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Abstract 

Ensemble classification is a well-established approach that involves fusing the decisions of multiple 

predictive models. A similar “ensemble logic” has been recently applied to challenging feature 

selection tasks aimed at identifying the most informative variables (or features) for a given domain 

of interest. In this work, we discuss the rationale of ensemble feature selection and evaluate the 

effects and the implications of a specific ensemble approach, namely the data perturbation strategy. 

Basically, it consists in combining multiple selectors that exploit the same core algorithm but are 

trained on different perturbed versions of the original data. The real potential of this approach, still 

object of debate in the feature selection literature, is here investigated in conjunction with different 

kinds of core selection algorithms (both univariate and multivariate). In particular, we evaluate the 

extent to which the ensemble implementation improves the overall performance of the selection 

process, in terms of predictive accuracy and stability (i.e., robustness with respect to changes in the 

training data). Furthermore, we measure the impact of the ensemble approach on the final selection 

outcome, i.e. on the composition of the selected feature subsets. The results obtained on ten public 

genomic benchmarks provide useful insight on both the benefits and the limitations of such 

ensemble approach, paving the way to the exploration of new and wider ensemble schemes. 

 

Keywords: Ensemble paradigm, Feature selection, Data perturbation, Selection stability, High-

dimensional genomic data. 
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1. Introduction 

 

In the context of hybrid intelligent systems [1], different approaches have been proposed that use a 

suitable combination of computational methods and techniques to handle real world complex 

problems involving imprecision, uncertainty and high-dimensionality of data. In particular, multi-

classifier systems seek to exploit the strengths of diverse classifier models, obtaining enhanced 

performance by their combination. This approach, also referred as ensemble learning paradigm, has 

received extensive coverage in pattern recognition and machine learning literature [2-6], with a fast 

increasing number of reported applications [1, 7-10]. 

 

In the last years, significant research efforts [11-15] have also explored the extension of the above 

paradigm to the feature selection process [16], which is crucial to the analysis of high dimensional 

datasets coming from a number of application areas such as text processing and biomedicine. 

Indeed, by removing features that may be either redundant or irrelevant to the problem at hand, 

feature selection methods have become indispensable in several knowledge discovery tasks [17,18] 

that require the identification of a small subset of informative variables. Moreover, feature selection 

may lead to better predictors, either in terms of learning speed, generalization capability as well as 

interpretability of the induced model. 

 

As highlighted by recent literature [11,19], a good selection algorithm should achieve an optimal 

trade-off between predictive performance, i.e. the capacity of identifying the most 

relevant/predictive features, and stability, i.e. the robustness of results with respect to changes in the 

dataset composition (e.g., adding or removing a given percentage of training samples should not 

affect the selection outcome in a significant way). Neglected until a few years ago, stability is now 

recognized as a very important issue, especially if subsequent analysis or validation of the selected 

features are costly. 

 

Since existing selection algorithms are often deficient in stability [20], research activity is 

increasingly focusing on new approaches that may improve the robustness of selection results. 

Among them, ensemble feature selection has been recommended [21] as a very promising paradigm 

that does not require complex transformations of the original feature space or prior knowledge on 

the underlying domain. Basically, the rationale is to exploit the outputs of a set of different 

selectors, instead of using a single one: indeed, as the combination of multiple classifiers can lead to 

a better predictive system, similarly the combination of multiple selectors could allow to achieve 

more reliable and robust selection results. 

 

Actually, a number of experimental studies [11,12,14] have shown that ensemble approaches can 

really overcome standard selection algorithms in terms of stability, especially in the context of high-

dimensional/small sample size domains (such as genomics and biomedicine). However, in this field, 

the potential and the implications of the ensemble paradigm have not been exhaustively investigated 

yet, and there is no consensus on the superiority of ensemble methods over standard techniques [22] 

nor clear indications on when, and to which extent, an ensemble approach may be convenient in 

terms of both predictive performance and stability [23,24]. This motivates, in our opinion, further 

and deeper analyses, involving different types of selection algorithms. 

 

Extending our previous research in this field [22,25], we present here an extensive study aimed at 

investigating the effects of a data perturbation ensemble strategy [21], already consolidated in the 

context of multi-classifiers systems and recently explored within high dimensional feature selection 

tasks. Basically, it involves the application of a core selection algorithm to different perturbed 
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versions of a dataset, each originating a specific selection outcome (e.g. a feature subset or a ranked 

list of features): the different outcomes are then combined (through a suitable aggregation function) 

to obtain the final output. In our study, the effectiveness of this ensemble implementation is 

systematically evaluated (for different aggregation functions and different number of selected 

features) against the direct application of the core algorithm to the dataset at hand.  

 

Specifically, we consider ten selection methods, representatives of both univariate and multivariate 

approaches: in the first case, each single feature is evaluated independently from the others; in the 

second one, the inter-dependencies among features are taken into account. For each method, we 

compare the effectiveness of simple and ensemble implementations, in terms of both predictive 

performance and stability. Moreover, as further contribution, we measure the similarity among the 

feature subsets produced in the simple and in the ensemble setting, in order to evaluate the exact 

extent to which the ensemble approach affects the selection outcome, i.e. the composition of the 

selected subsets. 

 

As benchmarks for our experiments, we consider ten genomic datasets coming from DNA micro-

array experiments [26]: due to the large number of features, coupled with a comparatively small 

number of samples, they have proved to be very challenging for standard selection algorithms, 

hence providing an interesting test-bed for ensemble methods.  

 

The results of our experiments give insight on both benefits and limitations of ensemble selection 

techniques and could represent a useful starting point to best understand the behavior of these 

techniques as well as the extent of their applicability to specific real-world problems. 

 

The rest of this work is organized as follows. Section 2 provides relevant background concepts as 

well as a survey of current literature. Section 3 describes the adopted methodology, while section 4 

gives more details about the feature selection techniques and the datasets involved in the proposed 

case study. The experimental results are presented and discussed in section 5. Finally, section 6 

outlines concluding remarks and future research directions. 

 

 

2. Background and literature survey 

 

Feature selection is a critical preprocessing step in data mining. Indeed, it allows to reduce the 

dimensionality (i.e. the number of features) of a given dataset, making the overall analysis more 

manageable and often more productive too (since irrelevant and confounding factors are removed). 

Within high dimensional classification tasks [27,28], it is ordinarily used to extract a subset of 

features highly correlated to the target class and hence potentially predictive. In this context, feature 

selection methods can be broadly divided into three groups [29,30]: 

• Filter methods estimate the relevance of features by looking only at the intrinsic properties of 

the data, without interacting with the learning algorithm (classifier) that will be ultimately used 

to infer a model. 

• Wrapper methods, in contrast, interact with the classifier by using its classification performance 

as evaluation criterion to select the best feature subset within a space of candidate subsets. 

Tailored to a specific learning algorithm, wrappers may ensure better results than filters, but 

with an increased computational cost. 

• Embedded methods exploit the internal parameters of a suitable classifier to derive the level of 

significance of the features, and usually achieve a good trade-off between computational cost 

and performance. 
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Though many studies have investigated the strengths and weaknesses of existing feature selection 

algorithms [18,29,31,32], the choice of the most appropriate approach for a given task remains 

difficult. Furthermore, with the aim of devising suitable solutions for specific problem settings, new 

proposals are constantly appearing in the feature selection literature. In what follows, we discuss 

some of these proposals, with specific reference to the selection stability issue (sub-section 2.1) and 

to the ensemble selection paradigm (sub-section 2.2), both relevant to the study presented in this 

work. 

 

2.1 Selection stability 

 

By identifying the most representative attributes for a given domain, feature selection often aims at 

discovering useful knowledge from data, not just at producing an accurate classifier. In this case, 

the robustness of the selection process is equally important as good model performance. 

Specifically, the term robustness (or stability) is used to describe the extent to which a feature 

selection algorithm is sensitive to changes in the training data [19]: a robust algorithm is capable of 

producing (almost) the same results when the composition of the dataset is modified to some extent, 

hence allowing domain experts to have more confidence in the selected features. 

 

In more detail, given a set of training records, each described by a vector of N features, the stability 

of a selection algorithm can be measured: 

(i) by constructing M training sets, each derived by perturbing to some extent (e.g. through a 

proper resampling procedure) the original set of records;  

(ii) by applying the algorithm to each training set: this originates, for each set, an output which can 

take the form of a subset of features, or of a weighting-scoring or a ranking of the features; 

(iii) by comparing, through a proper similarity measure, the M resulting outputs: the comparison is 

typically conducted on a pair-wise basis, and the resulting similarities values are averaged over 

the M(M-1)/2 pair-wise comparisons. 

 

Recent literature has focused on suitable experimental procedures for constructing the M training 

sets (the available protocols essentially differ for the way the original data are perturbed) [20,33] as 

well as on proper similarity measures to quantify the effect of data perturbations on the selection 

results [19,21,34,35]. For example, the Pearson’s correlation coefficient can be used if the selection 

output is expressed as a weighting of the features, the Spearman’s rank correlation coefficient if the 

output is a ranking of the features, the Tanimoto distance or the Kuncheva index if the output is a 

subset of features. 

 

The behavior of the existing protocols and stability measures has been tested in a number of 

experimental studies [36-40] which focus on high-dimensional datasets such as the ones here 

considered. 

 

Furthermore, a number of selection approaches have been proposed that explicitly incorporate the 

stability requirement in their design, i.e. group feature selection [41], prior feature relevance [42], 

sample injection [21] and ensemble feature selection [11]. In particular, the ensemble approach has 

been suggested as a general-purpose solution for ensuring a good trade-off between stability and 

classification accuracy. 
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2.2 Ensemble feature selection 

 

Similarly to the context of supervised learning [2], where multiple classifiers are combined to 

achieve a better performance, the ensemble selection techniques exploit different selectors under the 

assumption that “two - or more - heads are better than one”. Indeed, as observed in [11], different 

selection methods may give feature subsets that can be considered local optima in the search space 

of candidate subsets, and ensemble selection might give a better approximation to the optimal set of 

features. 

 

Basically, ensemble feature selection involves two main steps: 

(i) creating a set of different selectors (ensemble components); 

(ii) aggregating the results of the different selectors into a single final decision.  

 

Different approaches have been experimented for generating the ensemble components. The so-

called data perturbation strategy [11,12,43] entails applying a single selection method to different 

sampled versions of a given dataset (analogously to bagging or boosting procedures in the field of 

ensemble learning). On the other hand, the function perturbation approach [14,44,45] involves 

applying different selection methods to the same dataset, but hybrid strategies [46,47] are also 

possible where perturbation is injected both at the data level and at the function level (e.g., different 

selection methods are applied to different versions of a dataset).  

 

The aggregation of the results produced by the different selectors, in turn, can be made using 

different strategies. A general framework for combining several feature subsets into a single 

“ensemble subset” is presented in [45], where the focus is on filter methods that do not rely on a 

ranking approach., i.e. do not assign a score to each single feature. When the ensemble components 

exploit a ranking procedure, on the other hand, the combination of the results produced by the 

different selectors is usually modeled as a rank aggregation problem [15] (i.e., the final output is 

given in the form of a consensus ranked list, as discussed in next section). In this context, a number 

of aggregation functions have been experimented [48], but it is not clear which of them may be 

more appropriate for a given task. 

 

Despite an increasing research activity in this field, important concerns still need to be addressed. 

Indeed, a number of ensemble approaches have been discussed in recent literature [49], but only 

few guidelines are available [44,47,50] on how to exploit the potential of ensemble feature selection 

in practical real-world applications (e.g. which ensemble strategy should be used in a specific 

context? which selection methods should be involved?). 

 

On the one hand, combining different selection algorithms (function perturbation approach) can be 

beneficial in terms of predictive performance [45,51-53], but the best choice of the methods to be 

combined is often dataset dependent, and the effectiveness of this approach in terms of selection 

stability is yet to be investigated. 

 

On the other hand, the use of a data perturbation strategy has been proposed as the most effective 

approach to handle selection instability, especially in high dimensional/small sample size domains, 

such as bioinformatics. Indeed, among the most cited studies in this field, [11,12] have shown that 

this strategy can produce more stable results than standard selection techniques. In particular, [12] 

shows that the ensemble approach is strongly beneficial both in terms of stability and predictive 

performance, as compared with a single SVM-based selector. However, as observed in [24], this 
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strategy has been so far experimented for a limited number of selection methods, with no evidence 

of a generalized superiority of the ensemble approach over simple techniques. 

 

Moreover, due to its inherently higher computational cost (tied to the use of a set of re-sampled 

datasets, instead of a single one), the data perturbation approach poses greater implementation 

issues, requiring suitable methodologies to jointly measure both model performance and selection 

stability, as well as a proper tuning of parameters (such as the number of re-sampled datasets, i.e. 

the number of selectors to be included in the ensemble [54]). More details about this kind of 

ensemble strategy, which is the focus of our study, will be provided in next section. 

 

 

3. Methodological approach 

 

The ensemble approach here explored involves using, as ensemble components, a set of ranking-

based selectors (rankers), typically falling in the category of filter or embedded selection methods. 

Extensively applied in high-dimensional domains, rankers produce as output a list (ranked list) 

where the original features appear in descending order of relevance: this list is usually cut at a 

proper threshold point (cut-off) in order to obtain a subset of highly predictive features. In an 

ensemble selection perspective, different ranked lists can be combined into a single ensemble list 

where the rank (i.e., the relevance) of each feature depends on the feature’s rank across all the 

ensemble components. This ensemble list, in turn, generates the final feature subset. Note that, 

according to the data perturbation strategy discussed in section 2, the different ranked lists to be 

combined are here obtained by applying the same selection method to different versions of a given 

dataset: their diversity hence comes from the diversity of the training data. 

 

The aim of our study is to provide more insight on the effectiveness and the implications of such 

ensemble approach, still object of debate in literature [22,23,49,55]. Specifically, we compare some 

popular ranking methods with their ensemble counterparts along different dimensions:  

(i) stability and predictive performance of selected subsets; 

(ii) similarity of selected subsets.  

The comparison is carried out for different values of the cut-off threshold, namely for different 

subset sizes, according to the methodology outlined in sub-sections 3.1 and 3.2. 

 

3.1 Joint evaluation of stability and predictive performance 

 

The predictive performance of a feature subset, i.e. its capacity of discriminating the target class, 

can be measured by inducing a classification model on that subset and using a proper test set to 

evaluate this model in terms of metrics such as accuracy or AUC. This is usually done in a cross-

validation setting, although it can produce overoptimistic results on small sample size domains 

[12,56]. On the other hand, research work on designing suitable protocols for stability evaluation is 

still ongoing [20,21,35], and often stability is not evaluated in conjunction with predictive 

performance but in independent experiments. Due to the increasing need of achieving a good trade-

off between accuracy and robustness [12], we adopt here a methodological approach that involves a 

single unified framework to jointly evaluate these aspects, in the context of both simple and 

ensemble ranking.  
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Simple ranking 

Given the original dataset D (with N features), we exploit a sub-sampling procedure to create a 

number M of reduced datasets Dj (j = 1, 2, …, M), each containing a fraction X of instances 

randomly drawn from D (Fig. 1). A simple ranking method R is then applied to each dataset Dj, in 

order to obtain a ranked list Lj as well as a feature subset FSj containing the n most predictive 

features (i.e. the highest ranked ones). The resulting M subsets are then compared with each other: 

indeed, the more similar they are, the more stable the ranking method R. 

 

In more detail, we use the Kuncheva consistency index [57] to derive a similarity value for each pair 

of subsets: 

Nnn

NnFSFS
FSFSsimilarity

ji

ji 2

2 
),(

−

−
=


                                             (1) 

This value expresses the degree of overlapping between the subsets (i.e., |FSi ∩ FSj|/n), with a 

correction term reflecting the probability that a feature is included in both subsets simply by chance 

(this probability grows as the subset size n approaches the dimensionality N of the original dataset). 

The resulting similarity values are then averaged over all pair-wise comparisons, in order to obtain a 

global evaluation of the degree of stability of the ranking method R. 

 

To incorporate predictive performance evaluation in the above protocol, we also employ each 

dataset Dj (j = 1, 2, …, M) to induce a classification model that leverages only the features in FS j: 

the model performance is estimated on a test set Tj containing the fraction (1-X) of the original 

instances not included in Dj (Fig. 1). By averaging the accuracy/AUC performance of the resulting 

M models, we can evaluate the effectiveness of the ranker R in identifying highly predictive 

features. 

 

Fig. 1. Simple ranking: joint evaluation of stability and predictive performance 

 

Ensemble ranking 

The same analysis, in terms of both stability and accuracy/AUC evaluation, is also conducted on the 

ensemble version of the ranker R. Specifically, as illustrated in Fig. 2, each of the reduced datasets 

Dj (j = 1, 2, …, M) is further sampled (but with replacement) to get a number K of bootstrap 

samples from which to obtain K ranked lists (each produced by R) to be aggregated into an 

ensemble list Lj-ensemble. Each ensemble list, in turn, produces a feature subset FSj-ensemble containing 

the n highest ranked features.  

 

The resulting M subsets are then managed according to the methodological approach previously 

described, i.e.: 

• they are compared on a pair-wise basis (using the Kuncheva index), and their average similarity 

is used as a measure of the ensemble stability; 

• they are employed to build classification models whose average accuracy/AUC is used to 

evaluate the ensemble capacity of identifying highly predictive features. 

 

This approach enables us to evaluate, within a unified framework, if the overall effectiveness of a 

given ranking method improves significantly when it is used in an ensemble fashion.  

 

Fig. 2. Ensemble ranking: joint evaluation of stability and predictive performance 

 



8 

 

3.2 Similarity analysis 

 

To get more insight on the effects of an ensemble selection strategy, we also perform a detailed 

similarity analysis on the feature subsets produced in the simple and in the ensemble setting. In 

more detail: 

 

a) We compare, for a given dataset, the feature subsets produced by a simple ranker R and its 

ensemble version Rensemble (intra-method similarity). This kind of analysis can be extended to 

different ensemble versions, implemented with different aggregation strategies, of the same ranker 

R, so as to evaluate the extent to which the selection outcome is affected by the choice of the 

aggregation function. 

 

b) We measure, for a given dataset, the similarity among the subsets produced by a number of 

different rankers Ri (i = 1, 2, …, B) used in their simple form (inter-method similarity). This 

analysis is then performed on the subsets selected by the same rankers in their ensemble version, 

Ri
ensemble (i = 1, 2, …, B), in order to evaluate the influence of the ensemble approach on the pattern 

of agreement among different ranking methods. 

 

In both intra-method and inter-method studies, we employ the Kuncheva measure [57] as 

consistency index; indeed, it has proved to be a good option also in the context of such a similarity 

analysis [58,59]. 

 

 

4. The case study: datasets, methods and settings 

 

According to the methodological approach presented in previous section, we conducted an 

extensive study involving different datasets (sub-section 4.1) and different ranking methods (sub-

section 4.2). For each ranking method, we implemented three ensemble versions based on different 

strategies for the aggregation of the ensemble components (sub-section 4.3). Some further details on 

the experimental settings adopted in our study are given in sub-section 4.4. 

 

4.1 Genomic benchmarks 

 

Biomarker discovery from high dimensional genomic data is a challenging benchmark to test the 

behavior of ensemble approaches. Within this domain, we considered ten datasets [60-69] deriving 

from DNA micro-array experiments [26]; specifically, five of them represent binary classification 

tasks while the other five are multi-class problems. The considered datasets are reported in Table 1 

along with their main characteristics (number of features, number of instances and number of 

classes). 

 

Table 1. Micro-array datasets used in the experiments. 

 

In terms of feature selection, the task here is to identify the genes most useful in discriminating the 

target class (e.g., normal vs tumor or a type of pathology vs the other ones). Note that all the above 

datasets are characterized by a large number of features (genes) and a small number of samples, 

which makes it difficult to achieve a good trade-off between predictive performance and robustness. 

 

 



9 

 

4.2 Ranking methods 

 

In our experiments, we considered ten ranking methods. Specifically, we used both univariate 

techniques, which evaluate each feature independently from the others, and multivariate techniques, 

which take into account inter-dependencies among features. 

 

As representatives of univariate approaches, we employed: 

• Information Gain (IG), Symmetrical Uncertainty (SU) and Gain Ratio (GR) that rely on the 

information-theoretical concept of entropy [70]. In particular, IG measures the amount by which 

the entropy of the class (i.e., the uncertainty about its prediction) decreases when the value of a 

given feature is known. Both SU and GR refine the IG definition by introducing proper 

normalization factors. 

• Chi Squared (χ2) that leverages the chi-squared statistic [71]. Specifically, for each feature, the 

chi-squared statistic is evaluated with respect to the class: the larger the chi-squared, the more 

important the feature is for the predictive task at hand. 

• OneR (OR) that exploits a simple rule-based classifier. Following the approach proposed in [72], 

a classification rule is induced for each feature; the accuracy of each rule is then estimated, and 

the features are ranked according to the quality of the corresponding rules. 

 

Moreover, as representatives of multivariate approaches, we considered: 

• ReliefF (RF) and ReliefF-W (RFW) that evaluate the level of significance of input features based 

on their ability to distinguish between instances that are near to each other [73]. Specifically, 

given a probe instance, RF compares the value a feature takes in that instance and its nearest 

neighbors (one for each class); this comparison is extended to a suitable number of probe 

instances to obtain a measure of the feature’s discriminative power. In the RFW approach, a 

weighting mechanism is introduced to take account of the neighbors’ distance. 

• SVM-ONE that employs a linear SVM classifier to derive a weight for each feature: this weight 

corresponds to the absolute value of the feature’s coefficient in the hyperplane equation induced 

by SVM [74]. 

• SVM-RFE that, in turn, relies on a linear SVM classifier. Differently from SVM-ONE, it builds 

the final ranking of features by applying a backward elimination strategy [75]: the features with 

the lowest weights are iteratively removed and the overall weighting process is repeated on the 

remaining features. The percentage of features removed at each iteration has a great impact on 

the computational cost of this approach: in our experiments, we set this parameter as 10% (SVM-

RFE10) and 50% (SVM-RFE50). 

 

4.3 Aggregation strategies 

 

In the context of ensemble feature ranking, a suitable aggregation function is needed that assigns an 

overall score to each feature based on the feature’s rank across all the lists (ensemble components) 

to be combined. In our study, we evaluated the following approaches: 

 

• Mean aggregation. For each feature, the rank value is averaged over all the original lists (note 

that the feature’s rank in a given list corresponds to its ranking position: the most relevant feature 

has rank 1, the least relevant rank N). The resulting mean value is then used as the feature’s 

overall score: the smaller this score, the higher the overall importance of the feature.  
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• Median aggregation. Similar to the previous one, this strategy involves finding the median rank 

value across all the original lists. 

• Exponential aggregation. For each feature, a local score is calculated, within each of the original 

lists, as an exponentially decreasing function of the rank, namely:  

exp(-rank/t)                                                                     (2) 

where t is a suitable threshold [23,48]. Then, the feature’s overall score is derived by summing 

up the corresponding local scores: in this case, the higher the overall score, the higher the 

relevance of the feature. 

 

Based on the above strategies, the features can be finally ordered (from the most important to the 

least important) into a single ensemble list. Though more complicated aggregation functions have 

been proposed in recent literature [48], they do not seem to improve the ensemble performance in a 

significant way [76]. 

 

4.4 Experimental settings 

 

In our empirical study, we compared each of the ranking methods previously described (sub-section 

4.2) with its ensemble counterpart. In more detail, for each method, we implemented three ensemble 

versions: ensemble-mean, ensemble-median and ensemble-exponential (sub-section 4.3). 

Specifically, based on preliminary tuning experiments, the threshold t of the exponential 

aggregation function was set as 5% of the original number of features (N).  

 

The other parameters of our methodology were set as follows:  

- number of reduced datasets: M = 50; 

- fraction of original instances included in each reduced dataset: X = 0.90; 

- cut-off value (i.e. subset size): we explored a range of values, from n = 0.3% to n = 5% of the 

original number of features (N); 

- number of bootstrap samples: K = 50. 

 

Note that the ensemble implementation here adopted has a computational cost that depends linearly 

on the number K of bootstrap samples (i.e. on the number of the ensemble components). In setting 

this critical parameter, we relied on the recommendations in recent literature [54] as well as on a 

number of tuning experiments: it turned out that using more than 50 bootstrap samples affects the 

computational cost without improving the ensemble performance in a significant way.  

 

Finally, in evaluating the predictive performance of the selected feature subsets, we tested two 

classification algorithms, i.e. a Support Vector Machine (SVM) classifier [77] and a Random Forest 

classifier [78,79], which have proved to be “best of class” algorithms for the high-dimensional 

benchmarks here considered [80,81]. Specifically, for the SVM classifier we chose a linear kernel, 

while the Random Forest classifier was parametrized using 100 trees and a log2n+1 random 

features, based on common practice in this domain. 

 

The overall analysis was carried out using a software package built on top of the WEKA library 

[82]. 
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5. Experimental results 

 

Though the data perturbation ensemble strategy has been suggested (see section 2) as a primary 

avenue for improving the performance of standard selection algorithms, especially in terms of 

stability, our empirical study clearly shows that the ensemble approach is not always and 

necessarily beneficial in itself, but only in dependence on the “intrinsic” effectiveness of the 

considered method. 

 

In what follows, we give an overview of the most significant experimental results. In particular, a 

summary of AUC/accuracy patterns is presented in sub-section 5.1, while sub-section 5.2 

summarizes the stability patterns and sub-section 5.3 further discusses these patterns in light of the 

findings of the similarity analysis (see sub-section 3.2).  

 

5.1. AUC/accuracy patterns 

 

While primarily conceived to obtain more stable selection results, the ensemble approach here 

investigated can sometimes be beneficial in terms of predictive performance. For example, when 

looking at the Colon tumor dataset (a noisy benchmark [83] whose classes are not linearly separable 

[84]), we have observed a positive impact of the ensemble approach, both in terms of AUC and 

accuracy, but limited to the selection methods that exhibit the worst behavior in the simple form. In 

contrast, methods that show a comparatively better performance in the simple setting do not take 

significant advantage of the ensemble implementation. 

 

Specifically, for both SVM and Random Forest classifiers, Fig. 3 shows the AUC patterns of the 

OR method, representative of the univariate category, as well as those of the SVM-ONE method, 

representative of the multivariate category. Both of them exhibit a better behavior in the ensemble 

version, with no significant differences among the three aggregation strategies (i.e., mean, median 

and exponential).  

 

In more detail, but limited to the SVM classifier, Fig. 4(a) shows the AUC patterns of all the 

univariate methods, in their simple (left) and ensemble version (right). Note that, for more clarity 

and readability, only the curves obtained with the mean aggregation function have been reported 

here. Similarly, Fig. 4(b) shows the AUC patterns of all the multivariate methods, in their simple 

(left) and ensemble-mean (right) version. It is clear that the strongest methods, i.e. those achieving 

the best AUC performance in the simple setting, do not take advantage of the ensemble 

implementation. Rather, it seems that the main effect of the ensemble approach is to reduce the 

differences among the original methods, leading the weakest algorithms to reach (in terms of AUC 

performance) the strongest ones. Similar considerations hold for the accuracy patterns, as we can 

see in Fig. 5. 

 

The corresponding AUC/accuracy curves for the Random Forest classifier have been here omitted 

for the sake of space, but the results can be found in tabular form in the attached supplementary 

material. It is interesting to note that, in general, the Random Forest classifier outperforms the SVM 

classifier in terms of AUC, while the SVM performance seems to be slightly better in terms of 

accuracy. This trend can be observed, for example, in Figs. 6 and 7 that compare the SVM and 

Random Forest classifiers when used in conjunction with OR and SVM-ONE selection methods. 

 

The significance of the AUC/accuracy differences shown in Figs. 3-7 has been evaluated using a 

two-tailed paired t-test, as in numerous similar studies. We have found that AUC differences in the 
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order of 0.04 can be considered significant at a confidence level of at least 95%. Higher differences, 

for example those observed in Fig.3 for the SVM-ONE method, have also proved to be significant 

with the corrected resampled test [70], which is a more restrictive version of the standard t-test.  

 

As regards the other benchmarks included in this study (see Table 1), the overall results are 

provided as supplementary material. To summarize, we can remark that the ensemble approach 

does not have a generalized positive impact in terms of predictive performance, but can be 

nonetheless able to strengthen, to some extent, the weakest methods. When viewed along with the 

stability patterns, where the impact of the ensemble approach is quite stronger (see sub-section 5.2), 

these results provide a better understanding of the data diversity ensemble strategy, so far applied to 

a limited number of selection methods [12,23]. 

 

Fig.3. AUC patterns on the Colon dataset, for both SVM (a) and Random Forest (b) classifiers. The 

performance of OR (left) and SVM-ONE (right) methods is evaluated in the simple and in the 

ensemble implementation. For both methods, three ensemble versions are considered, i.e. mean, 

median and exponential. 

Fig. 4. AUC patterns on the Colon dataset using the SVM classifier. Both the univariate (a) and the 

multivariate (b) methods are evaluated in their simple (left) and ensemble-mean (right) version.  

Fig. 5. Accuracy patterns on the Colon dataset using the SVM classifier. Both the univariate (a) 

and the multivariate (b) methods are evaluated in their simple (left) and ensemble-mean (right) 

version.  

Fig. 6. AUC patterns on the Colon dataset. Comparison between SVM and Random Forest 

classifiers using OR (a) and SVM-ONE (b) methods in their simple (left) and ensemble-mean (right) 

version. 

Fig. 7. Accuracy patterns on the Colon dataset. Comparison between SVM and Random Forest 

classifiers using OR (a) and SVM-ONE (b) methods in their simple (left) and ensemble-mean (right) 

version. 

 

5.2. Stability patterns 

 

The stability analysis revealed a very strong impact of the ensemble approach, at least for some 

selection methods. For example, the OR and SVM-RFE50 rankers, respectively in the univariate 

and in the multivariate category, systematically benefit from the ensemble implementation 

irrespective of the considered dataset, as shown in Figs. 8 and 9. Again, the choice of the 

aggregation function does not affect the results in a significant way.  

 

Overall, the adoption of an ensemble strategy is really beneficial only for the methods that are less 

stable in the simple setting, in particular GR and OR in the univariate group and the SVM-based 

rankers (especially SVM-RFE10 and SVM-RFE50) in the multivariate group. Fig. 10 and Fig.11, 

for example, show the stability patterns of all the selection methods, in their simple and ensemble-

mean setting, respectively for the Prostate dataset (a binary problem) and for the MLL dataset (a 

multi-class problem). Analogously to what observed for the AUC/accuracy patterns (Figs. 4 and 5), 

we can see here that the ensemble approach induces a gain in stability that, in some way, is 

“inversely proportional” to the stability of the original method. Indeed, the methods that benefit to a 

greater extent from the ensemble implementation are those that perform worse in the simple setting. 

Conversely, the methods that are more stable in the simple version (i.e. χ2, IG and SU in the 

univariate group; RF and RFW in the multivariate group) benefit to a limited (or null) extent from 

the ensemble approach. 
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Once again, similarly to what observed in Figs. 4 and 5, the differences among the original methods 

are significantly reduced in the ensemble setting, since the weakest algorithms tend to reach the 

strongest ones. Hence, it turns out that injecting diversity into the training data, which is the 

rationale of the ensemble approach here explored, has the effect of producing more uniform 

stability (as well as AUC/accuracy) patterns. Remarkably, even quite dissimilar methods, when 

trained in a sufficiently diversified data space, can produce very similar (sometimes coincident) 

results in terms of overall predictive/stability performance. This is a very interesting, so far 

neglected, implication of the ensemble selection paradigm. 

 

Fig. 8. Stability patterns for the OR method, in its simple and ensemble version. For each dataset, 

three ensemble versions are considered, i.e. mean, median and exponential. 

Fig. 9. Stability patterns for the SVM-RFE50 method, in its simple and ensemble version. For each 

dataset, three ensemble versions are considered, i.e. mean, median and exponential. 

Fig. 10. Stability patterns on the Prostate dataset. Both the univariate (a) and the multivariate (b) 

methods are evaluated in their simple (left) and ensemble-mean (right) version.  

Fig. 11. Stability patterns on the MLL dataset. Both the univariate (a) and the multivariate (b) 

methods are evaluated in their simple (left) and ensemble-mean (right) version.  

 

5.3. Similarity analysis and discussion 

 

The results discussed in both sub-sections 5.1 and 5.2 significantly extend some well-known studies 

[11,12,23] that use a similar methodology but involve a lower number of genomic benchmarks as 

well as a lower number of selection methods. As further contribution, we also performed a detailed 

similarity analysis among the feature subsets produced by the considered ranking methods. 

According to the methodology presented in sub-section 3.2, we conducted this analysis along two 

dimensions: (i) we compared, for each method, the feature subsets obtained in the simple and in the 

ensemble setting (intra-method similarity); (ii) we evaluated the pattern of agreement among the 

different methods (i.e. the extent to which they produce overlapping subsets), both in case of simple 

and ensemble implementation (inter-method similarity). 

 

The findings of the intra-method analysis have been summarized in terms of similarity matrices. As 

an example, Table 2 and Table 3 show some significant results for the DLBCL dataset. Within a 

given matrix, each cell contains the Kuncheva similarity value for a pair of subsets selected by two 

versions of the same ranker. Specifically, for each ranker, we considered three ensemble versions 

(mean, median and exponential) as well as the simple version. Note that the subsets here compared 

contain 1% of the original features, but the same analysis has been performed for feature subsets of 

different sizes. Overall, these results (as well as those obtained on the other benchmarks, here 

omitted for the sake of space), help to best understand the patterns presented in the previous sub-

sections.  

 

Indeed, for both the univariate (Table 2) and the multivariate (Table 3) methods, it turns out that the 

stronger the simple ranker (in terms of predictive performance/stability), the higher its similarity (in 

terms of selected features) with the corresponding ensemble rankers. For example, for both IG and 

RF, which have a relatively good performance in the simple version without benefiting from the 

ensemble approach, the simple and the ensemble subsets are quite similar to each other. In contrast, 

for the weakest methods, whose performance is significantly improved by the ensemble 

implementation, the degree of overlapping between the simple and the ensemble subsets is lower. 
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This is the case of GR and OR (in the univariate group) as well as SVM_RFE10 and SVM_RFE50 

(in the multivariate one). 

 

This kind of similarity analysis quantifies, for each single method, the real impact of the ensemble 

implementation on the final selection outcome (i.e. the selected feature subsets), integrating (and 

partially explaining) the results of the AUC/accuracy and stability analysis. However, the most 

interesting aspect to investigate is what emerged by the comparison of the patterns of the different 

methods (see sub-sections 5.1 and 5.2), in particular the fact that they tend to exhibit a very similar 

behavior (despite their inner algorithmic differences) when used in the ensemble version. 

 

In this regard, it is useful to evaluate the inter-method similarity among the simple rankers as well 

as among the ensemble ones. In case of simple ranking, Table 4 shows an example of similarity 

matrix for the Prostate dataset: each entry represents the Kuncheva consistency value for the pair of 

subsets selected by the rankers in the corresponding row and column (here, we are considering 

subsets containing 1% of the original features). Different shades of gray are used to highlight 

different similarity ranges (the darker is the gray, the higher the similarity). 

 

The corresponding similarity matrix for the ensemble rankers (specifically, the ensemble-mean 

version) is shown in Table 5. Overall, we can see that the degree of overlapping among the 

ensemble subsets is higher than that among the simple subsets: indeed, the average similarity over 

all pairwise comparisons turns out to be 0.53 in Table 5, while in Table 4 it is 0.42. We also derived 

the average similarity trend for feature subsets of increasing size (Fig. 12): it is clear that the 

ensemble approach (red curve) reduces the dissimilarity among the different rankers, though the 

degree of overlapping among the ensemble subsets is still partial.  

 

Despite the specificities of each dataset, the above considerations are also valid for the other 

genomic benchmarks included in our study. Hence, the inter-method similarity analysis has shown 

that different ranking methods become more similar to each other (in terms of selection outcome) 

when used in the ensemble version. However, even in the ensemble setting, important differences 

still remain, especially between univariate and multivariate approaches (and, within the multivariate 

approaches, between RF/RFW and SVM-based methods). On the other hand, despite the above 

differences, the ensemble rankers turn out to be comparable (often equivalent) in terms of predictive 

performance and stability, as discussed in sub-sections 5.1 and 5.2. Thus, we can conclude that they 

are capable of providing different (at least to some extent) but equally good (and hence potentially 

complementary) representations of the underlying domain. This is especially important in the 

biomedical field here considered, where different sets of genomic markers can exist for a given 

pathological condition. 

 

Table 2. DLBCL dataset: intra-method similarity matrices for the univariate methods IG, GR and 

OR. 

Table 3. DLBCL dataset: intra-method similarity matrices for the multivariate methods RF, SVM-

RFE10 and SVM-RFE50. 

Table 4. Prostate dataset: inter-method similarity among the simple rankers. 

Table 5. Prostate dataset: inter-method similarity among the ensemble rankers. 

Fig. 12. Prostate dataset: average inter-method similarity for feature subsets of increasing size. 
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6. Concluding remarks and future research directions 

 

In this work, we explored the effects and the potential benefits of ensemble feature selection in the 

context of biomarker discovery from high-dimensional genomic data. Specifically, using a 

methodological approach that leverages best practices from literature, we extensively evaluated the 

effectiveness of a data perturbation ensemble strategy, which entails enlarging and diversifying the 

original space of training data. 

 

Our main contribution is twofold: 

 

(i) We analyzed, in a joint manner, both the stability and the predictive performance of different 

selection algorithms, in their simple and ensemble implementation, while so far most of the studies 

have focused on only one aspect at a time (especially accuracy). Overall, our results indicate that 

the beneficial impact of the ensemble approach is “inversely proportional” to the strength of method 

itself, i.e. only the least stable/effective methods really take advantage of a computationally 

expensive ensemble setting. This may explain the (apparently) discordant findings in recent 

literature, where different studies seem to achieve different conclusions about the beneficial impact 

of ensemble feature selection [11,12,22,23,55]. Interestingly, the main effect of the ensemble 

strategy here explored, based on injecting diversity into the training data, is to narrow the gap 

between the weakest and the strongest methods, leading to almost uniform patterns in terms of 

accuracy and stability. 

 

(ii) We also explored the extent to which the ensemble implementation affects the selection 

outcome, i.e. the composition of the selected subsets. On the one hand, this analysis confirmed that 

the weak (especially in terms of stability) methods are far more affected by the ensemble approach. 

Furthermore, it turned out that different methods, when used in the ensemble version, tend to 

produce more similar subsets but this does not explain, actually, the fact that their accuracy/stability 

patterns become almost coincident. Indeed, the “ensemble subsets” still overlap only to some 

extent, giving somewhat different but equally good (in terms of overall performance) solutions for 

the problem at hand. This can provide a deeper understanding of complex domains such as the one 

here considered (where different sets of genetic markers can exist for a given pathological state). To 

the best of our knowledge, no study in literature has so far adopted such a similarity-based point of 

view in the analysis of the ensemble methods. 

 

From this starting point, our work can be extended in a number of directions. First, further insight 

could be gained by analyzing datasets from different real-world scenarios. In addition, it would be 

interesting to explore the effects of wider ensemble schemes, such as hybrid approaches that 

combine the data perturbation strategy (here considered) with a suitable function perturbation 

strategy aimed at jointly exploiting the strengths of different selection algorithms. Indeed, our study 

has shown that different selection methods, in their data-perturbed ensemble version, tend to 

achieve a comparable performance although selecting (partially) different solutions: these (equally 

good) solutions, in turn, could be combined in order to achieve a more complete representation of 

the underlying domain. Our future research will be devoted to explore the potential of such enlarged 

ensemble approach.  
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Fig. 1. Simple ranking: joint evaluation of stability and predictive performance 
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Fig. 2. Ensemble ranking: joint evaluation of stability and predictive performance 
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a) SVM classifier

b) Random Forest classifier
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Fig.3. AUC patterns on the Colon dataset, for both SVM (a) and Random Forest (b) classifiers. The 

performance of OR (left) and SVM-ONE (right) methods is evaluated in the simple and in the 

ensemble implementation. For both methods, three ensemble versions are considered, i.e. mean, 

median and exponential. 
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a) Univariate methods

b) Multivariate methods
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Fig. 4. AUC patterns on the Colon dataset using the SVM classifier. Both the univariate (a) and the 

multivariate (b) methods are evaluated in their simple (left) and ensemble-mean (right) version.  
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a) Univariate methods

b) Multivariate methods
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Fig. 5. Accuracy patterns on the Colon dataset using the SVM classifier. Both the univariate (a) 

and the multivariate (b) methods are evaluated in their simple (left) and ensemble-mean (right) 

version.  
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a) OR method

b) SVM-ONE method
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Fig. 6. AUC patterns on the Colon dataset. Comparison between SVM and Random Forest 

classifiers using OR (a) and SVM-ONE (b) methods in their simple (left) and ensemble-mean (right) 

version. 
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a) OR method

b) SVM-ONE method
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Fig. 7. Accuracy patterns on the Colon dataset. Comparison between SVM and Random Forest 

classifiers using OR (a) and SVM-ONE (b) methods in their simple (left) and ensemble-mean (right) 

version. 
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Fig. 8. Stability patterns for the OR method, in its simple and ensemble version. For each dataset, 

three ensemble versions are considered, i.e. mean, median and exponential. 
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Fig. 9. Stability patterns for the SVM-RFE50 method, in its simple and ensemble version. For each 

dataset, three ensemble versions are considered, i.e. mean, median and exponential. 
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b) Multivariate methods
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Fig. 10. Stability patterns on the Prostate dataset. Both the univariate (a) and the multivariate (b) 

methods are evaluated in their simple (left) and ensemble-mean (right) version.  
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a) Univariate methods

b) Multivariate methods
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Fig. 11. Stability patterns on the MLL dataset. Both the univariate (a) and the multivariate (b) 

methods are evaluated in their simple (left) and ensemble-mean (right) version.  
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Fig. 12. Prostate dataset: average inter-method similarity for feature subsets of increasing size. 
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Table 1. Micro-array datasets used in the experiments. 

 

Dataset 
Number of 

features 

Number of 

instances  

Number of 

classes 
Refs 

Colon 2000 62 2 [60] 

DLBCL 7129 77 2 [61] 

Prostate 12600 102 2 [62] 

Leukemia 7129 72 2 [63] 

Breast 24481 97 2 [64] 

Lymphoma 4026 66 3 [65, 66] 

MLL 12582 72 3 [67] 

SRBCT 2308 83 4 [68] 

Leukemia_4c 7129 72 4 [63, 66] 

Lung 12600 203 5 [69] 
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Table 2. DLBCL dataset: intra-method similarity matrices for the univariate methods IG, GR and OR. 

 

 IG-mean IG-median IG-exponential IG-simple 

IG-mean - 0.92 0.94 0.82 

IG-median 0.92 - 0.96 0.82 

IG-exponential 0.94 0.96 - 0.82 

IG-simple 0.82 0.82 0.82 - 

 

 GR-mean GR-median GR-exponential GR-simple 

GR-mean - 0.79 0.83 0.47 

GR-median 0.79 - 0.90 0.61 

GR-exponential 0.83 0.90 - 0.55 

GR-simple 0.47 0.61 0.55 - 

 

 OR-mean OR-median OR-exponential OR-simple 

OR-mean - 0.82 0.86 0.49 

OR-median 0.82 - 0.89 0.52 

OR-exponential 0.86 0.89 - 0.49 

OR-simple 0.49 0.52 0.49 - 
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Table 3. DLBCL dataset: intra-method similarity matrices for the multivariate methods RF, SVM-RFE10 

and SVM-RFE50. 

 

 RF-mean RF-median RF-exponential RF-simple 

RF-mean - 0.87 0.93 0.89 

RF-median 0.87 - 0.93 0.94 

RF-exponential 0.93 0.93 - 0.93 

RF-simple 0.89 0.94 0.93 - 

 

 

SVM-RFE10 

-mean 

SVM-RFE10 

-median 

SVM-RFE10  

-exponential 

SVM-RFE10 

-simple 

SVM-RFE10-mean - 0.85 0.89 0.55 

SVM-RFE10-median 0.85 - 0.93 0.64 

SVM-RFE10-exponential 0.89 0.93 - 0.62 

SVM-RFE10-simple 0.55 0.64 0.62 - 

 

 

SVM-RFE50 

-mean 

SVM-RFE50 

-median 

SVM-RFE50  

-exponential 

SVM-RFE50 

-simple 

SVM-RFE50-mean - 0.82 0.89 0.54 

SVM-RFE50-median 0.82 - 0.93 0.57 

SVM-RFE50-exponential 0.89 0.93 - 0.54 

SVM-RFE50-simple 0.54 0.57 0.54 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

Table 4. Prostate dataset: inter-method similarity among the simple rankers. 
 

 χ2 IG SU GR OR RF RFW 
SVM-

RFE10 

SVM-

RFE50 

SVM-

ONE 

χ2 - 0.92 0.81 0.58 0.70 0.53 0.45 0.14 0.18 0.20 

IG 0.92 - 0.85 0.63 0.66 0.53 0.44 0.15 0.19 0.20 

SU 0.81 0.85 - 0.74 0.62 0.53 0.44 0.17 0.20 0.21 

GR 0.58 0.63 0.74 - 0.50 0.45 0.36 0.19 0.22 0.24 

OR 0.70 0.66 0.62 0.50 - 0.45 0.38 0.16 0.21 0.18 

RF 0.53 0.53 0.53 0.45 0.45 - 0.76 0.25 0.31 0.34 

RFW 0.45 0.44 0.44 0.36 0.38 0.76 - 0.27 0.31 0.37 

SVM-

RFE10 
0.14 0.15 0.17 0.19 0.16 0.25 0.27 - 0.74 0.62 

SVM-

RFE50 
0.18 0.19 0.20 0.22 0.21 0.31 0.31 0.74 - 0.62 

SVM-

ONE 
0.20 0.20 0.21 0.24 0.18 0.34 0.37 0.62 0.62 - 
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Table 5. Prostate dataset: inter-method similarity among the ensemble rankers. 
 

 χ2 IG SU GR OR RF RFW 
SVM-

RFE10 

SVM-

RFE50 

SVM-

ONE 

χ2 - 0.91 0.86 0.78 0.83 0.52 0.37 0.31 0.30 0.32 

IG 0.91 - 0.92 0.83 0.79 0.52 0.37 0.32 0.31 0.32 

SU 0.86 0.92 - 0.90 0.78 0.49 0.35 0.32 0.31 0.32 

GR 0.78 0.83 0.90 - 0.73 0.49 0.35 0.32 0.31 0.33 

OR 0.83 0.79 0.78 0.73 - 0.51 0.37 0.30 0.29 0.30 

RF 0.52 0.52 0.49 0.49 0.51 - 0.72 0.43 0.42 0.45 

RFW 0.37 0.37 0.35 0.35 0.37 0.72 - 0.49 0.50 0.54 

SVM-

RFE10 
0.31 0.32 0.32 0.32 0.30 0.43 0.49 - 0.98 0.89 

SVM-

RFE50 
0.30 0.31 0.31 0.31 0.29 0.42 0.50 0.98 - 0.89 

SVM-

ONE 
0.32 0.32 0.32 0.33 0.30 0.45 0.54 0.89 0.89 - 

 

 

 

 

 


