of squid giant axon. The variable resistances represent voltage-dependent
conductances [Hodgkin and Huxley, 1952].

reverse potentials, and represent the membrane potential at which the current flowing in
a certain type of channels is equal to zero. The term V �Ei is called driving force, and
a current can be expressed as gi(V �Ei) [Dayan and Abbott, 2005].

Hodgkin and Huxley [1952] observed that the time- and voltage-dependent (in)activation
of transmembrane channels varies membrane conductances and thereby gives rise to
the action potential, which is ultimately described as:

Cm
dVm

dt
=�ḡNam3h(V �ENa)� ḡKn4(V �EK)�gleak(V �Eleak)+ I (2.3)

where ḡion is the maximum membrane conductance, m3 may be viewed as the proportion
of theoretical gating particles that are in an open state determining Na+ conductance
activation, h is a gating type variable that represents the level of inactivation, n4 is
the proportion of K+-ion channels in the open state. gleak(V �Eleak) denotes a leak
current of Cl�, for which conductance is constant. The differential equations for gating
variables n, m, and h are expressed as:



34 CHAPTER 2. COMPUTING WITH SPIKING NEURAL NETWORKS

dm
dt

= am(V )(1�m)�bm(V )m, (2.4)

dh
dt

= ah(V )(1�h)�bh(V )h, (2.5)

dn
dt

= an(V )(1�n)�bn(V )n, (2.6)

Figure 2.3: The time courses of membrane potential in the Hodgkin-Huxley model
to a brief depolarising current. Conductances and gating variables during an action
potential.
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Figure 2.3 shows the generation of an action potential. Between t = 0 ms and
t = 2 ms the membrane potential is in the resting state, the net sum of currents flowing
through the membrane potential is 0. At t = 2 ms an input current is applied (either
through synaptic inputs or through an electrode) which depolarises the membrane
potential up to the Na equilibrium point ENa. This results to an increase of opened Na
gates, modelled by the m gating variable, that increases with V and further depolarises
the membrane. As V increases Na gates are being inactivated by the h gating variable,
which tends to 0, pushing the membrane towards the EK equilibrium point. As a result
there is a delayed activation (around t = 6 ms) of the K current that in conjunction
with the inactivation of the Na channels, repolarises the membrane below the resting
potential, also known as after-hyperpolarisation. As the gating variable h deactivates the
Na conductance, the neuron is not capable of producing a subsequent action potential
for some period of time, also known as the refractory period. This can be seen at around
t = 8 ms where an input current of the same amplitude and duration as before does not
trigger a subsequent action potential.

The HH neuron models the action potential in great detail taking into consideration
the inactivation/activation of the Na and K channels. Simpler models can be constructed
by treating action potentials as stereotypical events and using the time of their occurrence
as the information transmitted. This gave rise to a number of simpler models described
below.

2.3.1.2 Leaky Integrate-and-Fire Neuron

In the HH model the process of generating an action potential usually takes place when
the membrane potential rises above the voltage-dependent Na channel equilibrium point.
In addition, since action potentials are stereotyped events they are fully characterised by
their firing time and not their shape [Gerstner and Kistler, 2002]. The Leaky Integrate-
and-Fire (LIF) neuron model has the assumption that whenever the membrane potential
reaches a threshold potential (Vth), an action potential is generated and the neuron is
“reset” to a potential Vreset <Vthreshold , taking into account the after-hyperpolarization of
K+ ions. The dynamics of the membrane potential of an LIF neuron can be described
as:

cm
dVm

dt
=�gleak(V �Eleak)+

I
A

(2.7)

where A is the membrane area, cm =Cm/A is the specific membrane capacitance, gleak
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is the leak conductance, Eleak is the equilibrium potential, and I is an external input
current [Dayan and Abbott, 2005]. The equation may be multiplied through by the
specific membrane resistance rm = 1/gleak to give:

tm
dVm

dt
= Eleak �V +RmI (2.8)

where tm = cmrm is the membrane time constant and Rm = rm/A is the membrane
resistance.

The advantages of the LIF neuron model is that it is much more computationally
efficient compared to the HH model [Izhikevich, 2004], making it more suitable for
large-scale simulations. In addition, it is a linear model and can therefore be treated
analytically [Brunel, 2000]. However, because of its simplicity it can only replicate a
small number of the known neuronal firing patterns [Izhikevich, 2004]1.

2.3.1.3 Izhikevich Neuron

Izhikevich [2003] created a model, which combines the dynamics of the HH model and
the computational efficiency of the LIF model. This was achieved by reducing the 4
dimensional model of the HH model into two first order differential equations, as seen
in Equations 2.9 and 2.10.

dV
dt

= 0.04V 2 +5V +140�U + I(t) (2.9)

dU
dt

= a(bV �U) (2.10)

if V � 30 mV then

8
<

:
V = c

U =U +d
(2.11)

where the variable v represents the membrane potential of the neuron and u represents a
membrane recovery variable, which models the activation of potassium K+ ionic cur-
rents and inactivation of sodium Na+ ionic currents. This model can exhibit all known

1Izhikevich [2004] categorised all known neuronal firing patterns, at that time, to 21 different classes,
then compared a number of different neuronal models and showed that while the LIF is the most efficient
to implement as it consists only of a single ordinary differential equation and one comparison operation
(for the threshold) it can only replicate 3 out of the 21 different firing patterns. On the contrary, the HH
model can reproduce all 21 firing patterns and offers high biological fidelity but requires a lot of floating
point operations (1,200 compared to 5 for the LIF model) due to the number of differential equations that
needs to be solved (see equations 2.2 - 2.6) and thus it is not suitable for large scale simulations.
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Figure 2.4: The Izhikevich neuron model. Known types of neurons correspond to
different values of the parameters a, b, c, d in the model described by Equations 2.9,
2.10. RS, IB, and CH are cortical excitatory neurons. FS and LTS are cortical inhibitory
interneurons. Each inset shows a voltage response of the model neuron to a step of
dc-current I = 10 (bottom). Time resolution is 0.1 ms [Izhikevich, 2003].

neuronal firing patterns with the appropriate values for the a, b, c and d dimensionless
variables [Izhikevich, 2004]. Furthermore, this model has a dynamic threshold that
depends on the previous state of the membrane potential before the spike. In the next
section the parameters of Equation 2.10 are explained [Izhikevich, 2003].

• The parameter a describes the time scale of the recovery variable u. Smaller
values result in slower recovery. A typical value is a = 0.02.

• The parameter b describes the sensitivity of the recovery variable u to the sub-
threshold fluctuations of the membrane potential v. A typical value is b = 0.2.

• The parameter c describes the after-spike reset value of the membrane potential
v caused by the fast high-threshold K+ conductance. A typical value for real
neurons is c =�65 mV .
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• The parameter d describes the after-spike reset of the recovery variable u caused
by slow high threshold Na+ and K+ conductance. A typical value is d = 2.

In Figure 2.4 the parameters a, b, c and d of the neuron model can be observed.

2.3.2 Models of Synaptic Transmission

Synapses are the specialised sites where one neuron communicates with another. There
are two basic types of synaptic transmission: electrical or chemical. Electrical synapses
can send rapid and stereotyped depolarising signals, while chemical synapses are
capable of more variable signalling producing more complex behaviours. They can
produce electrical changes to the postsynaptic cell that may last from milliseconds to
minutes. Most synapses in the brain are chemical [Kandel et al., 1991].

Threshold

Ca 2+

Presynaptic 
nerve
terminal

Receptor-
channel

Transmitter

Post-
synaptic
cell

Na+ Na+ Na+

Threshold

A B C

Figure 2.5: Chemical signalling in the synapse [Kandel et al., 1991].

Chemical synaptic transmission depends on the diffusion of a neurotransmitter
across the synaptic cleft, a 20-40 nm gap between pre- and postsynaptic neurons. The
neurotransmitters are kept within small membrane-bound spheres called vesicles. Upon
the arrival of an action potential at the terminal of a presynaptic axon causes the voltage-
gated Ca2+ channels to open, allowing an influx of Ca2+ to the presynaptic terminal
(Figure 2.5(A)). The increase in intracellular Ca2+ concentration triggers a biochemical
reaction that causes the vesicles to fuse with the presynaptic membrane and release
neurotransmitter into the synaptic cleft (Figure 2.5(B)). The released neurotransmitter
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molecules then diffuse across the synaptic cleft and bind specific receptors on the
postsynaptic membrane. These receptors cause ion channels to open (or close), thereby
changing the membrane conductance and membrane potential of the postsynaptic
cell (Figure 2.5(C)). These processes can be modelled in a number of different ways
described in the following subsections.

2.3.2.1 Instantaneous Rise and Single-Exponential Decay

This model assumes that the release of neurotransmitter, its diffusion across the cleft,
the receptor binding, and channel opening all happen very quickly and the conductance
g jumps to the peak conductance (ḡsyn) at the time of the presynaptic spike (t0) followed
by an exponential decay with a time constant t (Figure 2.6a):

gsyn(t) = ḡsyn exp(
�(t � t0)

t
) (2.12)

for t < t0, gsyn(t) = 0. The differential equation describing the change of conductance
in time is:

t
dgsyn

dt
=�gsyn + ḡsynd(t0 � t), (2.13)

where d(t) is the Dirac delta function, and t is the decay time constant which is
determined by the unbinding of the neurotransmitter from the receptor channel.

2.3.2.2 Alpha Function

For some synapses the rising phase of synaptic conductances plays an important role
on the network dynamics [Vreeswijk et al., 1994]. The alpha function describes a
conductance that has a rising time (Figure 2.6b):

gsyn(t) = ḡsyn
t � t0

t
exp(

1� (t � t0)
t

) (2.14)

for t < t0, gsyn(t) = 0. However the rise and decay time courses are controlled by a
single time constant (t) and cannot be set independently.

2.3.2.3 Difference of Two Exponentials

The rise and decay phases can be expressed as the difference of two exponentials. This
allows the time constants (trise, tdecay) to be set independently, so that for t >= t0
(Figure 2.6c):
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gsyn(t) = gmax f (exp(
�(t � t0)

tdecay
)� exp(

�(t � t0)
trise

)) (2.15)

where f is the normalisation factor to ensure that the amplitude equals ḡsyn [De Schutter,
2010].

2.4 Frameworks for Neural Computations

2.4.1 Biologically Plausible Synaptic Plasticity

Electrophysiological experiments have shown that the amplitude of the postsynaptic
response to an incoming action potential of a synapse (also known as synaptic weight
wi j) is not fixed but can change over time. These changes can either be long-term or
short-term. Forms of short-term plasticity include synaptic fatigue or depression and
synaptic augmentation. Forms of long-term plasticity include long-term depression
(LTD) when there is a decrease of the synaptic efficacy, and long-term potentiation
(LTP) when there is an increase of the synaptic transmission efficacy. Synaptic plasticity
is believed to be the basis of learning and memory in the brain.

Derived from biological observations that synaptic plasticity depends on the relative
timing of pre- and post-synaptic spikes [Markram et al., 1997; Bi and Poo, 1998],
Spike-Timing Dependent Plasticity (STDP) [Gerstner et al., 1996; Song et al., 2000]
has become a popular model for learning in spiking neural networks. In its standard
form, STDP weight-updates are expressed by the double-exponential form:

DW =

(
A+exp(s/t1) if s < 0
A�exp(s/t2) if s � 0

(2.16)

where s = tpre � tpost is the time difference between a pair of pre- and post-synaptic
spikes, A+ and A� are scaling factors for potentiation and depression, and t+ and t�
are the time constants of the plasticity curves. The weight update rule is illustrated
in Figure 2.7. There are different strategies for computing the total amount of weight
change after seeing multiple pre- and post-synaptic spikes [Morrison et al., 2008], e.g.
by considering only nearest neighbour spike pairs, or summing the weight changes DW
for all pairs.

The discovery of STDP has led to a number of models that have exploited the precise
timing properties of spiking neurons for receptive field development [Clopath et al.,
2010; Song and Abbott, 2001], temporal coding [Gerstner et al., 1996; Guyonneau et al.,
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Figure 2.6: Synapse models: (a) Instantaneous Rise and Single-Exponential Decay,
(b) Alpha Function, (c) Difference of Two Exponentials. For each model the variation
of the synaptic conductance gsyn (EPSC - Excitatory Post Synaptic Current) and the
effects of on the membrane potential (EPSP - Excitatory Post Synaptic Potential) to an
incoming spike are shown [De Schutter, 2010]
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Figure 2.7: Timing requirements between pre- and postsynaptic spikes for Spike-Timing
Dependent Plasticity (STDP). Synaptic changes Dwi j occur only if presynaptic firing
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2005], rate normalisation [Song et al., 2000; Kempter et al., 2001], or reward-modulated
learning [Izhikevich, 2007; Legenstein et al., 2008; Friedrich et al., 2011; Potjans et al.,
2011]. It has also been realized that there is not one standard model for STDP, but that
there is a huge diversity of learning rules in nature, depending on species, receptor, and
neuron types [Abbott and Nelson, 2000; Kullmann et al., 2012], the presence or absence
of neuromodulators [Pawlak et al., 2010; Cassenaer and Laurent, 2012], but also on
other factors like post-synaptic membrane potential, position on the dendritic arbor, or
synaptic weight [Sjöström et al., 2001].

STDP can be seen as a spike-based formulation of a Hebbian learning rule, which
says that synaptic connections strengthen when two connected neurons have correlated
firing activity. This formulation suggests a potential causal relation between the firing of
the two neurons. Causality requires that the presynaptic neuron fires slightly before the
postsynaptic one. Indeed, in standard STDP experiments on synapses onto pyramidal
neurons, potentiation of the synapse occurs for pre-before-post timing, in agreement
with Hebbs postulate. Other popular learning rules include the Bienenstock, Cooper,
and Munro (BCM) rule [Bienenstock et al., 1982], which was developed to explain the
development of receptive field properties of neurons in primary sensory cortex.

2.4.2 Liquid State Machines

The neocortex comprises 80% of the human brain and is arranged in repeating stereo-
typical neural microcircuits, also known as cortical columns that have approximately
0.3 mm diameter and 2 mm depth [Kandel et al., 1991]. Each of these microcircuits can
participate in a number of different tasks concurrently. In addition, it is thought that
neural microcircuits form very high-dimensional dynamical systems where each neuron
and synapse adds additional degrees of freedom to the dynamics of the system [Maass
et al., 2002b].

Wolfgang Maass et al. [2002b] proposed the Liquid State Machine (LSM) as a
computational framework to explain how computations of continuous streams of multi
modal inputs from a rapidly changing environment could be taken place in generic
cortical microcircuits. In their proposed approach instead of trying to control the
dynamics of a recurrent neural network, as for example in attractor neural networks to
produce stable outputs, a readout is used to extract a stable output even if the liquid (the
internal state of the microcircuit) never revisit the same state.

The idea of feeding an input signal into a fixed random recurrent neural network,
also known as reservoir, and then training a simple readout mechanism to read the state
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of the reservoir and map it to the desired output is part of a computational paradigm
known as Reservoir Computing (RC) [Verstraeten et al., 2007]. The main benefit of
RC is that the training is performed only at the readout stage which can be any type of
classifier or regressor, from perceptrons [Maass et al., 2002b] to SVMs [Boser et al.,
1992], while the reservoir is randomly generated and remains fixed. This way the
reservoir functions as a kernel as in the case of kernel-based methods, by projecting
the inputs into a high-dimensional space (a method known as the kernel trick) which
enhances the separability. LSMs and Echo State Networks (ESNs) [Jaeger, 2001] are
two major types of reservoir computing [Verstraeten et al., 2007].

In the case of LSMs the connectivity and parameters of the liquid (reservoir) are
inspired by biological findings, e.g. the rat’s somatosensory cortex [Gordon Shepherd
and Grillner, 2010; Markram et al., 1998]. Instead of using analogue sigmoidal neurons,
as in the ESNs, more sophisticated neuron models are used, e.g. the LIF model that allow
more complicated spatio-temporal information processing [Maass, 1997]. Similarly to
ESNs, a readout can learn to extract information from the high-dimensional transient
states of the reservoir without the need of the neural microcircuit to ever reach a stable
state.

The term liquid comes from the idea that the recurrent connectivity of the spiking
neurons in the reservoir cause the input signals to remain present for some time, a
situation resembling ripples created when throwing a stone in a pond.

In the original proposal [Maass et al., 2002b,c] the liquid was constructed as a
three dimensional grid cortical column using LIF neurons, where 20% of them were
inhibitory and 80% excitatory. The probability of two neurons a and b being connected
is given by equation 2.17:

Pconn(a,b) =Ce
�D(a,b)

l
(2.17)

where variable l controls both the average number of connections as well as the average
synaptic distance of the neurons, D(a,b) is the Euclidean distance between neurons a
and b, while the value of C depends if neurons a and b are excitatory or inhibitory.

Maass et al. [2002b] identified two conditions that have to be met in order to achieve
powerful real-time computations. The first one regards the ability of the liquid to
identify two different signals, known as separation property (SP), while the second one
regards the ability of the readout to have adequate resolution and recording capabilities
to distinguish and transform the internal state of the reservoir to given target outputs,
known as approximation property (AP).
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The LSM, as seen in Figure 2.8, can be expressed in a mathematical form where the
liquid (reservoir) is a filter LM that projects an input signal u(t) onto the reservoir state
x(t), where x(t) depends not only on the current u(t) but also in previous inputs u(s),
where (t > s):

x(t) = (LMu)(t) (2.18)

where the filter LMu(t) is the output of filter L at time t when L is applied to an input
signal u(·). When the filter LM is implemented using spiking neurons is called liquid
neurons.

The readout is a memoryless readout function f M that extracts the current state of
the liquid x(t) into a target output, at every time t, equation 2.19.

y(t) = f M(xM(t)) (2.19)

Memoryless means that the readout function f M does not need to retain memories
from past states of the liquid since they are already contained in the current state.
However the readout usually has synapses that are trained to a specific task and in that
sense it contributes to the total memory capabilities of the system [Maass et al., 2002b].

Figure 2.8: A Liquid State Machine architecture. Where u(·) is a continuous input
signal injected to the reservoir (liquid filter f M), creating a liquid state x(t). Finally, a
readout is used to map the f M to a target output [Maass et al., 2002b].

The value of l, affects the separation property of the liquid. It has been demonstrated
that even though large values of l increase the separation property of the liquid, the
average correctness of the output is reduced. This indicates that by increasing the
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separation property too much it also increases the sensitivity to noise [Maass et al.,
2002b]. Finally, the separation property can be further improved by adding additional
cortical columns without modifying the previous ones, as seen in Figure 2.9.

Figure 2.9: Separation property and performance of liquid circuits. A comparison
between single (A) and multiple liquids (B) against the separation property (C) and
noise sensitivity (D) [Maass et al., 2002b].

LSMs have been applied to tasks with strong temporal aspects. On the Hopfield &
Brody [Hopfield and Brody, 2000, 2001] speech recognition task a LSM was able to
achieve a lower average square error with much fewer neurons [Maass et al., 2002b],
while the performance increased even more in the presence of noise. Verstraeten et al.
[2005] also demonstrated that a LSM was more robust to input noise compared to a
state-of-the-art recognition system on a speech recognition task. Finally, LSMs have
been successfully utilised in movement prediction [Maass et al., 2002a] and robotic arm
control [Joshi and Maass, 2005; Probst et al., 2012] tasks.
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2.4.3 Polychronization

Polychronization is a concept described by Izhikevich [2006] that takes advantage
of the axonal conductance delays [Swadlow, 1985] along with synaptic plasticity to
organise and fine tune postsynaptic neurons in order to respond to certain time-locked
input patterns. Polychronization is the ability of an SNN to exhibit reproducible time-
locked, but not synchronous, firing patterns with millisecond precision. Based on the
connectivity between neurons, a polychronous group (PG) is a possible stereotypical
time-locked firing pattern.

An example neural network demonstrating the concept of polychronization can be
seen in Figure 2.10A. In this network the presynaptic neurons connect to the postsynaptic
neurons with different axonal conductance delays. More specifically, neuron a receives
inputs from neurons b, c, and d with 1 ms, 5 ms and 9 ms axonal delays, while neuron
e receives inputs from the same presynaptic neurons but with 8 ms, 5 ms and 1 ms
delays. If all presynaptic neurons fire synchronously, as depicted in Figure 2.10B, the
postsynaptic neurons a and e will not fire because the presynaptic spikes will arrive at
different times. If the presynaptic neurons fire at a temporal pattern determined by the
delays and shown in Figure 2.10C then spikes will arrive at the same time to neuron a
causing it to fire a spike but will have no effect on neuron e. A different temporal fire
pattern as shown by Figure 2.10D excites neuron e but not neuron a.

Izhikevich [2006] demonstrated that in a randomly connected SNN neurons self-
organize spontaneously into groups and generate firing patterns of stereotypical poly-
chronous activity, due to the delays and STDP synaptic plasticity. One advantage of this
method is that because each neuron can be part of many polychronous groups, the total
number of polychronous groups far exceed the total number of neurons in the network
[Izhikevich, 2006], which means that the representational power of the neural network
is increased.

Izhikevich and Hoppensteadt [2009] described how the concept of polychronization
could be used as a computational framework termed Polychronous Wavefront Computa-
tion. The Polychronous Wavefront Computation is an event-driven framework where
information is encoded in time. Computations are based on transponders, which are
neuron-like devices, and on pulses of temporal and spatial patterns of activity, that cause
transponders to create pulses in response to coincident inputs. Pulses are propagated
as circular waves from the sources to other transponders. Computations result from
interactions between transponders, and they are encoded by the exact physical locations
of transponders and by precise timings of pulses [Hart, 2014]. Finally, a number of
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Figure 2.10: An example neural network demonstrating the concept of polychroniza-
tion. (A) Presynaptic neurons connect to postsynaptic neurons with different axonal
conduction delays. (B-D) Spikes are denoted as vertical bars, while the arrows represent
the time arrival of the spike to the postsynaptic neuron. (B) Synchronous firing of the
presynaptic neurons does not cause the postsynaptic neurons to fire because spikes
arrive at different times. (C) When the presynaptic neuron b fires at 0 ms, neuron c fires
at 4 ms and d fires at 8 ms, all presynaptic spikes arrive at the postsynaptic neuron a
simultaneously causing it to fire a spike, while they have no effect on neuron e. (D) The
reverse order of firing is optimal to excite neuron e [Izhikevich, 2006].
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groups have investigated the use of a polychronous layer as the liquid in LSMs [Galluppi
and Furber, 2011; Paugam-Moisy et al., 2008].

2.4.4 Neural Engineering Framework

The Neural Engineering Framework (NEF) [Eliasmith and Anderson, 2004] provides
a set of methods for building biologically plausible models based on a functional
specification of a neural system. The main idea of NEF is that a vector within a particular
space can be represented by a population of spiking neurons and that connections
between populations can compute functions on those vectors. The NEF provides a
set of tools and methods on calculating what the connections need to be in order to
compute a desired function on the vector space represented by a group of neurons. NEF
utilises three basic principles: representation, transformations and neural dynamics.
More specifically:

• Representation: A group of neurons represents a vector of a specific length (e.g.
a 2-dimensional vector). This generally uses a distributed encoding, and is highly
non-linear due to the inherent neuron non-linearities. However, a linear decoding
on the spiking output of the group of neurons can be used to accurately recover
the original input.

• Transformation: A connection from one neural population to another computes
a function on the represented value, so if the first neural population represents
x, then the second neural population represents f (x). An arbitrary function may
be chosen and then solve for the connection weights that will approximate that
function. The approximation will be more accurate the more neurons are used,
and less accurate the more non-linear the function.

• Dynamics: Recurrent connections allow us to define complex dynamical models.
By adapting a standard control theory framework, we can implement integrators,
Kalman filters, and other useful reactive systems.

Neural representations are defined by the combination of non-linear encoding and
weighted linear decoding. For the encoding part, an analogue value is translated to a
spike train for each neuron i in a neuronal population using the following equation:

Â
n

d(t � tin) = Gi[aihf̃iX(t)im + Jbias
i ] (2.20)
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where d(t � tin) is the spiking activity of neuron i with each spike indexed by n, Gi is a
non-linear function expressed as the neuron model, ai is a gain factor, X is the vector
signal to be encoded, f̃ is the encoder and Jbias is a bias current. The encoding process
can be thought of as the preferred direction (tuning curve) [Georgopoulos et al., 1986;
Butts and Goldman, 2006] of a neuron to a specific input stimulus.

An estimate of the original signal is recovered through linear population decoding,
using the vectors f and linear temporal decoding using the filter h(t), which can be
thought of as a simple model of post-synaptic current (PSC) (Section 2.3.2). These can
be combined to give a population-temporal decoder, fi(t � tin):

X̂(t) =
N

Â
i

ai(X(t))fX
i , (2.21)

where

ai(X(t)) = Â
i

hi(t)⇤d(t � tin)

= Â
i

hi(t � tin)
(2.22)

Transformations of neural representations are functions of variables that are rep-
resented by neural populations. Transformations are determined using an alternately
weighted linear decoding (i.e., the transformational decoding as opposed to the repre-
sentational decoding).

Quantitatively, we assume the same encoding as described in principle 1 (represen-
tation) and define the decoding:

f̂ (X(t)) = Â
i

ai(X(t))f f
i (2.23)

This decoding is the similar to that in Equation 2.21, except the decoders are
determined such that a function, f , of the original input signal is estimated. The
connection weights can be calculated knowing the decoders of the source population
and the encoders of the target population (substituting Equations 2.20 and 2.21):

wi j = a jfX
i f̃ j (2.24)

where i is the index of the neuron of the presynpatic population, and j those in the
postsynaptic population. The accuracy of the computation depend on the total number
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of neurons of the two populations [Eliasmith, 2005].

Neural dynamics are characterised by considering neural representations as control
theoretic state variables. Thus, the dynamics of neurobiological systems can be anal-
ysed using control theory, thus the general expression for the encoding described by
Equation 2.20 can be rewritten as:

Â
n

d(t � tin) = Gi[aihf̃i(hi(t)⇤ [A0X(t)+B0u(t)])im + Jbias
i ] (2.25)

where A0 is the neural dynamics matrix, and B0 is the input matrix. These matrices
define the dynamics of the system, and can be related to the standard dynamics and
input matrices in linear control theory using:

A0 = tA+ I

B0 = tB
(2.26)

where the signal u(t) is the input, x(t) is the neural population’s represented state vector,
and t is the time constant of the PSC (exponential function described in Section 2.3.2).
For recurrent connections Equation 2.24 becomes:

wi j = hfX
i A0f̃ ji (2.27)

The NEF has been successfully utilised to model a number of neural systems ranging
from motor control, sensory processing, to a model of basal ganglia that showed reaction
times and error rates comparable to the ones of human subjects [Eliasmith and Anderson,
2004]. Its biggest success so far, however, is the Semantic Pointer Architecture Unifed
Network (Spaun) [Eliasmith et al., 2012], which is the largest model simulation of a
functional brain to date. Spaun consists of 2.5 million spiking neurons divided into
several cranial subsystems, including the prefrontal cortex, basal ganglia, and thalamus,
wired together to mimic the wiring of a human brain. Spaun is capable of performing
a series of cognitive tasks using the same architecture and parameters. The basal
ganglia (action selection system) dynamically recruits the appropriate neural subsystems
required to solve a particular task. The anatomical and functional architecture of Spaun
can be seen in Figure 2.11.
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Figure 2.11: Anatomical and functional architecture of Spaun. (A) The anatomical
architecture of Spaunn presents the brain structures included in the model, where
PPC stands for posterior parietal cortex; M1 for primary motor cortex; SMA for
supplementary motor area; PM for premotor cortex; VLPFC for ventrolateral prefrontal
cortex; OFC for orbitofrontal cortex; AIT for anterior inferior temporal cortex; Str for
striatum; vStr for ventral striatum; STN for subthalamic nucleus; GPe for globus pallidus
externus; GPi for globus pallidus internus; SNr for sub- stantia nigra pars reticulata; SNc
for substantia nigra pars compacta;VTA for ventral tegmental area;V2 for secondary
visual cortex; V4 for extrastriate visual cortex. Box styles and colors indicate the
relationship with the functional architecture. (B) The functional architecture of Spaun.
The thick black lines represent communication between the elements of the cortex, while
the thin black lines indicate communication between the action-selection mechanism
(basal ganglia) and the cortex. The open-square end of the line connecting reward
evaluation and action selection denotes that this connection modulates connection
weights [Eliasmith et al., 2012].
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2.4.5 Deep Learning Architectures

Deep learning architectures [LeCun et al., 2015; Schmidhuber, 2015] , which consist
of Convolutional Networks [LeCun et al., 1998b], Deep Autoencoders [Hinton and
Salakhutdinov, 2006], and Deep Belief Networks (DBNs) [Hinton and Salakhutdi-
nov, 2006] is a branch of machine learning that currently represent the state-of-the-art
solution for virtually all relevant machine learning tasks including computer vision
[Larochelle et al., 2007; Lee et al., 2009; Cireşan et al., 2010; Le et al., 2012; Schmidhu-
ber, 2015], and speech recognition benchmarks [Dahl et al., 2012; Hinton et al., 2012;
Mohamed et al., 2012] and have thus been named one of the breakthrough technologies
of the decade [Hof, 2013], leading to what has been called the “second reNNaissance
of neural networks” [Cireşan et al., 2010]. The performance of these networks can be
increased by increasing the size of the networks, i.e. using networks with more layers,
as described by theoretical results showing that adding more layers can only improve
performance bounds [Hinton et al., 2006].

Networks with large number of neurons and layers have very high computational
demands, and training state-of-the-art deep networks can easily take multiple days,
even on very large computer clusters [Dean et al., 2012], therefore calling for hardware
accelerations, either through GPUs, or custom chips [Farabet et al., 2011]. Even the
execution of a trained network on standard PCs is expensive due to the large number
of neurons involved, and results in high energy demands, communication overheads,
and high response latencies. In particular, the long latency response is a problem for
real-time applications in mobile and robotic systems, which have limited computing
resources and power but require quick system responses.

One way to overcome the aforementioned issues is to transform these type of
networks into spiking neural networks which can be optimally implemented on event-
based neuromorphic hardware platforms [Indiveri et al., 2011] that provide low-latency
and energy efficient solutions. This has been recently demonstrated by O’Connor et al.
[2013] for DBNs and by Perez-Carrasco et al. [2013] for Convolutional Networks and
will be described in the following sections.

2.4.5.1 Convolutional Networks

Convolutional Networks are a variation of multilayer feed-forward neural networks
inspired by the findings of Hubel and Wiesel [1959], on the structure of the early stages
of visual cortex in mammals, and have been used extensively for image processing
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and machine vision tasks. A predecessor to convolutional networks was introduced
by Fukushima [1980] named neocognitron, while the model was further improved by
LeCun et al. [1998b].

Typically, a Convolutional network is composed of alternating layers of convolution
and spatial subsampling, with nonlinearities between subsequent iterations. Convolu-
tional Networks introduce three basic ideas: local receptive fields, shared weights, and
pooling.

Neurons in a convolutional layer are connected only to a subregion of the layer
before it (local receptive field), instead of all neurons as in a fully-connected manner (e.g.
MLPs). This local receptive field slides (convolves) for all neurons in this convolutional
layer and all neurons in this convolutional layer share the same weights, meaning that
they detect exactly the same features. This is why the hidden layer is also known as
feature map. A complete convolutional layer consists of several different feature maps
also known as filters or kernels, which are smaller than the dimension of the previous
layer, as seen in Figure 2.12. Some of the advantages of the shared weights per kernel
is that they greatly reduce the number of learning parameters, which also reduces the
memory requirements, and also results in speed-ups during the training process when
compared to fully-connected neural networks [LeCun et al., 1998b].

A pooling layer is added periodically in-between successive Convolutional layers.
A popular pooling method is the MAX operation. MAX-pooling partitions the input
region of the feature map into a set of non-overlapping rectangles and, for each such
sub-region, outputs the maximum activation. This way MAX-pooling acts non-linear
down-sampling that reduces the spatial size of the representation, the computations for
the upper layers and finally provides a form of translation invariance. Besides MAX-
pooling, the pooling layer may implement other functions, such as average pooling or
even L2-norm pooling.

The top layer of a Convolutional network consists of a fully-connected neural net-
work that receives input from the layer below (pooling layer). Convolutional networks
are trained using the stochastic gradient descent and backpropagation [Werbos, 1974]
with a few modifications since backpropagation was designed for fully-connected neural
networks.

Perez-Carrasco et al. [2013] proposed a method for mapping the parameters of a
Convolutional network properly trained with rate-based (sigmoidal) neurons into the
equivalent event-driven (spiking) neurons by scaling the learnt weights. Their method
was tested on a silhouette orientation recognition and poker card symbol recognition task,
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Figure 2.12: Topology of a typical Convolutional Network. The first layers compute
an increasing number of feature maps with decreasing resolution by convolution with
n⇥n kernels and subsampling. At the higher layers, the resolution drops to 1⇥1 and
the weights are fully connected.

using inputs from a biologically inspired asynchronous vision sensor [Leñero-Bardallo
et al., 2011] (described in Chapter 3). Results showed the high speed response capability
of event-driven sensing and processing systems, as recognition is achieved while the
vision sensor is delivering its output, a feature also termed as “pseudo-simultaneity”
[Perez-Carrasco et al., 2013; Camuñas-Mesa et al., 2010].

2.4.5.2 Deep Belief Networks

Whereas Convolutional Networks currently outperform other architectures on many
vision tasks, the alternative architecture of DBNs [Hinton and Salakhutdinov, 2006]
remains very popular due to its ability to learn from large unlabelled datasets [Le et al.,
2012], and because of its dual role as classifier and generative model of the data. In
addition, DBNs have been shown to improve theoretical performance bounds by adding
additional layers of neurons [Hinton and Salakhutdinov, 2006].

DBNs are multi-layered neural networks, in which each layer pair is formed by
a Restricted Boltzmann Machine (RBM), a recurrent network with full connectivity
between two layers of visible and hidden units, but without connections between neurons
of the same layer, as seen in Figure 2.13. Each neuron unit is a stochastic binary neuron,
whose “on” probability is given by the weighted sum of its inputs and passed through
a sigmoid nonlinearity. Training is performed layer-by-layer using the unsupervised
Contrastive Divergence (CD) rule [Hinton and Salakhutdinov, 2006]. After training one
layer, the outputs of the hidden units of the previous layer are used as the input to the
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subsequent layer. At the topmost level, a label is jointly trained with the input to give a
supervised signal that guides the output of the network.

Hidden ...

...
Visible

Figure 2.13: Architecture of a single Restricted Boltzmann Machine with full connec-
tivity between visible units (bottom) and hidden units (top), but no connections within
the same layer.

Training of DBNs targeting a spiking network implementation is described in detail
in O’Connor et al. [2013]. The following section provides a brief summary of the
most important differences to conventional CD training. The key idea is to use an
accurate rate-based approximation of the firing rates of LIF neurons, and translate this
into activation probabilities, which can be used in the CD updates. For this reason the
so-called Siegert approximation [Jug et al., 2012] is being used, which approximates
the output firing rate of a LIF neuron receiving both inhibitory and excitatory inputs.
Let ~ri and ~re be the vectors of inhibitory and excitatory input rates, and (~wi, ~we) be
the corresponding weights. In order to compute the expected output rate of the LIF
neuron, a number of auxiliary variables first needs to be computed. For completeness,
the full equations are provided here, but refer to previous work for the derivation and
interpretation of each variable [Siegert, 1951; Jug et al., 2012]:

µQ = tÂ(~we~re + ~wi~ri) s2
Q =

t
2 Â(~w2

e~re +
~w2

i ~ri)

° =Vreset +µQ G = sQ

k =
q

tsyn/t g = |z(1/2)|

Here, tsyn denotes the synaptic time constant (which is considered to be zero), and z is
the Riemann zeta function. Then the average firing rate rout of the neuron with reset
potential Vreset, threshold voltage Vthresh, and refractory period Tref can be computed as
[Jug et al., 2012]
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Using this approximation of firing rates allows a direct translation between the analogue
activation probabilities required for CD training and the resulting firing rates of a
spiking neuron with those weights. During training of the spiking DBN, the Siegert
approximation is used as the nonlinearity of the neuron instead of a sigmoidal function.
The predicted rate rout in (Eq. 2.28) can be converted into a probability by normalizing
with the maximum firing rate 1/Tref. This allows sampling the activation probabilities,
as is done in standard CD learning with continuous-valued units. Specifically, the weight
update in CD for spiking networks computes the data- and model-driven activities of
the visible and hidden layer using the Siegert approximation, and then computes the
weight update as usual in RBM training. Let Vdata be the activity of the visible units
driven by the input data (or activity of the hidden layer below). Then the data-driven
activity of the hidden layer, given the full weight matrix W connecting the visible and
hidden layer, is

Hdata = rout(Vdata,W ) ·Tref

The model-driven activity of the visible and hidden layers, obtained via Gibbs sampling,
is then given as

Vmodel = rout(Hdata,W T ) ·Tref, Hmodel = rout(Vmodel,W T ) ·Tref

and the weight update Dw is

Dw = a · (HT
dataVdata �HT

modelVmodel), (2.29)

where a is the learning rate. After training, the parameters and weights are kept
unchanged, but instead of sampling every time step, the units generate Poisson spike
trains with rates computed by the Siegert formula (Eq. (2.28)). In O’Connor et al. [2013]
it has been shown that this results in equivalent spiking implementations of RBMs and
DBNs, which perform similarly to conventional networks with the same architecture.
Neftci et al. [2014] recently proposed an online event-based implementation of the CD
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learning rule for training a spike-based DBNs that may in principle utilise neuromorphic
platforms. Chapter 5 will present an investigation on the robustness and scalability
of spike-based DBNs to noise and reduced bit precision of neuro-inspired hardware
platforms.

2.5 Summary

This chapter aimed to provide a biological background on neurons, synapses and to
review a number of the available mathematical models suitable for large-scale simu-
lations [Izhikevich, 2004]. The models presented on this chapter, however, represent
only a small subset of the models available in the literature. More detailed models exist,
that simulate biology at different levels of abstractions, and may be used depending on
the scientific question being investigated [Sejnowski, 2003]. In addition, a number of
frameworks were presented that are scalable and suitable for computations with spiking
neural networks.

This large variety of models of neurons and synapses indicate that for the very active
field of computational neuroscience and for the computational frameworks utilising
SNNs, researchers would benefit from a programmable platform capable of simulating
different and newly discovered models of neurons, synapses and plasticity rules within
the same simulation. The next chapter reviews the software and hardware tools designed
to simulate SNNs.



Chapter 3

Tools and Platforms for Simulating
Spiking Neural Networks

3.1 Introduction

This chapter presents the different approaches for simulating large-scale spiking neural
networks (SNNs) and discusses their advantages and disadvantages; every platform
imposes different trade-offs between scalability, reconfigurability, and energy consump-
tion characteristics. The first part introduces domain-specific software simulators, that
are widely used by the neuromorphic research community, and then proceeds to no-
table simulations on supercomputers. The second part focuses on dedicated hardware
architectures from off-the-shelf hardware platforms such as general-purpose graphical
processing units (GP-GPUs) and field programmable gate arrays (FPGAs) to neuromor-
phic hardware implementations, and concludes with the SpiNNaker platform.

3.2 Software Simulators

Many scientific groups have developed their own optimised spiking neural network
simulators to fit their needs. One disadvantage of developing custom simulators is that
it becomes difficult for other researchers to replicate results, or extend a previously
published work. Luckily over the past years a number of neural-oriented simulators
have been developed to address these issues. The simulators presented here focus on
simulating single-compartment neuron models, also known as point-neurons. Brette
et al. [2007] divided spiking neural network simulators into three categories based on
the method used to update the membrane potential of the simulated neurons. They can

59
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be either synchronous (clock-driven) where all neurons are updated at a fixed time-step,
asynchronous (event-driven) in which neurons are updated only when they receive
a spike, or hybrid where the internal state of the neurons gets updated continuously
according to some differential equations while spikes are expressed as events. In
general, simulators using synchronous algorithms are easier to implement, however,
the generated spike times are bound to specified discrete time grid which might have
an impact on the precision of the results. Another factor that affects the precision
of the results is that threshold conditions are checked only at the ticks of the clock.
Asynchronous simulators are more complex to implement but have the advantage of
simulation speed-up since there are no unnecessary calculations and spike times are
precise and not bounded to a time grid. Even though spiking neural network simulators
are developed in different programming languages, the majority of them offer a Python
interface to them. Python is rapidly becoming the high-level language of choice for
the field of computational neuroscience mainly due to the publicly available packages
for plotting results (PyLab/Matplotlib1), efficient array data structures (NumPy2), and
analysing neuroscience data (NeuroTools3).

3.2.1 NEST

NEST (NEural Simulation Tool) [Gewaltig and Diesmann, 2007], now part of the
Human Brain Project [Markram et al., 2011], is a publicly available simulator that
supports neural models with single or a small number of compartments. At the same
time it supports heterogeneous populations of neurons and synapse models targeting
simulations with more than 104 neurons and 107 to 109 synapses. NEST simulations
can be constructed using two basic element types: nodes and connections; nodes can
be either neurons or devices used to stimulate or record from neurons, connections
allow nodes to link with each other. Each connection can have a user-defined delay and
weight, which can be either static or dynamic, for example using the STDP [Morrison
et al., 2008] rule. NEST is implemented in C++ using a global time-driven algorithm
for updating neuron states but the spike-times are not constrained to the discrete time
grid. NEST offers two front-ends, one utilising the native simulation language SLI and
the other one uses a Python interface, named PyNEST [Eppler et al., 2009], enabling
users to run simulations, analyse and plot results within the same environment. NEST

1http://matplotlib.sourceforge.net/
2http://www.scipy.org/NumPy
3http://www.neuralensemble.org/NeuroTools/
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is capable of running on a large range of architectures, from single-core to multi-core
desktop computers and supercomputers. It offers parallelisation by means of POSIX
threads [Lewis and Berg, 1998] on multi-core processors and message passing interface
(MPI) [Forum, 1994] for computer clusters, while ensuring reproducibility of the results
regardless the number of machines or cores. The user provides a serial NEST script
written in either SLI or PyNEST and the parallelisation takes places automatically. One
disadvantage of NEST is that it does not allow the user to modify or add new models
after the compilation process.

3.2.2 NEURON

NEURON [Hines and Carnevale, 1997], also part of Human Brain Project [Markram
et al., 2011], is a simulation environment oriented for simulating detailed models of
single neurons or networks of spiking neurons. One of the advantages of NEURON
is that it allows users to investigate neuroscience related questions, abstracting the
low-level mathematical or computational issues involved. Users can extend or modify
NEURON’s functionality using the NMODL language, while a graphical user interface
(GUI) is available for constructing models, running simulations and analysing the results.
NEURON supports three kinds of parallelism: run multiple simulations distributed
over multiple processors, distributed network models with gap junctions and distributed
models of individual cells. Finally, more than 1,450 scientific articles and books have
reported using NEURON4.

3.2.3 Brian

Brian [Goodman and Brette, 2009] is a spiking neural network simulator written entirely
in Python enabling users to develop new models as rapidly and flexible as possible.
Users can easily define arbitrary neuron, synapse and plasticity models as a set of
differential equations, making it easier for researchers to share their models. Brian
is a synchronous (clock-driven) simulator where all events take place on a fixed time
grid, and it utilises vectorised computations during the simulations and construction
of models, making it only two to four times slower than pure C code [Goodman and
Brette, 2008]. Brian does not support the utilisation of parallel environments, though
independent simulations may run in parallel.

4http://www.neuron.yale.edu/neuron/what_is_neuron#userbase
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Figure 3.1: An example of using PyNN: injecting time-varying current into an LIF
neuron.

3.2.4 PyNN

PyNN [Davison et al., 2009] is a common interface written in Python to multiple
spiking neural network simulators. Since each simulator uses its own programming or
configuration language it is time consuming and impractical to write multiple scripts of
the same experiment to validate the results of the neural network. This also increases
the difficulty to communicate and reproduce results between different research labs.
With PyNN a researcher can write a script describing a neural network in a high-level
abstraction language, using populations of neurons and projections between them, and
cross-check the results on multiple simulators (e.g. NEST, Brian, NEURON, e.t.c.), as
seen in Figure 3.1. Moreover, the same PyNN description can be executed on various
neuromorphic platforms [Brüderle et al., 2011; Galluppi et al., 2012d] thus abstracting
the hardware details from the user. Finally, PyNN uses a standard way to retrieve
simulation results and since it is written in Python it is very easy to analyse and visualise
results within the same environment.

3.2.5 Nengo

Nengo [Stewart et al., 2009] is not a general purpose spiking neural network simulator.
It has been designed to make use of the NEF [Eliasmith and Anderson, 2004], and
provides methods to define groups of neurons, form connections between them and
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calculate the synaptic weights to perform the desired computations using NEF behind
the scenes. Nengo is written in Java and supports a variety of spiking neuron models,
and exposes a scripting interface in Python allowing users to create new models, inspect
and modify neural parameters, control simulations and analyse results. Nengo offers
a model repository from models presented in publications, making it easier to share
knowledge between researchers. Spaun [Eliasmith et al., 2012] was implemented on
Nengo and executed on high-performance clusters, occupying 24 GB of RAM, while
simulations took approximately 2.5 hours for 1 second of simulated time. Galluppi
et al. [2014a] demonstrated that it is possible to run Nengo models in real-time on a
neuromophic robotic platform while interfacing biologically inspired event-based vision
sensors.

3.3 Hardware Platforms

3.3.1 Supercomputers

Markram [2006], as part of the BlueBrain project5, aimed to simulate a biologically
plausible model of a cortical column (Blue Column), consisting of 10,000 multi-
compartment models of neurons with 50⇥106 synapses. Markram argues that a detailed
simulation of all neuron membrane conductances is necessary to produce a valid model
of the cortex. The simulations will be executed on an IBM Blue Gene/L supercomputer
which has 131,072 CPUs and 32 TB of memory. The simulation language is NEURON,
which was extended to include the MPI protocol to allow communications between the
nodes.

Ananthanarayanan et al. [2009], as part of the IBM/DARPA Systems of Neuro-
morphic Adaptive Plastic Scalable Electronics (SyNAPSE) project, followed a simpler
approach by utilising point-neurons for their experimentation. They developed their
own massively parallel simulator, named C2, which ran on a LLNL Dawn Blue Gene/P
supercomputer with 147,456 CPUs and 144 TB of main memory. They simulated
1.617⇥109 neurons with 0.887⇥1013 synapses, exceeding the scale of cat cortex (or
4.5% of the human cerebral cortex). The simulation ran 643⇥ slower than real-time with
40% of the time spent on MPI communications. Based on their findings they extrapo-
lated that in 2018 a human-brain simulation could be achievable by a supercomputer
with 4 PB of memory and running at >1 EFlop/s.

5http://bluebrain.epfl.ch
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Recently, Wong et al. [2013] simulated 53⇥1010 neurons and 1.37⇥1014 synapses
on an IBM Sequoia - BlueGene/Q supercomputer with 1,572,864 CPUs and 1,572 TB
of main memory. They utilised their optimised multi-threaded, massively parallel,
scalable simulator named Compass [Preissl et al., 2012]. The simulation ran 1542⇥
slower than real-time, while the biggest cost reported was sending and receiving spikes
via MPI messaging. The power requirements of the simulation were not reported,
however the Top500 [top] list states that the peak power dissipated by the IBM Sequoia
- BlueGene/Q is 7,890 kW.

Supercomputers offer great model flexibility but at the price of their large power
demands and communication overheads [Anghel et al., 2014] which prohibit the real-
time simulations of SNNs.

3.3.2 Graphics Processing Units

Graphics processing units (GPUs) contain a large number of processing units capable
of executing a single instruction stream on multiple data simultaneously [Fatahalian and
Houston, 2008]. Some of the advantages of GPUs is that they are inexpensive, available
in most recent computers and can be programmed with standard development kits.
GPUs have been used to accelerate ANNs with some examples including a real-time
image segmentation and scene labeling [Farabet et al., 2013] or to speed-up the training
process by a factor of approximately 10 to 60, compared to a compiler-optimised CPU
version [Cireşan et al., 2011].

Fidjeland et al. [2009] presented the NeMo SNN simulator which ran on an Nvidia
Tesla C1060 GPU. NeMo is capable of simulating 40⇥103 Izhikevich neurons with 103

synapses per neuron, and a mean firing rate of 10 Hz. This simulator supports axonal
delays, different network topologies and can deliver up to 400⇥106 synaptic events (SE)
per second. Fidjeland and Shanahan [2010] extended NeMo to include STDP plasticity
and optimised its performance to deliver up to 550⇥106 SE per second. NeMo offers a
programming interface similar to PyNN to allow users to run their experiments without
any background on GPUs. Nageswaran et al. [2009] demonstrated their SNN simulator
on an Nvidia GTX-280. They were able to simulate up to 100⇥103 Izhikevich neurons
with 50⇥106 synapses and a mean firing rate of 7 Hz. In addition, axonal delays and
STDP is supported, while they reported that the simulations ran 26⇥ faster than the
single-threaded simulator written in C on a CPU version. GPUs are excellent platforms
for accelerating algorithms that have high computation to communication ratio [Brette
and Goodman, 2012]. However, this is not true for SNN simulations which require
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frequent memory access and they are communication bound [Moore et al., 2012]. Both
Fidjeland et al. [2009] and Nageswaran et al. [2009] reported that the limiting factor
of their work was the memory bandwidth. Programming a GPU becomes a non trivial
task as it requires a careful mapping of the data structures in memory to achieve the
available maximum bandwidth [Brette and Goodman, 2012; Fatahalian and Houston,
2008]. Finally, the power requirements of GPUs [Jiao et al., 2010], which are in the
order of several hundreds of watts, might be an issue for some applications for example
robotic platforms.

3.3.3 Field Programmable Gate Arrays

Custom hardware implementations of SNNs may significantly outperform general-
purpose processors. Some of the advantages of FPGAs are that they are reconfigurable,
they provide fast performance and they reduce the costs and effort of fabricating
application specific integrated circuits (ASICs). In addition, the design code can be
shared between researchers to allow collaborations and sharing of knowledge.

Cassidy et al. [2011] proposed an architecture of neural computational arrays,
where instead of physically simulating neurons on hardware they multiplex multiple
neurons into one physical neuron. Their implementation uses LIF neurons with delta-
current synapses, however the neural model can be easily modified to accommodate
any arbitrary point-neuron model (e.g. Izhikevich neuron). The AER protocol is used
for communicating the spikes, while their implementation targets real or accelerated
execution time. The limiting factor of their system was reported to be the size of
the external RAM and the communications bandwidth. Their analytical results were
verified on a Xilinx Virtex 6 SX475 FPGA clocked at 200 MHz with a 36 Mb QDR
SRAM were the mapping and synapses are stored. Neither the topology of the neural
network nor the number of bits used for the synapses were reported.

To address the communication bandwidth issues that arise with large-scale, real-time
simulations of SNNs Moore et al. [2012] have engineered a scalable multi-FPGA archi-
tecture, named BlueHive (Figure 3.2), that follows a communication-centric approach.
The building block of their system is an Altera Stratix IV 230 FPGA with custom
PCBs to break out serial links to pluggable SATA channels thus providing a 72 Gb/s
bandwidth per FPGA. Each FPGA, clocked at 200 MHz, can simulate up to 64⇥103

Izhikevich neurons in real-time with 64⇥106 delta-current synapses while supporting
axonal delays. The high-speed communication interfaces are capable of delivering
inter-board spikes in under a millisecond, 50 ns per hop. Neural network parameters
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are held in the external memory thus supporting different topologies without having
to reconfigure the FPGAs. BlueHive is scalable to up to 64 FPGAs, while a 4-FPGA
system with 256⇥103 neurons and 256⇥106 synapses has already been demonstrated.
Performance-wise, BlueHive ran 162⇥ faster compared to a single-threaded SNN simu-
lator written in C and executed on an Intel Xeon X5560 2.80 GHz server with 48 GB of
RAM. However, power requirements were not reported.

Neil and Liu [2014] introduced Minitaur, an event-driven implementation for ac-
celerating SNNs simulations, with a particular interest in the applications of spiking
DBNs. Minitaur uses event-driven LIF neurons with delta-current synapses, where the
membrane is updated only at the arrival of input spikes thus reducing the computational
costs. In addition, the computation speed depends on the network activity and not the
number of neurons. Minitaur was implemented on a low-cost Xilinx Spartan 6 LX150
with 128 MB of DDR2 RAM and 128 KB of flash memory, clocked at 75 MHz. It
achieved a peak performance of 18.73 Million synaptic events (SE) per second while
dissipating 1.5 W. The maximum number of neurons supported by the platform is
65,536 with 16.78 million synapses.

Figure 3.2: A BlueHive rack with 16 FPGA boards [Moore et al., 2012].

While FPGAs have the advantage of being reconfigurable they suffer from their
high power and area requirements compared to ASICs. However, this gap in power,
area and performance tends to get smaller with every new technological iteration [Kuon
and Rose, 2007], while a successful design on an FPGA can always be turned into a
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higher-performance ASIC in the future. Lastly, depending on the background of the
researcher, implementing new models or extending the functionality of a design might
not be a trivial task.

3.3.4 Neuromorphic Hardware

Neuromorphic engineering, a concept originally developed by [Mead, 1990], aims to
provide real-time simulations of spiking neural networks in an energy efficient man-
ner. Depending on how neurons, synapses and spike transmission are implemented
neuromorphic systems can be categorised as either analogue, digital, or mixed-mode
analogue/digital VLSI circuits. Analogue implementations exploit the sub-threshold
transistor dynamics [Indiveri et al., 2011] and are more energy-efficient while requiring
less area than their digital counterparts [Joubert et al., 2012]. However, the behaviour of
analogue circuits is largely determined during the fabrication process due to transistor
mismatch [Indiveri et al., 2011; Pedram and Nazarian, 2006; Linares-Barranco et al.,
2003], and also analogue neuromorphic circuits suffer from scaling limitations due
to the large capacitances required by the models [Joubert et al., 2012]. The major-
ity of mixed-mode analogue/digital neuromorphic platforms use digital packet-based
technology to communicate spikes as AER events. This enables reconfigurable con-
nectivity patterns while the time of spikes is expressed implicitly since typically a
spike reaches its destination in less than a millisecond, thus fulfilling the real-time
requirement. Neuromorphic systems suffer from model flexibility, since neurons and
synapses are fabricated directly on hardware with only a small subset of parameters
available to the researcher. In addition, it requires effort to design and they are costly
to fabricate. This subsection aims to provide a brief review of some of the large-scale
neuromorphic systems, as well as, biologically inspired neuromorphic sensors currently
available.

3.3.4.1 SyNAPSE/TrueNorth

IBM researchers, in collaboration with a number of universities, have been working on
a project supported by the Defence Advanced Research Programs Agency (DARPA)
named Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE).
The SyNAPSE project aims to develop a neuromorphic machine capable of simulating
neurons in real-time with 1014 synapses while consuming 1 kW of energy [Sawada
and Modha, 2013]. The SyNAPSE project can be divided into two parts, hardware and
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software.

The software side consists of Compass [Preissl et al., 2012] a multi-threaded, mas-
sively parallel, scalable simulator that has a one-to-one equivalence to the functionally
of TrueNorth [Merolla et al., 2014b]. This one-to-one correspondence enabled the
development of an abstract neural programming model named Corelet [Amir et al.,
2013]. With Corelet users can compose and configure cognitive systems that may be
executed on Compass or on the TrueNorth architecture thus abstracting the hardware
details and allowing code re-usability.

The hardware side consists of the TrueNorth architecture and chip. The basic
building block of a TrueNorth chip is the neurosynaptic core, which consists of 256
neurons, 256 axons, and 256⇥256 binary synapses implemented as a crossbar memory.
Axons can be set to one of four types (excitatory or inhibitory), and each post-synaptic
neuron can individually assign a programmable signed integer value for that axon type.
Neurons are implemented directly on hardware and they are multiplexed in time, 256
neurons can be evaluated in a single time-step. They are updated at discrete time-steps,
default value 1 ms. Neural parameters and states are stored locally in a 256⇥410 bit
SRAM, where each row stores all relevant information for each neuron. The neuron
model implemented is the LIF neuron [Cassidy et al., 2013] with delta-current synapses.
Spikes are transmitted as destination-based AER packets and each neurosynaptic core
has a router whose purpose is to route packets between adjacent cores to the destination
cores with programmable axonal delays. A single TrueNorth chip comprises 4,096
neurosynaptic cores and is capable of simulating up to 106 neurons with 256⇥106

configurable synapses in real-time. TrueNorth is a hybrid asynchronous-synchronous
chip. The communications and control circuits are asynchronous, while the synchronous
computations are clocked by the asynchronous control, thus minimising the active
power.

TrueNorth was demonstrated on a multiobject detection and classification task in
real-time while consuming 63 mW. Compass running the identical task on an Intel Core
i7 CPU 950 with 4 cores and 8 threads, clocked at 3.07 GHz was 100 to 200⇥ slower
than real-time and consumed 100,000 to 300,000 ⇥ more energy per synaptic event
(SE) [Merolla et al., 2014b]. Finally, TrueNorth is capable of delivering 46 billion
synaptic operations per second (SOPS) per Watt in real-time, while consuming 26 pJ
per SE, and 2.3 pJ to route a spike per hop.
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3.3.4.2 HICANN

Brain-inspired multiscale computation in neuromorphic hybrid systems (BrainScaleS),
now part of the HBP, introduced the High Input Count Analog Neural Network (HI-
CANN) [Schemmel et al., 2010] chip, which is a mixed-signal neuromorphic architec-
ture. The building block of HICANN is the analogue network core (ANC) which is
configurable crossbar circuit that can have 8 neurons with 16⇥103 pre-synaptic inputs
per neuron, or 512 neurons with 256 inputs per neuron. The implemented neuron model
is the adaptive exponential integrate-and-fire model [Brette and Gerstner, 2005], and
the synapses are represented as current generated by a 4-bit multiplying DAC [Linares-
Barranco et al., 2003]. The precision of the synapses can be increased to 8-bits but at
the cost of a twofold reduction of their number. In addition, the synapses offer STDP
plasticity, which is controlled by a programmable digital circuit. Neurons in HICANN
run in accelerated biological time that ranges from 103 up to 105 compared to biological
real-time. In order to overcome the communication overheads they implemented a
wafer-scale scheme with digital packet-switched routers for spike transmission [Schem-
mel et al., 2008] providing an intra-wafer bandwidth of up to 2 Gb/s. A 20 cm wafer
can fit 352 HICANN chips allowing simulations of 4⇥107 synapses and up to 180⇥103

neurons. Larger systems can be created by combining several wafers together with an
inter-wafer bandwidth of 44 Gigaevents/s and a maximum latency of 4 ns per hop.

3.3.4.3 Neurogrid

Neurogrid [neu, 2006] is a hybrid analogue/digital neuromorphic architecture. A
neurogrid board consists of 16 neurocores connected in a binary tree, a Xilinx Spartan-
3E FPGA and 8 Cypress 4 MB SRAMs used for axon-branching. Each Neurocore
chip is capable of emulating up to 216 two-compartment neurons in real-time, while
consuming less than 1 W. Spikes are propagated as AER packets using an event-based
digital communication network providing a bandwidth of up 1.17 Gwords/s with less
that 1 µs latency along the longest path. On a neural network simulation that comprised
106 neurons with 8⇥109 synapses Neurogrid consumed 3.1 W, with 941 pJ per synaptic
event [Benjamin et al., 2014].

3.3.4.4 HiAER-IFAT

HiAER-IFAT [Yu et al., 2012] is a mixed-signal VLSI with 216 two-compartment LIF
neurons, each with four time-multiplexed conductance-based synapses. Neurons and
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synapses are emulated using sub-threshold transistor dynamics with a programmable
set of parameters. In order to allow arbitrary connectivity between neurons, spikes are
communicated as AER events using five Xilinx Spartan-6 FPGA chips, each with four
2 Gb DDR3 RAM for storing the synaptic look-up tables. HiAER-IFAT provides a
total throughput of up to 3.6⇥107 SE/s, with 5 Mevents/s of maximum input rate per
neuron, while consuming 252 µW (50 pJ/spike). The spike latencies reported were
below 450 µs [Park et al., 2012].

3.3.4.5 Sensors

A dynamic vision sensor (DVS) consists of 128⇥128 pixels where each pixel responds
asynchronously to relative changes in intensity. Contrary to conventional frame-based
vision sensors that wastefully transmit entire images at fixed frame rates, only the local
pixel-level changes caused by moving in a scene are transmitted. The sensor outputs an
asynchronous stream of pixel-addresses, encoded as AER packets, at exactly the time
they occur. This results in very small latencies, in the order of 15 µs [Lichtsteiner et al.,
2008] or 3.6 µs [Leñero-Bardallo et al., 2011], low-power consumption (23 mW) and
an increase in the dynamic range (>120 dB) due to the local processing.

Liu et al. [2010] developed an event-based binaural silicon cochlea that emulates
the hair cells, ganglion cells and the basilar membrane and is aimed for spatial audition
and auditory scene analysis. Spikes from each ear are encoded as AER packets and
transmitted asynchronously with a maximum bandwidth of 10 Mevents/s and a latency
of 2 µs. The reported dynamic range is 36 dB, while the peak power dissipation for the
digital circuits is 25 mW and 33 mW for the analogue ones.

3.4 The SpiNNaker Architecture

The Spiking Neural Network Architecture, or SpiNNaker, is a biologically inspired,
massively-parallel, scalable computing architecture designed by the Advanced Processor
Technologies (APT) group at the University of Manchester. SpiNNaker has been
optimised to simulate very large-scale spiking neural networks in real-time [Furber et al.,
2014]. Each SpiNNaker chip comprises 18 identical low-power fully programmable
cores that allow the use of dynamic, arbitrary and heterogeneous models in simulation.
The key innovation of the SpiNNaker architecture is its communications infrastructure
designed to cope with very small frequent packets of spiking events, scalable up to a
billion neurons [Navaridas et al., 2010]. Spikes are transmitted as AER packets, with
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their time expressed implicitly as the communications fabric can deliver a packet in
much less than a millisecond, fulfilling the requirement for real-time neural processing.
By connecting SpiNNaker chips and boards together, large machines can be formed,
permitting simulations to scale-up seamlessly; the final SpiNNaker machine aims to
simulate a billion neurons with trillions of synapses in real-time.

The SpiNNaker architecture combines some of the advantages of conventional
computing platforms and neuromorphic hardware. While not achieving the energy
efficiency of dedicated neuromorphic hardware its programmability allows the develop-
ment of, and experimentation with, new neuron, synapse and plasticity [Galluppi et al.,
2014b] models, while its communications infrastructure overcomes the limitations of
general-purpose supercomputers enabling real-time simulations.

3.4.1 Hardware Architecture

A SpiNNaker chip, shown in Figures 3.3(a) & (b), comprises 18 identical ARM968
cores each with its own local tightly-coupled memory (TCM) for storing data (64 kB)
and instructions (32 kB). All cores have access to a shared off-die 128 MB low-power
dual-data-rate (DDR) SDRAM (Figure 3.3(b)) through a self-timed system network-on-
chip (NoC) where the relevant synaptic information is stored (Figure 3.4). In addition,
every ARM9 core has a communications controller responsible for generating and
receiving neural spikes to and from the router through a self-timed communications
NoC, a direct memory access (DMA) controller for reading and writing to the shared
off-die SDRAM, and two timer peripherals, one of which is used to generate interrupt
signals periodically to solve the neural equations. Out of the 18 ARM9 cores, 16 may
be used for neural applications known as application cores, 1 is used for monitoring and
administration purposes also known as monitor core, and 1 is spare for fault tolerant
purposes [Furber et al., 2013]. Jin et al. [2008] demonstrated that each ARM9 core
is capable of simulating, in real-time, 1,024 Izhikevich neurons, each receiving 1,024
delta-current connections and firing with a mean firing rate of 10 Hz. This however
was achieved with optimised assembly code and in practice the number of neurons and
synapses that can be simulated by a single core depend on the computational complexity
of the models and, in particular, by the number of input connections, their firing rates,
and the complexity of the synapse model.

Spikes are transmitted as 40 or 72 bit multicast (MC) packets implementing the
source-based Address-Event Representation (AER) [Mahowald, 1994] scheme, where
the information transmitted is the address of the firing neuron. Each packet consists
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(a)

(b) (c)

Figure 3.3: System overview of SpiNNaker: (a) The SpiNNaker chip die. (b) Packaged
production SpiNNaker chip. (c) A SpiNNaker chip and stacked SDRAM.

of an 8 bit packet header, a 32 bit routing key identifying the neuron that fired and an
optional 32 bit payload which is not normally used for neural applications [Wu and
Furber, 2010].

At the center of the SpiNNaker chip lies a packet-switched MC router [Wu and
Furber, 2010] responsible for communicating the spikes to the local ARM9 cores
or to neighbouring chips through 6 asynchronous bi-directional links namely: East,
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Figure 3.4: Simplified Block diagram of a SpiNNaker chip [Patterson, 2012].

North-East, North, West, South-West, South as seen in Figure 3.4. The bi-directional
links support an aggregated spiking bandwidth of 1.5 Gb/s [Patterson et al., 2012] and
arbitrary connectivity [Furber et al., 2006]. Each SpiNNaker router has 1,024 routing
tables implemented using content addressable memory (CAM). Two additional features
of the SpiNNaker router are the default routing and emergency routing. Default routing
takes place when no CAM entry matches the key of a MC packet; the router will then
route the packet to the output link opposite the input link through which it arrived
thus minimising the total number of the required routing entries per node. Emergency
routing takes place when a problematic link is detected either due to transient congestion
or link failure. In the case of an emergency routing the router will attempt to route
the MC packet via the link rotated one link clockwise from the blocked link. The
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Figure 3.5: A board with 48 SpiNNaker chips (SpiNN-5).

router is capable of handling one-to-many communications efficiently, while its novel
interconnection fabric allows it to cope with very large numbers of very small packets.
A study by Navaridas et al. [2010] verified that the SpiNNaker routers are capable of
processing packets at a rate which scales up to billion neuron simulations.

By combining multiple SpiNNaker chips together larger systems are formed. The
SpiNNaker printed circuit board (PCB) with 48 chips (SpiNN-5), as seen in Figure 3.5,
is the largest prototype system available to-date and is currently being used as the
building block for forming larger SpiNNaker machines. The SpiNN-5 board has 864
ARM9 cores, 768 of which can be used for neural applications, while 1 core per chip
is dedicated for monitoring purposes and an additional one for fault-tolerant purposes
[Furber et al., 2013]. Additionally, there are 3 Xilinx Spartan-6 FPGA chips used for
inter-board communication purposes through the 6 high-speed SATA links. The final
SpiNNaker machine will utilize approximately 1,200 SpiNN-5 boards with estimated
peak power requirements at around 75 kW [Furber et al., 2014], and it aims at simulating
one billion neurons with trillions of synapses in biological real-time.
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3.4.2 Software for Neural Simulations

One of the main advantages of the SpiNNaker platform is its reprogrammability. On
the application level this means that each ARM9 core may execute different neuron
and synapse models, plasticity rules or any type of event-driven software in the same
simulation. On the communications level, the SpiNNaker routers are capable of allowing
any arbitrary network topology by programming their routing entries. This section will
present the SpiNNaker system software and how spiking neural networks are mapped
and executed on a SpiNNaker system.

3.4.2.1 The SpiNNaker Software

The SpiNNaker software can be divided into two parts, the software running on the chips
and on the host-side, which could be any general purpose computer. Each SpiNNaker
core runs an event-based Application Run-time Kernel (SARK) that has two threads
which share the processor time, the scheduler and the dispatcher. The scheduler is
responsible for queuing tasks based on a user-defined priority, while the dispatcher
de-queues and executes them starting with the highest-priority task. Tasks with priorities
set to one and above are queueable [Sharp et al., 2011] and are placed into a scheduling
queue based on their priority. Zero task priorities are non-queueable and are executed
directly from the scheduler, while they may pre-empt the execution of a queueable task.
Finally, users are allowed to set one task to minus one priority (highest priority) making
it a non-queueable, pre-eminent and will pre-empt other non-queueable and queueable
tasks. This can be seen in Figure 3.6(a).

The SpiNNaker application programming interface (API) is built on top of SARK
and allows users to write sequential C code to describe event-based neuron and synapse
models by assigning callback functions that respond to particular system events. Some
of the commonly used events for neural applications include:

• Timer Event: A user-defined periodic event, usually set to every millisecond,
triggered by the hardware timer; this is used to solve the neural equations and
update the synaptic currents. If the membrane potential of a neuron crosses its
predefined threshold value a spike (MC packet) is generated with the address of
the neuron that fired and send to the router.

• Packet Received Event: An event is triggered every time a core receives a spike
(MC packet). It initiates a DMA transfer to fetch the pre-synaptic information
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from the SDRAM to the local TCM memory. This DMA operation is autonomous,
the ARM core may handle pending events or enter into a power-saving sleep
mode.

• DMA Done Event: This event is generated by the DMA controller to inform
the core that a DMA transfer has been completed. Each synaptic weight and
conductance delay gets updated.

This event-driven software model can be observed in Figure 3.6(b). If there are no
pending tasks the cores enter a low-power sleep mode.

3.4.2.2 Mapping Spiking Neural Networks on SpiNNaker

Configuring a million-core machine designed to simulate a billion neurons with trillions
of synapses, while allowing arbitrary network topologies is a non-trivial problem. To
address this issue a tool named partition and configuration management (PACMAN)
[Galluppi et al., 2012d] was developed. PACMAN is a set of algorithms that takes
a high-level description of a neural network topology as its input and maps it on a
SpiNNaker system based on the available resources.

PyNN [Davison et al., 2009] is used as a high-level neural specification language,
allowing users to describe neural topologies and parameters using abstractions such
as populations and projections. The advantage of using PyNN as a user interface is
that the SpiNNaker platform becomes available to non-expert users by abstracting the
hardware details, and that the results can be validated against software simulators such
as Brian, Nest and NEURON.

In Figure 3.7 the flow chart of PACMAN’s algorithms can be observed (left), and the
data representations they operate on (right). The model view represents a neural network
described in PyNN, it is then split into sub-populations and sub-projections based on
the number of neurons and synapses a single ARM9 core can execute (PACMAN view).
The next step is an intermediate stage where the sub-populations and sub-projections are
mapped and routed on a physical machine instance (System view) using the information
stored in the system library. The translation process uses information stored in the
model library to generate the binary files and executables for the neural/synapse models
and their parameters which are going to be stored in the local TCMs of the ARM9
cores; the synaptic information such as weights, delays and type of synapse that will be
stored in the SDRAMs; and the routing entries to route the spikes to the appropriate
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(a)

(b)

Figure 3.6: Software overview: (a) Control and data flow between the scheduler and the
dispatcher. (b) Event-driven software API of SpiNNaker [Sharp et al., 2011].
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Figure 3.7: Flow chart of PACMAN’s algorithms (left) and the data representations they
operate on (right) [Furber et al., 2014].

destinations. Finally, the binary files and executables are loaded onto a SpiNNaker
system, an example of this can be seen in Figure 3.8, and the simulation is executed.

3.4.3 Applications

This subsection highlights the flexibility of the SpiNNaker platform and provide a brief
summary of some of the applications where it has been successfully utilised.

Sharp et al. [2014] simulated, in real-time, the model of the rodent barrel cor-
tex, which consisted of 50⇥103 LIF neurons and 50⇥106 current-based exponential
synapses. Galluppi et al. [2014b] by taking advantage of the programmability and mas-
sive parallelism of the SpiNNaker platform introduced a novel framework for real-time
plasticity on SpiNNaker; for every neural population requiring plasticity PACMAN
allocates a separate core. The advantage of this approach is that the plasticity rules are
decoupled from the neuron and synapse models, while it is relatively easy to develop
new learning rules. To demonstrate the latter, three plasticity rules were implemented:
STDP [Morrison et al., 2008], voltage-dependent STDP [Brader et al., 2007] and the
rate-based BCM rule [Bienenstock et al., 1982]. Recently, Lagorce et al. [2015] im-
plemented a set of purely event-driven neuron and plasticity models on SpiNNaker
to enable sub-millisecond simulations for applications like sound localisation which
require finer time resolution than milliseconds [Knudsen, 2002]. Galluppi et al. [2012c]
integrated a DVS silicon retina with SpiNNaker to implement a real-time feature-based
attentional selection model. Finally, Galluppi et al. [2014a] by taking advantage of
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Figure 3.8: Functional blocks of a subsection of a single SpiNNaker chip [Galluppi,
2013].

the low-power operation of the SpiNNaker cores, coupled a SpiNN-5 board to a mo-
bile robotic platform to enable simulations of SNNs that need to interact with the
environment in real-time.

Apart from PyNN, PACMAN has been extended to interface SpiNNaker with the
Nengo [Galluppi et al., 2012b] simulator. This enables researchers to take advantage of
the NEF and create networks of spiking neurons that implement desired computations in
real-time. Some applications of NEF on SpiNNaker include a model of rat hippocampus
place, grid and border cells on a mobile robot [Galluppi et al., 2012a]. Galluppi et al.
[2014a] demonstrated a Nengo model on a mobile robotic platform that used two
silicon retinas as inputs and the task was to keep a stimulus input at a fixed distance
and orientation. Mundy et al. [2015] recently optimised the NEF implementation
on SpiNNaker and now requires 90% less memory, while each SpiNNaker core can
simulate up to 2,000 neurons. Future plans include the real-time realisation of Spaun
[Eliasmith et al., 2012] on larger SpiNNaker machines [Furber et al., 2014; Mundy
et al., 2015].
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3.5 Summary

This chapter aimed to provide a review of the available software and hardware platforms
for simulating large-scale SNNs. General-purpose software simulators offer model
flexibility and are simple to use but also unable to efficiently utilise the computational
parallelism required for large-scale simulations [Morrison et al., 2005]. Similarly,
supercomputers offer great parallelism but suffer from communication overheads and
vast power requirements. Other off-the-shelf hardware platforms such as GPUs have
the advantage that they are affordable but it is not trivial to program if one requires to
exploit the maximum capacity of the available memory bandwidth [Fidjeland et al.,
2009; Nageswaran et al., 2009], while their energy requirements might be issue for
some applications. FPGAs are reconfigurable and cost-efficient solutions compared
to fabricating an ASIC but most SNNs implementations show little model flexibility
and the memory bandwidth is reported to be the limiting factor [Moore et al., 2012;
Cassidy et al., 2011]. Neuromorphic approaches have proven to be an energy-efficient
solution by simulating the neurons and synapses directly on hardware, and enable real-
or accelerated-time simulations of SNNs by employing packet-based routing techniques
for spike propagation [Merolla et al., 2014b; Schemmel et al., 2008]. However, they
suffer from model specialisation; it takes extra effort and cost to fabricate an ASIC
and may have a steep learning curve for new users. SpiNNaker aims to combine
the advantages of conventional computers and neuromorphic hardware by utilising
low-power programmable cores and scalable event-driven communications hardware.

Figure 3.9 presents a qualitative summary of the advantages and disadvantages
of each platform discussed in this chapter, where for each platform the term energy
efficiency refers to the contributions of the energy consumed: a) per synaptic event,
b) to simulate a neuron for a single time-step, and c) to transmit a spike from one
computational node to the next. Biological fidelity means how close to biology the
neuron, synapse and spike transmission circuits are, or for the case of digital platforms
if it is possible to program more detailed models (for example multi-compartment
models). Communication latency refers to the time required to transmit a spike from
one computational node to the next. Cost means the costs related to design, fabricate
(for the case of ASICs) or purchase for the case of off-the-shelf hardware platforms
such as super computers, GPUs, or FPGAs. The term scalability means if the platform
is capable of simulating larger models (increasing the number of neurons/synapses) just
by adding computation nodes to the system. Programmability refers to the possibility
of programming new neuron, synapse, or plasticity models on the same hardware.
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One of the main contributions of this thesis is presented in the next chapter; that
shows a method to characterise the power requirements and communication latencies of
the SpiNNaker platform, as well as, techniques to minimise overall power usage.
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Figure 3.9: A qualitative comparison of different platforms for simulating SNNs.



Chapter 4

Power and Latency Characterisation
of the SpiNNaker Platform

SpiNNaker has been designed to enable large-scale simulations of heterogeneous models
of spiking neurons in biological real-time [Furber and Brown, 2009]. As described in
the previous chapter, by combining several SpiNNaker chips together larger systems are
formed. For the research presented in this chapter a SpiNN-4 board was used, which is
a prototype of a SpiNN-5 board, and was the only board available with 48 SpiNNaker
chips at the time of this research. This chapter aims to sketch the power dissipation
profile of the SpiNNaker platform, characterise the spike latencies as imposed by the
software overheads and communication fabric and propose new modes of operation to
further reduce the dissipated power.

Section 4.1 describes the common experimental set-up for the remaining experi-
ments. This includes a description of the neuron and synapse models used, the proposed
benchmark neural networks and the rationale behind them, the parameters that moni-
tored the status of the simulations to guarantee correctness of results, and finally the
methodology employed for measuring the power dissipation during the simulations.

Section 4.2 presents, the simulation of large-scale, real-time simulations of up to
a quarter of a million neurons, tens of millions of synapses, generating an activity
of more than a billion synaptic events per second, which at the time of publication
[Stromatias et al., 2013] was the largest recurrent real-time simulation of spiking
neural networks. More importantly, this section focuses on a controlled and systematic
simulation environment, using the proposed benchmark neural topologies, to obtain
a more general power characterisation equation for SpiNNaker based on numbers of
neurons, synapses and their firing rates and the energy required per synaptic event.

82
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This work has been previously published by Stromatias, Galluppi, Patterson and Furber
(2013) in the International Joint Conference on Neural Networks.

Section 4.2.2 presents an investigation on the intra- and inter-chip spike latencies
as a function of synthetic background traffic. This section reproduces the author’s
contribution to the work of Lagorce, Stromatias, Galluppi, Plana, Liu, Furber and
Benosman (2015) in Journal of Frontiers in Neuromorphic Engineering.

Section 4.3 presents a systematic investigation into the overall energy consumption
of a SpiNN-4 board and suggests a number of optimised suspend modes to reduce this.
The proposed implementation shows significant energy savings during the simulation
phases, when compared to the default implementation. This work has been previously
published by Stromatias, Patterson, and Furber (2014) in the International Conference
on Neural Networks.

4.1 Experimental Set-up

4.1.1 Neuron and Synapse Models

Two spiking neuron models were used, the LIF and the Izhikevich (IZK) model, de-
scribed in sections 2.3.1.2 & 2.3.1.3, while for the synapse model the current-based
instantaneous rise and single-exponential decay model was utilised, as described in
section 2.3.2.1. The full set of neural and synapse parameters used in the experiments
can be found in Table 4.1, for the LIF model, and Table 4.2, for the IZK model. Values
inside the brackets indicate the range of a randomly generated variables based on a
uniform distribution. The random seed is kept constant throughout the experiments. The
E or I subscripts represent the excitatory and inhibitory post synaptic currents (PSC).
Finally, tE/I represents the decay time of the excitatory/inhibitory synaptic currents.

The SpiNNaker ARM968E-S cores do not include a floating-point unit (FPU) thus
the internal states of the neuron and synapse models are computed using fixed-point
arithmetic [Jin et al., 2008].

4.1.2 Benchmark Neural Network Topologies

This section describes the networks used to test the system in a controlled way for both
the LIF and the Izhikevich neurons. In all experiments the weights are set to zero to
avoid altering network dynamics, while the activity of the network is controlled through
a single parameter: the current Iinjected, and keeping IE/I at zero. As all the computational
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Table 4.1: Neural and synaptic parameters used in the LIF experiments.

Parameters Values Units
tm 64.0 ms

Vinit [�65.0,�125.0] mV
Vreset [�90.0,�125.0] mV
Vthres [�50.0,�60.0] mV
tI/E 10 ms

tre f ract 3 ms

Table 4.2: Izhikevich model parameters. Bracketed parameters indicate the uniformly
distributed range with a constant random seed.

Parameters Values Units
a 0.02 �
b 0.2 �
c �65.0 mV
d 8.0 �

Vinit [�65.0,�125.0] mV
Uinit [�5.0,5.0] mV
Vthres [�50.0,�60.0] mV
tE/I 10.0 ms

steps linked to the evaluation of an incoming spike (described by equation 2.12) are
the same regardless of the value of the weight itself, this procedure enables full control
of the network dynamics through a single parameter. Direct comparison between
simulations and extrapolation of the power directly related to neural equation solving
and to synaptic events are possible, as presented in Section 4.2.

The first network, illustrated in Figure 4.1, comprises a series of populations each on
a single core, recurrently connected in an all-to-all fashion. Upon reaching its threshold,
a neuron emits a spike (MC packet) which the router routes back to the originating core,
triggering a “packet received” event. Populations are replicated across the 48 chips (764
cores), filling the system, and population activity is controlled by varying Iinjected. This
network configuration is used to test local connections within a single SpiNNaker chip
with different activity patterns and numbers of neurons and synapses.

The second network introduces inter-chip communications by having each popula-
tion connected in an all-to-all fashion to n other populations. This is illustrated in Figure
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4.2 where each population receives inputs from five other, randomly chosen populations.
The network used for this experiment therefore tests inter-chip communication by in-
troducing long-range random connectivity. As in the previous network, the model is
extended to run on 768 cores and the network dynamics controlled by varying Iinjected.

4.1.3 Monitoring of the Simulations

During simulation information relative to the status of the experiment is recorded
at fixed time intervals; this is needed to verify the correctness of the results and to
determine the limiting factors of the system. The recorded data can be downloaded
during the simulation or after it has completed. The rest of this subsection describes the
methodology used.

Recording the processor utilisation is non-trivial. Each processor cannot monitor its
own utilisation, as it would be active when it polled itself, thus appearing 100 percent
utilised. A technique was therefore developed that utilises the 2nd timer of SpiNNaker’s
ARM9 cores, which are otherwise unused. This counter is set up to operate at the
processor clock rate (200 MHz) but is disabled at the simulation’s start. Whenever an
interrupt is received the processor awakens and its first operation within the Interrupt
Service Routine (ISR) enables the counter. The counter is updated until the processor
is put to sleep, where it is disabled. Therefore the counter accumulates the number of
cycles during which a processor has been active. By reading, then resetting, the counter
periodically the activity of the local processor may be determined.

The cumulative difference between the total “MC packets” and “DMA Done” event
counters per core is also saved at the beginning of a timer event. During that period
all interrupts are disabled to ensure that these counters do not change during sampling.
This guarantees that all spikes are correctly serviced within the millisecond timer
interrupt; occasionally, if a core is busy, a spike might be computed in the next timer
interval; simulations where more than 0.1% spikes were not serviced in the correct
millisecond were discarded. Results were compared against the NEST simulator
(described in section 3.2.1) and the firing rates of the populations were found to be
identical. Moreover, in Appendix B there is an execution time comparison between
SpiNNaker and multi-threaded NEST for the benchmarking networks presented in this
chapter.
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Figure 4.1: Topology for the network used to test local connections.

Figure 4.2: Topology for the network used to test random connections.
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Figure 4.3: Power Distribution of the SpiNN-4 board.
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4.1.4 Power Monitoring

Each SpiNN-4 board has 48 SpiNNaker chips plus ancillary components, and is the
building block from which larger machines are constructed.

The 48-chip SpiNNaker board has 6 DC/DC converters that supply power to the
on-board components. To measure the power dissipation of the board, shunt resistors
were placed in series with the 6 DC/DC converters: 0.03 W resistors were placed in
series with the 1.2 V regulators (A, B, and C in Figure 4.3) that supply the SpiNNaker
chips. In addition, 0.1 W shunt resistors were placed in series with the 1.8 V regulator
that supplies the SDRAMs and the 6 bi-directional links of the chips, the 1.2 V regulator
that supplies the 3 FPGA chips, the 3.3 V regulator that supplies voltage to the Board
Management Processor (BMP), the Ethernet circuitry, the indicator LEDs and the
FPGAs, and finally with the 12 V supply to the SpiNN-4 board.

Tenma 72-7750 and Fluke 77 multimeters were used to measure the voltage across
the shunt resistors, yielding the current flow through that regulator. The 12 V measure-
ment point, as well as an overall indication of the power consumed by the board, serves
predominantly as a check and balance, where the heat generated by the shunt resistors
and the efficiency of the DC/DC converters were taken into account.

An additional measure was employed to assist in the verification process. A Model
2000MU-UK Wattmeter connected in-line with the mains supply was used and before
the switched-mode AC/DC adaptor. This meter displays a second by second integrated
display of the power passing through it, and therefore gives an overall power including
all losses in all transformers, shunts and the SpiNNaker board’s consumption. While
it was not anticipated that this would be particularly accurate, by using a straight line
80% efficiency factor for the 12 V AC/DC converter in use, the meter tended to be
within 1 W or 2 W of the measurements calculated using the more accurate calibrated
equipment.

4.2 Power and Latency Profiling

4.2.1 Power Characterisation

This section describes a series of experiments conducted using large-scale simulations
of spiking neurons in biological real-time using a SpiNNaker board with 48-chips
(SpiNN-4). The SpiNN-4 board contains 864 ARM processors, of which 768 are used
for neural applications, 48 for monitoring and 48 as spares for fault-tolerance purposes
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[Furber et al., 2013]. The aggregate memory of the board exceeds 6 GBytes, distributed
across the chips and cores.

Unless specified elsewhere the following configuration has been used: the “packet
received” callback priorities, used for initiating a DMA transfer of the relevant synaptic
information from the chip’s SDRAM, were set to minus one (pre-emptive), to ensure
that packets were cleared from the communications controller immediately upon receipt.
The “DMA done” callback priority, which is used for updating the status of each synapse
(its weight and delay) was set to zero, which is non-queueable and directly executed
by the scheduler. The “timer tick” callback priority, for solving the neural equations
and updating the synaptic currents, was set to two (lowest queue-able priority). The
processor clocks were set to 200 MHz, routers and system buses to 100 MHz, while the
off-chip memory clocks to 133 MHz.

A series of experiments were conducted to characterise the neural and synaptic
models, formulating a power estimation model for the SpiNNaker system, based on the
number of neurons, synapses and their mean firing rates.

To monitor the power consumption during experiments a Tektronix TDS 3034B
oscilloscope and a FLUKE 77 multimeter were used to measure the voltage across
shunt resistors in series with the 1.2 V and 1.8 V voltage regulators which supply the
SpiNNaker chips and their SDRAMs respectively, see Figure 4.3.

These measurements provided a detailed insight into how much power is consumed
by the chips for different states of execution. In a previous study of a biologically
plausible model of a cortical column [Sharp et al., 2012], a similar approach was used
to measure the energy required per neuron on an earlier generation 4-chip SpiNNaker
board. In this section, however, the main focus was to develop a more controlled
and systematic simulation environment to obtain a more general SpiNNaker power
characterisation.

Areas of particular interest were the power consumed by the chips after reset taken
after a power cycle and after loading the API while executing an empty timer callback,
without any neural or synaptic computation. This latter power measurement will be
referred to as the baseline for the remaining subsections. To measure the energy required
per neuron per millisecond of simulation time for the LIF and Izhikevich model, the first
benchmark network (Figure 4.1) was used and Iinjected set to zero. Figure A.2 shows
the instantaneous voltage across the shunt resistor placed in series with the 1.2 V (A)
voltage regulator, for a variable number of neurons per core, while Iinjected was set to
zero. When calculating the energy per synaptic event, which occurs whenever a spike
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arrives at a synapse [Sharp et al., 2012], the synaptic weights were set to zero thus
ensuring the dynamics of the network were not altered by outputting spikes. These set
of measurements allowed the formulation of a model of power consumption for the
SpiNNaker platform and demonstrated how it varies relative to synaptic events and
numbers of neurons and synapses.

The fixed and variable power consumption can be characterised in terms of:

• Idle Power (PI): the power used by a SpiNNaker board after the boot state, with
no application running.

• Baseline Power (PB): the power used when operating SARK and the SpiNNaker
API, calculated by loading a neural kernel containing no neurons, where timer
events are operating but have no actions.

• Neural Power (PN): the power required to simulate a neuron (the energy used to
solve the equation for a neuron with a millisecond time step), which can be used
to estimate the overall power consumption of a model comprising n neurons.

• Synaptic Power (PS): the power associated with the activation of neural con-
nections (synaptic events), used to estimate the power consumption related to
network activity s.

The overall power consumption can therefore be described as:

Ptot = PI +PB +(PN ·n)+(PS · s) (4.1)

To estimate the power for the LIF and Izhikevich neurons, the locally and ran-
domly connected network models were run while disabling spike transmission. As a
consequence “packet received” and “DMA done” events were not triggered, the only
activity in the network being caused by Iinjected, which controlled the firing rates of the
populations. The difference between the baseline power and this simulation is solely
attributed to the “timer tick” event solving the neural equations.

To estimate the power related to synaptic events, spike transmission and elaboration
is re-enabled, and all weights are set to 0 allowing them to be computed by the callbacks
with no impact on the network activity. In this context the number of synaptic events
can be measured and the power increment between this simulation and the one used to
estimate the neural power determined.

In the results presented in Table 4.3 it is noticeable that for both benchmark networks,
the CPU utilization tracks the power consumption.
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Figure 4.4: Performance for the networks presented.

4.2.1.1 Locally-connected network

In a locally connected network every population, comprised of n neurons, is recurrently
connected with n ⇥ n synapses. Iinjected is used to control the firing rate f of the
population; the total number of synaptic events s associated with a population can then
be calculated as s = n⇥ f ⇥n, where every neuron n of the population fires f spikes
a second, each activating n connections. The performance estimation assumes that
synaptic events dominate the simulation, and are the bounding limit of the platform.
Figure 4.4 shows the measured number of synaptic events running on the 48-node board
for different-sized populations of Izhikevich and LIF neurons. Results have been divided
according to their neural type (Izhikevich or LIF), network topology (local or random)
and the number of neurons. For the Izhikevich neural model (outlined markers) a number
of different experiments with the same activity, but increased number of neurons, are
presented, while for the LIF neuron only the top example for each population size is
presented. Results of the top six simulations are reported in Table 4.3, which includes
networks up to 200 K Izhikevich neurons and 250 k LIF neurons, with over a billion
synaptic events per second simulated using less than 1 Watt per SpiNNaker chip.

Thanks to the regularity and controlled activity of the proposed neural networks,
the power characterization for these models is straightforward – added to the baseline
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Figure 4.5: Power measurements for the locally-connected network using Izhikevich
neurons and a fixed firing rate of 25 Hz.

power costs there is a linear cost associated with the number of neurons simulated, and a
quadratic cost of synaptic events which varies with the square of the number of neurons
multiplied by the firing rate. This model is illustrated in the power measurements
reported for a locally-connected network of Izhikevich neurons, plotted in Figure
4.5, where the firing rate remains constant and the number of neurons was varied.
From this figure it can be seen that the power consumption associated with solving
neural equations is indeed a linear function (as shown by the third yellow part of the
figure), whilst the power associated with the synaptic events (green, fourth part) grows
quadratically with the number of neurons.

4.2.1.2 Randomly-connected network

To describe the platform performance with more complex interconnectivity models
the second topology described in Section 4.1.2 was used (Figure 4.2), where each
population receives all-to-all connections from five randomly chosen populations. With
each neuron receiving 5⇥n connections, the number of synaptic events s = 5 f n2. Here
spikes can be routed from any chip in the 48-node board to any other, as connections are
randomly picked – creating short, mid-range and long connections. The power related
to neurons and synaptic events was calculated as in the previous experiments, finding
similar values; these simulation results are also listed in Table 4.3.
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4.2.1.3 Energy per Multicast Packet

In the SpiNNaker system spikes are transmitted as 40 or 72-bit multicast (MC) packets
implementing the Address-Event Representation (AER) [Mahowald, 1994] scheme,
where the information transmitted is the address of the firing neuron. Each packet
comprises an 8-bit packet header and a 32-bit routing key identifying the neuron that
fired; there is also an optional 32-bit payload not normally used for neural applications
[Wu and Furber, 2010].

To measure the energy consumed by the router per MC packet and per SpiNNaker
link while sending a packet to a neighbouring chip, an additional experiment was
conducted using a board with a single SpiNNaker chip, as shown in Figure 4.6. The
advantage of using this board is that the 6 bi-directional SpiNNaker links can be wrapped
around, as shown in Figure 4.7. A single ARM9 core was used and a single routing entry
was set, broadcasting a single MC packet to all 6 bi-directional links simultaneously.
Thus the number of packets processed by the router grows exponentially for every
new packet the router receives, and the router should be able to achieve its maximum
bandwidth without any additional effort from the ARM9 cores. Upon sending the
single MC packet the ARM9 core goes back to sleep and wakes up after 60 seconds
to terminate the simulation and report the total number of MC packets that have been
processed by the router.

A 0.05 W shunt resistor was placed in series with the 1.2 V voltage regulator which
supplies the SpiNNaker chip and an 1 W resistor was placed in series with the 1.8 V
voltage regulator which supplies the SDRAM and the inputs/outputs of the chip, as
shown in Figure 4.6. A BK Precision 2831E voltage meter was used to measure the
voltage across the resistors, sampled once per second.

The experiment and the baseline were run for 5 trials each, while the voltage meter
recorded the voltage across each shunt resistor. During the baseline, the ARM9 core
does not transmit the single MC packet to the router.

For the baseline the mean voltage across the 0.05 W shunt resistor was 11.084 mV,
while the standard deviation from the mean 3.53 µV. The mean voltage of the 1.0 W
shunt resistor was 24.43 mV, while the standard deviation from the mean was 0.14 mV.
During the experiments, the mean voltage across the 0.05 W resistor was 12.40 mV and
the standard deviation from the mean 4.15 µV, while the total number of MC packets the
router processed was 1.7 billion packets, Table 4.4. The mean and standard deviation
voltage across the 1.0 W resistor was 70.0 mV and 0.09 mV, while the total number of
MC packets the router issued over the 60 second simulation period, were 274 million
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Figure 4.6: Single SpiNNaker chip board.

Figure 4.7: Connectivity of the 6 bi-directional links on the single SpiNNaker chip
board.
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Table 4.4: Power dissipated by the SpiNNaker chip for both the baseline and during the
experiment.

Baseline Experiment Units
Power Dissipation 0.266 0.297 W

MC Packets 0 1,704,110,496.6 -

Table 4.5: Power dissipated by the SDRAM and the inputs/outputs of the SpiNNaker
chip for both the baseline and during the experiment.

Baseline Experiment Units
Power Dissipation 0.044 0.126 W

MC Packets 0 274,674,145.8 -

packets, see Table 4.5.

By utilising Ohm’s law the current drawn by the chip during the experiments and the
baseline were calculated. The current drawn by the 1.2 V voltage regulator during the
baseline was 11.084 mV ÷ 0.05 W = 0.22 A, while during the experiment 12.40 mV ÷
0.05 W = 0.24 A. The current drawn by the 1.8 V voltage regulator during the baseline
was 24.43 mV ÷ 1.0 W = 0.044 A, while during the experiment 70.0 mV ÷ 1.0 Ohm =
0.07 A.

Similarly, the power drawn by the chip during the baseline and the experiment can
be calculated. For the 1.2 V voltage regulator the power drawn during the baseline was
0.22 A · 1.2 V = 0.266 W, while during the experiment 0.24 A · 1.2 V = 0.297 W. For
the 1.8V voltage regulator the power drawn during the baseline was 0.024 A · 1.8 V =
0.044 W and during the experiment 0.07 A · 1.8 V= 0.126 W. The power dissipation
results are summarised in Tables 4.4 & 4.5 for both the baseline and the experiments.

The difference between the power dissipated during the experiment and the baseline
is relevant to the power dissipated by the router to process 1,704,110,496.6 MC packets
during the 60 seconds of the experiment. This is 0.297 W � 0.266 W = 31.77 mW.
Similarly, the power dissipated by the 6 links to transmit and receive 274,674,145.8 MC
packets during 60 seconds is 0.126 W � 0.044 W = 81.98 mW.

The energy consumed by the router per MC packet can be calculated as follows:

Epacket =
31.77 mW ·60 s

1,704,110,496.6 Pkts
= 1.11 nJ (4.2)

while the energy consumed by a single SpiNNaker link to transmit and receive a MC
packet to is:



4.2. POWER AND LATENCY PROFILING 97

Elink =
81.98 mW ·60 s

274,674,145.8 Pkts
· 1

6
= 2.9 nJ (4.3)

Results are summarised in Table 4.6. A router clocked at 100 MHz consumes
1.11 nJ per MC packet, or 28 pJ per bit, while energy required by an external link to
transmit a MC packet is 2.9 nJ.

Table 4.6: Energy consumed by the SpiNNaker router and external links per MC packet.

Parameters Values (nJ) Description
Epacket 1.11 Energy consumed by the router per MC packet
Elink 2.9 Energy consumed by a link to transmit a MC packet

4.2.2 Intra- and Inter-Chip MC Packet Latency

At the heart of the SpiNNaker chip lies a packet-based multicast (MC) router [Wu and
Furber, 2010], responsible for communicating spikes to its internal cores or to other
chips via six asynchronous bi-directional links. Its pipelined implementation enables
it to route one packet per clock cycle to all or a desired number of output links in an
uncongested network. If any of the output links are busy, however, the router will try
to reroute the packet at every clock cycle until it reaches a predefined number of clock
cycles. Failing this it will attempt emergency routing via the link which is rotated
one link clockwise from the blocked link (not applicable for destinations internal to a
SpiNNaker chip). Similarly, if the emergency route fails, the router will retry emergency
routing at every clock cycle until it reaches a second user-defined number of cycles
when it finally drops the packet.

This section describes a series of experiments conducted to investigate the intra-
and inter-chip MC packet latencies as a function of the router’s waiting time and
synthetic traffic going through a link. For these experiments, a parametrised software
was developed using the SpiNNaker API. The “packet received” callback priorities
were set to be pre-emptive to ensure that packets were cleared from the communications
controller immediately upon receipt. The “timer tick” callback priority, which was used
by the cores for terminating the simulation after 60 seconds, was set to non queueable
priority. Finally, the priority of the callback function developed to generate MC packets
was set to the lowest queueable priority. The processor clocks were set to 200 MHz,
routers and system buses to 100 MHz, while the off-die memory clocks to 133 MHz.
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Figure 4.8: Block diagram showing the topology used to measure the intra-chip packet
latencies.

4.2.2.1 Intra-chip MC packet latency

The first experiment was aimed at demonstrating the core-to-core packet latency within
a SpiNNaker chip as a function of a congested internal link and the router’s wait time
before dropping a packet. A congested link means that a core has received more packets
than it can process on time and a back-pressure signal will propagate to the router
through that link. For this experiment 17 cores were used, one dedicated to measuring
the core-to-core MC packet latency within a SpiNNaker chip, by sending a packet
to the router every 500 ms using the “timer tick” callback function and receiving it
back. The second hardware timer, available on each core, was used to count the clock
cycles from sending to receiving the MC packet (with nanosecond resolution). Each of
the remaining 15 cores would generate approximately 1.7 million packets per second,
which would be routed to one particular consumer core (C) whose sole task was to
count the received packets, see Figure 4.8. The logged MC packet latencies during the
simulation, the values of the software counters and additional diagnostic information
from the router were then uploaded to the SDRAM when the simulation was over and
fetched by the host for further analysis.

Figure 4.9 shows the mean and standard deviation of the intra-chip MC packet
round-trip delay time (RTD) as a function of the total number of MC packets per second
the router has issued to the consumer core (C) and for various router wait times. What
can be observed from this figure is that, in an uncongested network, the intra-chip
round-trip delay time is constant at 0.825 µs, see Figure 4.9(a). Within this time is
included the software overhead of the SpiNNaker API required to write the MC packet



4.2. POWER AND LATENCY PROFILING 99

to the communication controller, the time needed for the packet to traverse through
the internal link to the router, the time required for the packet to go through the router
and again through the internal link to the communication controller of the target core
and finally the software overhead of receiving the packet from the communications
controller. The aforementioned times can be expressed as:

tIntra
RTD = tSW

Send +2 · t local
Link + tR + tSW

Receive , (4.4)

where tSW
Send is the software overhead of the API required to write the key of a MC packet

to the communications controller, tSW
Receive is the time passed from handling the interrupt

raised by the communications controller to branching to the callback function assigned
to handle the packet received events, tR is the time required by the router to process a
single MC packet, and finally t local

Link is the time a single MC packet needs to go through
the local links.

The tSW
Send and tSW

Receive times were found to be tSW
Send = 0.415 µs and the tSW

Receive =

0.13 µs, by utilising the second hardware timer. Assuming that the time consumed by a
MC packet to traverse through the local links is much smaller than the time spent by the
router to process a packet, t local

Link can be ignored. Solving equation 4.4 for tR, the time
the router requires to process a single MC packet is 0.28 µs.

As soon as congestion occurs, which for this experiment happens when the con-
sumer core (C) receives more than 3.6 million packets per second, the communications
controller of the consumer core (C) starts adding back-pressure on the router, which
attempts to resend the packet at every clock cycle until it reaches a predefined number
of cycles (240 default) at which point the packet is finally dropped, see Figure 4.9(b).
This back-pressure signal propagates back along the pipeline and the router stops re-
ceiving new packets until back pressure has been released [Wu and Furber, 2010].
As a consequence, the MC packet latency increases and the hardware buffers of the
communication controllers of the cores generating the MC packets are not emptied; this
explains why the total number of generated packets plateaus, as seen in Figure 4.9(c),
while failed packets increase (software buffer full), see Figure 4.9(d). When the router’s
waiting time is set to 240 cycles (default) and 60 cycles no packets were dropped in
any of the trials but the worst-case round-trip delay time went up to 6.5 µs. For router
wait times of 20 cycles, and below, the worst-case round-trip delay time drops below
4 µs but the total number of dropped packets per second increases dramatically. This
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Figure 4.9: Intra-chip MC packet RTD times as a function of the total number of packets
and for different router wait times.

trade-off between intra-chip MC packet latency, packets being dropped or not being
sent to the router at all, requires further investigation as it depends on the requirements
of a particular application.

A core clocked at 200 MHz may execute 200 million single-cycle instructions
per second. When the core receives a packet it is processed by an interrupt service
routine (0.13 µs); this copies the MC packet from the communication controller and
then branches to the particular callback function assigned to handle a packet received
event, which for this experiment is a 5 assembly instruction routine which increments a
software counter. Based on this information, in theory, the consumer core (C) should
be able to receive approximately 6.4 million packets per second. However, as seen in
Figure 4.9, an ARM9 core cannot receive more than 3.6 million packets per second.
The maximum throughput of a SpiNNaker router, clocked at 100 MHz, is 100 million
MC packets per second [Wu and Furber, 2010] so it is clearly not the bottleneck in this
experiment.
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Figure 4.10: Block diagram showing the topology used to measure the inter-chip MC
packet latency as a function of synthetic traffic going through a link.

4.2.2.2 Inter-chip MC packet latency

The router of a SpiNNaker chip can communicate packets to neighbouring chips through
six self-timed bi-directional links. The average bandwidth (transmit/receive) of each
link is 6 million packets per second (240 gigabits per second) and this may vary with the
temperature, voltage or silicon properties. An experiment was conducted to determine
the inter-chip RTD of a MC packet transmitted through one of the 6 bi-directional links
as a function of the link’s outgoing and incoming traffic. For this experiment a core (L1)
generates a MC packet every 500 ms and the router routes it to a neighbouring chip
through one of the six bi-directional self-timed links. Upon receiving the packet the
second router would route it to a particular core (L2), whose sole task was to change the
key of the packet and retransmit it back to the router which had an appropriate routing
entry to route it back to the originating core, Figure 4.10.

Seven cores on each chip were used to generate packets which were routed to seven
consumer cores (C) on the adjacent chip following a one-to-one mapping. This way the
total number of packets per second a consumer core receives remains below 3.6 million
packets per second, (which is the maximum number of packets a core can receive)
ensuring that no additional pressure is added to the routers.
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The generated packets were controlled by an inter-packet interval (IPI) parameter,
which is a delay in microseconds before transmitting the next MC packet. Results are
presented as the percentage of the utilisation of the incoming and outgoing packets
going through a link per second, with 100% utilisation meaning 6 million packets per
second.

The mean and standard deviation of the round-trip delay times of MC packets are
presented in Figure 4.11. When there is no traffic the round-trip delay time of a MC
packet is 2.535 µs. Within this time is embedded the time required for the packet to
go through each router twice, twice through the external link, and also two software
processing overheads of sending and receiving the packet back to the router. This can
be expressed as:

tInter
RTD = 2 · tSW

Send +4 · t local
Link +4 · tR

+2 · tSW
Receive +2 · texternal

Link (4.5)

where texternal
Link is the time a MC packet requires to traverse through an external link to a

neighbouring chip. Solving for an RTD time of 2.535 µs and by using the results of
equation 4.4 for tR and by ignoring the time of t local

Link , the time a MC packet needs to go
through an external bi-directional link is 0.1625 µs.

For a link utilisation of 60%, for both outgoing and incoming traffic, there is a 3%
increase in the RTD time. When both the incoming and outgoing link utilisation reaches
80% a very small number of packets were dropped as both routers attempted to reroute
the packets for the default wait times (240 cycles), hence the dramatic increase in the
RTD times. Results are summarised in Table 4.7.

Table 4.7: Experimental results of the SpiNNaker latencies.

Parameters Values (µs)
tSW
Send 0.415

tSW
Receive 0.13

tR 0.28
texternal
Link 0.1625

In order to investigate the variability of the self-timed bi-directional links of the
SpiNNaker platform, additional experiments were carried out on SpiNNaker boards
with 48-chips, such as the SpiNN-4, as shown in Figure 4.3, and a SpiNN-5 board,
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Figure 4.11: Mean and standard deviation of round-trip delay times of MC packets as a
function of the percentage of a link’s utilisation.

as seen in Figure 3.5. For these experiments a similar methodology was used as in
Section 4.2.2.2. This time however the L2 core would reside not on a neighbouring
SpiNNaker chip but on a chip across the diagonal of the board thus requiring the MC
packets to pass through multiple routers (hops) in order to reach the destination and
return to L1.

Results are summarised in Table 4.8 and Figure 4.12. As can be seen from Table 4.8,
texternal
Link does not have fixed value but its performance depends on factors such as
temperature, voltage or silicon properties due to its asynchronous nature. Finally,
Figure 4.12 presents the experimental results retrieved from the SpiNN-4 and SpiNN-5
boards and theoretical results by utilising equation 4.5 and Table 4.7.

Table 4.8: Mean and standard deviation of the external link latency.

Mean texternal
Link Std Units

SpiNN-4 0.0961 0.0266 µs
SpiNN-5 0.0861 0.0208 µs

4.2.3 Discussion

Large-scale modelling of neural tissue by computer simulation is an essential step in
understanding how the brain works as demonstrated by the high-profile interest shown
by IBM [Arthur et al., 2012] and funding bodies such as the Human Brain Project (HBP)
[HBP, 2013]. In the previous sections, SpiNNaker, a project which plays a part within



104CHAPTER 4. POWER AND LATENCY CHARACTERISATION OF SPINNAKER

Figure 4.12: Inter-chip MC packet latency as a function of the number of hops. Experi-
ments performed on a SpiNN-4 and SpiNN-5 board.

the HBP, was characterised by analysing its reconfigurability, scalability and power
consumption. The SpiNN-4 board used for this study constitutes the building block of
much larger SpiNNaker machines. Benchmarking networks have been presented, both
with local and long-range connectivity, using the Izhikevich and LIF neural models,
and demonstrated the flexibility of the system in terms of neural models, topologies and
the dynamical range of activities simulated. Both neuron types and network models
were characterised in terms of power consumption, by producing a model describing
fixed and variable power costs, relating the latter to the number of neurons modelled
in the system and the number of synaptic connections activated each second. More
specifically, it was shown that the energy per synaptic event for a current-based instant-
rise single-exponential decay synapse is 8 nJ, while the energy required to simulate a
neuron with a millisecond time-step is 28 µJ/ms. The energy required by the router
to route a MC packet is 1.11 nJ, while the energy consumed by an external link while
transmitting a single MC packet was 2.9 nJ. The results show that networks of a quarter
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of a million neurons, tens of millions of synapses and dynamic activity of over a billion
synaptic events per second can be delivered within a 30 W power envelope (less than
1 W per SpiNNaker chip). Based on Table 4.3, for the random network of Figure 4.2,
SpiNN-4 delivers 54.27 million synaptic operations per second (SOPS) per Watt in
real-time (millisecond time steps); for the local network (Figure 4.1) SpiNN-4 delivers
51.71 million SOPS per Watt.

An additional investigation of the intra- and inter-chip MC packet latencies revealed
that in an uncongested network the intra-chip core-to-core MC packet latency is 0.28 µs,
while the inter-chip core-to-core MC packet latency is 0.72 µs which includes the time a
MC packet to pass through an external link and two routers, and excluding the software
overheads of transmitting and receiving a packet. For the spiking neural network
simulations discussed in Section 4.2.1 a core receives, in worst-case, 17 kilopackets per
second (Table 4.3), which is well below the maximum number of packets a core can
receive (3.6 million packets per second), guaranteeing that no back-pressure signals are
propagated to the routers from the cores.

4.3 Optimising the Overall Power Usage

As the size of SpiNNaker machines grows substantially, its energy use begins to scale in
proportion. While large neural network simulations become possible, what was once a
trivial problem, the heat generated and power used by standalone small boards becomes
a significant issue in terms of financial cost and environmental management.

It was also noted that during experiments which investigated the energy consumption
of SpiNNaker chips at different stages of neural network simulation [Stromatias et al.,
2013], Section 4.2.1, a significant portion of the total power was dissipated during the
idle state. The idle state is defined as the power used by the system after booting and
while in a state where it is ready to accept a workload.

In this section a systematic investigation identifies which components within a SpiN-
Naker chip are the most energy-consuming, thus proposing new suspend states which
minimise the total energy use. This will have a significant impact on the overall energy
consumption of larger SpiNNaker machines, especially for the nodes not participating
in a simulation. Additional savings are expected during the uploading and downloading
phases of a simulation cycle and further benefits include increasing the life-span of the
chips and environmental savings by reducing the energy of the cooling sub-systems.



106CHAPTER 4. POWER AND LATENCY CHARACTERISATION OF SPINNAKER

Comms NoC Comms NoC (Output)(Input)

Proc3...

2of7
Enc

2of7
Dec

2of7
Dec

2of7
Dec

2of7
Dec

2of7
Dec

2of7
Dec

2of7
Enc

2of7
Enc

2of7
Enc

2of7
Enc

2of7
Enc

EvenClk OddClk EvenClk OddClk EvenClk OddClk

Proc0 Proc1 Proc2 Proc16Proc15

System NoC

MemClk

JTAG
Debug

10MHz

Router
control

Decode
Packet Routing Output

Engine Select

PL340 SDRAM I/F
Ctlr

SystemWatch−
dogRAM

System
ROM

System Ethernet

Ether MII

1Gbit DDR SDRAM
I/O Port

Reset Test

Proc17

POR

Packet Router

AXI  Master AXI  MasterAXI  MasterAXI  MasterAXI  MasterAXI  Master

CommCtlr CommCtlrCommCtlr CommCtlr CommCtlrCommCtlr

Input

Links

Output

Links

RtrClk

AXI Slave APB Slave

AHB SlaveAHB Master

AHB SlaveAHB Slave AHB Slave AHB Slave
System AHB MemClk

EvenClk
OddClk

RtrClk
SysClk

Clock
PLL

AHB Slave

Figure 4.13: Block diagram of a SpiNNaker chip.

4.3.1 Power Profiling the SpiNNaker Chip

There are 5 components within a SpiNNaker chip which require a clock source, the
ARM968 cores divided into two banks based on their physical ID, the router, the System
AHB bus and the shared SDRAM memory. Each chip receives a 10 MHz input clock
from the Board Management Processor (BMP); this can be used as received, further
divided by 4 or used as an input to the 2 Phase-Locked Loop circuits (PLLs), as seen in
Figure 4.13. Finally, there is an additional clock divider which can optionally divide the
input signal, for each of the 5 clock domains, by 2, 3 or 4. The user can control these
parameters through the System Controller registers.

A parametrised software was developed using the SpiNNaker API software and
SARK (v 1.09). This software made the necessary changes to the SpiNNaker hardware
directly, such as peripherals and clocks, resulting in a steady-state environment where
accurate and systematic calculations of energy consumption can be made. After the
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experiment, the configuration reverts to the standard operating parameters for an idle
SpiNNaker system, permitting a direct comparison to be made between the new suspend
mode under test and the existing software.

While there are chip-level components which may be individually enabled and
disabled including some of the controllers, the router, the PLLs and the individual
processor blocks, the dynamic power used by the clocked components was expected
to have the largest energy costs. Frequency scaling adjustments should have a big
impact on energy use when compared to other components, particularly those that are
asynchronous.

At present the run-time software kernel derives all its clock domains from PLL1 set
at 400 MHz with the exception of the memory, which is driven by PLL2 at 266 MHz.
Processor domains A and B each divide the incoming 400 MHz by two for a 200 MHz
clock, and both the router and System AHB bus divide it by four to supply 100 MHz. It
is expected that the largest savings can be made by scaling these clocks dynamically
while in idle mode even to the extent of shutting down a particular PLL to remove the
clock from targeted domains. Extreme measures such as these, however, may have an
adverse impact on the recoverability of the component – for example a chip cannot be
remotely instructed to exit suspend mode if all its processors are de-clocked and cannot
respond.

As indicated above, these experiments will concentrate on the dynamic power of
the system and in reducing this to a minimum in both recoverable and non-recoverable
states. Where it has been possible to characterise particular peripherals and components,
this will be reported in the results section, so that the maximum potential of the proposed
suspend modes can be ascertained.

4.3.2 Measuring the Default Idle State of SpiNNaker

The first step towards optimising the total energy consumption is to measure the default
idle state, which will serve as a baseline for the remaining experiments. The exper-
imentation is carried out on a single SpiNN-4 board (Figure 4.3) by systematically
adjusting a single parameter at a time to ensure that the characteristic information on
that component can be gathered. Where it is not possible to alter a single variable at a
time, such as where there are combinatorial limitations in PLL assignment, a control
experiment is undertaken so that the desired power information can be deduced and
recorded.

Using the current SARK software (v 1.09) in the idle state, the following table
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records the power at each of the DC/DC converters, which supply power to the SpiNN-4
board. The results are reported in Table 4.9.

Table 4.9: Power dissipation in the default idle state.

DC/DC Converter Measured Power (W)
1v2 Bank A 5.23
1v2 Bank B 5.17
1v2 Bank C 5.52
1v8 SDRAM 0.90
3v3 Supply 4.67
1v2 FPGA 0.50
Total 21.99

While these numbers do not take into account the losses in the converters, they do
indicate that the default idle power budget is around 22 W after the conversions to the
various required supply voltages. These numbers are used in the experimentation to
evaluate the effectiveness of a proposed optimisation.

Since the largest SpiNNaker machine will utilise 1,200 48-chip SpiNNaker boards,
it is expected that the power dissipation in the idle state will be approximately 26.4 kW
excluding the cooling systems.

4.3.3 Power Dissipation of Clocked Components

The first set of experiments is on the five clock domains of all SpiNNaker chips on
a board, and the experiments are devised so that PLL1 is used for controlling the
component under test and the remainder of the domains, which are not on test, are
clocked from the alternative PLL2.

These clocking domains are as follows: Processor Block A, Processor Block B, The
Router, The System AHB (Bus) and Memory.

In the experiments the same configuration is replicated across all 48 chips of a single
board machine. As a control methodology, PLL2 is set to 260 MHz and divided by two
for the router, AHB and processors, with the memory controller receiving the 260 MHz
directly. PLL1 is used for the component under test and is set explicitly to 200 MHz
for all experiments with the appropriate divider to meet the target frequency, with the
exception of the memory experiments where this is exceeded. Where the target clock
is 10 MHz or less, it is sourced from the 10 or 10÷4 MHz clocks directly and PLL1,
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although unused, remains switched on and at 200 MHz. The results are summarised in
Table 4.10.

If one considers that the total power recorded for the board in the default state
(Table 4.9) is 22 W, it is obvious from Tables 4.9 and 4.10 that the majority of the idle
dynamic power in the SpiNNaker system is taken by the processor blocks, approximately
70%. The routers and the system busses which also use the 1.2 V supply account for
10% or so, the memory around 8%, and the remainder by other supporting hardware on
the board. Clearly it should be possible to attain the largest gains through manipulation
of the processor clocks, but it may be possible to make smaller incremental gains
by adjusting chip and processor block components when a chip is idle. The 3.3 V
supply accounts for the majority of the remaining consumption and thus should also be
explored for energy saving opportunities.

4.3.4 Proposed States of Operation

This section suggests a number of new SpiNNaker Suspend Modes (SSMs), both
recoverable and non-recoverable, with results shown in Table 4.11. The following
subsections provide a brief explanation of each chip suspend mode and its effects on
the routing system of a larger SpiNNaker machine.

• SSM0 – Operational: This is out of scope for idle power saving, but there
is potential in the future to explore this state and seek out frequency scaling
strategies to minimise wear out, optimise energy use etc.

• SSM1 – Wait for Interrupt: This is the default mode of operation for a SpiN-
Naker core when it is not in state SSM0. Its context is saved and recovery is on a
per cycle basis. This is the current idle mode pre- and post-simulation and does
not attempt any further energy management. Cores are operated at 200 MHz,
router and system AHB are at 100 MHz and the memory controller 260 MHz.

• SSM2 – Suspend with SDRAM: This mode clocks down all processors to the
minimum possible frequency 625 kHz (10 MHz ÷ 4 ÷ 4). The router is clocked
to 50 MHz (PLL1 ÷ 4) as this provides sufficient bandwidth to cope with a full
complement of through external traffic. The System AHB bus is also clocked at
50 MHz in the same way as this provides reliable communications for remote
mode change commands. This mode maintains the full memory refresh rate of
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PLL2 at 260 MHz so that when the processors are restored, full context remains
available.

• SSM3 – Suspend without SDRAM: This mode is identical to SSM2 but stops
PLL2, which is fed to the memory controller for refresh. This mode loses external
memory context and requires a reconfiguration of the memory controller on
recovery.

• SSM4 – Node Routing Pass-Through: This mode removes the clock from all
clocking domains on a chip (set to a stopped PLL2), except the router which
is clocked at 50 MHz (PLL1 ÷ 4). This way a SpiNNaker board does not
become a black hole in the routing fabric since the routers remain in use and full
connectivity remains. All context is lost, and the board requires a reset, which
may take seconds to initiate and complete, and remote intervention to reboot.

• SSM5 – FPGA Bypass: This mode removes all clocks from the SpiNNaker chip
clock domains including the router (PLL1 and 2 are disabled). The routing logic
must now be handled by the FPGAs which sit on the edges of all the boards.

• SSM6 – Board Power Down: This mode removes the power from the board
with the exception of the BMP to allow recovery. Both router pass-though and
FPGA bypass are not possible and the board is a traffic black-hole.

4.3.5 Power Dissipation During a Full Simulation Cycle

To demonstrate the effects of an optimised suspend mode on the simulation cycle, the
SSM2 mode was implemented by adding extra functionality to SARK.

Each time a neural application core participates in a simulation, it sets a bit in
a specific place in shared memory, and resets it as soon as the simulation is over.
The monitor core polls that memory location periodically to check the status of the
application cores and if all application core bits are reset, it enters SSM2. A chip returns
back to SSM1 whenever it receives a message from the host, or another SpiNNaker
chip, indicating either the uploading of data to the shared memory, downloading of
results or the beginning of a simulation.

A simulation comprising 192,000 neurons with 48,000,000 current-based exponen-
tial synapses ran in real-time for 30 seconds generating 720,000,000 synaptic events
per second. For this simulation the PACMAN tool produced 208 MBytes of synaptic
information, neural parameters, neural/synapse models and routing tables, while the size
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Table 4.12: The power dissipation of a full simulation cycle for the proposed (SSM2)
and default idle mode (SSM1).

Mode Average Power (W)
SSM1 28.14
SSM2 13.53

of the recorded membrane traces that which had to be downloaded upon the completion
of the simulation was 1.2 GBytes.

Current flow was recorded at a rate of 1 Hz from the 12 V supply (Figure 4.3). The
same experiment was carried out four times, twice for the new optimised idle mode and
twice for the default SSM1 mode to validate the data.

Figure 4.14 shows the power dissipated during a simulation cycle for the default idle
state and one with the proposed optimisations. A full simulation cycle on SpiNNaker
consists of three phases; uploading the simulation data, running the simulation and
retrieving the results. As can be seen in Figure 4.14, all SpiNNaker chips start in SSM2
and gradually the chips which receive simulation data enter into SSM1, returning back
to SSM2 as soon as the uploading has finished. The next phase is the execution state,
SSM0, where the simulation runs for 30 seconds. When the simulation has ended the
SpiNNaker chips enter SSM1, the standard idle mode, and the next time the monitor
core polls their status it sets them to SSM2. The last phase is the downloading of the
membrane potentials; during this phase only the chip that sends data is in SSM1 and
returns back to SSM2 when all data to retrieve is sent back to the host.

The power dissipation for each simulation phase, including the idle state, is presented
in Figure 4.15. The simulation which incorporates the new suspend mode, SSM2, is
60% more energy efficient in the idle state, 50% more efficient during the uploading
phase and 52% during the downloading phase. Table 4.12 summarises the power
dissipation for both simulations. Results indicate that the simulation with the optimised
idle mode (SSM2) is overall 52% more energy efficient than the current default one.

4.3.6 Discussion

In this subsection, different approaches towards optimising the overall power dissipa-
tion of a 48-chip SpiNNaker board, the building block for creating larger SpiNNaker
machines, were investigated. The main focus was on recoverable idle states through
dynamic frequency scaling, by systematically examining the power dissipation of each
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Figure 4.14: A full simulation cycle on a 48-SpiNNaker board using the proposed
optimised idle state (SSM2) and the default implementation (SSM1)

Figure 4.15: Power comparison between the proposed optimised idle state (SSM2) and
the default one (SSM1).
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clocked component within a SpiNNaker chip. The proposed optimisation was imple-
mented and tested on a large simulation comprising thousands of neurons with tens
of millions of synapses with an activity of hundreds of millions of synaptic events
per second. The main motivation was to see the effect of the new idle state under a
full simulation cycle, which consists of three phases: uploading models and synaptic
information, running the simulation and retrieving the results.

The results show that for a SpiNN-4 board the proposed optimisation is 60% more
energy efficient for the idle state, 50% for the uploading and 52% for the downloading
phase. Moreover, for the same simulation, the power dissipation is reduced by 52%.
Based on these findings it is estimated that the final SpiNNaker machine will dissipate
approximately 13.2 kW compared to 26.4 kW in the proposed idle state. This will also
be beneficial for mobile robotic platforms which utilise SpiNN-4 boards [Galluppi et al.,
2014a; Conradt et al., 2014] and have limited power resources.

4.4 Summary

Simulation of large scale neural networks imposes challenges in terms of flexibility,
computational performance, communication infrastructure and power consumption.
Supercomputers offer great flexibility in that they are fully programmable. Communica-
tion between different nodes on such a parallel system can be implemented using the
MPI interface [Plesser et al., 2007], but its communication overheads are not ideal for
scalable spiking neural network simulations.

Wong et al. [2013] simulated 53 ⇥ 1010 neurons with 1.37 ⇥ 1014 synapses on
the Sequoia - BlueGene/Q supercomputer using Compass [Preissl et al., 2012], a
highly-optimised simulator, as part of the DARPA SyNAPSE program. The simulation
ran 1,542 times slower than biological real-time and the biggest cost reported was
communicating the spikes via MPI messaging. Power dissipation was omitted, but
the TOP500 [top] supercomputer list reports that the power used by the Sequoia -
BlueGene/Q is 7,890 kW.

Within the DARPA SyNAPSE project IBM recently demonstrated the TrueNorth
chip [Merolla et al., 2014b], a digital architecture capable of simulating 1 million
neurons with 256 million synapses in biological real-time, while dissipating 63 mW.
TrueNorth comprises 4,096 neurosynaptic cores [Arthur et al., 2012], where each core
can model 256 single-compartment LIF neurons with 256 axons and 256⇥256 binary
synapses. Each axon can be assigned to four different types, while the synaptic weight
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from a presynaptic to a post synaptic neuron is the product of the binary weight, the
axon type and a signed integer value stored at the post synaptic neuron. By utilising
a similar benchmark neural topology to Section 4.1.2, they reported that TrueNorth
is 769⇥ more energy efficient per synaptic event (26 pJ) than SpiNNaker, while the
measured computational power in synaptic operations per second (SOPS) was 46 billion
SOPS per Watt.

While TrueNorth is intended for real-world applications, SpiNNaker has been
designed as an exploration platform for the very active neuroscience research area and
for event-based applications interfacing neuromorphic sensors [Galluppi et al., 2012c,
2014a]. Moreover, SpiNNaker is a fully programmable platform, meaning that neurons,
synapses and plasticity rules [Jin et al., 2009; Diehl and Cook, 2014; Galluppi et al.,
2014b] are implemented in software, whereas in TrueNorth neurons and synapses are
implemented in hardware, with the latter being delta-current synapses.

Neuromorphic systems, exploiting sub-threshold transistor dynamics to model neu-
rons in silicon, have been proposed as power efficient modelling systems. These can
be scaled to large network models, for example Neurogrid [Silver et al., 2007], a 4⇥4
system where each neurocore node models 65,536 two-compartment cells, tiled in a 256
⇥ 256 array up to a system with a million neurons. Many neuromorphic systems are
highly optimized to a particular neural model and offer minimal configurable intercon-
nectivity, often limited by wiring density. Some systems use alternative communication
approaches including using an AER packet based infrastructure to enable connectivity
and propagate spikes. The HiAER-IFAT framework has been characterized in terms
of power for neural and synaptic events [Yu et al., 2012], with multiple chips each
modelling 65k bi-compartmental neurons capable of supporting 5 Mevents/s at 50
pW/spike.

The neuromorphic approach can be very power efficient, as neuron dynamics are im-
plemented directly in silicon, but it imposes trade-offs in terms of reconfigurability and
scalability. To mitigate such connectivity limits the Brainscales project, which runs net-
works of millions of synapses in accelerated time, takes the approach of implementing
a bespoke packet switched network for its communication requirements.

To overcome the expense and effort of producing a custom chip, some research
groups have focused their research on more off-the-shelf, reconfigurable systems. Cas-
sidy et. al [Cassidy et al., 2011] have introduced an FPGA system capable of simulating
one million neurons in real time; the system has configurable interconnectivity and uses
two 36 Mb SRAM chips, but this ultimately limits the total number of synapses per
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neuron. A scalable, configurable real-time system has been recently proposed named
Bluehive [Moore et al., 2012], which employs a number of FPGAs interconnected by a
packet-switched network. Each FPGA can simulate up to 64k fixed-point Izhikevich
neurons with 64 million static delta-current synapses, producing 1 billion synaptic
events per second. Despite the advantages that the FPGA approaches offer compared to
ASICs in terms of hardware reconfigurability, there is still a gap regarding the power
consumption and total area required for the same design [Kuon and Rose, 2007].

A different approach which has been rapidly gaining popularity is the simulation
of SNNs on general-purpose graphics processing units (GPGPUs). One example is
NeMo [Fidjeland et al., 2009] which has been designed to simulate up to 40 thousand
Izhikevich neurons in real-time with 40 million static delta-current synapses and a peak
of 400 million synaptic events per second. Moreover, in a recent study NeMo has been
extended to include spike-timing dependent plasticity (STDP) [Fidjeland and Shanahan,
2010]. While GPUs are excellent platforms for parallel computation, their memory
access bandwidth is a bottleneck. For very large-scale real-time simulations of SNNs
on general programmable platforms it is typically not the computational cost, but the
system communications that is the prime limiting factor [Moore et al., 2012; Yudanov
and Reznik, 2012; Brette and Goodman, 2012].

Benchmarking power figures for neurally-inspired hardware is challenging due to
the specificity of different architectures and of models simulated on them. In this chapter
characteristic power metrics for the SpiNNaker platform have been identified, so they
may be used to calculate the power needed to solve neural equations for diverse neuron
and synaptic models, and the energy required per synaptic event. Whilst not achieving
the power efficiency of dedicated neuromorphic silicon, the SpiNNaker architecture
provides an excellent trade-off in terms of scalability and reconfigurability and in its
extensive interconnectivity. Table 4.13 aims to provide a summary of the different
platforms available for simulating SNNs mentioned in this thesis.

The methods presented in this chapter, such as the CPU utilisation monitoring
method, described in section 4.1.3, and the methodology employed by the monitor core
to investigate and report the status of the application cores (section 4.3.5), by polling
periodically a shared memory location, are now part of the current SpiNNaker software
tools. The SSM2 was being ported to the new software tools during the writing of this
thesis.
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Chapter 5

Robustness of Spiking Deep Belief
Networks

Increasingly large deep learning architectures, such as DBNs are the focus of current
machine learning research and achieve state-of-the-art results in different domains.
However, both training and execution of large-scale Deep Networks requires vast com-
puting resources, leading to high power requirements and communication overheads.
The on-going work on design and construction of spike-based hardware platforms offers
an alternative for running deep neural networks with significantly lower power con-
sumption, but has to overcome hardware limitations in terms of noise and limited weight
precision, as well as noise inherent in the sensor signal. This chapter demonstrates how
such hardware constraints impact the performance of spiking neural network implemen-
tations of DBNs. In particular, the influence of limited bit precision during execution
and training, and the impact of silicon mismatch in the synaptic weight parameters of
custom hybrid VLSI implementations is studied. Furthermore, the network performance
of spiking DBNs is characterised with regard to noise in the spiking input signal.

The results of this chapter demonstrate that spiking DBNs can tolerate very low
levels of hardware bit precision down to almost two bits. Moreover, this chapter
introduces a realisation of spike-based variations of DBNs on the biologically-inspired
parallel SpiNNaker platform. Two spiking DBN architectures are investigated; a DBN
with 2 hidden layers, as published in O’Connor et al. [2013] and implemented on an
FPGA by Neil and Liu [2014], and a novel DBN with 7 hidden layers. The DBNs on
SpiNNaker ran in real-time and achieved a classification performance of 94.94% and
96.22%, respectively, on the MNIST handwritten digit dataset, which at the time of
publication [Stromatias et al., 2015c,a,b] was the highest score on this particular dataset

118
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using spiking DBNs. More importantly, the difference in the classification performance
between SpiNNaker and that of a pure software implementation is only 0.06%.

Using a neurally-inspired architecture yields additional benefits: during network
run-time on this task, the platform consumes only 0.38 W with classification latencies in
the order of tens of milliseconds, making it suitable for implementing such networks on
a mobile platform. The results of this chapter also estimate how the power dissipation
of the SpiNNaker platform and the classification latency of a network scales with
the number of neurons and layers in the network and the overall spike activity rate.
Spiking DBNs thus present an important use-case for large-scale hybrid analogue-digital
or digital neuromorphic platforms such as SpiNNaker, which can execute large but
precision-constrained deep networks in real time.

This chapter reproduces the author’s work submitted to the Frontiers in neuromor-
phic engineering Journal, the 2015 International Joint Conference on Neural Networks
and the 2015 International Symposium on Circuits and Systems.

5.1 Material & Methods

5.1.1 Spiking Deep Belief Networks

For this chapter the formalism for training and executing spiking DBNs developed by
O’Connor et al. [2013] is being used. DBNs are multi-layered neural networks, in
which each layer pair is formed by an RBM. The two layers of visible and hidden units
of a RBM are fully and recurrently connected, but there are no connections between
neurons of the same layer (Figure 5.1(a)). In a conventional RBM, each unit is a
stochastic binary neuron, and the probability to turn on is given by a sigmoid function
applied to the weighted sum of its inputs. Layers are trained one after another with an
unsupervised rule called CD [Hinton and Salakhutdinov, 2006]. When training of one
layer is finished, the output of the hidden units of one layer serves as the input to visible
units of the subsequent layer. Supervised learning is used at the top level, where a label
is jointly trained with the input, and this serves as the output of the network.

Spiking DBNs use a training procedure that is very similar to conventional DBN
training, discussed in O’Connor et al. [2013], to yield the connection weights that are
correct for a network of spiking neurons. Once these weights ~w of each RBM have
been fixed, the LIF neurons follow the standard dynamics for the membrane potential
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Figure 5.1: Architecture of RBMs and DBNs. (a) Architecture of a single Restricted
Boltzmann Machine with full connectivity between visible units (bottom) and hidden
units (top), but no connections within the same layer. (b) Topology of a DBN for MNIST
classification consisting of one input layer with 784 neurons, 2 hidden layers with 500
neurons each, and a 10 neuron output layer. This is abbreviated as 784-500-500-10
architecture. (c) Topology of a DBN for MNIST classification consisting of one input
layer with 784 neurons, 7 hidden layers with 500 neurons each and 10 neuron output
layer. This is abbreviated as 784-500-500-500-500-500-500-500-10 architecture.

V , described as

tm
dV
dt

= EL �V +RmI , (5.1)

where tm is the membrane time constant, EL the resting potential, and Rm the membrane
resistance. The input current I is computed as

I =
n

Â
i=0

wi

mi

Â
j=0

d(t � ti j) , (5.2)

where n is the number of incoming synapses, wi is the weight of synapse i, mi is the
number of spikes arriving at that synapse, and d(t) is a Dirac delta function which is
zero except for the firing times ti j of the ith input neuron. Once the membrane potential
V crosses the threshold voltage Vthresh a spike is generated, the membrane potential is
reset to Vreset and the neuron is not allowed to fire during the refractory period Trefract.
Default values of the parameters used in simulations are defined in Table 5.1.

Table 5.1: Default parameters of the Leaky Integrate-and-Fire Model used in simula-
tions.

Parameters Values Units
tm 5.0 s

Trefract 2.0 ms
Vreset 0.0 mV
Vthresh 1.0 mV
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Figure 5.2: Conversion of static images to spike-trains and introduction of noise. Each
row represents different input rates ranging from 100 Hz to 1500 Hz, while the columns
show different percentages of input noise, from 0% up to 100%.

5.1.2 Database, Image Conversion to Spikes, and Input Noise Gen-
eration

Training and testing of spiking DBNs was carried out on the well-known MNIST
database of handwritten digits [LeCun et al., 1998b], which consists of 70,000 28⇥28
gray-scale pixel images, of which 10,000 are used as a test set. In order to convert the
static images to spike-trains, each pixel of an MNIST image is converted to a Poisson
spike-train with a rate proportional to its intensity, while all firing rates are scaled such
that the total firing rate of the population is constant [O’Connor et al., 2013].

To determine the impact of input noise on the performance of DBNs, noise is intro-
duced into the spike-train representation of each image by redistributing a percentage of
spikes randomly across the whole input population [Neil and Liu, 2014]. The resulting
digits with different noise levels are shown in Figure 5.2, where each column represents
different levels of noise starting from 0% redistribution in the first column, to 100% in
the last column.
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5.1.3 Conversion From Double to Lower Precision Representations

To simulate spiking DBNs implemented on digital architectures with limited hardware
resources [Moore et al., 2012; Merolla et al., 2014b; Neil and Liu, 2014; Furber et al.,
2014], the weights learned with double floating-point precision during training are
converted to lower bit-precision representations.

Throughout this chapter the Qm.f notation is used to indicate a fixed-point format
where m is the number of bits in the integer part, including the sign bit, followed by a
notional binary point, and f is the number of bits in the fractional part. This format is a
bit-level format for storing a numeric value.

Contrary to the fixed-point format, the double-precision floating-point numbers
according to the IEEE 754 standard have a 64-bit word length of which 52 bits are used
to store for the fraction, 11 bits for the exponent and 1 bit for the sign. In addition,
a floating-point unit (FPU) is needed for computations with floating-point numbers,
which results in increased area of the hardware design and higher energy costs.

The bit precision of the synaptic weights was set by keeping the number of integer
bits constant to a value that is capable of holding the maximum and minimum weight
value of a particular DBN, while the number of bits in the fractional part is varied
from eight bits down to one bit. The double precision floating-point weights WH are
converted to lower-precision representation WL using the conversion

WL = round(2 f ·WH) ·2� f (5.3)

where WH are the original double floating-point weight values of the trained DBN, and
2� f is the resolution of the lower precision representation.

5.1.4 Introducing Weight Variability

To investigate the effect of mismatch when mapping the spiking DBN to mixed-mode
analogue/digital multi-neuron transistor circuits, a particular synaptic circuit is consid-
ered known as the digital-to-analogue converter (DAC) synapse [Serrano-Gotarredona
et al., 2008; Wang and Liu, 2013]. In this circuit, the synaptic weight is represented as
a current. This synapse has a maximum current and the number of bits in the DAC sets
the resolution of the synaptic current (weight). In considering the effect of mismatch
due to silicon fabrication, the assumption made is that the maximum current of each
DAC synapse is sampled from a Gaussian distribution. The variability is controlled
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by defining the coefficient of variation (CV) of the distribution from which weights
are sampled, ranging from 10% to 40%. In this analysis, calibration using the DAC to
account for the mismatch in the maximum current is not included. Calibrating the DAC
synapse to reduce the transistor mismatch even over the network of the size used in this
work would require a long testing time.

5.1.5 Mapping spiking DBNs to SpiNNaker

Spiking DBNs were recently implemented on portable digital hardware platforms and
neurally inspired hardware, which dissipate much less power than conventional proces-
sors. In particular, this has been shown by an FPGA implementation, dubbed Minitaur
[Neil and Liu, 2014], and on the SpiNNaker spiking neural platform [Stromatias et al.,
2015b,a]. The software simulation results in this chapter are validated by comparing to
spiking DBNs running on the SpiNNaker platform.

To implement spiking DBNs on SpiNNaker, a collection of functions were developed
in Python that read a MATLAB file from an off-line trained DBN [O’Connor et al.,
2013] and automatically generate a PyNN [Davison et al., 2009] description of the
network ready to run on SpiNNaker. The same network can also be tested on the Brian
[Goodman and Brette, 2008] spiking neural network simulator as a method to verify the
classification performance of spiking DBNs on SpiNNaker. The PyNN description of a
spiking DBN can then easily be mapped onto the SpiNNaker platform by utilising a
tool named PACMAN [Galluppi et al., 2012d].

For the input population of a spiking DBN the spike-trains generated from an MNIST
digit are described as spike arrays in PyNN using the SpikeSourceArray population.
The author developed the code that converts the spikes of a SpikeSourceArray to a
binary file which gets uploaded to a SpiNNaker machine. A SpikeSourceArray kernel
on an ARM9 core in a SpiNNaker chip fetches a portion of the shared memory at every
millisecond and checks which bits are set in order to generate an MC packet (spike)
with the appropriate neuron ID.

5.2 Experimental Results

The performance of spiking DBNs with reduced precision or weight variability is
assessed on a common benchmark task, the classification of handwritten digits from
the MNIST dataset [LeCun et al., 1998b]. The MNIST dataset is divided into a 60,000
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digit training set, and a 10,000 digit test set. The conversion of the 28⇥28 gray-scale
pixel images into spike trains and training of DBNs were described in Section 5.1.2.
Simulation results of the spike-based DBN were obtained using the Brian spiking neural
network simulator [Goodman and Brette, 2008].

In the following subsections the impact of reduced bit precision and noise on the
classification performance of spiking DBNs is characterised. In Section 5.2.1 the impact
of lower precision or higher input noise levels on fully trained networks during testing
is demonstrated, along with an investigation of the possible reasons for the resulting
performance curves in Section 5.2.2. Section 5.2.3 shows how variance on the weight
parameters due to transistor mismatch affects the network performance for a particular
analogue synaptic circuit. These results are verified by a comparison between the perfor-
mance of a software simulation in Brian versus that of the corresponding implementation
on the hardware SpiNNaker platform (Section 5.2.4). Finally, Section 5.2.5 presents a
spiking DBN running on SpiNNaker in real-time with an event-driven dynamic vision
sensor (DVS) [Leñero-Bardallo et al., 2011] as its input layer.

5.2.1 Robustness to reduced bit precision of fixed-point synapses

Reduction in bit precision will reduce the resources needed on a digital chip [Un-
derwood, 2004]. If the performance of the network is maintained even when the bit
precision drops, then a larger network can be implemented for the same amount of
resources. The impact of the bit precision on the trained double precision floating-point
weights of the DBN with the 2 hidden layers (Figure 5.1(b)) can be seen in Figure 5.3(a).
Shown in the figure are the receptive fields of six of the neurons in the first hidden
layer (Layer 1) for different fixed-point precisions of the synapses, ranging from double
precision in the first column, to weights down to one bit for the fractional part in the last
column. The figure shows that a lot of the structure in the receptive fields is still retained
even with a bit precision of down to f=4 bits. Figure 5.3 (b) shows the percentage
of synapses that were set to zero due to the bit reduction in the fractional part. Most
compelling is that even at Q3.4, almost 50% of the weights are zero, which means these
synapses are obsolete and can be pruned, thereby reducing the necessary resources
even further. A similar effect can be observed for the DBN with the 7 hidden layers
(Figure 5.1(c)) in Figures 5.3(c) & (d). This time when the weight precision is set to
Q4.3, 50% of the weights are zero and can be pruned.

Figure 5.4(a) shows the classification accuracy (CA) of the spike-based DBN with
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Figure 5.3: Impact of weight bit precision on the representations within a DBN. (a) The
receptive fields of the first six neurons (rows) in the first hidden layer of the DBN with
the 2 hidden layers and (c) the DBN with 7 hidden layers. (b) Percentage of synapses
from all layers that are set to zero due to the reduction in bit precision for the fractional
part for the DBN with 2 hidden layers and (d) for the DBN with 7 hidden layers.
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(a) (b)

(c) (d)

Figure 5.4: Effect of reduced weight bit precision and input noise on the classification
accuracy (CA) of the spiking DBN with the 2 hidden layers. (a) CA as a function of
input noise and bit precision of synaptic weights for two specific input spike rates of 100
and 1500 Hz. Results over 4 trials. (b) Normalised area under curve in (a) for different
percentages of input noise, input firing rates and weight bit precision. Higher values
mean higher accuracy and better robustness to noise. (c) CA as a function of the weight
bit resolution for different input firing rates and for two different noise levels, 0% and
60%. (d) CA as a 2D function of the bit resolution of the weights and the percentage of
input noise for 100Hz and 1500Hz input rate. The results confirm that spiking DBNs
with low precision weights down to f = 3 bits can still reach high performance levels
and tolerate high levels of input noise.
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(a)

(b)

Figure 5.5: Effect of reduced weight bit precision and input noise on the classification
accuracy (CA) of the spiking DBN with the 7 hidden layers. (a) CA as a function of
input noise and bit precision of synaptic weights for three specific input spike rates of
100, 1500 Hz and 5000 Hz. (b) CA as a 2D function of the bit resolution of the weights
and the percentage of input noise for 100, 1500 and 5000 Hz input rate. Results over 4
trials.
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Figure 5.6: Weight distributions for different bit precision levels and DBN layers. Each
row represents different fixed-point weight precisions, while each column represents a
layer of the DBN, starting from Layer 1 (left), Layer 2 (middle) to the Output Layer
(right). Despite the different discretization levels, the overall shape of the weight
distribution is conserved.
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the 2 hidden layers for different percentages of noise in the input spikes and over
different input rates. The different curves within the two sets of plots in (a) show
the CA as a function of the percentage of input noise spikes. The two panels show
results for two different input rates, 100 Hz and 1500 Hz, which represent the total
number of input spikes in the stimulus duration of 1 s. For both firing rates, the CA
curves drop as the percentage of input noise spikes increases, but for 1500 Hz input
the performance stays almost constant until input noise levels of 50% are reached. The
different curves show the behaviour for different bit precisions of the weights. The
peak performance (without noise), as well as the CA for higher input noise levels stays
remarkably constant for bit precisions as low as f = 3. In general, reduced precision
does affect the CA performance, but the peak CA value obtained for double bit precision
weights decreases only by around 5% (from 95% to 90%), even when the bit precision
drops to f = 2. In order to summarise the noise robustness for different precisions and
firing rates, the area under the curve in (b) is computed, since larger area indicates both
high peak performance and a slow drop-off in performance. Figure 5.4(b) shows the
area under the curves in (a) as a function of the input firing rate and across 5 different
bit precision values. The results show similar trends for different bit precision levels,
and a similar increase in performance and noise tolerance for higher input firing rates.
This is also illustrated in Figure 5.4(c), where it can be seen how the CA for different
bit precisions changes as the input rates are increased from 100 Hz up to 1500 Hz, and
for two different input noise levels. A drop-off in CA of around 5% to 10% for the
same input rate can be observed for 60% noise spikes. The 2D plots in Figure 5.4(d)
finally illustrate that there is a large range of input noise levels and bit precisions at
which high performance for two different input rates can be reached. In particular, the
results show that surprisingly the performance and noise robustness curves are almost
identical for bit precisions down to f = 3 bits in all subplots. Even a synaptic weight
in Q3.2 representation, which requires less than 10% of the memory resources for
double precision weights gives a reasonable peak CA of 91% for low noise levels. In all
subplots (a) to (d), only the Q3.1 representation shows a dramatic drop in performance.

Figure 5.5(a) presents the CA of the DBN with the 7 hidden layers for different
input rates and for different percentages of noise in the input spikes. At 1500 Hz and
with 0% input noise the DBN achieves a CA of 96.23%, which drops by 1% when
f = 2. The curves show a similar trend to the ones of Figure 5.4(a) with the main
difference being that the performance of the DBN with 7 hidden layers is worse than
the DBN with the 2 hidden layers when the input noise reaches 60%. At 60% input
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(a) (b)

Figure 5.7: Effect of reduced bit precision on firing rates in the DBN and neuron
activations. (a) Mean firing rate of each layer of the network for weights with different
bit precisions, using an input rate of 1500 Hz. Lower precision levels, which lead to
more weights at zero, cause lower firing rates within the network. (b) Distribution of
the mean difference between the activation of a neuron with double precision weights
and neurons using weights with different bit precision levels. Shown are distributions
over all test samples. The difference, although peaked near zero, increases for higher
layers, and shows a trend towards reduced activations.

noise the CA drops to 75.4% compared to 88.7% of the DBN with the 2 hidden layers
(Figure 5.4(a)). When the input rate is increased to 5000 Hz there is an approximately
9% increase in the CA for an input noise of 60%, while at 0% noise the CA rises to
96.5%. Firing rates beyond 5000 Hz have no effect on the CA or on the robustness to
input noise. This increase in robustness to noise when the input rate is 5000 Hz can
be also seen in Figure 5.5(b). What is remarkable is that even when the weights are
set to f = 2 the network shows the same performance and robustness to noise as the
double precision weights. The difference in robustness between the two spiking DBN
topologies is probably due to the different training parameters (refer to Appendix C.1)
and further investigation is required.
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5.2.2 Distribution of reduced bit precision weights

In order to understand better the surprising tolerance of spiking DBNs to reduced
weight precision and high input noise levels, the impact of the reduction of precision
on the distribution of weights, neuron activations, and firing rates in the network is
investigated.

There are a few tools that can be employed to investigate how the distribution of the
reduced bit precision weights nonetheless manages to maintain a substantial amount of
the network’s classification performance. Firstly, the initial question is to investigate
whether this reduction in bit precision qualitatively maintains the same weight distribu-
tion as the original. Figure 5.6 shows that the quasi-continuous distribution of weights
obtained for double-precision becomes increasingly discretized as the precision f de-
creases. In the extreme case of a Q3.1 representation, the weight values are quantized to
±0.5,±1, and 0, but nonetheless seem to reflect the shape of the original distribution.

However, even with these similar shaped weight distributions, neurons’ output firing
rates may become dramatically altered by the subtle coercion of weights to become
more similar to each other. For this, refer to Figure 5.7(a) which shows that for even
high levels of quantization, the mean output spike rate per neuron for each of the 3
layers remains quite constant down to Q3.3, before a clear drop in the mean firing rate
is observed. This trend is seen for all 3 layers, but is stronger in higher layers.

Finally, since these firing rates are approximately the same, we investigated whether
the net activations of the neurons for the same inputs remain similar despite the quantized
weight structure. Since the net activations are sums over large numbers of synapses, any
rounding effects could just average out, which would help to explain the maintenance
of performance with lower precision weights observed in Figure 5.4. To investigate this
proposal, Figure 5.7b plots the distribution of mean differences in the net activation
between neurons with double precision weights and lower precision weights for neurons
in different layers. Note how in all layers the net difference in activation is much smaller
than the full range of firing rates (-1 to 1), and though the width of the distribution
increases as the accuracy drops, most of the weight of this histogram is concentrated
around zero difference in activation. This does imply that most neurons end up with
approximately the same input activation under the quantized weights, and suggest that
indeed the rounding differences tend to cancel out their effects.

Similar trends can be observed for the spiking DBN with the 7 hidden layers.
Figure C.4 shows the mean difference in the net activation per layer of the 784-500-500-
500-500-500-500-500-10 DBN for different weight precision schemes. Similarly to the
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(a) (b)

Figure 5.8: Effect of Gaussian weight variance on the performance of spiking DBNs
with the 2 hidden layers. (a) Receptive fields of 6 representative neurons in the first
hidden layer after perturbation with Gaussian weight variance of different CVs. (b)
Impact of Gaussian weight variance on classification accuracy. The performance is
plotted as a function of input noise levels for two different input rates and different
weight distribution CVs. Despite the high weight variance, the performance stays high
and remains robust to input noise. All weights are set by 5 bit DAC synapses (one bit is
the sign bit). Results over 4 trials.

DBN with 2 hidden layers, lower bit precisions cause the mean of the distribution to
shift to the negative side.

5.2.3 Robustness to variance of synaptic weights

If spiking DBNs were to be implemented in analogue circuits, they have to be robust
to mismatch due to the fabrication process of transistors. This process causes random
variations of physical quantities (for e.g. currents) of equally sized devices and comes
from sources such as the random variations in the threshold, width and length of the
transistor during fabrication [Pelgrom et al., 1989; Kinget, 2005]. Measurements of
these random variations is a standard practice for all silicon process technologies and
is indicated by the measured standard deviation assuming a Gaussian distribution of
transistor currents. Mismatch can become a factor that makes the performance of a
hardware network very different from a digital simulation, and needs to be taken into
account when designing mixed-mode neuron and synaptic circuits in analogue/digital
multi-neuron chips [Serrano-Gotarredona et al., 2008; Wang and Liu, 2013; Brink
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et al., 2013; Moradi and Indiveri, 2014]. The influence of fabrication variance is also
a concern for circuits that use memristive technology [Alibart et al., 2012], where the
coefficient of variation (COV) of the devices can exceed 40% in resistive values for
academic technologies. The dependence of the mismatch transistor current variance on
the transistor area and the current magnitude has been quantified in a CMOS 0.35 µm
process [Serrano-Gotarredona and Linares-Barranco, 1999]. In order to implement the
maximal number of neurons and synapses possible per chip area means that a circuit
with as few transistors as possible is needed to implement their functionalities, and
transistors should be small-sized. Unfortunately, the latter can lead to very large COV
(>100%).

In order to understand the effect of parameter variance in analogue circuits on the
performance of spiking DBNs, simulations were performed where synaptic weights
were randomly perturbed according to the mismatch model for a particular analogue
synaptic circuit. In this analysis, we chose the digital-to-analogue converter (DAC)
synapse used on various neural chip implementations [Wang and Liu, 2006; Vogelstein
et al., 2007; Schemmel et al., 2010; Linares-Barranco et al., 2003; Wang and Liu, 2011;
Moradi and Indiveri, 2014]. The number of bits in the DAC synapse is equivalent to the
f value in the Qm. f format used for the bit precision. In this case, the quantized weight
levels available are Ire f /2� f where Ire f is the maximum current that is equivalent to the
maximum synaptic weight.

Mismatch measurements from 50 copies of a particular 5-bit current DAC circuit
in Linares-Barranco et al. [2003] show a standard deviation around 7.77%. While the
Ire f can be calibrated to minimize the effect of the mismatch, the assumption is made
that there is no calibration because it would be too expensive to calibrate the many
weights of a DBN network. In the case where a single DAC is used for positive and
negative weights, then one bit is used as the sign bit.

Simulations were conducted on a network where each synapse has a 5-bit DAC.
The maximum current Ire f = 1 nA and one bit is used as the sign bit. The circuit noise
sources such as flicker noise and thermal noise are ignored in these simulations both
because of the extensive time for such simulations and the dependence on the actual
device sizes of the synapse. The mismatch of the transistor that supplies the maximum
current for the DAC of a synapse is assumed to have a CV of 10% or 40%. The effect
of applying a CV of 40% to the weights of the receptive fields of six representative
neurons in the first layer of the DBN is shown in Figure 5.8(a). Despite this high CV,
the receptive fields look very similar.
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(a)

Figure 5.9: Effect of Gaussian weight variance on the spiking DBN with the 7 hidden
layers. Results over 4 trials.

The robustness of a network with this DAC precision to Gaussian variance on Ire f is
illustrated in Figure 5.8(b). The plots show again the performance as a function of input
noise, and for 2 different input rates. The effect of increased Gaussian weight variance
is minimal as can be seen from the different curves. As the CV increases to 40%, the
classification accuracy in both the cases of 100 Hz and 1500 Hz input rates, decreases
by <1% from the noiseless Q3.4 bit precision case. Similar trends can be observed for
the DBN with the 7 hidden layers in Figure 5.9.



5.2. EXPERIMENTAL RESULTS 135

5.2.4 Comparison of hardware performance to simulations

5.2.4.1 Spike-Based DBNs on SpiNNaker

In order to validate the simulation results presented in Section 5.2.1 on actual hardware
platforms, simulations of spiking DBNs were run on the fixed-point, event-based
platform SpiNNaker. For the DBN with 2 hidden layers (Figure 5.1(b)), the double
floating-point weights were truncated to a Q3.8 fixed-point representation, and the input
rates used to encode the MNIST images into spike trains were set to 1500 Hz. The
classification accuracy achieved by the SpiNNaker platform on the MNIST testing set,
is 94.94% when the input noise is set to 0% and 88.66% when the input noise is set to
60%, as seen in Table 5.2. This is in good accordance with the noise-free simulation
results obtained by [O’Connor et al., 2013], and classification accuracies for simulations
on Brian [Goodman and Brette, 2008], which reach 94.95% and 88.66% respectively,
for the same weight precision and input noise (Figure 5.4). This spiking DBN ran on
a single SpiNNaker chip in real-time and generated an activity of less than 1 million
synaptic events (SE) per second, which is well below the 36.8 million SE a SpiNNaker
chip can process [Stromatias et al., 2013], as shown in the previous chapter. The results
of the spiking DBN with the 7 hidden layers (Figure 5.1(c)) are summarised in Table 5.3.
Similarly to the DBN with the 2 hidden layers the difference in the CA between Brian
and SpiNNaker, for the same bit resolution, input noise and input firing rate (1500 Hz)
is in the order of 0.01%.

These results indicate that the difference in the classification accuracy between
SpiNNaker and Brian for the same bit resolution, input rates, and input noise levels
is almost negligible and in the order of 0.01%. Moreover, the difference between the
software simulation that utilises double floating-point weights and SpiNNaker with Q3.8
fixed-point weights is 0.06%, which is in agreement with a previous study [Stromatias
et al., 2015a].

The performance of the SpiNNaker implementation was also compared against the
software implementation in MATLAB and where possible against Minitaur [Neil and
Liu, 2014], an FPGA event-based implementation of the identical off-line trained DBN
with 2 hidden layers (Figure 5.1(b)).

Both the MATLAB implementation and the Brian simulator employ double floating-
point arithmetic and achieved a CA of 96.06% and 95.00% respectively. In SpiNNaker
the weights are represented using 8 bits for the fractional part (Q3.8), while Minitaur
uses 11 bits (Q5.11). SpiNNaker achieved a CA of 94.94%, while Minitaur achieved
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Table 5.2: Classification accuracies for hardware and software simulations with limited
bit precision, two different input noise levels, and input rates of 1500 Hz. The first
column shows results for a software simulation in Brian with Q3.8 precision, the second
column shows results for SpiNNaker, which uses the same fixed point representation of
weights. Differences in performance are almost negligible.

Input noise Brian SpiNNaker
0% 94.955% 94.94%

60% 88.665% 88.66%

Table 5.3: SpiNNaker vs Brian, for the DBN with 7 hidden layers with Q3.8 bit precision
and an input rate of 1500 Hz.

Input noise Brian SpiNNaker
0% 96.21% 96.22%

60% 75.57% 75.55%

92% (see Table 5.4). The results indicate that there is only a 1% loss in performance
when switching to spiking neuron models, which is in accordance with a previous study
[O’Connor et al., 2013]. Furthermore, the SpiNNaker implementation with reduced
weight precision achieves almost equivalent performance as a spiking software model.
The difference in performance between the two hardware platforms (SpiNNaker and
Minitaur) is likely due to the quantised look-up table Minitaur uses for the membrane
decay and the event driven update of Minitaur.

Table 5.4: Classification accuracy (CA) of the same DBN with 2 hidden layers running
on different platforms.

Simulator CA (%) Weight Precision Description
Matlab 96.06 Double Rate-based (Siegert)
Brian 95.00 Double Clock-driven

O’Connor et al. [2013] 94.09 Double ?
SpiNNaker 94.94 Q3.8 Hybrid

Minitaur [Neil and Liu, 2014] 92.00 Q5.11 Event-driven
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5.2.4.2 Classification Latencies

In order to investigate the real-time performance of spike-based DBNs running on
SpiNNaker, two sets of experiments are conducted. The first experiment investigates
how the mean classification latency and accuracy are affected by the total number of
input spikes. The second experiment measures the mean classification latency of the
spiking DBN as implemented on SpiNNaker.

For the first experiment, the static images of the MNIST test digits are converted to
spike-trains using rates from 500 Hz up to the point where additional input spikes per
second have no effect on the mean classification accuracy. Each experiment ran for 4
trials and results were averaged across all trials.

For the spiking DBN with the 2 hidden layers increasing the number of input spikes
reduces the mean classification latency as seen in Figure 5.10(a). At 1500 Hz the mean
classification is 16.2 ms and the classification accuracy is 95.0%, while firing rates above
1500 Hz have no effect on the mean classification accuracy. Increasing the input spikes
to 2000 Hz reduces the mean classification latency to 13.2 ms. Figure 5.10(b) shows the
impact of the number of input rates on the mean classification latency and accuracy of
the spiking DBN with the 7 hidden layers. At 1500 Hz the mean classification latency is
20.5 ms and the accuracy is 96.21%. When the number input spikes per second increase
to 5000 the mean latency drops to 15.2 ms and the classification accuracy increases
to 96.57%. Finally, what can also be observed from Figures 5.10(a) and (b) is that for
both spiking DBNs increasing the total number of input spikes reduces the standard
deviation for both the mean classification latency and classification accuracy.

To measure the classification latency of a spike-based DBN running on SpiNNaker,
a Tektronix TDS 3034B oscilloscope is used to measure the time from the first input
spike to the first output spike by recording the signals from the general-purpose in-
put/output (GPIO) pins of the SpiNNaker board. The results can be seen in Figure 5.11;
Figure 5.11(a) show a mean classification latency of 16 ms for the spiking DBN with
the 2 hidden layers, while the DBN with the 7 hidden layers has a latency of 20.6 ms
(Figure 5.11(b)). A latency in the order of ms is expected since the timer events used
to solve the neuron equations for the experiments are set to 1 ms, which is the default
SpiNNaker configuration.
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(a)

(b)

Figure 5.10: Mean classification latency and classification accuracy as a function of the
input spikes per second for (a) the spiking DBN with the 2 hidden layers and for (b)
the DBN with the 7 hidden layers. Results are averaged over 4 trials, error bars show
standard deviations.
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(a)

(b)

Figure 5.11: Histogram of the classification latencies for the MNIST digits of the testing
set when the input rates are set to 1500 Hz. (a) The mean classification latency of the
DBN with 2 hidden layers is 16 ms, while for the DBN with the 7 hidden layers (b) is
20.6 ms (red dashed lines). Results are from the SpiNNaker implementations.

5.2.4.3 Power Requirements of spiking DBNs on SpiNNaker

The power requirements of the SpiNNaker platform as the size of the spiking DBN
scales up is explored here. The first experiment investigates the power requirements of
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a spiking DBN running on a single SpiNNaker chip and then utilises a power estimation
model, based on equation 4.1, to explore the scalability of spiking DBNs on larger
SpiNNaker machines in terms of energy requirements.

To investigate the power requirements of a spike-based DBN running on a single
SpiNNaker chip, a board with a single SpiNNaker chip was used (Figure 4.6) and the
same methodology is employed as in Section 4.2.1.3. The spiking DBN with the 2
hidden layers (Figure 5.1(b)) was mapped to a SpiNNaker chip and the simulation
ran for 30 seconds, while the number of input spikes generated for the same MNIST
digit varied from 0 to 2000 spikes per second. Results show that both the power
dissipation and number of output spikes increase with the number of input spikes per
digit (Figure 5.12). When 2000 spikes per second are used per digit, a SpiNNaker chip
dissipates 0.39 W, and that accounts for simulating 1794 LIF neurons with an activity of
1,569,000 synaptic events (SE) per second. For the identical spiking DBN implemented
on Minitaur, which is clocked at 75 Mhz, a power dissipation of 1.5 W was reported
when 1000 spikes per image were used [Neil and Liu, 2014].

A final experiment is carried out in order to investigate the power requirements of
larger spiking DBNs running on a SpiNNaker board with 48 chips (Figure 4.13). The
power estimation equation, Equation 4.1, is used to estimate the dependence of the
power dissipation on the total number of hidden layers and neurons per hidden layer.
Three different firing rates are assumed for the neurons in the hidden layer, 10 Hz, 15 Hz
and 20 Hz. The results are summarised in Figure 5.13. The power estimation model
is used to estimate the power under two different criteria: The minimum number of
SpiNNaker chips required to simulate the total number of neurons based on the number
of hidden layers and neurons per layer of the spiking DBN (150 LIF neurons per ARM9
core, 2400 per SpiNNaker chip), and the minimum amount of SpiNNaker chips required
to support the total number of SE per second (36,800,000 SE per SpiNNaker chip). The
total SE per second a single SpiNNaker chip can simulate in real-time were taken from
Table 4.3 and it is half of what Sharp and Furber [2013] has computed. The white area
in Figure 5.13 signifies the parameter regimes where real-time simulation is not feasible
because the total SE per second require more than 48 SpiNNaker chips. Results show
that for different topologies of spiking DBNs, the limiting factor is the number of SE as
the number of hidden layers goes up, this however can be solved by using less neurons
per ARM9 core. The estimated power dissipation of spiking DBNs utilising a full 48
SpiNNaker chip board is less than 32 W.
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Figure 5.12: Real and estimated power dissipation of a spike-based DBN running on a
single SpiNNaker chip as a function of the number of input spikes generated for the
same MNIST digit. The right axis shows the number of output spikes as a function of
the number of input spikes. The left bars (0 input spikes) shows power dissipation when
the network is idle.
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Figure 5.13: Estimating the power requirements of larger spiking DBNs running on a
48 chip SpiNNaker board, as a function of the number of hidden layers and neurons per
layer, for three different firing rates for the neurons in the hidden layers. The white area
denotes regimes where real-time simulation is impossible due to excessive synaptic
events per second.
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Figure 5.14: Experimental setup: A DVS silicon retina (right), an FPGA board trans-
lating the AER protocol of the DVS to a SpiNNaker compatible format (middle), a 4
SpiNNaker chip board (left) [Galluppi et al., 2012c].

5.2.5 Neuromorphic Visual Input

This section describes the use of a dynamic vision sensor (DVS) [Leñero-Bardallo
et al., 2011] as a visual input to a spiking DBN running on SpiNNaker. A DVS is an
event-based image sensor comprising 128 ⇥ 128 pixels, where each pixel generates
a 16-bit AER event with its address asynchronously in response to changes in the
light-intensity.

Figure 5.14 presents the experimental set-up. Events from the DVS sensor are
transmitted to a Xilinx SPARTAN-6 field programmable gate array (FPGA), which
converts them to a SpiNNaker appropriate format and injects them to a SpiNNaker ma-
chine through one of the six asynchronous links. Based on an PyNN script, PACMAN
[Galluppi et al., 2012d] is responsible for mapping the incoming MC packets (spikes),
from the FPGA, to the neural network. Results are summarised in Figure 5.15. Fig-
ure 5.15(a) shows the firing rates of the spiking DBN for each layer, while Figure 5.15(b)
shows a raster plot of the spiking DBN.

5.3 Summary

After outperforming other machine learning approaches on typical benchmark tasks in
vision and audition, transferring Deep Learning techniques into marketable applications
has become the next big target, and is supported by large ongoing industrial efforts. One
of the biggest challenges is making the classification results of deep networks available
in real-time, which is necessary to improve user experience for relevant applications
such as speech recognition or visual object recognition. It has become clear that apart
from cloud computing solutions, which require additional communication overheads,
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(a) (b)

Figure 5.15: (a) The topology and firing rates of the 784-500-500-10 spiking DBN
under investigation for a single input MNIST digit. The bottom plot shows firing rates
of the DVS (input population). The next two rows of 5⇥100 show the firing rates of
the neurons in the first and second hidden layer (500 neurons each), and finally the top
plot shows the firing rates of the 10 neurons in the output population, one for each digit
from 0 to 9. The arrows indicate all-to-all connections, which means that a neuron in
one layer connects to all neurons in the next layer. (b) Raster plots of each layer of the
spiking DBN.
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the development of special purpose hardware to support deep networks is one of the most
promising routes, in particular for mobile platforms with limited resources. Spiking
deep networks have demonstrated very favourable properties in terms of latency and
scaling [O’Connor et al., 2013; Stromatias et al., 2015b,a], and are a good match for
ongoing efforts to advance the design of both digital and mixed-signal neuro-inspired
hardware platforms [Merolla et al., 2014b; Pfeil et al., 2013; Furber et al., 2014; Pham
et al., 2011; Liu et al., 2015]. Such implementations range from custom analogue
mixed-signal multi-neuron platforms to more general digital platforms such as FPGAs
and SpiNNaker. Thus, the present investigation of the impact of digital bit precision,
input rates, and analogue transistor mismatch on the performance of the hardware
implementation of a spike-based DBN is of high relevance to justify the development of
larger neuromorphic platforms that support larger networks. This is particularly relevant
since theory tells us that the performance of DBNs increases with the numbers of
layers [Hinton and Salakhutdinov, 2006], although this does not necessarily generalize
to multi-layered networks with reduced weight precision. Note that here the focus
is on mapping networks that have been trained off-chip to neuromorphic hardware,
rather than training networks on chip. This is because current training methods for
deep networks from large datasets are optimized for exploiting conventional computing
technology such as GPUs, but the execution on event-based platforms yields efficiency
advantages as discussed previously.

The results show indeed that spike-based DBNs exhibit the desired robustness to
input noise, and numerical precision. The classification performance of the spike-based
DBN on the MNIST digit database holds up even for bit precisions down to Q3.3, which
requires significantly fewer bits to represent the large parameter space of DBNs than
in typical CPU systems. For example, the 2 hidden layer DBN has 642,510 synapses,
which would require 4.9 MBytes if they were stored in double floating-point precision
(64 bits per weight). This reduces to only 0.46 MByte, or less than 10% if weights
are stored in Q3.3, i.e. 6 bit per weight precision. The DBN with the 7 hidden layers
has 1,897,000 synapses which would require 15.1 MBytes to store them using double
floating-point precision. If converted to Q4.2 precision then this drops to 1.4 MBytes
(90.6% reduction in size). Furthermore, one of the effects of the reduced precision is
that many of the weights, which typically are distributed around zero, actually become
zero. For low precisions, this means that the performance can be maintained, although
more than 50% of the weights become zero. Thus, these synapses are ineffective, and
more than half of the weights can be ignored. This not only saves time during execution,
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because of the savings in the memory lookup time for the synaptic weights in the case of
a digital platform implementation, but also means that larger networks can be realized on
the same hardware, because only a smaller percentage of the weights actually need to be
represented. A validation was achieved by running the DBN for MNIST classification
on the biologically-inspired massively-parallel fixed-point SpiNNaker platform, which
uses less precise weights than standard software implementations. It has been shown
that the resulting performance of the network implemented on SpiNNaker is very close
to the results from the software simulation with only a 0.06% difference, despite the
fact the SpiNNaker uses fixed-point arithmetic.

For implementations on custom mixed-signal hardware systems one has to deal
with the constraint that they can only offer reduced numerical precision in the synaptic
weights [Liu et al., 2015; Neftci et al., 2011]. The level of mismatch in the individual
synapses can be taken into account during design and reduced by methods such as clever
layout strategies and increasing the transistor area. Reduction of mismatch through
increasing transistor area is effective [Kinget, 2005] but it increases the overall area
of the synapse. Mismatch calibration methods through for example, a global Digital-
to-Analogue Converter block [Oster et al., 2008] can be introduced to combat this
mismatch after fabrication but the calibration itself can take a long time. The mismatch
influence is also greater in low-power dissipation systems, where the transistors are
usually operated in the subthreshold domain for reduced transistor current [Kinget, 2005;
Linares-Barranco et al., 2003]. The results show that up to 40% of the CV for a normal
distribution of mismatch can be tolerated for the network to produce approximately the
same level of performance. Thus, the effects of hardware-induced imperfections seem to
rather cancel out than accumulate in spiking DBNs. This study adds to current on-going
studies into computational spiking network models that are robust to some level of
device mismatch including that of networks with memristive devices and smaller-scale
multi-neuron networks with additional spatio-temporal dynamics [Liu and Douglas,
2004; Arthur and Boahen, 2007; Vogelstein et al., 2007; Pfeil et al., 2012; Querlioz
et al., 2013; Basu et al., 2013; Wang and Liu, 2013; Brink et al., 2013; Moradi and
Indiveri, 2014].

Investigations of spike-based DBNs are still rare with most of the reported studies
carried out on a two-layered RBM. Exceptions so far are the software DBN model
in O’Connor et al. [2013], and the hardware implementation in Neil and Liu [2014].
The MNIST database was frequently used to determine the classification accuracy
of the network. The software DBN of size 728-1000-500-300-50 by Eliasmith et al.
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[2012] achieved 94% classification accuracy. The network used rate-based neurons
except for the final output layer which was implemented with spiking neurons due to
limitations on the available computing resources. Neftci et al. [2014] recently proposed
an event-based variation of an online CD rule to train spiking RBMs. The trained
two-layer software spike-based RBM with 824 visible neurons and 500 hidden neurons
achieved a classification accuracy of 91.9%. Petrovici et al. [2013] implemented spike-
based RBMs consisting of LIF neurons, following the theoretical framework of neural
sampling [Buesing et al., 2011]. However, no results for the MNIST dataset are available
for this approach. Arthur et al. [2012] trained a two-layer RBM consisting of 484 visible
and 256 hidden units, and 10 linear classifiers in the output layer to classify the MNIST
digits. The RBM was then mapped to spiking neurons by utilising a global inhibitory
rhythm over fixed time windows [Merolla et al., 2010]. A hardware implementation of
their digital neurosynaptic core, which contains 256 LIF neurons simulated at discrete
time-steps of 1 ms, led to a classification accuracy of 89% at an energy consumption of
45 pJ. The current TrueNorth chip [Merolla et al., 2014b] consists of 4,096 such cores
and has a maximum capacity of 1 million neurons, which can be simulated in real time.

In this chapter the most efficient implementation of spike-based DBNs to date was
presented, running on the biologically-inspired massively-parallel fixed-point SpiN-
Naker platform. Its architecture is optimized for simulations with massive parallelism,
asynchronous updates, and event-based chip-to-chip communication. It is an excellent
fit for simulating the stereotypical neural updates and relatively sparse connections of
deep networks in real-time and with minimal power consumption. Combining spiking
neural networks and this hardware platform is thus an ideal fit for mobile or robotics
applications [Galluppi et al., 2014a], which require fast responses while interacting with
the environment, and have only a limited power budget compared to currently popular
GPU- or cloud-based solutions.

The classification latencies of the implemented spiking DBNs on SpiNNaker are
in the order of tens of milliseconds, which is fast enough for interactive real-time
classification. Additionally, it has been demonstrated that as the number of input
spikes increase, the classification accuracy improves while latency decreases. The
power consumption for the spiking DBN with the 2 hidden layers running on a single
SpiNNaker chip is less than 0.4 W for a digit encoded with a rate of 2000 spikes per
second, while it is estimated that larger DBNs running on a larger prototype SpiNNaker
board will dissipate less than 32 W.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

6.1.1 Summary

Large-scale computer simulations of ANNs have been proven to be a useful exper-
imentation tool for computational neuroscientists, brain theoreticians and computer
scientists. Computational neuroscientists aim to replicate activity observed both in
in-vivo and in-vitro experiments in order to test and verify their hypotheses. Recent
technological advancements allow researchers to experiment with large-scale models
and results have revealed network activities and oscillations similar to in-vivo experi-
ments [Ananthanarayanan et al., 2009; Izhikevich and Edelman, 2008]. Moreover, a
large-scale functional model of the human brain, demonstrated similar response times
and errors to human subjects in several cognitive tasks [Eliasmith et al., 2012].

Computer scientists on the other hand inspired from biology seek to develop new
computational methods aiming to fill the gap between human and machine intelligence.
Deep Learning architectures, such as Convolutional Networks and DBNs, have achieved
state-of-the-art results in almost all machine learning benchmarks [Schmidhuber, 2015]
and have been characterised as one of the breakthrough technologies of this decade
[Hof, 2013]. Some of the advantages of DBNs is that they are scalable meaning that it
has been shown to improve theoretical performance bounds by adding additional layers
of neurons [Hinton and Salakhutdinov, 2006] and have the ability to learn from large
unlabelled datasets [Le et al., 2012].

Simulating large neural networks is non trivial: supercomputers offer great flexibility
at the price of power and communication overheads, while alternative approaches based
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on GP-GPUs and FPGAs, whilst being more off-the-shelf available, show similar
memory and communication bottlenecks [Moore et al., 2012; Brette and Goodman,
2012; Fatahalian and Houston, 2008]. As well as efficiency and flexibility, real-time
simulation is a desirable neural network characteristic, for example in mobile and
robotic platforms, which may have limited computing and power resources but require
quick system responses.

The field of neuromorphic engineering aims to tackle the energy and latency is-
sues of conventional computing systems when simulating SNNs by emulating neurons
and synapses directly on hardware, efficiently and in real-time. With neuromorphic
engineering it becomes possible to run large-scale simulations of SNNs in real- or
accelerated-time [Schemmel et al., 2010] and perform powerful event-driven compu-
tations efficiently [Merolla et al., 2014b]. However, neuromorphic platforms suffer
from model specialisation since many neuromorphic systems are highly optimised to a
particular neural and synapse model and offer minimal parameter reconfigurability. If a
different neuron, synapse model or plasticity rule is required then new hardware needs
to be fabricated. This results in significant costs in time, human resources and finances.

The SpiNNaker platform combines the advantages of conventional computing
systems and neuromorphic platforms. SpiNNaker is a fully programmable low-power
system with a memory hierarchy and asynchronous communications optimised for
real-time SNNs simulations. The programability of the SpiNNaker cores allow users to:
develop arbitrary neuron and synapse models, implement new plasticity rules [Galluppi
et al., 2014b], run simulations with heterogeneous populations of spiking neurons [Rast
et al., 2011] operating at different time-scales within the same simulation [Lagorce et al.,
2015], interface neuromorphic sensors [Galluppi et al., 2012c] and create closed-loop
systems [Galluppi et al., 2012a, 2014a]. The communications of the system allow
complex connectivity patterns while they can scale up to a billion neurons with a trillion
synapses. The available software tools abstract the hardware complexity from the user
making the platform accessible to non-experts.

6.1.2 Contributions

Large-scale simulations of SNNs are an important step in understanding how the brain
works and to derive new computational paradigms inspired by the human brain. This is
reflected by large-scale research projects and funding efforts, such as the HBP project
[HBP, 2013], BRAIN initiative [Bra] and the interest shown by the industrial parties
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[Sawada and Modha, 2013]. However, the power consumption of large-scale simu-
lations on supercomputers is rarely reported and benchmarking biologically-inspired
platforms is difficult due to different architectures and models simulated on them. The
research presented in Chapter 4 aimed at providing a methodology to characterise:
(a) the power requirements of a 48-node SpiNNaker board; (b) the communication
latencies; and (c) to identify potential room for further optimisations. The research
contribution resulted from these objectives was the development of a power estimation
model based on the neuron models, number of neurons and synapses, as well as, their
activity. Networks of significant sizes were executed on SpiNNaker, which at the time
of publication [Stromatias et al., 2013] were the largest real-time simulation of recurrent
spiking neural networks, and showed that SpiNNaker provides 54.27 million SOPS per
Watt in real-time. In addition, the intra- and inter-chip core-to-core spike latencies were
identified. The outcome of this research provides a basis for comparison between differ-
ent neuromorphic [Merolla et al., 2014b] and biologically-inspired [Moore et al., 2012]
platforms (as discussed in the summary section of Chapter 4), as well as, guidelines for
further optimisations. One such optimisation was also presented in Chapter 4, where
a new recoverable idle state was implemented through dynamic frequency scaling by
systematically examining the energy consumption of each clocked component within a
SpiNNaker chip. This proposed state showed significant power improvements, in the
order of 60%, that will have greater impact on the largest SpiNNaker machine, which
will utilise 1,200 48-node SpiNNaker boards, and on mobile robotic platforms that
utilise SpiNNaker [Galluppi et al., 2012a, 2014a] but have a limited power budget. The
results reveal that SpiNNaker, now part of the HBP, while not achieving the power
efficiency of dedicated neuromorphic platforms, provides an excellent trade-off in terms
of scalability and programmability.

·

A recently proposed method to map off-line trained DBNs to SNNs [O’Connor et al.,
2013] paves the way towards neuromorphic accelerators able to run large-scale DBNs
efficiently and with low-latency. However, since neuromorphic implementations come
in various forms [Liu et al., 2015] it is necessary to investigate how their performance
degrades due to hardware constraints imposed by different hardware implementations
and input sensor noise. The research contribution presented in Chapter 5 is the devel-
opment of a methodology to perform a full characterisation on spike-based DBNs to
determine the impact of: (a) hardware bit precision; (b) analogue transistor mismatch;
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(c) input firing rates; (d) input noise and (e) combinations of these on the classification
performance of a spike-based DBNs on a handwritten digit recognition task. Results
reveal that spiking DBNs can tolerate high levels of noise in the input patterns and input
rates even for low weight bit resolutions. Analogue weights can tolerate up to 40%
of the CV for a normal distribution of mismatch and produce approximately the same
level of performance. Thus, showing that the effects of hardware-induced imperfections
seem to rather cancel out than accumulate in spiking DBNs [Stromatias et al., 2015c].
These results were also validated on the SpiNNaker platform where the SpiNNaker
implementation produced almost identical results, 0.06% difference in the classification
performance, to Brian [Goodman and Brette, 2009] software simulator. The classi-
fication latencies of spiking DBNs on SpiNNaker were also found to be identical to
Brian and are in the order of tens of milliseconds, which is fast enough for interactive
real-time classification. In addition, a trade-off is observed between higher input spike
rates, which require more computation but lead to better classification accuracy and
lower latency, and lower spike rates which yield a more energy-efficient system. An ad-
ditional contribution is that the spiking DBN implementation on SpiNNaker is the most
efficient, in terms of classification accuracy and energy requirements, implementation
of spike-based DBNs to date [Stromatias et al., 2015a,b]. Finally, an investigation on
the scalability, in respect of power requirements, of larger spiking DBNs running on
larger SpiNNaker systems utilising the power estimation model developed in Chapter 4
revealed that these type of networks will dissipate less than 32 W on a 48-node board.
The studies presented in Chapter 5 intend provide important guidelines for informing
current and future efforts in developing custom large-scale digital and mixed-signal
spiking network platforms.

6.2 Future Work

The research described in this thesis has laid the foundations for various promising lines
of future work, such as investigating the power requirements of the SpiNNaker platform
when simulating purely event-driven spiking neuron models as the one developed by
Lagorce et al. [2015] and will build up on the power estimation model described in
Chapter 4. In addition, the experiments presented in Chapter 5 will be repeated to
investigate if the event-driven neuron model has an effect on the performance of the
spike-based DBNs.

A very promising feature of DBNs is their scalability: it is well known that adding



152 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

more layers to DBNs can improve performance [Hinton et al., 2006]. With the SpiN-
Naker architecture it becomes possible to create very large DBNs by adding additional
layers, running on different cores or chips, without significantly increasing the latency
of the system, and at reasonable power dissipation. Future work will thus investigate the
scaling behaviour of deeper DBN architectures and other types of deep architectures on
noisy or limited precision platforms. Since training remains the most computationally
expensive task with DBNs, it will be interesting to study how event-based learning rules
on neuromorphic platforms can contribute to speeding up this process. On-line learning
rules such as the recently proposed event-based Contrastive Divergence learning rule by
Neftci et al. [2014] for training a spike-based DBN can in principle utilise neuromorphic
platforms for DBN training, and will have to deal with similar hardware constraints
as addressed in Chapter 5. Current neuromorphic plasticity implementations are often
limited to various forms of STDP, but more general plasticity frameworks such as the
one recently proposed in Galluppi et al. [2014b] would provide the necessary flexibility
to also test variations of contrastive divergence or related learning rules for DBNs on
massively parallel brain-inspired hardware platforms.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998b.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 05 2015. URL http://dx.doi.org/10.1038/nature14539.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolutional deep
belief networks for scalable unsupervised learning of hierarchical representations.
In Proceedings of the 26th Annual International Conference on Machine Learning,
ICML ’09, pages 609–616, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-
516-1. doi: 10.1145/1553374.1553453. URL http://doi.acm.org/10.1145/

1553374.1553453.

Robert Legenstein, Dejan Pecevski, and Wolfgang Maass. A learning theory for reward-
modulated spike-timing-dependent plasticity with application to biofeedback. PLoS
Computational Biology, 4(10):e1000180, 2008.
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Appendix A

Power Characterisation -
Supplementary Materials

Extra figures from Chapter 4 recorded using a Tektronix TDS 3034B oscilloscope.
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Figure A.1: Instantaneous voltage of the 1.2V(A) regulator, for 1 ms of simulation for
the self-connected benchmark network with 326 LIF neurons per population (core).
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Figure A.2: Instantaneous voltage of the 1.2V(A) regulator, for 1 ms of simulation
for the self-connected benchmark network, with different number of LIF neurons per
core. The current injected to neurons (Iinjected) was set to zero. Data are filtered with a
low-pass filter.



Appendix B

NEST vs SpiNNaker

This section shows that SpiNNaker outperforms the reference multi-threaded simulator
NEST [Gewaltig and Diesmann, 2007; Morrison et al., 2005] for the benchmark neural
networks presented in Section 4.1.2. NEST (2.2.2) compiled with OpenMP [Dagum and
Menon, 1998] ran on a high-performance multicore machine that consists of 384 GB of
memory and 2 ⇥ Intel Xeon CPU E5-2690 processors, each with 8 cores (16 threads),
clocked at 2.9 GHz. The SpiNN-4 board consists of 48 SpiNNaker chips, 864 ARM9
cores of which 768 were used during the simulations. The cores were clocked at
200 MHz, the routers at 100 MHz and the memory clocks at 133 MHz. The Python
cProfile module was used to record the execution profile of each simulation. The same
PyNN script was used for both platforms. Table B.1 summarises the two hardware
platforms, while Table B.2 shows the software components used in the simulations.

Results show that for the locally-connected network, depicted in Figure 4.1, the
single threaded NEST rans 48 ⇥ slower than real-time. NEST’s execution time improves
with the addition of extra threads; with 16 threads NEST rans 22 ⇥ slower than real-
time, however beyond that point, using more threads does not seem to affect the
execution time. A similar behaviour can be observed for the randomly-connected
network, presented in Figure 4.2. NEST running on a single thread executes 45 ⇥
slower than real-time. Increasing the number of threads improves the execution time up
to a point, which for this particular case is 16 ⇥ slower than real-time for 12 threads,
while increasing the number of threads does not improve the performance of NEST.
This behaviour is due to the fact that the two processors share a memory bus [Intel,
2014]. Results indicate that NEST is not capable of outperforming SpiNNaker with any
number of processors. Moreover, NEST draws approximately seven times the power
and four times the computational resources of SpiNNaker. A single Intel Xeon CPU
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E5-2690 processor draws 135 W [Intel, 2014] and can deliver 371 gigaoperations per
second (GOPS) [Intel Xeon Processor E5-2600 Series, 2014], while 768 SpiNNaker
cores draw 36.37 W and can deliver approximately 153.6 (GOPS).

Table B.1: Hardware platform summary

Hardware Processing Memory OS
Intel Xeon CPU E5-2690 20MB Cache

Multicore 32 threads on 16 cores (2 chips) 384GB Ubuntu 14.04.1
2.9GHz clock
48 SpiNNaker chip board 32KB for instructions

SpiNNaker 784 cores on 48 chips 64KB for data per core SARK (v1.09)
200MHz 128MB data per chip

Table B.2: Software component summary.

Software Version Notes
Python 2.7 with NumPy 1.8.2 and Scipy 0.13.3
NEST 2.2.2 with OpenMP 3.1
PyNN 0.75
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Figure B.1: Execution time of the 60-second locally-connected benchmark network
with 326 neurons per population.

Figure B.2: Execution time of the 60-second randomly-connected benchmark network
with 150 neurons per population.



Appendix C

Spiking Deep Belief Networks -
Supplementary Materials

C.1 Training Scripts

This section presents the Matlab scripts used to train the two spike-based DBNs of
Chapter 5. Section C.1.1 shows the identical training script used to train the DBN with
the 2 hidden layers as published by O’Connor et al. [2013] and Neil and Liu [2014].
Section C.1.2 presents the script used to train the novel DBN with the 7 hidden layers.
The remaining Matlab files can be found at https://github.com/dannyneil/edbn/.

C.1.1 Training Script for the DBN With the 2 Hidden Layers

%% Load p a t h s
a d d p a t h ( g e n p a t h ( ’ . ’ ) ) ;

%% Load d a t a
l o a d m n i s t u i n t 8 ;

t r a i n x = do ub le ( t r a i n x ) / 255 ⇤ 0 . 2 ;
t e s t x = d ou b l e ( t e s t x ) / 255 ⇤ 0 . 2 ;
t r a i n y = do ub le ( t r a i n y ) ⇤ 0 . 2 ;
t e s t y = d ou b l e ( t e s t y ) ⇤ 0 . 2 ;

%% T r a i n ne twork
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r and ( ’ seed ’ , 4 2 ) ;
c l e a r edbn o p t s ;
edbn . s i z e s = [784 500 500 1 0 ] ;
o p t s . numepochs = 2 ;
o p t s . a l p h a = 0 . 0 0 5 ;
[ edbn , o p t s ] = e d b n s e t u p ( edbn , o p t s ) ;

o p t s . momentum = 0 . 0 ; o p t s . numepochs = 2 ;
edbn = e d b n t r a i n ( edbn , t r a i n x , o p t s ) ;
edbn = e d b n t o p t r a i n ( edbn , t r a i n x , op t s , t r a i n y ) ;

o p t s . momentum = 0 . 8 ; o p t s . numepochs = 6 0 ;
edbn = e d b n t r a i n ( edbn , t r a i n x , o p t s ) ;

edbn = e d b n t r a i n ( edbn , t r a i n x , o p t s ) ;
edbn = e d b n t o p t r a i n ( edbn , t r a i n x , op t s , t r a i n y ) ;

% Show r e s u l t s
f i g u r e ;
v i s u a l i z e ( edbn . erbm {1} .W’ ) ; % V i s u a l i z e t h e RBM w e i g h t s
e r = e d b n t e s t ( edbn , t r a i n x , t r a i n y ) ;
f p r i n t f ( ’ Scored : %2.2 f \n ’ , (1� e r ) ⇤ 1 0 0 ) ;
f i l e n a m e = s p r i n t f ( ’ g o o d m n i s t %2.2 f�%s . mat ’ , (1 � e r )⇤1 0 0 , d a t e ( ) ) ;
e d b n c l e a n ( edbn ) ;
s ave ( f i l e n a m e , ’ edbn ’ ) ;

o p t s . momentum = 0 . 8 ;
o p t s . numepochs = 8 0 ;
edbn = e d b n t o p t r a i n ( edbn , t r a i n x , op t s , t r a i n y ) ;

% Show r e s u l t s
f i g u r e ;
v i s u a l i z e ( edbn . erbm {1} .W’ ) ; % V i s u a l i z e t h e RBM w e i g h t s
e r = e d b n t e s t ( edbn , t r a i n x , t r a i n y ) ;
f p r i n t f ( ’ Scored : %2.2 f \n ’ , (1� e r ) ⇤ 1 0 0 ) ;
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f i l e n a m e = s p r i n t f ( ’ g o o d m n i s t %2.2 f�%s . mat ’ , (1 � e r )⇤1 0 0 , d a t e ( ) ) ;
e d b n c l e a n ( edbn ) ;
s ave ( f i l e n a m e , ’ edbn ’ ) ;

%% Show t h e EDBN i n a c t i o n
s p i k e l i s t = l i v e e d b n ( edbn , t e s t x ( 1 , : ) , o p t s ) ;
o u t p u t i d x s = ( s p i k e l i s t . l a y e r s == numel ( edbn . s i z e s ) ) ;

f i g u r e ( 2 ) ; c l f ;
h i s t ( s p i k e l i s t . a d d r s ( o u t p u t i d x s ) � 1 , 0 : edbn . s i z e s ( end ) ) ;

%% Ex por t t o xml t o l o a d i n t o J S p i k e S t a c k
edbntoxml ( edbn , op t s , ’ mn i s t edbn ’ ) ;

C.1.2 Training Script for the DBN With the 7 Hidden Layers

%% Load p a t h s
a d d p a t h ( g e n p a t h ( ’ . ’ ) ) ;

%% Load d a t a
l o a d m n i s t u i n t 8 ;

% Conve r t d a t a and r e s c a l e between 0 and 0 . 2
t r a i n x = do ub le ( t r a i n x ) / 255 ⇤ 0 . 2 ;
t e s t x = d ou b l e ( t e s t x ) / 255 ⇤ 0 . 2 ;
t r a i n y = do ub le ( t r a i n y ) ⇤ 0 . 2 ;
t e s t y = d ou b l e ( t e s t y ) ⇤ 0 . 2 ;

%% T r a i n ne twork
% Se tup
seed =33000;
rng ( seed , ’ t w i s t e r ’ )

c l e a r edbn o p t s ;
edbn . s i z e s = [784 500 500 500 500 500 500 500 1 0 ] ;
o p t s . numepochs = 1 0 ;
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[ edbn , o p t s ] = e d b n s e t u p ( edbn , o p t s ) ;

% T r a i n
f p r i n t f ( ’ Beg inn ing t r a i n i n g .\ n ’ ) ;
edbn = e d b n t r a i n ( edbn , t r a i n x , o p t s ) ;
% Use s u p e r v i s e d t r a i n i n g on t h e t o p l a y e r
edbn = e d b n t o p t r a i n ( edbn , t r a i n x , op t s , t r a i n y ) ;

edbn = e d b n t r a i n ( edbn , t r a i n x , o p t s ) ;
% Use s u p e r v i s e d t r a i n i n g on t h e t o p l a y e r
edbn = e d b n t o p t r a i n ( edbn , t r a i n x , op t s , t r a i n y ) ;

edbn = e d b n t r a i n ( edbn , t r a i n x , o p t s ) ;
% Use s u p e r v i s e d t r a i n i n g on t h e t o p l a y e r
edbn = e d b n t o p t r a i n ( edbn , t r a i n x , op t s , t r a i n y ) ;

% Show r e s u l t s
f i g u r e ;
v i s u a l i z e ( edbn . erbm {1} .W’ ) ; % V i s u a l i z e t h e RBM w e i g h t s

[ er , bad ] = e d b n t e s t ( edbn , t e s t x , t e s t y ) ;
f p r i n t f ( ’ Scored : %2.2 f \n ’ , (1� e r ) ⇤ 1 0 0 ) ;

%% Show t h e EDBN i n a c t i o n
s p i k e l i s t = l i v e e d b n ( edbn , t e s t x ( 1 , : ) , o p t s ) ;
o u t p u t i d x s = ( s p i k e l i s t . l a y e r s == numel ( edbn . s i z e s ) ) ;

f i g u r e ( 2 ) ; c l f ;
h i s t ( s p i k e l i s t . a d d r s ( o u t p u t i d x s ) � 1 , 0 : edbn . s i z e s ( end ) ) ;
t i t l e ( ’ Labe l Layer C l a s s i f i c a t i o n Spikes ’ ) ;

%% Ex po r t t o xml
edbntoxml ( edbn , op t s , ’ mn i s t edbn ’ ) ;
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C.2 Additional Figures for the DBN with 2 hidden lay-
ers

Figure C.1: CA for the DBN with the 2 hidden layers as a function of input noise and
bit precision of synaptic weights for 100 spikes per second and a stimulus duration of
15 seconds. The performance is almost identical to the 1500 Hz case for a stimulus
duration of 1 second.
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C.3 Additional Figures for the DBN with 7 hidden lay-
ers

Figure C.2: Weight distribution of the DBN with the 7 hidden layers for different
fixed-point representations.
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Figure C.3: Mean firing rate of the DBN with the 7 hidden layers for each layer of the
network, for weights with different bit precisions, using an input rate of 1500Hz. Lower
precision levels, which lead to more weights at zero, cause lower firing rates within the
network.
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Figure C.4: Distribution of the mean difference, of the DBN with the 7 hidden layers,
between the activation of a neuron with double precision weights and neurons using
weights with different bit precision levels. Shown are distributions over all test samples.
The difference, although peaked near zero, increases for higher layers, and shows a
trend towards reduced activations.
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Figure C.5: Thesis progression.


