38 research outputs found

    Exploiting the ensemble paradigm for stable feature selection: A case study on high-dimensional genomic data

    Get PDF
    Ensemble classification is a well-established approach that involves fusing the decisions of multiple predictive models. A similar “ensemble logic” has been recently applied to challenging feature selection tasks aimed at identifying the most informative variables (or features) for a given domain of interest. In this work, we discuss the rationale of ensemble feature selection and evaluate the effects and the implications of a specific ensemble approach, namely the data perturbation strategy. Basically, it consists in combining multiple selectors that exploit the same core algorithm but are trained on different perturbed versions of the original data. The real potential of this approach, still object of debate in the feature selection literature, is here investigated in conjunction with different kinds of core selection algorithms (both univariate and multivariate). In particular, we evaluate the extent to which the ensemble implementation improves the overall performance of the selection process, in terms of predictive accuracy and stability (i.e., robustness with respect to changes in the training data). Furthermore, we measure the impact of the ensemble approach on the final selection outcome, i.e. on the composition of the selected feature subsets. The results obtained on ten public genomic benchmarks provide useful insight on both the benefits and the limitations of such ensemble approach, paving the way to the exploration of new and wider ensemble schemes

    Exploiting Feature Selection in Human Activity Recognition: Methodological Insights and Empirical Results Using Mobile Sensor Data

    Get PDF
    Human Activity Recognition (HAR) using mobile sensor data has gained increasing attention over the last few years, with a fast-growing number of reported applications. The central role of machine learning in this field has been discussed by a vast amount of research works, with several strategies proposed for processing raw data, extracting suitable features, and inducing predictive models capable of recognizing multiple types of daily activities. Since many HAR systems are implemented in resource-constrained mobile devices, the efficiency of the induced models is a crucial aspect to consider. This paper highlights the importance of exploiting dimensionality reduction techniques that can simplify the model and increase efficiency by identifying and retaining only the most informative and predictive features for activity recognition. More in detail, a large experimental study is presented that encompasses different feature selection algorithms as well as multiple HAR benchmarks containing mobile sensor data. Such a comparative evaluation relies on a methodological framework that is meant to assess not only the extent to which each selection method is effective in identifying the most predictive features but also the overall stability of the selection process, i.e., its robustness to changes in the input data. Although often neglected, in fact, the stability of the selected feature sets is important for a wider exploitability of the induced models. Our experimental results give an interesting insight into which selection algorithms may be most suited in the HAR domain, complementing and significantly extending the studies currently available in this field

    Discriminative Appearance Models for Face Alignment

    Get PDF
    The proposed face alignment algorithm uses local gradient features as the appearance representation. These features are obtained by pixel value comparison, which provide robustness against changes in illumination, as well as partial occlusion and local deformation due to the locality. The adopted features are modeled in three discriminative methods, which correspond to different alignment cost functions. The discriminative appearance modeling alleviate the generalization problem to some extent

    Network Analysis on Incomplete Structures.

    Full text link
    Over the past decade, networks have become an increasingly popular abstraction for problems in the physical, life, social and information sciences. Network analysis can be used to extract insights into an underlying system from the structure of its network representation. One of the challenges of applying network analysis is the fact that networks do not always have an observed and complete structure. This dissertation focuses on the problem of imputation and/or inference in the presence of incomplete network structures. I propose four novel systems, each of which, contain a module that involves the inference or imputation of an incomplete network that is necessary to complete the end task. I first propose EdgeBoost, a meta-algorithm and framework that repeatedly applies a non-deterministic link predictor to improve the efficacy of community detection algorithms on networks with missing edges. On average EdgeBoost improves performance of existing algorithms by 7% on artificial data and 17% on ego networks collected from Facebook. The second system, Butterworth, identifies a social network user's topic(s) of interests and automatically generates a set of social feed ``rankers'' that enable the user to see topic specific sub-feeds. Butterworth uses link prediction to infer the missing semantics between members of a user's social network in order to detect topical clusters embedded in the network structure. For automatically generated topic lists, Butterworth achieves an average top-10 precision of 78%, as compared to a time-ordered baseline of 45%. Next, I propose Dobby, a system for constructing a knowledge graph of user-defined keyword tags. Leveraging a sparse set of labeled edges, Dobby trains a supervised learning algorithm to infer the hypernym relationships between keyword tags. Dobby was evaluated by constructing a knowledge graph of LinkedIn's skills dataset, achieving an average precision of 85% on a set of human labeled hypernym edges between skills. Lastly, I propose Lobbyback, a system that automatically identifies clusters of documents that exhibit text reuse and generates ``prototypes'' that represent a canonical version of text shared between the documents. Lobbyback infers a network structure in a corpus of documents and uses community detection in order to extract the document clusters.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133443/1/mattburg_1.pd

    Heuristic ensembles of filters for accurate and reliable feature selection

    Get PDF
    Feature selection has become increasingly important in data mining in recent years. However, the accuracy and stability of feature selection methods vary considerably when used individually, and yet no rule exists to indicate which one should be used for a particular dataset. Thus, an ensemble method that combines the outputs of several individual feature selection methods appears to be a promising approach to address the issue and hence is investigated in this research. This research aims to develop an effective ensemble that can improve the accuracy and stability of the feature selection. We proposed a novel heuristic ensemble of filters (HEF). It combines two types of filters: subset filters and ranking filters with a heuristic consensus algorithm in order to utilise the strength of each type. The ensemble is tested on ten benchmark datasets and its performance is evaluated by two stability measures and three classifiers. The experimental results demonstrate that HEF improves the stability and accuracy of the selected features and in most cases outperforms the other ensemble algorithms, individual filters and the full feature set. The research on the HEF algorithm is extended in several dimensions; including more filter members, three novel schemes of mean rank aggregation with partial lists, and three novel schemes for a weighted heuristic ensemble of filters. However, the experimental results demonstrate that adding weight to filters in HEF does not achieve the expected improvement in accuracy, but increases time and space complexity, and clearly decreases stability. Therefore, the core ensemble algorithm (HEF) is demonstrated to be not just simpler but also more reliable and consistent than the later more complicated and weighted ensembles. In addition, we investigated how to use data in feature selection, using ALL or PART of it. Systematic experiments with thirty five synthetic and benchmark real-world datasets were carried out

    Data-efficient methods for dialogue systems

    Get PDF
    Conversational User Interface (CUI) has become ubiquitous in everyday life, in consumer-focused products like Siri and Alexa or more business-oriented customer support automation solutions. Deep learning underlies many recent breakthroughs in dialogue systems but requires very large amounts of training data, often annotated by experts — and this dramatically increases the cost of deploying such systems in production setups and reduces their flexibility as software products. Trained with smaller data, these methods end up severely lacking robustness to various phenomena of spoken language (e.g. disfluencies), out-of-domain input, and often just have too little generalisation power to other tasks and domains. In this thesis, we address the above issues by introducing a series of methods for bootstrapping robust dialogue systems from minimal data. Firstly, we study two orthogonal approaches to dialogue: a linguistically informed model (DyLan) and a machine learning-based one (MemN2N) — from the data efficiency perspective, i.e. their potential to generalise from minimal data and robustness to natural spontaneous input. We outline the steps to obtain data-efficient solutions with either approach and proceed with the neural models for the rest of the thesis. We then introduce the core contributions of this thesis, two data-efficient models for dialogue response generation: the Dialogue Knowledge Transfer Network (DiKTNet) based on transferable latent dialogue representations, and the Generative-Retrieval Transformer (GRTr) combining response generation logic with a retrieval mechanism as the fallback. GRTr ranked first at the Dialog System Technology Challenge 8 Fast Domain Adaptation task. Next, we the problem of training robust neural models from minimal data. As such, we look at robustness to disfluencies and propose a multitask LSTM-based model for domain-general disfluency detection. We then go on to explore robustness to anomalous, or out-of-domain (OOD) input. We address this problem by (1) presenting Turn Dropout, a data-augmentation technique facilitating training for anomalous input only using in-domain data, and (2) introducing VHCN and AE-HCN, autoencoder-augmented models for efficient training with turn dropout based on the Hybrid Code Networks (HCN) model family. With all the above work addressing goal-oriented dialogue, our final contribution in this thesis focuses on social dialogue where the main objective is maintaining natural, coherent, and engaging conversation for as long as possible. We introduce a neural model for response ranking in social conversation used in Alana, the 3rd place winner in the Amazon Alexa Prize 2017 and 2018. For our model, we employ a novel technique of predicting the dialogue length as the main objective for ranking. We show that this approach matches the performance of its counterpart based on the conventional, human rating-based objective — and surpasses it given more raw dialogue transcripts, thus reducing the dependence on costly and cumbersome dialogue annotations.EPSRC project BABBLE (grant EP/M01553X/1)
    corecore