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Abstract

Facial image analysis has found its application in various fields including se-
curity, entertainment, multimedia indexing, human-computer interaction, etc.
Essentially, as an early step in facial image analysis, face alignment has a crucial
impact on the robustness and quality of the later processes. Face alignment has
been studied for several decades, yet it is still a difficult problem, which suf-
fers from the confounding factors of intrinsic and extrinsic imaging conditions.
Due to these challenges, it is still an interesting research problem and receives
increasing attention. In particular, deformable model based face alignment has
become very popular, since the invention of the Active Shape Model (ASM) and
the Active Appearance Model (AAM). Numerous successful application systems
have been developed based on deformable models. However, it has been shown
in many works that the AAM suffers from generalization problems due to gen-
erative appearance modeling and least square minimization. In this thesis, we
address on solving two main problems in deformable model-based face align-
ment, i.e., appearance variations due to illumination, occlusion, image quality
etc.; and generalization ability due to appearance modeling and definition of an
alignment objective function. We aim at developing a face alignment algorithm
framework that is reliable enough for real-world applications.

In the proposed face alignment algorithm, local gradient-based features are used
as our appearance representation. The gradient features are obtained by pixel
value comparison, which provide robustness against changes in illumination.
Due to the locality, the local gradient features are less sensitive to appearance
variations in local regions caused by partial face occlusion or facial expression.
The features used in this thesis include Pseudo Census Transform (PCT) for
deriving analytical alignment algorithms, Modified Census Transform (MCT)
and RAndom Pixel Intensity Difference (RAPID) for direct search based align-
ment algorithms. More importantly, the adopted features are modeled in three
discriminative methods, namely, classification, ranking, and regression, which
correspond to different alignment cost functions. The alignment cost functions
indicate (relative) correctness of alignments. Aligning a face image is equiva-
lent to optimizing the cost function with respect to alignment parameters. The
discriminative appearance modeling and the cost function learning alleviate the
generalization problem to some extent.

We evaluate the alignment performance of the proposed discriminative appear-
ance models at different levels on four publicly available face databases, namely,
on the FERET, FRGC, IMM, and LFW face databases. Extensive experiments
are carried out to analyze the effects of the model parameters on the align-
ment performance. Experimental results show that the proposed discriminative



appearance models achieve higher alignment convergence rates than the gener-
ative AAM, especially on unseen data. This provides evidence of superiority in
generalization ability of the proposed models. Other observations from the ex-
periments are that the discriminative appearance models based on ranking and
regression are superior to the classification based models due to the increased
smoothness in the score function. The regression-based appearance model with
the RAPID feature achieves the best performance in this study. In addition, we
show in the experiments that it outperforms two state-of-the-art discriminative
face alignment models.

To evaluate the performance of the proposed alignment algorithms under diffi-
cult conditions, we systematically analyze the alignment robustness under dif-
ferent levels of image noise, synthetic occlusion, and illumination. Experiments
show that the RAPID-based appearance model is the most reliable one against
image noise and occlusion. However, it is interesting to observe that this repre-
sentation has a generalization problem under extreme illumination conditions.
While the binarized local structural feature, namely, the MCT, is less sensitive to
such variations. We end this thesis with an application of the proposed align-
ment algorithm in cross-pose face recognition. The experiments demonstrate
improved recognition performance compared with the AAM-based alignment.
In addition, we propose a view-based pose normalization method, which solves
the pose mismatch problem in regression-based cross-pose recognition.



Zusammenfassung

Die Analyse von Gesichtsaufnahmen ist ein bedeutendes Forschungsgebiet im
Bereich digitaler Bild-und Mustererkennung. Dies ist im zunehmenden Be-
darf einer Reihe von Anwendungsfeldern wie Sicherheit, Mensch-Maschine-In-
teraktion oder Multimedia-Indexierung begründet. Gesichtsausrichtung (d.h.
Registrierung von Gesichtsaufnahmen) ist ein grundlegender aber essentieller
Baustein im Rahmen der Gesichtsanalyse und hat große Auswirkungen auf die
Robustheit und Qualität der darauf aufbauenden Folgeprozesse. Das Ziel der
Gesichtsausrichtung ist es, hervorstechende Merkmale wie Augenwinkel oder
Nasenspitzen in Gesichtsaufnahmen zu lokalisieren. Diese lokalisierten Merk-
male können verwendet werden, um weitere aussagekräftige örtliche Merkmale
in der unmittelbaren Umgebung zu extrahieren oder um Gesichtsaufnahmen zu
Vergleichszwecken in ein standardisiertes Koordinatensystem zu übertragen.

Mit der Erfindung von Active shape model (ASM) [CT92] und Active appear-
ance model (AAM) [CET98a] begann die Ära der Gesichtsausrichtung mittels
statistisch verformbarer Modelle. Diese Modelle interpretieren Gesichtsaufnah-
men mittels je eines Form- und eines Texturmodells, welche jeweils ein gewisses
Maß an Verformbarkeit zulassen. Die durch Modellanpassung gewonnenen Infor-
mationen über die geometrischen Formen können in verschiedenen Anwendun-
gen genutzt werden, so z.B. Gesichtsausdruckerkennug [LCK+10] oder Mensch-
Computer-Interaktion [AZC+08]. Durch Bewegungen der Gesichtmuskeln zur
Erzeugung von Gesichtsausdrücken, wie z.B. einem Lächeln, bieten relative Ver-
formungen einer Gesichtspartie eindeutige, charakteristische Hinweise, aus de-
nen sich Schlussfolgerungen über die Art des Gesichtsausdrucks ableiten lassen.
Strukturen um Augen und Nase herum können zusätzliche Informationen (z.B.
über Hautfalten) liefern, was die Leistung einer Ausdruckerkennung weiter ver-
bessert. Die somit gewonnene Gesichtsform kann auch zur Bestimmung der drei-
dimensionalen Kopfdrehungen aus dem 2D-Bild mittels des POSIT-Algorith-
mus [DD95] verwendet werden, wobei ein generisches 3D-Gesichtsmodell für
iterative Berechnungen der Parameter von Kopfdrehungen benötigt wird. Die
Information von Kopforientierung in Kombination mit bestimmten Gesichts-
bewegungen kann als effektive Interaktionsschnittstelle zur Handhabung von
Viewport und Figuren in Computerspielen dienen.

Registrierung von Gesichtsaufnahmen gilt als besonders heikler Aspekt in der
Gesichtserkennung [ES09]. Frühe Untersuchungen bauen auf eine lineare Trans-
formation, indem sie von den Koordinaten der Augenmitte ausgehen um sicher-
zustellen, dass die Augen innerhalb des ausgerichteten Rahmens an den stan-
dardisierten Stellen positioniert werden. Diese Registrierungsmethode wird



üblicherweise in der frontalen oder der ansichtsbasierten Gesichtserkennung ver-
wendet. Für Cross-Pose-Gesichtserkennung konnte Gao et al. [GES09] jedoch
zeigen, dass Registrierung, die auf linearer Transformation basiert, nur dürftige
Ergebnisse erzielt. Vorgeschlagen wird daher eine nichtlineare, verzerrungs-
basierte Registrierung um die Kopfdrehung standardkonform zu normalisieren,
wobei die Verzerrung anhand der mittels AAM-Anpassung lokalisierten Ge-
sichtsmerkmale definiert wird. Die Cross-Pose-Gesichtserkennungsrate wird durch
Nutzung dieser Normalisierung von Kopfdrehungen signifikant erhöht.

Trotz des breiten Anwendungsfeldes stellt die Gesichterkennung nach wie vor
eine grosse Herausforderung dar. Zusätzlich zu den üblichen Aspekten im Bere-
ich Computer-Vision wie Lichtbedingungen, Verdeckung oder Bildqualität kom-
men erschwerende Schlüsselfaktoren wie Ausdrucksverformung und geometrische
Strukturen verschiedener Individuen hinzu. Aus dem Internet gesammelte Bei-
spielbilder in Abbildung 1.1 demonstrieren die Bandbreite möglicher Erschein-
ungsformen tatsächlicher Gesichtsaufnahmen.

Um eine ausreichenden Anzahl an Variationen tatsächlich vorkommender Gesicht-
saufnahmen bewältigen zu können, bedürfen generative Erscheinungsmodelle
zunächst einer ausreichenden Menge an Trainingsdaten um die Bandbreite mög-
licher Variationen abdecken zu können. Dies führt wiederum zu einer übergrossen
Anzahl von Variationsmodi, was sich in einem Modell mit einer enormen Menge
an Parametern widerspiegelt. Innerhalb eines grossen Parameterraumes nach
optimalen Parametern zu suchen ist keineswegs trivial, da es rechnerisch inef-
fizient und anfällig für lokale Optima ist. Des Weiteren kann nicht garantiert
werden, dass wenn das Ziel der Modellanpassung im Sinne kleinster Quadrate
definiert ist, das globale Optimum der Zielfunktion genau mit den tatsächlichen
Formparametern übereinstimmt. Andererseits sind die durch Poseveränder-
ungen und lokale Verformungen verursachten Variationen des Erscheinungs-
bildes nichtlinear, weshalb die Modellierung der Variationen mit einem linearen
Modell nicht ausreicht. Es kommt häufig vor, dass das Modell nicht in der
Lage ist, bestimmte fotometrische Signale zu erklären, was einen hohen Rekon-
struktionsrückstand verursacht. In [RPG00] werden Lösungen mittels nicht-
linearer generativer Modelle vorgeschlagen, deren Komplexität allerdings sig-
nifikant erhöht ist, was wiederum die Effizienz der Modellanpassung zunichte
macht.

Die Untersuchung in dieser Arbeit versucht robuste und effektive Modellreprä-
sentationen zu entwickeln, welche die Nichtlinearität möglicher Variationen im
Erscheinungsbild abdeckt. Die diskriminative Modellierung von Gesichtsabbil-
dungen ist generativen Modellen aufgrund folgender Faktoren überlegen: (a)
Anders als bei der Anpassung mittels Synthesestrategie beim AAM, wo hochdi-
mensionale Erscheinungsparameter auf optimale Synthese durchsucht werden,
schliesst das diskriminative Erscheinungsmodell nicht Parameterwiederherstel-
lung von Texturen zum Zwecke der Texturinstanzgenerierung ein. Stattdessen



wird das gelernte Erscheinungsmodell als Kostenfunktion zum Ausrichten von
Gesichtsaufnahmen angesehen, in welcher lediglich die niedrigdimensionalen
Formparameter durchsucht werden. Daraus resultiert eine effiziente Modellan-
passung. (b) Die Nichtlinearität der Erscheinungsvariationen kann in diskrimi-
nativen Modellen in den Kostenfunktionen modelliert werden. Obwohl dies den
Berechnungsaufwand erhöhen kann, bleibt die Modellkomplexität gleich. (c)
Das Hauptproblem im Zusammenhang mit diskriminativer Erscheinungsmodel-
lierung ist, eine Kostenfunktion für die Bewertung der Ausrichtung zu erlernen.
Im Idealfall stellt der Lernprozess sicher, dass das globale Optimum sich an der
gewünschten Stelle befindet, also bei den tatsächlichen Formparametern. Diese
Bewertungsfunktion wird erlernt durch Minimierung einer geeigneten Verlust-
funktion, die über die Trainingsdaten definiert wurde. Optional kann die Bew-
ertungsfunktion auch beschränkt werden, um Konvexität zu erzwingen, was zu
einer glätteren Ergebniskarte mit einer geringeren Anzahl von lokalen Extrema
führt. Ein lokaler optimiererbasierter Modellanpassungsalgorithmus kann let-
ztendlich von diesen vorteilhaften Eigenschaften der erlernten Kostenfunktion
profitieren. (d) Grundsätzlich haben diskriminative Modelle eine bessere Gener-
alisierungsfähigkeit bei ungesichteten Daten als generative Modelle, da sie sich
nicht auf Vermutungen der Datenverteilung stützen, welche bei ungesichteten
Daten naturgemäss nicht vorherzusagen ist.

Es folgt eine kurze Erklärung der vorgeschlagenen diskriminativen Erschein-
ungsmodelle für robuste Gesichtsausrichtung.

Die Verwendung lokaler gradientenbasierter Merkmale für robuste Erschein-
ungsmodellierung wird vorgeschlagen. Diese Merkmale vergleichen Pixelwerte
sowohl in der Umgebung als auch weiter entfernt. Im Falle des Vergleichs
mit der unmittelbaren Umgebung werden lokale Strukturinformationen erfasst.
Diese stellen die Existenz von Merkmalen wie Ecken, Rändern oder Struk-
turen dar, welche wiederum bestimmte Gesichtregionen repräsentieren können,
so z.B. Talstrukturen für Pupillen oder Nasenlöcher. Um analytische Algo-
rithmen zur Modellanpassung abzuleiten, wird eine nichtbinarisierte Census-
Transformation für die Extrahierung derartiger lokaler Strukturinformationen
vorgeschlagen. Ein Merkmalsvektor für eine Pixelposition wird extrahiert, in-
dem man von dessen Intensitätswert den Durchschnittswert der Umgebung sub-
trahiert. Der Vergleich lokaler Intensität gewährleistet eine beleuchtungsinvari-
ante Repräsentation von Merkmalen, da die lokale Texturstruktur unter ver-
schiedensten Lichtbedingungen bei lokaler mittelwertfreier Normalisierung er-
halten bleibt. Zur Unterscheidbarkeit von der herkömmlichen Census-Transfor-
mation wird der Begriff Pseudo-Census-Transformation gewählt.

Aus Effizienzgründen wird ausserdem das Binärmustermerkmal Modified Cen-
sus Transform (MCT) verwendet. Ein analytischer Anpassungsalgorithmus für
MCT-basierte Erscheinungsmodelle ist nicht ableitbar. MCT, auch als beleuch-



tungsinvariantes Merkmal bekannt, ist allerdings weniger informativ aufgrund
des binarisierungsbedingten Informationsverlustes.

Das lokale Strukturmerkmal ist effizient; es mangelt ihr aber an semantischer
Bedeutung um die Qualität der Ausrichtung zu bewerten. Das Merkmal berech-
net die Pixelintensitätsunterschiede aus der Entfernung und wählt sinnvolle
Merkmale aufgrund der Korrelation aus. Die semantische Bedeutung der aus-
gewählten Merkmale kann interpretiert werden als “der Intensitätsunterschied
zwischen den Augenmitten ist niedrig” oder “die Pixelintensität der Augen-
braue ist niedriger als die der Wange”. Um die Auswirkungen von Bildrauschen
zu reduzieren, kommt ein Quantisierungsprozess für das Merkmal der Inten-
sitätsunterschiede zur Anwendung.

Verschiedene Maschinenlerntechniken für das Erlernen diskriminativer Erschei-
nungsmodelle wurden untersucht. Diese sind Klassifizierungsmodell, Ranking-
modell, und Regressionsmodell.

Das klassifizierungsbasierte Modell betrachtet Gesichtsausrichtung als binäres
Klassifikationsproblem. Es unterscheidet zwischen korrekten und falschen Aus-
richtungen. Während des Trainings korrespondieren korrekte Ausrichtungen
mit definierten Formen und falsche Ausrichtungen werden erzeugt, indem die
Ground-Truth-Formen zufällig durcheinander gebracht werden. Das Erschein-
ungsmodell wird mit Hilfe der aus einer formfreien Textur extrahierten Merk-
male trainiert und das Modell-Training verwendet ein Boosting-Framework, bei
dem ein Bestand von charakteristischen Merkmalen als schwache Klassifikatoren
ausgewählt wird. Die Bewertungsfunktion der kombinierten, starken Klassifika-
toren wird als Kostenfunktion für die Gesichtsausrichtung genutzt, wobei eine
Methode zur Optimierung des Verlaufsanstiegs zum Maximieren der Zielfunk-
tion verwendet wird.

Das klassifizierungsbasierte Modelllernen leidet unter dem Problem unausgewo-
gener Trainingsdaten. Da negative Proben ausserdem in der Klassifizierungsver-
lustfunktion nicht unterschieden werden, ist die erlernte Kostenfunktion unter
Umständen nicht glatt genug, wenn die Ausrichtung zu sehr von der tatsächlichen
Form abweicht. Dies macht die Verwendung des Anpassungsalgorithmus sch-
wieriger, wenn die Anpassung zum globalen Optimum geführt werden soll. In
diesem Sinne wird anstatt des Feststellens der Korrektheit der Ausrichtung ein
rankingbasiertes Modell gebaut, welches die Halbordnung der Ausrichtung fest-
stellt. Das erlernte Erscheinungsmodell trifft eine Vorhersage über bevorzugte
Ausrichtungspaare. Da das Training auf Paarausrichtungsdaten basiert und
falsche Ausrichtungen auch durch erhöhte Perturbation der Formen in die selbe
Richtung gepaart werden können, wird das Problem der unausgewogenen Daten
gelöst und die erlernte Funktion wird aufgrund der zusätzlichen Beschränkungen
glätter.



Das Regressionsmodell ist eine direkte Methode um sich der gewünschten Kosten-
funktion für die Ausrichtung zu nähern. Insbesondere wird vorgeschlagen, ein
Ensemble von Regressionsbäumen zu verwenden, wobei jeder Baum trainiert
wird, den Regressionsverlust zu reduzieren. Diese Methode ist als Gradienten-
verstärkende Regressionsbäume (Gradient Boosting Regression Trees) bekannt
und wird im Allgemeinen zur Annäherung von Ranking-Funktionen verwendet.
Um die Abschätzungsvarianz des Regressionsmodells weiter zu reduzieren, wird
Random Forests eingesetzt um das gradientenverstärkende Lernen zu initial-
isieren. Wegen der Baumstruktur im Modell ist die korrespondierende Kosten-
funktion nicht ableitbar. Für die Modellanpassung wird eine effiziente, direkte
Suchmethode verwendet.

Im Folgenden werden die Beiträge dieser Arbeit aufgezählt:

Vorgeschlagen werden Merkmalsrepräsentationen zum Bau von Erscheinungsmod-
ellen, die robust in Bezug auf Beleuchtungsänderungen sind. Ausserdem sind,
bedingt durch die Lokalität der vorgeschlagenen Merkmale, die gelernten Mod-
elle in der Lage, bis zu einem gewissen Grad mit Bildrauschen und partieller
Verdeckung umzugehen. Der Rechenaufwand zur Extraktion der vorgeschlage-
nen Merkmale ist darüber hinaus gering, was den effizienten Ausrichtungsalgo-
rithmus für Echtzeitsysteme geeignet macht. Umfangreiche Experimente mit
verschiedenen Datenbeständen zeigen, dass die vorgeschlagenen Merkmalsre-
präsentation robuster in Bezug auf die Ausrichtung ist, als bei lokalen, regions-
basierten Merkmalen wie z.B. Haar-Wavelets. Das PCT-Merkmal verbessert
die Fähigkeit zur Generalisierung ungesichteter Testdaten um ca. 13%. Eine
weitere vorteilhafte Eigenschaft des PCT-Merkmals ist der niedrige Konfigu-
rationsraum, der eine schnelle Trainingsprozedur verglichen mit einem Modell-
training mittels Haar-Merkmalen ermöglicht.

Es wurden intensive Untersuchungen über den Aufbau diskriminativer Erschei-
nungsmodelle für Gesichtsausrichtung aus drei verschiedenen Blickwinkeln von
Maschinen-Lernproblemen durchgeführt. Das erste Modell betrachtet Ausrich-
tung als Klassifizierung, wobei korrekte Ausrichtungen als Positiv- und falsche
Ausrichtungen als Negativproben gewertet werden. Das zweite Modell erlernt
die partielle Anordnung von Ausrichtungen, basierend auf einem Lernproblem
von Ranking während das dritte Modell die beschränkte Anordnung von Aus-
richtungen, basierend auf Regression, erlernt. Die Optimierung der erlernten Be-
wertungsfunktionen basiert auf einem Gradientenverfahren oder direkten Such-
methoden. Experimentelle Ergebnisse zeigen, dass die Ausrichtungsleistung
von diskriminativen Erscheinungsmodellen gegenüber dem generativen Erschei-
nungsmodell signifikant erhöht ist. Die Erscheinungsmodelle, die auf Ranking
und Regression basieren, sind den klassifikationsbasierten Modellen wegen ihrer
gesteigerten Glätte in den Bewertungsfunktionen überlegen. Des Weiteren er-
reicht das regressionsbasierte Erscheinungsmodell, das mit einem Ensemble von
Regressionsbäumen arbeitet, die beste Leistung in dieser Untersuchung.



Um die Eigenschaften des vorgeschlagenen diskriminativen Erscheinungsmod-
ells weiter zu analysieren, wurde die Ausrichtungsrobustheit unter verschiede-
nen Bildbedingungen wie Bildrauschen, teilweise Verdeckung und Beleuchtung
evaluiert. Durch diese Experimente stellte sich heraus, dass die vorgeschlagene
Merkmals- und Erscheinungsmodellierung robust in Bezug auf diese Störfaktoren
ist. Insbesondere hat die Anpassung mittels regressionsbasierter Erscheinungs-
modelle auch dann noch eine respektable Konvergenzrate, wenn die Bilder teil-
weise verdeckt oder von Bildrauschen betroffen sind. Weiterhin stellte sich her-
aus, dass das RAPID-Merkmal, obwohl es die besten Ergebnisse im Benchmark-
Datenbestand mit mässigen Beleuchtungsunterschieden erzielte, weniger robust
war als das MCT-Merkmal, wenn mit extremen Lichtverhältnissen, wie in der
erweiterten YaleB-Datenbank [LHK05a] präsentiert, getestet wurde.

Als Anwendung für die vorgeschlagenen diskriminativen Erscheinungsmodelle
wird die Ausrichtung für Normalisierung von Kopfdrehungen in der Cross-Pose-
Gesichtserkennung verwendet. Die experimentellen Ergebnisse zeigen, dass die
verbesserten Ausrichtungsergebnisse die Erkennungsleistung verbessern. Darüber
hinaus wird die Cross-Pose-Gesichtserkennung durch Verwendung Partial Least
Squares (PLS) zum Erlernen eines latenten Raums erweitert, der die Kor-
relation zwischen verschiedenen Ansichten maximiert. Eine ansichtsbasierte
Strategie der Normalisierung von Kopfdrehungen wird vorgeschlagen, was die
Schwäche der Arbeit von [FES12] abmildert, bei der eine separate und präzise
Poseschätzung erforderlich ist. Dadurch erhält das PLS-basierte Framework
eine nutzbare Lösung in realen Anwendungen.
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1 Introduction

Analyzing facial images is an important task in the research domains of com-
puter vision and pattern recognition for its increasing demand in application
fields such as security, entertainment, human-machine interaction, and multi-
media indexing. Face alignment (a.k.a. facial image registration) is an early
yet essential building block in facial image analysis, which has a crucial im-
pact on the robustness and quality of the later processes. The objective of face
alignment is to localize a set of salient feature points, such as eye corners and
nose tips, in facial images. The localized feature points can be either used for
extracting meaningful local features around or transferring facial images to a
canonical coordinate system for comparison purposes.

The invention of the ASM [CT92] and the AAM [CET98a] starts the era of
aligning face images using statistical deformable models. The models interpret
face images with a shape model and a texture model, which both allow certain
deformation. The geometric shape information obtained after model fitting
can be employed in many applications such as expression recognition [LCK+10]
or human-computer interaction (HCI) [AZC+08]. As facial muscles deform,
when posing facial expressions, such as smiling, relative deformations of face
shape provide straightforward but distinctive hints for inferring the existence
and type of the facial expression. Texture features around eyes or nose can also
provide additional information, such as skin wrinkles, which further improve
the performance of an expression recognition system. The recovered face shape
can also be used for estimating the 3D head pose orientation from 2D images
with the POSIT algorithm [DD95], where a generic 3D face model is needed for
iterative calculation of the pose parameters. Pose information combined with
specific facial actions can be an effective interaction interface for manipulating
viewport and characters in computer games.

Face image registration is known for its cruciality in face recognition [ES09].
Early studies rely on a linear transform using the coordinates of eye centers,
which ensures that the eyes are positioned at the canonical locations in the
aligned frame. This registration method is commonly used in the frontal or
view-based face recognition. However, for cross-pose face recognition, Gao et
al. [GES09] have shown that a linear transform based registration achieves poor
recognition results. A nonlinear warping-based registration is proposed for nor-
malizing the face pose into a canonical one, where the warping is defined by
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(a) (b) (c) (d)

Figure 1.1: Sample facial images of different variations, images are selected from

the Labeled Face Parts in the Wild (LFPW) database [BJKK11]. (a)

Facial occlusion due to sunglasses or hair; (b) Pose (self-occlusion);

(c) Facial expression; (d) Low quality, noisy image.

the localized feature points using AAM fitting. The cross-pose face recognition
rates are significantly improved using this pose normalization.

1.1 Motivation

Despite the broad applications, face alignment is still a very challenging task. In
addition to common factors in computer vision such as lighting conditions, oc-
clusion, and image quality, the expression deformation and geometric structures
of different identities are also key factors that make the task difficult. Sample
images collected from the internet are shown in Figure 1.1, which demonstrate
the possible appearance variations in the real-world facial images.

To be able to cope with enough appearance variations that are presented in
real-world facial images, generative appearance models, e.g. AAM, require suffi-
cient training data for covering the distribution of appearance variations. This
results in too many variation modes, which corresponds to a model with a large
number of parameters. Searching for the optimal parameters in a large param-
eter space is not a trivial task, which is computationally inefficient and prone
to local optima. In addition, as the objective for model fitting is defined in a
least-squares sense, the global optimum of the objective function is not guaran-
teed to be located exactly at the true shape parameters. On the other hand,
the appearance variations caused by pose changes and local deformations are
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nonlinear, therefore, modeling the variations with a linear model is not suffi-
cient. It is often the case that the model cannot explain certain photometric
signals and results in a high reconstruction residue. Solutions using nonlinear
generative models are proposed in [RPG00], yet the complexity of the model is
significantly increased, thus the efficiency of the model fitting is sacrificed.

The study in this thesis aims at developing robust and effective model repre-
sentations for covering the non-linearity of the possible appearance variations.
A discriminative appearance modeling is proposed and intensively studied in
this thesis. The discriminative modeling of facial appearance is superior to
generative models due to following factors:

• Unlike the fitting by the synthesis strategy in the AAM, where the high di-
mensional appearance parameters are searched for optimal synthesis, the
discriminative appearance model does not involve parameter recovering
of the texture for generating texture instances. Instead, the learned ap-
pearance model is considered as a cost function for aligning face images,
in which only the low dimensional shape parameters are searched. This
results in an efficient model fitting.

• The non-linearity in appearance variations can be modeled in the cost
functions, in the discriminative models. Although this may increase the
computational cost, the model complexity remains the same.

• The key issue in the discriminative appearance modeling is to learn a cost
function for scoring the alignments. Ideally, the learning process ensures
that the global optimum should be located at the desired place, i.e., the
true shape parameters. This scoring function is learned by minimizing a
proper loss function defined over the training data. Optionally, the scoring
function can be constrained to enforce convexity, leading to a smoother
response map with few local extrema. A local optimizer-based model
fitting algorithm can eventually benefit from those favorable properties of
the learned cost function.

• In general, discriminative models have better generalization ability on un-
seen data than generative models as they do not rely on any assumptions
about the data distribution, which is unpredictable on unseen data.

The feature used for appearance modeling also plays an important role. Using
raw pixels for texture modeling is suboptimal, as it has difficulties in handling
nonlinear illumination effects and occlusion. We propose to use local gradient
features for the appearance modeling as those feature representations are less
sensitive to illumination changes, and have been applied in many other systems
for tackling the illumination problem. The locality property of the features also
enables them in handling local occlusions to some extent. In addition, as the
local gradient features are simple to compute, the computational cost is low.
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Benchmarking the algorithms developed for face alignment is important for
understanding the abilities of handling specific aspects of the problem. It is
also interesting to measure how a model and its corresponding fitting algorithm
generalize on unseen data. Unfortunately, there is no common benchmark data
set so far, which contains sufficient variations for evaluating both robustness
and generalization ability of alignment algorithms. Collecting data sets for this
purpose is an expensive task as labeling facial landmarks on face images is a
tedious and time-consuming work. There are some databases available so far,
such as the IMM database [SEL03] and the XM2VTS [MMK+99] database,
which are annotated with 58 and 68 landmarks, respectively. However, the
number of subjects in the IMM database is rather limited, while the variation
in the XM2VTS database is not sufficient.

To this end, we provide a common data set and proper metrics for evaluating
different face alignment systems in this thesis. We focus on aligning faces in
2D still images, which are captured with monocular cameras. A data set with
the images selected from four different public face databases is proposed. The
collection includes different variations in pose, illumination, expression, occlu-
sion, etc. These variations enable us to analyze generalization capabilities of
the proposed approach on different levels of variation.

1.2 Approach

We briefly explain the proposed discriminative appearance models for robust
face alignment in the following subsections.

1.2.1 Robust Feature Representation

We propose to use local gradient-based features for robust appearance modeling.
The features compare pixel values either in a neighbourhood or at a distance.
In case of comparing in a local neighbourhood, local structural information is
captured. The local structural information presents the existence of features
like corner, edge, or structures, which may distinctively depict certain facial
regions, e.g. a valley structure for pupils or nostrils. In order to derive analytical
algorithms for model fitting, an unbinarized census transform is proposed for
extracting such local structural information. A feature vector for one pixel
location is extracted by subtracting the intensity values in a neighbourhood
by their average. The local intensity comparison results in an illumination
robust feature representation as the local texture structure is preserved under
various lighting conditions with a local zero mean normalization. We name this
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transform as Pseudo Census Transform (PCT), in order to distinguish it from
the original census transform.

For efficiency reason, the binary pattern feature, Modified Census Transform
(MCT), is also used. An analytical fitting algorithm for MCT-based appearance
model is not derivable. MCT is also known as an illumination invariant feature,
yet it is less informative due to the information loss in binarization.

The local structural feature is efficient yet lacks semantic meaning for assessing
the quality of alignments. We present a novel RAndom Pixel Intensity Differ-
ence (RAPID) feature for appearance modeling, which also provides semantic
meaning for assessing correct alignments. The feature computes the pixel in-
tensity differences at a distance, and the useful features are selected based on
correlation. The semantic meaning of these selected features can be interpreted
as “the intensity difference between the eye centers is low” or “the pixel inten-
sity on the eyebrow is lower than on the cheek”. To reduce the effects of image
noise, a quantization process for the intensity difference features is applied.

1.2.2 Discriminative Modeling of Appearance

We investigated several machine learning techniques for learning discriminative
appearance models. They are:

• Classification Model. The classification-based model considers face align-
ment as a binary classification problem. It distinguishes between correct
alignments and incorrect alignments. During training, correct alignments
correspond to annotated shapes, while incorrect alignments are generated
by randomly perturbing the ground truth shapes. The appearance model
is trained using the features extracted from a shape-free texture (cf. Fig-
ure 3.7(c)), and the model training adopts a boosting framework, where
a set of distinctive features are selected as weak classifiers. The scoring
function of the combined strong classifier is used as the cost function for
face alignment, in which a gradient ascent optimization method is used
for maximizing the objective function.

• Ranking Model. The classification based model learning suffers from the
problem of imbalanced training data. Moreover, as the negative samples
are not distinguished in the classification loss function, the learned cost
function may not be smooth enough, when the alignment is far from the
true shape. This makes the fitting algorithm difficult in guiding the fit-
ting towards the global optimum. In this sense, instead of learning the
correctness of alignments, we build a ranking-based model, which learns
the partial orders of alignments. The learned appearance model predicts
the preference in alignment pairs. As the training is based on pairs of
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alignment data and incorrect alignments can also be paired by increasing
shape perturbation in the same direction, the imbalanced data problem
is resolved, and the learned cost function will be smoother due to the
additional constraints.

• Regression Model. The regression model is a straightforward method for
approximating the desired cost function for alignment. In particular, we
propose to use an ensemble of regression trees, where each tree is trained
aiming at decreasing the regression loss in the gradient direction of the
regression loss. The method is known as the gradient boosting regression
trees, which is commonly applied for approximating ranking functions. In
order to further reduce the estimation variance of the regression model, we
adopt Random Forests to initialize the gradient boosting learning. Due
to the tree structure in the model, the corresponding cost function is not
derivable. We use an efficient direct search method for model fitting.

1.3 Contributions

The contributions of this thesis are listed as follows:

• We propose robust feature representations for building appearance mod-
els that are robust against illumination changes. In addition, due to the
locality of the proposed features, the learned models are able to handle
image noise and partial occlusion to some degree. The computational
cost for extracting the proposed features are also low, resulting in efficient
alignment algorithms that are applicable for real-time systems. Exten-
sive experiments are conducted on different data sets. The results show
that the proposed feature representation is more robust for alignment than
other local region based features such as Haar-wavelets. The PCT feature
improves the generalization ability on unseen testing data by about 13%.
An additional favorable property of the PCT feature is the low configu-
ration space, which results in a fast training procedure compared to the
model training with Haar-features.

• We conducted extensive studies on building discriminative appearance
models for face alignment in three different perspectives of machine learn-
ing problems. The first model considers alignment as classification, in
which correct alignments are regarded as positive samples and incorrect
alignments as negative samples. The second model learns the partial or-
dering of alignments, based on a learning to rank problem; while the third
model learns the total constrained ordering of alignments, based on re-
gression. The optimization of the learned score functions is based on
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gradient ascent or direct search method. Experimental results show that
the alignment performance of discriminative appearance models is signifi-
cantly improved compared to the generative appearance model, e.g. AAM.
The appearance models based on ranking and regression are superior to the
classification-based models due to the increased smoothness in the score
functions. Furthermore, the regression-based appearance model, which
uses an ensemble of regression trees, achieves the best performance in this
study. We also show in the experiments that the regression-based appear-
ance models outperform two state-of-the-art discriminative face alignment
models.

• To further analyze the properties of the proposed discriminative appear-
ance models, we thoroughly evaluate the alignment robustness under var-
ious imaging conditions, such as image noise, partial occlusion, and light-
ing. Through the experiments, we find out that the proposed feature
and appearance modeling are robust against these confounding factors.
In particular, fitting with regression based appearance models still has a
decent convergence rate, when the images are partially occluded or cor-
rupted by image noise. In addition, we find out that although the RAPID
feature achieves best results on the benchmarking data set with moder-
ate illumination changes, it is less robust than the MCT feature, when
tested under extreme lighting conditions as presented in the extended
YaleB database [LHK05a].

• As an application for the proposed discriminative appearance models, we
apply the alignment for pose normalization in cross-pose face recognition.
The experimental results show that the improved alignment results en-
hance recognition performance. In addition, we extend the cross-pose face
recognition by using partial least squares (PLS) for learning a latent space
which maximizes correlation between different views. A view-based pose
normalization strategy is proposed, which mitigates the weakness in the
work by Fischer et al. [FES12], where a discrete and precise pose estima-
tion is required. This provides the PLS-based framework an applicable
solution in real-world applications.

1.4 Outline

This thesis is organized as follows:

In Chapter 2, an overview of the related work is given. Well-known generic
face alignment algorithms are reviewed. The important statistical deformable
model, active appearance model, and many of its extended variants are surveyed
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as closely related works to the topic of this thesis. Some interesting application
systems, which are based on the AAMs, are briefly presented.

In Chapter 3, the classification-based appearance model is introduced. The 2D
shape model, which is used throughout this thesis, is first explained. Then, the
training of a classification-based appearance model is presented. Finally, the
experimental results and the comparison to AAM and other feature representa-
tions are given.

In Chapter 4, the ranking-based appearance model is described. A motivation of
formulating the appearance model learning as a learning to rank problem is first
given at the beginning of this chapter. The details of the ranking model learning
and training data generation are given in the second part of this chapter. We
present the experimental results for assessing the effectiveness of the ranking-
based model in the third part of this chapter.

In Chapter 5, the approach based on the ensemble of regression trees are pre-
sented. We first introduce the gradient boosting regression trees for learning
the regression-based appearance model. Afterwards, an initialization strategy
based on Random Forests is proposed to reduce the estimation variance and
speed up the convergence of boosting. The chapter ends with an experimental
comparison between the proposed models.

In Chapter 6, an effective appearance model based on random pixel intensity
differences is described. In this chapter, the proposed feature extraction and
selection is explained first. The details of parameter selection and impact factors
in building robust appearance models are discussed. A comparative study on
the models presented in the previous chapters is conducted.

In Chapter 7, robustness analysis on different aspects are systematically dis-
cussed and an application of the proposed models for face alignment is given.
The alignment robustness study includes the impacts of image noise, occlusion,
and lighting. We explain the experimental configuration and results in detail.
In order to further assess the effectiveness of the proposed discriminative ap-
pearance models, we present the details of applying the models in cross-pose
face recognition.

In Chapter 8, we discuss the outcomes of the thesis and give final concluding
remarks afterwards.
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2 Related Work

An overview of related works, which have been conducted on face alignment
and their applications, is given in this chapter. The chapter consists of three
sections. In Section 2.1, we review generic face alignment algorithms. We fo-
cus on deformable model-based methods in Section 2.2, in which we present a
conventional model and its extensions for improving alignment efficiency and
robustness. We explicitly compare the generative appearance models and dis-
criminative appearance models in this section. Finally, some application systems
based on deformable model fitting are described in Section 2.3.

2.1 Generic Facial Image Alignment Methods

As stated in Chapter 1, the goal of facial image alignment is to find a set of corre-
sponding anchor points, with which an image is registered by applying a linear or
nonlinear transform. The simplest alignment relies on localizing eye centers, as
they are less deformed due to variations in identity or expression. The alignment
fixes the coordinates of eye centers in the transformed image. However, using
more anchor points provides more accurate recognition performance [GES09],
yet localizing other points such as mouth corners or face boundaries is more
challenging. In this section, we review some generic approaches for localizing
facial feature points.

There are some related surveys, yet most of them are dedicated for eye local-
ization [HJ10, STCZ12]. However, most of the reviewed approaches can be
applied for localizing other facial features as well. According to [STCZ12], we
briefly classify the approaches into three categories based on the features used
for modeling.

Characteristics of facial features The inherent geometries and contrast of
individual facial components are exploited in these approaches. Some con-
textual information around or between facial regions might also be useful
for localization. These approaches are simple and straightforward. How-
ever, the reliability of localization is very sensitive to imaging conditions.
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Statistical feature-based model In this kind of approach, useful features are
extracted from the appearance of facial components, from which statistical
models are learned using a large set of training data. The learned models
are able to cope with large variability of facial appearances and imaging
conditions.

Structural model This approach explores the spatial structure of individual
facial components and (or) the geometrical regulation between each other.
Usually, the structural information is combined with the statistical feature-
based models to improve the stableness against various uncontrolled con-
ditions.

2.1.1 Characteristics of Facial Features

These approaches explore the distinct inherent characteristics of individual fa-
cial components by themselves. Specific information such as shape and intensity
contrast along or inside shape contour is used. A representative work of this ap-
proach is the deformable template [YHC92]. A parametrized deformable model
is proposed which describes the shape of facial components using continuous
mathematical formulations. Figure 2.1(a) shows a typical shape model of eyes
containing eyelids and iris. The eyelids are represented by two arcs and the iris
is represented by a circular shape. Similarly, a mouth shape model is shown in
Figure 2.1(b). In addition, the authors also consider the relevant features such
as peaks and valleys of intensity values defined inside the regions bounded by
shapes. A set of energy functions are designed based on the relevant features.
They fit the models to a testing image by searching the continuous parameter
space and minimizing the overall energy functions. In practice, the shape mod-
els are carefully designed so that they are distinctive and also flexible enough to
explain large shape variations. A good initialization is required as the energy
functions are minimized using a local optimizer. A multi-stage searching scheme
is introduced to handle the initialization problem, in which the weights for differ-
ent energy functions change accordingly in different stages. In the early stages,
the energy functions based on distinctive features (such as a valley feature for
the pupil and a peak feature for the eye white) are more favorable for fast conver-
gence. In the later stages, the energy functions based on edge features are more
important for fine-tuning. Despite this improvement, the deformable templates
still suffer from dependence on image quality and good initialization.

Instead of designing complicated shape models of facial components, some ap-
proaches directly use the intensity distribution patterns of e.g. eyes for local-
ization. For open eyes, the intensity contrast between different eye components
is strong, while the gray intensity at the eye center is usually much lower than
the eye white and the other regions in the neighbourhood. Intensity patterns
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(c) (d)

Figure 2.1: Deformable template models for the eyes and mouth from Yuille et

al. [YHC92].

like these are commonly used as the heuristic evidence for localization. Typical
examples are projection function-based approaches [Kan73, ZG04] and iterative
thresholding-based approaches [SYW96].

2.1.2 Statistical Feature-based Models

The aforementioned methods rely on intensity contrast of facial components,
which are very sensitive to illumination changes. Alternatively, one could ex-
tract more reliable feature representation from the image patches of individual
facial components. In addition, machine learning techniques are applied to se-
lect more discriminative features for building a statistical appearance model.
The appearance model not only explains the contrast information, but also ap-
proximates the same information to some degree, which leads to a more robust
technique.

Popular features are frequency based descriptors such as Haar wavelets, Ga-
bor wavelets, and gradient-based descriptors such as Local binary patterns
(LBP) [OPH96], Scale-invariant feature transform (SIFT) [Low04]. In fact,
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those feature descriptors are known to be illumination invariant in the context
of computer vision.

Usually the dimensionality of the feature descriptors is high and not all di-
mensions are discriminative enough for classification. Statistical methods are
applied on top of the extracted features, in order to learn effective models from
relatively few training samples. These methods reduce feature dimensions by
learning low dimensional manifolds or selecting distinctive feature sets. The
former variant corresponds to generative modeling in statistical learning, where
the class conditional probability distribution of a facial component is estimated.
Localization is based on checking the likelihood of a testing patch. A modu-
lar Principal component analysis (PCA)-based generative method is proposed
in [MP97], in which a low dimensional modular subspace for each facial compo-
nent is learned using PCA. A Gaussian model is estimated for approximating
the class conditional distribution of positive patches. In [EZ06], Gaussian mod-
els of negative patches are also included and the prediction of a testing patch is
based on computing the log-likelihood ratio.

The discriminative methods directly find a discriminant function for separat-
ing target facial patches and non-targets. The localization turns out to be a
binary classification problem. Common classifiers such as support vector ma-
chines [Vap98] and Adaboost [FS97] are applied. The SVM-based models find
weights for different feature dimensions. They provide good generalization ca-
pability with carefully selected kernel functions and corresponding parameters,
which increase the cost on computation time and memory usage. The methods
based on Adaboost select discriminative features increasingly and use them to
build a more powerful classifier. In [VJ04], a coarse-to-fine strategy is proposed
to learn cascades of boosted classifiers. The testing step is very efficient since
each level of the cascaded classifiers consists of a linear combination of a few
simple weak classifiers and only those candidates with a high likelihood will be
passed to succeeding stages. This strategy is originally proposed for detecting
human faces (also generic objects) in real-time [VJ04, FE04], an extension to
facial feature detection / localization in the context of face region is straightfor-
ward.

2.1.3 Structural Models

The appearance model of individual facial components ignores the spatial topolo-
gies between each other. The topological features are complementary to patch
appearance and less affected by environment conditions. This information pro-
vides prior knowledge about the constellation of the facial components, which
constrains the searching procedure for localization. Here, we discuss three rep-
resentative methods for modeling the topological structure of facial features.
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Pictorial structure model [FE73] uses a graph structure to model topological
relationships between components of an object, e.g. face. Figure 2.2(a) shows
an example of graph structure of a face model, with edges linked to each facial
component. This model is used to localize facial components by simultaneously
measuring the fitness of local parts and structural deformation in-between. The
energy function for optimal matching of the model to a test image is defined
as:

L∗ = arg min
L

 n∑
i=1

mi(li) +
∑

(vi,vj)∈E

dij(li, lj)

 , (2.1)

where mi(li) defines the energy function for localizing component i at posi-
tion li according to appearance model and dij(li, lj) defines the pairwise energy
function, which measures the spatial structure confidence for component i and
component j located at position li and lj, respectively. The optimal configura-
tion of component locations is found by minimizing the global energy function.
An efficient solution for this optimization problem is proposed by Felzenswalb
et al. in [FH05], in which the graph structure is simplified to a tree structure.
The simplification converts the form of connections between components as a
linear one rather than quadratic in the number of possible locations for each
component, which eventually makes the optimization more efficient. Further
graph-based or tree-based structure models are presented in [VMBP10, ZR12].

Instead of defining structure information based on human expertise, another
representative method is ASM [CTCG95], which learns structure knowledge
of an object from training data with statistical models. ASM describes the
shape of an object using a set of landmark points. The coordinates of these
landmark points are stacked in a fixed order, which forms a shape vector. The
landmark points are manually annotated, usually on the contour of the facial
components. A statistical shape model is built using the annotated training
data. The model represents major shape variations and their ranges in the
training data. ASM defines a generative profile model based on distribution
of gradient information of an underlying landmark point, which measures the
similarity of a landmark point at the current location. Searching a shape vector
on a test image is implemented in an iterative manner. The similarity of the
landmarks points is maximized first according to the profile models. The shape
model is then applied to constrain the search so that the shape vector only
deforms in the same way as presented in the training data. A coarse-to-fine
strategy is presented, which improves the robustness and efficiency of the shape
search. A probabilistic extension of ASM is presented in [ZGZ03], in which
searching is formulated as a MAP estimation with Bayesian inference. Another
important extension on ASM is AAM [CET98a], where the holistic texture of
the facial region is modeled with PCA. A more detailed review of AAM and its
variants is presented in Section 2.2, since the model presented in this thesis is
also an extension to AAM.
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(a)

(b)

Figure 2.2: Pictorial structure model for detecting a face object based on parts.

Apart from building structure models of face components explicitly, there are
also some noticeable works, which apply structure information implicitly. Im-
plicit shape model (ISM) [LLS06, LLS08] is a typical voting-based structure
model, in which the shape model is not explicitly constructed but represented
loosely in terms of a bag of patches. The key idea of ISM is to maintain a spatial
occurrence distribution for each visual codeword such that it can not only be
used for the representation of local appearances but cast votes for possible posi-
tions of the object center as well. The voting mechanism is less sensitive to par-
tial occlusion and large appearance variations. Recently, Gall et al. extend the
ISM framework to Hough forest [GL09], in which local codewords are generated
randomly with the use of random forest. Dantone et al. [DGFG12] use Hough
forest to build pose conditioned voting forests for robust head pose estimation
and facial feature detection. Cootes et al. [CILS12] additionally apply a sta-
tistical shape model to find globally optimized structure configurations. Other
approaches, which implicitly use shape models, can be found in [CWWS12].
These methods recover the shape of a test image by using a regression model
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explicitly learned from the training data. The structural constraint of the shape
variations is implicitly learned in the regression model.

2.2 Statistical Deformable Appearance

Models

The models proposed in this thesis are based on AAM, which contains a statis-
tical shape model and a holistic texture model. This section reviews AAM and
its variants.

2.2.1 Active Appearance Models

AAM interprets face images with shape and texture. The shape is defined in
the same way as in ASM, in which a set of landmark points located at the
boundaries of facial components is used to describe the structure information.
The texture depicts the pixel information inside the convex hull of a shape,
which is represented by intensities or colors (cf. Figure 2.3(b)). Training an
AAM requires a set of training images together with their corresponding man-
ually labeled landmark points (cf. Figure 2.3(a)). A shape is represented by a
shape vector, which contains n concatenated point vectors, (xi, yi). After pose
normalization, a shape s can be represented with a linear shape model, in which
the model bases are created by applying PCA,

s = s0 + Psbs, (2.2)

where s0 denotes the mean shape, Ps stores the eigenvectors from PCA, with
the row vectors describing the modes of shape variation learned from training
data. bs denotes the corresponding shape parameter vector in the shape space.
As with the shape vector, a texture vector g is also projected onto a texture
PCA subspace,

g = g0 + Pgbg, (2.3)

where g0 denotes the mean texture, Pg stores the eigenvectors from PCA, with
the row vectors describing the modes of texture variation learned from training
data. bg corresponds to the texture parameters in the texture space. The cor-
relation between shape and texture is decoupled by projecting the concatenated
shape parameters and texture parameters onto an appearance PCA subspace
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Q. Eventually, the shape and texture of an input image can be represented with
the joint appearance parameters,

s = s0 + Qsc, g = g0 + Qgc, (2.4)

where c is the appearance parameter vector, Qs and Qg are the corresponding
parts of the base matrix for the joint subspace.

Fitting the model to a new image is defined as a least squares problem, in which
difference between the synthesized model appearance and the warped image is
minimized with respect to the model parameter c,

c∗ = arg min
c
‖gc − gm‖2, (2.5)

where gc is the warped texture image, and gm is the synthesized model image
(cf. Figure 2.3). As the image warping is a nonlinear function of the shape
parameters, the objective function to be minimized is nonlinear, which is difficult
to solve. An iterative method based on gradient descent is applied for this
optimization problem. As the image difference is defined in the model frame,
Cootes et al. [CET98a] assume a linear relationship between the parameter
updates δc and the image residues r(c) = gc − gm,

δc = Rr(c). (2.6)

The assumption leads to an efficient fitting algorithm, which avoids the time-
consuming updating of Jacobian matrix J = ∂r(c)

∂c
in each iteration. The linear

regression matrix R is precomputed by a multivariate linear regression. Fig-
ure 2.3(c) shows an example of a fitted model appearance superimposed on a
facial image, where the original image is displayed to its right side.

2.2.2 AAM Extensions

Numerous extension studies on AAM have been carried out, aiming to improve
the efficiency and robustness for modeling and fitting. We review the AAM vari-
ants regarding three aspects, i.e. appearance representation, fitting algorithms,
and robustness handling.

2.2.2.1 Appearance Representation

The dimension of the texture vector is much higher than the dimension of the
texture subspace, this indicates that the texture representation with pixel values
contains spatial redundancy. Cootes et al. [CET98b] attempt to reduce the
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(a) (b) (c)

Figure 2.3: AAM from Cootes et al. [CET98a]. (a) An annotated image; (b) A

warped AAM texture; and (c) A synthesized model image and its

original image.

redundancy by applying sub-sampling, in which only large values are preserved
in the regression matrix. The assumption is, however, not always true, which
sacrifices the fitting accuracy. In [WT99], the wavelet-based image compression
technique is applied for building compact texture representation. Similarly,
a wedgelet-based regression tree is applied in [DLSE04] for compressing the
texture vector with a high compression rate.

The sub-sampling or compression techniques only remove redundant information
but do not provide additional information to increase the representation power.
The intensity based texture representation can be easily influenced by illumi-
nation changes. As the lighting changes have nonlinear effects on facial images,
a single PCA-based linear texture subspace can not fully model the variations
under complex conditions. A possible solution is to decompose the texture space
into two independent subspaces [KGDL07]. One explains the variations in illu-
mination and the other one contains the variation modes for identity. Gonzalez
et al. [GlTFM+07] decouple the appearance model into multiple subspaces, each
corresponding to pose, expression, and identity variations. The decomposition
enhances the representation power of the texture/appearance model. Another
solution to the nonlinear lighting problem is based on explicit nonlinear mod-
eling [CD05]. The Gaussian mixture model (GMM) and the nearest neighbour
model (NNM) is used for approximating the nonlinear manifolds of the faces.

On the other hand, one can also enrich the texture representation with the
use of additional image information such as color or edge features to obtain
better discrimination. For example, Edwards et al. [ECT99] show that color
texture representation in RGB space provides more discrimination than a single
gray-channel model. Moreover, other local structure information, such as edge
and gradient, is also helpful for improving the model fitting [SCT03, KnC06,
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CT01b]. The combination of local structure and color channel achieves better
performance as is shown in [KG05, SL03]. However, the multi-channel texture
modeling requires more computational cost and storage for fitting, which is not
ideal for real-time applications.

Facial expressions or lighting changes usually deform the local image regions.
Cristinacce et al. [CC06] simplify the texture model with local patch models,
which are centered at the landmark points. The local patches are concate-
nated together and jointly modeled with a shape model in a similar way as
AAM [CET98a]. The objective function for fitting is based on maximum likeli-
hood estimation with the shape model constraint. Wang et al. [WLC07] train
local patch models independently in a discriminative way. However, the fitting
is implemented with the Lucas-Kanade gradient-descent algorithm, where the
local patch responses are approximated by an isotropic Gaussian, which even-
tually leads to an ASM-like fitting algorithm. Other extension works model the
local patch responses with a full covariance Gaussian [WLC08], Gaussian Mix-
ture Models (GMM) [SLC09a], and Kernel Density Estimation (KDE) [SLC09b],
which further improve the fitting performance.

2.2.2.2 Fitting Algorithms

2.2.2.2.1 Generative Fitting AAM fitting in [CET98a] assumes a linear
relationship between the parameter updates and the image residues. The as-
sumption is not always correct and computational cost is still high. To improve
the fitting efficiency, it is observed in [CET98b] that updating both shape and
texture parameters in each iteration is unnecessary. A simpler updating strategy
is proposed, where the shape parameters are directly estimated from the tex-
ture residuals. The texture parameters are not updated and the texture residual
is defined as the difference between the warped texture and the model mean.
The computational costs are thus reduced. Hou et al. propose a direct appear-
ance model [HLZ01], which projects the texture residual onto a low-dimensional
subspace. The resulting parameter vector is used for estimating the regression
matrix. Since the dimension of a parameter vector is much smaller than the
texture residual, the computational cost in evaluating the regression matrix R
is significantly reduced. Another modification for efficient model fitting focuses
on increasing convergence speed. In [DRL+06], the canonical correlation anal-
ysis (CCA) is used to capture the correlations between the shape and texture
updates, which eventually results in an accurate and efficient model fitting.

The analytical derivations of AAM fitting are investigated in [MB04, GMB05,
BM01] within the framework of Lucas-Kanade algorithm [BM04]. Due to the
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difficulties in analytical derivation for the combined AAM, the independent
AAM is considered. The objective function for model fitting is defined as:

∑
x∈s0

[
g0(x) +

m∑
j=1

gj(x)bg
j − I(W(x; bs; t))

]2
, (2.7)

where W is the piecewise affine warping function with bs and t as parameters.
This problem can be solved efficiently by the inverse compositional (IC) [BGM03]
algorithm. The project out (PO) version of the IC algorithm avoids updating
the texture parameters, which results in an extremely efficient AAM fitting
algorithm. However, the authors suggest using a less efficient simultaneous
IC (SIC) algorithm for fitting a generic AAM to facial images of unseen sub-
jects [GMB05].

A statistical formulation of AAM fitting is presented in [CT01a]. The fitting
objective function is optimized with maximum a posteriori (MAP) estimation.
The formulation enables additional constraints for mitigating the local extrema
problem. In addition to shape prior, one could also impose prior information
of landmark points if available. The objective function with shape prior and
landmark prior is given as follows:

E(p) = σr
−2r>r + p>(Sp

−1) + d>SX
−1d, (2.8)

where the residual r is considered as isotropic Gaussian with variance σr
2. Sp

denotes the diagonal covariance matrix for the model parameter p. d(p) =
X−X0 is the distance between model point positions X and their true positions
X0 given as priors, such as the eye positions. The diagonal covariance matrix
SX denotes the uncertainty of the priors, where the corresponding items without
priors are set to zero. With the direct guide of the priors, the fitting is less likely
to get stuck into local extrema.

2.2.2.2.2 Discriminative Fitting Although the linear regression and ana-
lytic updating methods are greatly successful, the updating functions are in-
trinsically the approximated estimation to the nonlinear fitting procedure. The
problem becomes serious, when the parameters move far away from the true
place. In this case, the linear assumption of the relationship between the tex-
ture residual and the model parameters displacement does not hold anymore.
Therefore, the warping function becomes incorrect. To this end, Saragih and
Goecke [SG07] learn this relationship by a nonlinear boosting procedure. The
method trains a strong regressor for each model parameter:

F k(gc) =

nk∑
i=1

αki f
k
i (gc), (2.9)
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where F k is the strong regressor composed of a number of nk weak learners fki
with corresponding weights αki . As a result, a more accurate estimation of the
updating function is obtained.

The PCA-based modeling provides a compact and independent parameter model.
However, it is not optimized in the aspect of discriminant for the model fitting,
which makes the fitting prone to local minima and in the worst case, cannot
ensure that the global minimum corresponds to the correct parameters. To this
end, Nguyen et al. [NlTF08] learn a cost function by explicitly optimizing such
that the local minima occur only at the places corresponding to the correct
fitting parameters. The cost function to be learned is defined as:

E(d,p) = d(f(x,p))>Ad(f(x,p)) + 2b>d(f(x,p)). (2.10)

Here the symmetric matrix A and b are the parameters of the function, which
have to be learned from training data. This function is the general form of the
AAM fitting cost function. Nguyen et al. [NlTF08] manage to find the suitable
A and b by imposing constraints on global minima and direction of gradients.
The proposed cost function learning implicitly learns a new subspace, which
has better generalization and discrimination capabilities compared to the PCA-
based modeling.

Liu [Liu07] regards the fitting procedure as a classification problem instead of
least-squares optimization as commonly used in image registration problem. The
classification function is learned based on the nonlinear boosting algorithm, in
which a set of weak classifiers fi(p) are selected and combined to form a strong
classifier F (p) =

∑
i fi(p). The modeled fitting procedure turns out to find

the optimal parameters p, which maximize the score of the strong classifier.
Hao et al. [WLD08] propose a pairwise ranking based learning to mitigate the
imbalance data problem in binary classification model. The modification also
results in a smoother score function, which is favorable for the local optimizer-
based fitting.

2.2.2.3 Robustness Handling

The robustness of AAM fitting can be easily affected by occlusions due to the na-
ture of modeling. Occlusion occurs, when the faces are occluded by other objects
such as sunglasses or the face itself in case of 3D-pose variation. In [GMB06],
Gross et al. address the occlusion problem in AAM fitting by introducing a ro-
bust error function ρ(t;σ), where σ is a vector of scale parameters. This method
enables AAM to fit and track the object in case of occlusions.

The majority of the works on AAM fitting assumes near frontal and upright
poses. However, for applications, in which large pose rotation occurs, the lin-
ear appearance model is not sufficient to recover the nonlinearity due to facial
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rotation. A solution to this problem is to introduce pose information using non-
linear models or a 3D shape model. Cootes et al. [CWT00] propose a view-based
method to approximate the nonlinear rotations. Their method creates five mod-
els in different views, i.e. frontal, left (right) semi-profile, and left (right) full
profile. Each model fits the face in a range of view angles. The combination es-
sentially covers all poses. The authors assume that there is a linear relationship
between the model parameters and the corresponding view angle θ. They learn
this linear relationship using regression for estimating view angles. Instead of
using piecewise linear models for approximating the pose manifold, Romdhani et
al. [RPG00] use a unified nonlinear model. The self-occluded points are masked
with zeros. Kernel PCA is applied to model the nonlinear variations caused by
pose rotation.

Another straightforward research direction for tackling the pose problem is
the investigation of a 3D shape model, with which the inherent nonlinearity
caused by out-of-plane rotation is diminished. Xiao et al. [XBMK04] introduce
a 2D+3D AAM, in which a 3D shape model is built and used for constraining
the 2D shape search:

∑
x∈s0

[
g0(x) +

∑
j

gj(x)bg
j − I(W(x; bs; t))

]2
+K‖N(s0+Psbs; t)−P(s̄0+P̄sb̄s)‖2.

(2.11)
The first term corresponds to the objective for conventional 2D AAM fitting,
the second term ensures that the fitted 2D shape should deform similarly as
the projected 3D shape. Here, N(s; t) denotes the similarity transform with
parameter t, P denotes the camera projection matrices, which project shapes
from 3D to 2D. The constraint avoids the ambiguous cases, when a fitted 2D
shape is not a plausible shape due to the nonlinearity of out-of-plane rota-
tion. Additional studies extend the 3D AAM to fit on image sources of non-
monocular cameras, such as multi-view cameras [HXM+04, KBM+05] or stereo
cameras [LJJ06, SK06, SK06].

2.3 Applications

AAM has been widely applied in different computer vision research domains
including recognition, tracking, synthesis, and segmentation. This section gives
a short review of applications using AAM.

AAM can be used to interpret face identities as it provides discriminant in-
formation of facial appearance (shape and texture). Edwards et al. [ECT98]
use model parameters directly and Linear discriminant analysis (LDA) for face
identification. AAM is used to normalize face pose to enhance face recognition
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performance under pose variations [GKSC06, GES09]. As the shape is an impor-
tant clue for estimating facial expression, many researchers use AAM to extract
shape information for expression analysis [DR07, MBV06, SK06, ADD04, LK08,
SK08], pain expression analysis [ALC+07], and action unit detection [LCK+10].
In [GZSM07, LRBS09], the authors use AAM for robust age estimation.

By manipulating the model parameters, AAM is able to synthesize novel in-
stances of face images by projecting back from parameter space to image space.
Cootes et al. [CWT00] use view-based AAMs for synthesizing novel views of
face images by applying linear regression between view-based identity subspaces.
Chen et al. [CLR+04] present a system for automatic portrait generation using
AAM and hair model. AAM is also used to synthesize various facial expressions
in [ADD04]. Studies on expression transfer are presented in [TMCB07, MBV06],
in which expression of one person is transferred to another with AAM. The
model is also applied for building a magic mirror, in which user faces are re-
placed with preferred faces of celebrities [AGB+12].

AAM is also widely applied for medical image segmentation [CET98a, RCA03,
BGS+02, CBET99] as well as tracking of faces [HD05, SK06, DKB07] or even
generic objects [Ste01].
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3 Classification Appearance
Models

In this chapter, we present the first discriminative appearance model in this
thesis, which is based on a boosted classification model. A brief introduction
and motivation of this approach are first given in Section 3.1. We explain the
proposed model in detail in Section 3.2, where a 2D shape model, which is
used throughout this thesis, is first explained. Afterwards, the training of a
classification-based appearance model is presented. In Section 3.3, we describe
the steps for aligning face images with the proposed model. The experimental
setup and evaluation results are discussed in Section 3.4.

3.1 Introduction

As described in Section 2.2, AAM [CET98a, MB04] considers both shape and
texture information of a face object. It combines constraints on both shape
and texture by learning statistical generative models, which approximate the
distribution of both information in a training data set. A shape is represented
by landmark positions (cf. Figure 3.7(b)), whereas the appearance is repre-
sented by pixel intensities in a shape-free face image (cf. Figure 3.7(c)). The
fitting of an AAM is defined by solving a least mean square error (LMSE) prob-
lem, where the difference between the warped image and the model appearance
is minimized. Efficient optimization algorithms, such as the Inverse Composi-
tional (IC) and Simultaneous Inverse Compositional (SIC) methods have been
proposed by Baker and Matthews [BM04], which enable fast face alignment for
real-time applications. However, the alignment performance degrades quickly,
when generic AAMs are trained instead of person specific AAMs [GMB05]. The
generalization issue is caused by generative appearance modeling and the LMSE
optimization schema as claimed in [Liu07].

In order to tackle this generalization problem, Liu proposed the Boosted Ap-
pearance Model (BAM) [Liu07], in which a shape representation similar to AAM
is used, whereas the appearance is represented by a set of discriminative Haar-
features, trained to form a boosted classifier. The discriminative appearance
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models are able to distinguish between correct and incorrect alignments. The
optimal BAM fitting for a given test image is searched iteratively by optimizing
the corresponding classification score function. It has been shown that the BAM
improves the generalization capability compared to AAM.

However, as we know that the number of Haar features to be boosted is ex-
tremely large, since the dimension of the parameter space is high. Training a
BAM using Haar features requires to boost more than one hundred thousand
rectangular features within the mean shape, which results in an inefficient train-
ing procedure. To avoid this, we propose to use a local structural feature with
less configurable parameters for boosting. This enables the training procedure
to be extremely efficient. The local structural feature is inspired by the work of
Fröba et al. [FE04], in which the modified census transform (MCT) is applied
for face detection. The face detector based on the MCT feature yields better
detection performance despite its fast training and detection speed compared to
the state-of-the-art approach [VJ04]. The MCT feature, however, is a binarized
pattern, which is not suitable for deriving an analytical optimization algorithm.
In this work, we use the unbinarized census transform feature, which we call
pseudo census transform (PCT). The PCT feature is projected discriminatively
to a scalar indicating the correctness of face alignments. We boost the scalar
values using GentleBoost [FHT00]. Multi-scale PCT features are also investi-
gated. We evaluate our PCT-based BAM fitting on four different data sets.
Our proposed approach achieves slightly better performance on seen data com-
pared to the Haar-based BAM. However, results on the unseen data show that
the PCT-based BAM outperforms the Haar-based BAM significantly in terms
of the average convergence rate, which indicates that our approach generalizes
better on unseen data.

3.2 Face Model

The classification-based appearance model presented in this chapter contains
a shape model and an appearance model. For the shape model, we use the
point distribution model (PDM), which is widely used in other statistical de-
formable models. The shape model defines a set of parameters, which need to
be recovered for a given test image. The appearance model defines a discrim-
inant function over the shape parameters, which is represented with a set of
boosted discriminative features. The following subsections describe the details
for building the shape and appearance models.
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3.2.1 Shape Model

The word “shape” describes the external boundary of an object. It conveys all
the geometrical information that remains, when location, scale and rotational
effects are filtered out from an object [Ken84]. From this definition, the term
shape is invariant to similarity transformations. A simple shape can be described
by basic geometric primitives such as a set of points, lines, curves, etc. The
most common primitive is the point, which is widely studied in the research
domain of statistical shape analysis for its simplicity in representation and strong
theoretical support. In case of face objects, the landmark points can be located
at the salient facial regions, such as the eye corners and the mouth corners, or
at the boundary of the facial organs or the faces. A v-point shape in k (k = 2, 3)
dimensional space can be represented by a kv dimensional vector. In this thesis,
we focus on using 2D landmarks for representing shape information of an image.
Hence, mathematically, a 2D shape vector containing v landmarks can be defined
as:

s = [x1, y1, x2, y2, . . . , xv, yv]
> . (3.1)

Figure 3.1 shows an example of a face shape represented with 58 landmarks.
The acquisition of these landmarks is usually done by manually placing several
points along the contours of the salient facial features and the outline of the face.
Annotating these landmarks on hundreds of images is a tedious work. Often,
noise may be introduced by vague definition of landmarks and inconsistent la-
beling, which eventually leads to an imprecise modeling of shape. Figure 3.2(a)
displays a closer view of an example shape with the index numbers plotted on
the right side of each landmark. A 2D mesh is obtained by applying Delaunay
triangulation as plotted in Figure 3.2(b). As defined before, location, scale and
rotational effects need to be filtered out to obtain a true shape representation.
This is carried out by aligning all shapes to a common coordinate framework.
The well-known Procrustes analysis [Goo91] is applied to align all shapes itera-
tively. Figure 3.3 explains the alignment procedure with the Procrustes analysis.
Figure 3.3(a) plots the point cloud of all shapes before alignment. After align-
ment, the translation, scaling and rotation factors of all shapes are normalized
(cf. Figure 3.3(b)). The average of the N aligned shapes can be estimated as:

s0 =
1

N

N∑
i=1

s̃i, (3.2)

where s̃i denotes the i-th aligned shape. After alignment, the only difference
of these set of shapes is the shape variation. Figure 3.4(a) shows the spatial
variations of each individual landmark. The direction of the major axis of each
ellipse plotted in Figure 3.4(a) stands for the principal direction of the point dis-
tribution. Note large variations are observed on the landmarks located along the
face contours, which explains the large portion energy of nonrigid deformations
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Figure 3.1: Example annotation of a face using 58 landmarks.

(a) (b)

Figure 3.2: (a) Indexed facial landmarks, and (b) Corresponding 2D mesh via

Delaunay triangulation.

due to the pan rotation of faces. The inter-point correlation matrix is plotted
in Figure 3.4(b). The horizontal and vertical axes in this plot correspond to the
landmark indexes (cf. Figure 3.2(a)). Note that the landmarks located on the
same facial component are highly correlated. In addition, landmarks on the face
contour, nose and mouth regions are also correlated to some degree, as they are
all dependent on nonrigid pose changes.
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Unaligned shapes Aligned shapes

Figure 3.3: Shape alignment via Procrustes analysis.
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Figure 3.4: (a) Principal point direction and (b) Correlation matrix of land-

marks, where the horizontal and vertical axes correspond to the

landmark indexes (cf. Figure 3.2(a)).
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To decorrelate and reduce the redundancy in the multivariate shape data, PCA
(also known as the Karhunen-Loève transform) is used as a dimensionality re-
duction method, which delivers new axes ordered according to their projection
variances. The projected shape vector lies in a low dimensional subspace, in
which the variations of the original data is maximally preserved.

PCA finds principle data variation modes by applying eigen-decomposition of
the data covariance matrix. The covariance matrix of the shape data is given
as:

Σs =
1

N

N∑
i=1

(s̃i − s0)(s̃i − s0)
>. (3.3)

The principal axes of the 2v dimensional shape vectors are given as the n eigen-
vectors, Pi

s, ordered decreasingly according to their corresponding eigenvalues.
A shape s̃ can be generated with a mean shape s0 plus a linear combination of
the n eigenvectors (eigenshapes):

s̃ = s0 +
n∑
i=1

Pi
sb
i
s, (3.4)

where bis is the parameter for the i-th shape component. Usually, the com-
ponents with small eigenvalues are discarded, as they explain the deformation
energy of annotation noise. To compromise between accuracy and compactness
of the model, we retain 95% of the shape variation, which results in a 15 dimen-
sional eigenshape space. This is a rather substantial reduction since the original
shape vector has a dimensionality of 2 × 58 = 116. Figure 3.5 illustrates the
first three modes in the shape model. The first row represents the variation of
the first shape component, where the shape in the middle is the mean shape
while the one on the left (right) side is generated by setting the first shape
parameter to −3σ (3σ) and the remaining parameters to 0. The second row
represents the second shape component, and the third row represents the third
component. Figure 3.6 enumerates the top ten eigenvalues in the shape model
in a descending order. Note the first variation mode, which corresponds to pan
rotation, takes up 59% of the overall variations in the training data.

We now use the shape model to interpret the shape information of a given facial
image. Given an image I and its corresponding annotated shape s, we first apply
a similarity transform to align the shape to a reference shape [MB04], e.g. the
mean shape s0:

t = arg min
t
‖N(s̃, t)− s‖. (3.5)

The similarity transform parameter vector t contains four items, which corre-
spond to the scaling, rotation, and translation factors. The model parameter
vector bs is estimated as:

bs = Ps(̃s− s0), (3.6)

38



Figure 3.5: Shape deformation of the first three principal modes.
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Figure 3.6: Ten largest eigenvalues in a shape model.

where s̃ is the aligned shape. Hereafter, we use a combined parameter vector
p = [t | bs] for parametrizing a shape instance s.

With Delaunay triangulation, the mean shape s0 (cf. Figure 3.7(a)) and the
shape s (cf. Figure 3.7(b)) are triangulated to a base mesh and an instance face
mesh. A non-linear mapping function W(x; p) is defined with a piece-wise affine
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(a) (b) (c)

Figure 3.7: Shape model and warping function. (a) The mean shape s0; (b) A

face image superimposed with a shape s(p); (c) A face image warped

to the mean shape I(W(x; p)).

warping, which maps pixel x defined in the mean shape to the instance shape.
A shape-free image I(W(x; p)) (cf. Figure 3.7(c)) is obtained by warping a face
image I to the coordinate of the mean shape. The pixel values at W(x; p) is
approximated with bi-linear interpolation.

3.2.2 Appearance Model

The appearance model is defined by a collection of features extracted on the
shape-free face images I(W(x; p)). In [Liu07], the rectangular Haar features
are adopted. Haar features are known as efficient local region-based features
for general object detection [VJ04]. One drawback of the Haar features is that
the configuration space is extremely large, which makes the selection procedure
very slow. In [FE04], Fröba et al. found out that the feature extracted by
the modified census transformation (MCT) outperforms the Haar features in
face detection. Especially, due to the low dimensional configuration space of
the MCT feature, the detector can be trained very efficiently. Inspired by their
work, we propose to select the unbinarized census transform, which we call
pseudo census transform (PCT) feature for our appearance model 1. The PCT
feature ϕ = (ϕ1, . . . , ϕK)> is a K dimensional vector, which contains the pixel
values in a

√
K ×

√
K neighborhood centered at x = (r, c) and subtracted by

local mean. For simplicity, we used a fixed K (K = 9) in this work. The PCT

1The MCT features cannot be applied for deriving the fitting algorithm, since it is a binary

pattern.
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feature ϕ is then obtained by ordering the K filter responses of a filter bank
plotted in Figure 3.8(b) at a certain position (r, c). The mask of the first filter
is defined as follows:

T0 =

 8/9 −1/9 −1/9
−1/9 −1/9 −1/9
−1/9 −1/9 −1/9

 . (3.7)

The rest of the filter masks are defined accordingly by shifting the position of the
value 8/9 in the matrix (cf. Figure 3.8(b), white cell corresponds to the positive
element and gray cell corresponds to the negative elements). Notice that the
responses of the filters are equivalent to the PCT feature values. This enables
us to define K image templates Ai=1,...,K with the filter mask placed at position
x = (r, c) for one PCT feature. The inner product between the template and
the warped image is equivalent to computing the filter responses:

ϕi = A>i I(W(x; p)) = Ti ∗ I(W(x; p)), i = 1, . . . , K. (3.8)

If we consider K = 9, the filter mask at the center of Figure 3.8(b) corresponds
to a discrete approximation to a 3 × 3 Laplacian filter, which results in an
illumination invariant filter response. The other filter masks capture contours
of different orientations in an image. We apply PCT on two face images under
different illumination conditions as shown in Figure 3.9. The filter responses
below show that the PCT feature representation is robust against illumination
changes.

3.2.2.1 Weak Classifiers

The PCT-feature only captures structural features in a small local area of a
face image. Decision rules based on a single feature location are incompetent
to form a good discriminative model that separates correct and incorrect align-
ments. The fitting process will be less efficient, if all feature locations are used.
Furthermore, the features located in homogeneous regions, such as the cheek
areas, are not very informative. Including those features may even decrease the
robustness. We hence employ a boosting procedure to select a set of feature lo-
cations, in which the weak classifiers are trained based on each of those features.
The selected weak classifiers are aggregated together to form a strong classifier,
which we consider as our boosted classification appearance model.

To make the problem simple, we focus on linear models for training our weak
classifiers. The simple linear models are less likely overtrained, thus have better
generalization ability compared to the nonlinear models.
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(a) (b) (c)

Figure 3.8: (a) The parametrization of a weak classifier, i.e. center of the PCT

filter positioned at (r, c); (b) K PCT filter masks (K = 9), the

top left filter mask corresponds to the filter kernel defined in Equa-

tion 3.7; (c) PCT-filter responses of a shape-free image.

Figure 3.9: PCT filters applied on images with different illumination conditions.

3.2.2.2 Linear Classification Models

The goal of binary classification is to take an input vector x ∈ RD and assign
it to one of the binary classes Ck, where k = 1, 2. The input space is divided
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into two decision regions with a decision boundary. When considering linear
models for classification, the decision boundary is depicted as a linear function
of the input vector x. In other words, the linear decision surface is defined by
D−1 dimensional hyperplanes within the D-dimensional input space. The linear
function is called linear discriminant function, which is defined as follows:

f(x) = w>x + b, (3.9)

where w indicates a weighting vector and b is a bias term. An input vector x is
assigned to class C1 if f(x) ≥ 0, and to class C2 otherwise. The corresponding
decision boundary is defined by the equation f(x) = 0. The weighting vector w
is orthogonal to the decision surface.

There are several approaches for determining linear discriminant functions. In
this work, we investigate three different approaches, which try to minimize clas-
sification loss in various points of view. The first model is based on linear
discriminant analysis, which we denote as a probabilistic generative model. The
second model is logistic regression, which is actually a generalized linear model
based on a probabilistic discriminative model. The third model is based on
the maximal margin theory, which is usually called linear support vector ma-
chines (SVM).

3.2.2.2.1 Linear Discriminate Analysis (Probabilistic Generative Mod-
els) Assuming that the data of the underlying classes are Gaussian distributed,
and the parameters of the distribution are known, p(x|Ck) ∼ N (µk,Σk). The
decision is determined by comparing the posterior probabilities:

p(Ck|x) ∝ p(x|Ck)p(Ck). (3.10)

A sample x is assigned to class Ci, if p(Ci|x) > p(Cj|x). In general, the dis-
criminant function is defined with the log odds ratio ln [p(C1|x)/p(C2|x)] for the
two classes. Assuming that the covariance matrices for each class are equal, we
define the discriminant function as follows:

g(x) = ln [p(C1|x)/p(C2|x)] (3.11)

= −1

2
(x− µ1)

>Σ−1(x− µ1) +
1

2
(x− µ2)

>Σ−1(x− µ2) + ln
P (C1)
P (C2)

,

(3.12)

where Σ is the shared covariance matrix. The quadratic term will be canceled,
which results in a linear discriminant function as in Equation 3.9, where

w = Σ−1(µ1 − µ2), (3.13)
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and

b = ln
P (C1)
P (C2)

− 1

2
(µ1 + µ2)>Σ−1(µ1 − µ2). (3.14)

In practice, µk, Σk and P (Ck) are estimated from the training data. We use the
relative frequencies of the examples in each class P̂ (Ck) as the estimation of the
prior probabilities P (Ck):

P̂ (Ck) =
nk∑
k nk

, k = 1, 2. (3.15)

µk and Σk are estimated with the sample mean µ̂k and sample covariance matrix
Σ̂k in a maximum likelihood sense:

µk = µ̂k =
1

nk

nk∑
i=1

xki , k = 1, 2, (3.16)

Σk = Σ̂k =
1

nk − 1

nk∑
i=1

(xki − µ̂k)(xki − µ̂k)>, k = 1, 2. (3.17)

Considering the previous assumption that different classes share one single co-
variance matrix, i.e. Σ1 = Σ2 = Σ, we adopt an unbiased estimator as proposed
in [XQ07], when n1 and n2 are large enough:

Σ̂ =
(n1 − 1)Σ̂1 + (n2 − 1)Σ̂2

n1 + n2 − 2
≈ P (C1)Σ̂1 + P (C2)Σ̂2. (3.18)

Note that the Gaussian-based LDA is closely related to the Fisher’s linear dis-
criminant (FLD). They only differ in a scale factor.

3.2.2.2.2 Logistic Regression (Probabilistic Discriminative Models)
In contrast to generative modeling, we investigate another important learning
approach, logistic regression, which explicitly uses the functional form of the
generalized linear model and determines the model parameters directly using
maximum likelihood. The resulting model represents a discriminative classifi-
cation model.

Despite its name, logistic regression is a model for classification rather than
regression. It uses a sigmoid function of linearly projected feature vector x to
represent the posterior probability of class C1:

p(C1|x) = h(x) = σ(w>x). (3.19)
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For the two-class case, p(C2|x) = 1 − p(C1|x). Here σ(.) is the logistic sigmoid
function. For simplicity of notation, the definition of the parameter vector w
is slightly different from Equation 3.9. The dimension of w is D + 1, where D
is the dimension of input data. The first element in w corresponds to the bias
term b in Equation 3.9. For this, the original input data x̃ is augmented with

an additional 1 as the first element of x, i.e., x =
[
1, x̃>

]>
.

Considering we have data xi and their class labels yi, where yi = 1 for class C1,
yi = 0 for class C2. The log-likelihood for the N given data can be written as:

`(w) =
N∑
i=1

log p(C1|xi)yip(C2|xi)1−yi =
N∑
i=1

{
yiw

>xi − log (1 + ew
>xi)

}
.

(3.20)

The parameters of the logistic regression model are estimated with maximum
likelihood. The Newton-Raphson algorithm is used for solving the nonlinear
optimization in an iterative manner:

w = w − ∇`(w)

H(`)
, (3.21)

where ∇`(w) is the first-order derivative:

∇`(w) =
∂`(w)

∂w
=

N∑
i=1

xi(yi − h(xi)), (3.22)

and H(`) is the second-order derivative:

H(`) =
∂2`(w)

∂w∂w>
= −

N∑
i=1

xix
>
i h(xi)(1− h(xi)). (3.23)

It is convenient to write the derivatives in matrix notation. Let y denote the
vector of yi values, X the N × (D+ 1) matrix of xi values, h the vector of fitted
probabilities with i-th element hw(xi), and H a diagonal matrix of (D + 1)
weights with element hw(xi)(1− hw(xi)). Then, we have ∇`(w) = X> (y − h)
and H(`) = −X>HX. The Newton step thus becomes

w = w + (X>HX)−1X> (y − h) . (3.24)

We use a regularization term to regularize the maximization of the log-likelihood
function to avoid over fitting:

`(w) =
N∑
i=1

{
yiw

>xi − log (1 + ew
>xi)

}
+ λ‖w‖2. (3.25)
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We denote this as the L2 regularized logistic regression. The Newton step in
the regularized optimization becomes:

w = w + (X>HX + Λ)−1
(
X> (y − h)− Λw

)
, (3.26)

where Λ = λID+1, and ID+1 is an identity matrix of size D + 1.

3.2.2.2.3 Linear Support Vector Machines (Maximum Margin) Sup-
port vector machine (SVM) becomes the most popular approach for finding
decision boundaries, which might give a low generalization error. The decision
boundary in SVM is chosen to be the one for which the margin is maximized.
The margin is defined as the smallest distance between the decision boundary
and any of the data samples.

Given N training data xi and corresponding labels yi, where yi ∈ {1,−1},
we want to find the maximum-margin hyperplane, which best separates the
training data with respect to the labels. Mathematically, a hyperplane is defined
as w>x + b = 0. If the training data are linearly separable, we select two
hyperplanes for separating the data such that there are no data points between
them. The distance between the hyperplanes will be maximized. The region
bounded by them is called “the margin”. These hyperplanes can be described by
the equations w>x+ b = 1, and w>x+ b = −1. The distance between these two
hyperplanes is 2

‖w‖ . Thus maximizing the margin is equivalent to minimizing

‖w‖. In order to prevent data points from falling into the margin, the following
constraint is enforced:

yi(w
>xi + b) ≥ 1, i = 1, . . . , N. (3.27)

The optimization problem is formulated as:

arg min
w,b
‖w‖, (3.28)

subject to yi(w
>xi + b) ≥ 1, i = 1, . . . , N. (3.29)

In practice, the classes cannot be cleanly separated by a defined hyperplane due
to overlap in feature space. For this, the soft margin is introduced to allow
some points to be on the wrong side of the margin. A set of slack variables
ξ = {ξ1, ξ2, . . . , ξN} is defined, which measures the degree of misclassification of
the data xi:

yi(w
>xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , N. (3.30)
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The constrained objective function is then appended with a set of non-zero
penalty terms. The optimization becomes a trade off between a large margin
and small error penalty:

min
w,ξ,b

{
1

2
‖w‖2 + C

N∑
i=1

ξi

}
, (3.31)

subject to yi(w
>xi − b) ≥ 1− ξi, ξi ≥ 0 i = 1, . . . , N. (3.32)

The constrained problem is convex and can be solved with quadratic program-
ming techniques by introducing Lagrange multipliers.

3.2.2.3 Boosting-based Appearance Learning

Having the linear classification models introduced, we apply those models to
the PCT features to obtain weak classification scores, which indicates the cor-
rectness of alignments. The prediction has high uncertainty due to the weak
representation power of a single PCT feature vector. For this, we combine the
individual PCT features in a boosting framework, which eventually results in a
more reliable strong classifier. The basic idea of boosting is to create a highly
accurate classifier by combining many relatively weak and inaccurate classi-
fiers. This approach is also considered as an effective tool for selecting relevant
features iteratively from a huge pool of features. Within each boosting iter-
ation, the hardest examples, which are misclassified in the previous iteration,
contribute more to finding the current decision boundary that makes a weak
classifier. The combination can be a vote of the predictions from the weak clas-
sifiers. The confidence for a prediction can be a convex combination of the weak
classification score functions.

The boosting algorithm has many variants [MR03]. The Adaboost [FS97] al-
gorithm is one of the most popular variant, which was successfully applied for
face detection [VJ04]. However, the discrete Adaboost algorithm provides hard
decision functions as weak classifiers, which leads to a piecewise-constant strong
classifier. The resulting score function is difficult to be optimized with a local
optimizer. The Adaboost algorithm has a soft version called “Real Adaboost”,
which returns real-valued decisions using half log-odds. A gentler version of
Adaboost (thus named as Gentleboost) is proposed in [FHT00], which makes
the decision stable, when class probabilities are close to 0 or 1. In this work, we
use the Gentleboost algorithm for boosting our strong classifier, as the resulting
score function is smoother and thus favorable for a local optimizer. In addi-
tion, the Gentleboost algorithm has shown its superior performance in object
detection tasks, when compared to the other variants of Adaboost, due to its
robustness to noise and outliers [LKP03].
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The Gentleboost algorithm is illustrated in Algorithm 1. Given a set of facial
images with manual labels, positive and negative training samples are generated
according to Section 3.2.3.1. Once the PCT features for a set of training samples
are computed and the corresponding linear classification models are trained, an
optimal weak classifier fm is found, such that the weighted least square error
is minimal. The aforementioned weak classifier computation is conducted for
each feature in the hypothesis space, the optimal weak classifier with minimal
error ε(f) is exhaustively searched. The exhaustive search procedure is a time
demanding step in the Gentleboost algorithm, Line 3 in Algorithm 1, which is
normally fairly slow if the hypothesis space is large. However, in contrast to
the Haar feature in [Liu07], the hypothesis space of the PCT feature is much
smaller, which is linear to the number of pixels defined inside the masked shape-
free image. After updating the strong classifier, the sample weights are also
updated, such that the later iterations focus on the difficult samples (Line 5).

Algorithm 1: The GentleBoost Algorithm

Data: Training data {xi; i = 1, 2, . . . , N} and their corresponding class

labels {yi; i = 1, 2, . . . , N}, where yi ∈ {−1,+1}.

Result: A strong classifier F (x).

Initialize weights wi = 1/N , and F (x) = 0 ;1

foreach m=1,2,. . . ,M do2

Fit the regression function fm(x) by weighted least-squares of yi to3

xi with weights wi:

fm(x) = arg min
f∈F

ε(f) =
N∑
i=1

wi(yi − f(xi))
2; (3.33)

Update F (x) = F (x) + fm(x) ;4

Update the weights by wi = wie
−yifm(xi);5

Normalize the weights such that
∑N

i=1wi = 1 ;6

Output the classifier F (x) =
∑M

m=1 fm(x).7

The outputs of the boosting algorithm are a number of weak classifiers, each of
which is parametrized with cm = {r, c}. We consider the set of weak classifiers
{cm;m = 1, 2, . . . ,M} as the appearance model of the BAMs.
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3.2.3 Learning Alignment

We now formulate the problem of learning a scoring function for assessing the
correctness of fitting a face model in this section. More precisely, for a given
image, let us suppose that p is the shape parameter that represents the current
alignment of the shape model. We are interested in learning a scoring function
F , such that, when maximized with respect to p, it returns the shape parameter
corresponding to the correct alignment. Mathematically, if p∗ is the shape
parameter representing the correct alignment, F has to be such that

p∗ = arg max
p

F (p). (3.34)

With this formulation, the appearance model is actually a two-class classifier.
In particular, we use a linear combination of several PCT features to define the
appearance model:

F (I(W(x; p))) = ΣM
m=1fm(I(W(x; p))), (3.35)

where fm(I(W(x; p))) is a weak classifier based on one single PCT feature of
I(W(x; p)). For ease of notation, we denote the weak classifier and the strong
classifier as fm(p) and F (p), respectively.

Our weak classifier using the PCT features is defined as follows:

fm(p) =
π

2
atan(ΣK

i=1w
m
i S(Am>

i I(W(x; p))) + bm), (3.36)

where Am
i is the i-th template defined at the m-th position (rm, cm). Since the

classifier response fm(p) is continuous within −1 and 1, the atan() function is
used to ensure both discriminability and derivability. S(.) is a sigmoid function
defined as S(t) = 1

1+e−αt
, where α is a scale parameter. The sigmoid function

normalizes the raw PCT feature values into a range of (0, 1) before a linear pro-
jection. The projection vector wm and bias bm are learned on the training data
with a linear classification model as described in Section 3.2.2.2. Additional
model parameters, such as the cost parameter C in each linear SVM train-
ing is searched with cross validation. The regularization parameter for logistic
regression is set empirically.

3.2.3.1 Training Samples

As explained before, our appearance model, which is a combination of a set of
weak classifiers fm(p), is defined on the warped shape-free images I(W(x; p)).
We need to collect a set of such warped images as our training data.

Given a face image I with manually labeled landmark s, the corresponding
shape parameter vector p is computed based on Equation 3.6. The warped
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Figure 3.10: Positive and negative samples for training.

shape-free images I(W(x; p)) are treated as positive samples (yi = 1) for the
boosting. For each image, a number of negative shape vectors p′ are synthesized
by random perturbation. Equation 3.37 describes the perturbation, where ν is a
random vector with each element uniformly distributed within [−1, 1], u stores
the standard deviations of all shape variation components, and σ is a constant
scale that controls the level of perturbation:

p′ = p + σν · u. (3.37)

Together with the original face image, a perturbed negative shape vector can
produce a negative training sample I(W(x; p′)) (yi = −1). This is an im-
balanced learning problem, as a number of negative training samples can be
generated with one positive training sample. Figure 3.10 illustrates a positive
training sample (marked in red) and its corresponding negative samples (marked
in blue).

3.2.3.2 Imbalanced Data for Classification

In theory, the data space for negative samples is unlimited and the data space for
positive samples is limited to the available annotations. In practice, we generate
a reasonable number of negative samples with random sampling within a certain
range constrained by a face detection output and prior shape model. Due to
the variations such as facial deformation, illumination, and background clutter,
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we still need to sample enough negative data to approximate the distribution.
We need to find a trade-off between imbalanced data and discriminativeness to
avoid biased prediction towards the majority class. We investigate two strategies
to handle the imbalanced learning problem according to [HG09], where the
sampling and cost-sensitive methods are considered.

3.2.3.2.1 Sampling Methods for Imbalanced Learning One straightfor-
ward solution to imbalanced learning problem is to balance the data distribution
by applying some sampling strategies. Previous studies show that classifiers
trained on balanced data set provides superior performance compared to imbal-
anced data [CBHK02].

We augment the minority class with additional data by applying oversampling.
In our case, the positive samples (minority class) can be either oversampled with
tiny random perturbations of ground truth shapes or with synthetic sampling.
The range of the perturbation can be limited according to the convergence cri-
terion of a model fitting defined later in the experiment section (cf. Section 3.4),
with which we allow a small deviation from the ground truth shape due to the
annotation noise. The synthetic samples can be generated from a certain dis-
tribution or neighbouring samples. In this work, we generate samples in image
space for the distribution-based synthesis, with the assumption of Gaussian dis-
tribution of the shape-free texture in the positive class. We use PCA to find the
axes of a multi-variate Gaussian model and generate samples randomly in the
PCA space.

3.2.3.2.2 Cost-Sensitive Methods for Imbalanced Learning Instead of
balancing data distribution by applying different sampling strategies, the cost-
sensitive methods assign different costs to misclassified instances [Elk01]. The
essential part of the cost-sensitive learning methods is the concept of cost matrix,
which is a numerical representation of the penalty of misclassification. In our
case, we define a cost Cp as a penalty of misclassifying a positive instance as
a negative instance. The cost Cn is defined for the contrary case. Typically,
Cp > Cn as we consider misclassifying minority class samples resulting in higher
costs. The goal of cost-sensitive learning is to minimize the overall cost on the
training set.

There are various ways of implementing cost-sensitive learning. In this thesis, we
focus on the most simple variant, which is based on data space weighting. The
following paragraphs describe the cost-sensitive version of the aforementioned
linear classification models as well as boosting models.
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Cost-Sensitive LDA The LDA model described in 3.2.2.2.1 is already de-
rived in a cost sensitive manner. The shared covariance matrix is presented in a
weighted form of individual covariance matrices as stated in Equation 3.17. The
first term in Equation 3.14 also shifts the classification decision plane towards
the minority class.

Cost-Sensitive Logistic Regression For cost-sensitive logistic regression,
we assign different weights vi to positive and negative class instances xi:

vi =

{
n2/N xi ∈ C1
n1/N xi ∈ C2

(3.38)

Where n1 and n2 are the number of sample instances in class C1 and C2, re-
spectively, and N = n1 + n2. With this definition, we define the weighted log
likelihood function to replace Equation 3.20:

`(w) =
N∑
i=1

vi

{
yiw

>xi − log (1 + ew
>xi)

}
. (3.39)

Again we apply the Newton-Raphson method to maximize the weighted log
likelihood in Equation 3.39. The Newton step in Equation 3.24 can be modified
accordingly as follows,

w = w + (X>HVX)−1X> (y − p) V. (3.40)

Here V is a diagonal matrix with its diagonal elements filled with vi, i.e., V =
diag(v), where v = [v1, v2, . . . , vN ]>.

Cost-Sensitive Linear SVMs The cost sensitive linear SVM is implemented
in a similar way to the cost sensitive logistic regression, where we assign indi-
vidual weights vi to the training instances with respect to their class labels.

Cost-Sensitive Boosting Similarly, we also apply a cost-sensitive boosting
algorithm for boosting and combining weak classifiers. A simple modification is
applied in Algorithm 1. Instead of assigning even weights to all data instances
in the initialization step, we assign different weights for positive samples and
negative samples, respectively. In particular, we assign

wi =

{
1/2n1 xi ∈ C1
1/2n2 xi ∈ C2

(3.41)

Where n1 and n2 are the number of sample instances in class C1 and C2, respec-
tively.
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(a) (b) (c)

Figure 3.11: Boosted PCT feature locations. (a) Boosted PCT feature locations

in PCT-BAM; (b) Boosted PCT feature locations in the original

scale in MSPCT-BAM; (c) Boosted PCT feature locations in the

half scale in MSPCT-BAM.

3.2.3.3 Learned Appearance Models

We train an appearance model using linear SVM as weak classifier. The training
set contains 400 annotated images. For each annotated image, we generate ten
negative training samples. The cost sensitive method is applied for handling
the imbalanced data problem. Figure 3.11(a) plots the top 40 locations of the
boosted features in the learned appearance model. The feature locations are
indexed in a 30 × 30 mask image. The gray pixels inside the mask indicate
the locations of the boosted features. Note that the boosted PCT features are
mainly located around the natural facial features, i.e. the eyes, nose, and mouth
region. The features extracted at those locations contribute the most to the face
alignment.

The PCT features extracted on the images at different scales 2−j might con-
tribute additional discriminative information for face alignment, where j is the
level index in a multi-scale image pyramid. We also boost PCT features on
different scales (j = 0, 1, 2, 3) of the shape-free images. The location of the
boosted features in the original scale (j = 0) and the half scaled image (j = 1)
are displayed in Figure 3.11(b) and (c), respectively. These feature locations are
boosted together with all scales. We found that actually there are no features
boosted at the scale level 2 and 3, because the images are too small to obtain
useful features. Hereafter, we refer to the single scale face model as PCT-BAM
(PCT-based boosted appearance model) and the multiple scale face model as
MSPCT-BAM.
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3.3 Face Alignment

In order to align a PCT-BAM to the face in a given image I, we maximize the
classification score function (cf. Equation 3.35) with respect to the shape pa-
rameter p. In other words, we need to find the optimal shape parameter, which
maximizes the score function. As the score function involves nonlinear image
warping, optimizing the objective function is a nonlinear problem. We applied
the gradient ascent method to solve this problem in an iterative manner.

The gradient ascent method is a local optimizer, in which a reasonable initial-
ization of the shape parameter p0 is required. Assuming the current shape
parameter p at the i-th iteration of an alignment procedure, we update p using
the gradient information as follows:

p = p + ν
dF

dp
, (3.42)

where ν is a suitable constant. From Equation 3.8, 3.35, and 3.36, one can
calculate the derivative of F with respect to p:

dF

dp
=

2

π
ΣM
m=1

αΣK
i=1w

m
i S(ϕmi )(1− S(ϕmi ))[∇I∂W

∂p
]>Am

i

1 + [ΣK
i=1wiS(ϕmi ) + bm]2

, (3.43)

where ∇I is the gradient of the image evaluated at W(x; p), and ∂W
∂p

is the
Jacobian of the warp. The update is repeated several times until the stopping
criterion is satisfied. The stopping criterion will be discussed in Section 3.4.

The detailed fitting steps are summarized in Algorithm 2. In the first step
(line 3), the shape-free image I(W(x; p)) is calculated with the piece-wise affine
warping W(x; p). The second step (line 4) is to compute the PCT features for
each weak classifier. The third step (line 5) interpolates the gradient of I at
the known warped coordinates W(x; p). The fourth step (line 6) is to multiply
∇I and the pre-computed ∂W

∂p
. The result SD = ∇I∂W

∂p
is called the steepest

descent image, which is an N ×n matrix, where n is the number of shape bases.
The fifth step (line 7) is to apply the PCT, which is selected for training a weak
classifier, on the SD and project the output with wm. Basically, the output dm
can be considered as the gradient direction derived from each weak classifier. Its
contribution to the final gradient dF

dp
is weighted by 1

1+e2m
in the sixth step (line

8), which combines the weighted gradient directions from each weak classifier.
Finally, the shape parameter vector p is updated (line 9).
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Algorithm 2: The face alignment algorithm of PCT-BAM

Data: Input image I, initial shape parameters p, pre-computed

Jacobian ∂W
∂p

, the shape model Ps and the appearance model.

Result: Shape parameters p.

Compute the 2D gradient of the image I.1

repeat2

Compute I(W(x; p)) by warping image I with W(x; p) ;3

For each weak classifier compute the feature:4

em = ΣK
i=1wiS(ϕmi ) + bm;m = 1, 2, . . . ,M ;

Interpolate the gradient of image I at W(x; p) with bi-linear5

interpolation ;

Compute the steepest descent SD = ∇I∂W
∂p

;6

Compute the PCT feature from each column of SD and project with7

wm: dm = αΣK
i=1w

m
i S(ϕmi )(1−S(ϕmi ))[∇I∂W

∂p
]>Am

i ;m = 1, 2, . . . ,M ;

Compute ∆p using ∆p = ν 2
π
ΣM
m=1

dm
1+e2m

;8

Update p = p + ∆p ;9

until ‖s(∆p)‖ ≤ τ ;10

3.4 Experiments

To assess the effectiveness of the proposed model, we evaluate face alignment on
a set of annotated images. Labeling facial landmarks on face images is a tedious
and time-consuming work. There are some annotated databases available so
far, such as the IMM database [SEL03] and the XM2VTS database [MMK+99],
which are annotated with 58 and 68 landmarks respectively. However, the num-
ber of subjects in the IMM database is rather limited, while the variation in
the XM2VTS database is not sufficient. Recently, there are a few annotated
databases released, which contain face images downloaded from the web us-
ing simple text queries on the sites such as google.com, flickr.com, and ya-
hoo.com [BJKK11, KWRB11]. However, the images in these databases are
labeled with sparse facial landmarks, the corresponding shape-free images may
contain severe artifacts due to the nature of piece-wise affine warping. Due
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to this reason, we collect a set of facial images with sufficient variations and
annotate each image with relatively dense facial landmarks.

3.4.1 Evaluation Data Set and Procedure

The data set for evaluation in this work contains 1529 images. These im-
ages are collected from multiple publicly available databases, including the
FRGC v2.0 database [PFS+05], the FERET database [PWHR98], the IMM
database [SEL03], and the Labeled Faces in the Wild (LFW) database [HRBLM07].
Figure 3.12 shows sample images from these four databases. The collected im-
ages are partitioned distinctively into four subsets. Table 3.1 lists the properties
of each database and partition. Set 1 includes 400 images (one image per sub-
ject), where 200 images are from the FRGC database and the other 200 images
are from the FERET database. Set 1 is used as the training set. Set 2 includes
389 images from the same subjects but different images than the FRGC database
in Set 1. Set 3 includes 240 images from 40 subjects in the IMM database that
were never used in the training. Set 4 includes randomly selected 500 images of
500 subjects from the LFW database. This partition ensures that we have two
levels of generalization to be tested, i.e., Set 2 is tested as the unseen data of
seen subjects; Set 3 and 4 are tested as the unseen data of unseen subjects. Set
4 is a particularly challenging data set, since it is collected from the Internet.
The images were captured under cluttered background and various real-world
illumination environments using different types of cameras. There are 58 man-
ually labeled landmarks for each of the 1529 images. An example of annotated
image is shown in Figure 3.1. The images are down-sampled such that the fa-
cial width is roughly 40 pixels across the set in order to speed up the training
process.

We compare our proposed PCT-BAM and MSPCT-BAM to the Haar feature-
based BAM (Haar-BAM). AAM is also compared, although it has already been
shown in [Liu07] that the Haar-BAM outperforms AAM. We train the appear-
ance models with Set 1 by taking the shape-free images extracted with ground
truth landmarks as the positive samples and the negative samples are generated
by perturbing the shape parameters of the ground truth shapes uniformly in a
range of the corresponding deviations. We generate 10 negative samples for each
image and in total 4000 negative samples are obtained. The shape model has
15 shape bases, which preserve 95% of shape variations. We use the same mean
shape size as in [Liu07]; that means the size of shape-free images is 30×30 pixels.
The resulting appearance models contain 50 weak classifiers, where in the PCT-
based models, the linear SVM is used for learning weak classifiers. Note that
without further specification, PCT-BAM always refer to a BAM in which the
linear SVM is applied for training weak classifiers based on the PCT-features.
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(a) (b)

(c) (d)

Figure 3.12: Sample images from the face data sets: (a) FRGC v2.0 database;

(b) FERET database; (c) IMM database; and (d) LFW database.
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FRGC FERET IMM LFW

Images 589 200 240 500

Subjects 200 200 40 500

Variation Expression, lighting Pose Pose, expression, lighting All

Set 1 200 200

Set 2 389

Set 3 240

Set 4 500

Table 3.1: Summary of the data set.

The texture model in the AAM has 75 bases, which also preserve 95% of texture
variations. We use the Simultaneous Inverse Compositional method [GMB05]
for the AAM fitting.

The false alarm rate (FAR) of the strong classifiers of the three models are
plotted in Figure 3.13. The FAR is plotted as a function of the number of weak
classifiers, when the miss-detection rate on the training set is set to 0%. The
plot shows that both PCT-based models converge faster than the Haar-BAM.
In particular, for 50 weak classifiers the FAR’s of MSPCT-BAM and Haar-BAM
are 1.17% and 7.15%, respectively.

A faster convergence means that it is less likely to have local maxima on a
classification score surface. Figure 3.14(a) shows that for a given image, a
concave surface of classification scores can be observed, while perturbing the
shape parameters along two shape bases. The x-axis and y-axis correspond to
the perturbation indexes for the 4th and 5th shape bases, respectively. The z-
axis corresponds to the classification score. The concavity property of the score
surface ensures that the gradient ascent algorithm can perform well.

The perturbation range is set to be 1.6 times the deviation of these two bases.
When the perturbation is at the maximal amount for two bases, the correspond-
ing four perturbed landmarks are plotted at Figure 3.14(b). To see the prop-
erties of score surfaces, more surfaces are plotted as images in Figure 3.14(c),
where the intensity corresponds to the classification score. Each sub-image is
generated in the same way as in Figure 3.14(a). In most cases, we see the in-
tensity changes from high to low, when the pixel deviates from the center, i.e.,
the alignment gets less accurate. This monotonic surface is important for a
successful face alignment algorithm.
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Figure 3.13: False alarm rate of the strong classifiers, when the miss-detection

rate on the training set is set to 0%.

3.4.2 Experimental Results

3.4.2.1 Evaluation Metrics

In the evaluation, we use the randomly perturbed ground truth landmarks to
initialize each alignment. In order to perform a statistical evaluation of the re-
sults, we repeat the random perturbation multiple times on each test image. The
initial position of the landmarks is generated by perturbing the shape parameter
with independent Gaussian noise with variances multiple of the corresponding
deviations. An alignment is considered as converged if the Root Mean Square
Error (RMSE) between the aligned landmarks and the ground truth is less than
one pixel. For the converged trails, we use two metrics to measure the robustness
and accuracy of the alignment. The Average Frequency of Convergence (AFC),
which assesses the robustness of the alignment is calculated as the number of
converged trials divided by the total number of trials. The second metric is the
histogram of the RMSE (HRMSE) of the converged trials, which measures how
close the aligned landmarks are to the ground truth.

The evaluation in face alignment using different models is conducted under the
same conditions. All algorithms are initialized with the same set of randomly
perturbed landmarks. The same step-size ν in Equation 3.42 is used for all
BAMs. A common termination condition is used. That is, if the number of
iterations is larger than 55 or the RMSE between consecutive iterations is less
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Figure 3.14: (a) The classification score surface, while perturbing the shape pa-

rameters in the neighborhood of the ground truth along the 4th

and 5th shape bases; (b) The four perturbed facial landmarks,

when the perturbations are at the four corners of the surface

above; (c) The classification score surface of five facial images

(one by each column), while perturbing the shape parameters along

pairs of shape bases (from top to bottom (p1, p2), (p2, p3), (p3, p4),

(p4, p5),(p5, p6)).
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than 0.025 pixels. Figure 3.15 plots the AFC of the PCT-BAM, MSPCT-BAM,
Haar-BAM and AAM-SIC against the level of the initial landmarks perturba-
tion, computed over Set 1, 2, 3, and 4, respectively. For each perturbation level,
we randomly perturb each image of each set five times.

3.4.2.2 Comparison

The AFC plots in Figure 3.15 show that all the discriminative BAMs achieve
better alignment results than AAM over the four data sets, which again demon-
strates the effectiveness of the discriminative models in face alignment. The
results also show that the MSPCT-BAM-based alignment achieves comparable
results on the seen data (Set 1 and 2). The robustness of the MSPCT-BAM-
based alignment is slightly better than Haar-BAM based alignment with increas-
ing perturbing variance. However, in the experiments on unseen data (Set 3 and
4), the PCT-based (both PCT-BAM and MSPCT-BAM) alignment outperforms
the Haar-BAM-based alignment significantly as plotted on the third and fourth
row in Figure 3.15. On Set 3, the convergence rate in the MSPCT-BAM fitting
is slightly better than Haar-BAM at 0.2σ perturbation level. However, when the
perturbation range increases to 1.6σ, the AFC value of MSPCT-BAM is 13%
higher than Haar-BAM. On the most challenging testing set (Set 4), in which the
imaging conditions are totally different from each other, the performance of both
algorithms degrades a lot. However, the performance drop of PCT-BAM (11%)
is less than that of Haar-BAM (22%) at the first perturbation index. Additional
PCT features selected on other scales also improve the robustness of alignment
with large perturbation as can be observed consistently through all the experi-
ments. The accuracies of the three methods are comparable as we can see from
the HRMSE plots. The PCT-BAM is slightly superior to Haar-BAM again on
the unseen data as displayed in Figure 3.15. Overall, our PCT-based alignment
has a better generalization capability than the Haar-BAM-based alignment.

The reason for the performance gains on unseen data is probably that the re-
sponses of the PCT filter are somewhat similar to the Laplacian filter, which is
a high-pass filter. The 3× 3 filter mask in the center of Figure 2(b) is indeed a
discretized Laplacian filter. Thus, the corresponding filter responses are less sen-
sitive to illumination changes, which make the PCT-based approach generalize
better on unseen data with mismatched illumination conditions.

3.4.2.3 Model Parameters

In this section, we analyze the effects of different parameters in building the
boosted classification appearance models.
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Figure 3.15: Alignment results of different algorithms on Set 1, 2, 3, and 4.

From top to bottom, each row corresponds to the results on one

set. The left column plots the AFC curves and the right column

plots the HRMSE.
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LDA LR SVM LDA LR SVM

Perturbation 0.8σ 1.6σ

Set 1 0.941 0.957 0.953 0.446 0.489 0.471

Set 2 0.965 0.971 0.968 0.490 0.497 0.493

Set 3 0.769 0.778 0.774 0.330 0.336 0.343

Set 4 0.616 0.621 0.625 0.166 0.171 0.165

Table 3.2: Comparison of alignment performance in AFC rates applied with

different types of linear weak classifiers. The AFC rates are obtained

at 0.8σ and 1.6σ perturbation levels for initialization.

3.4.2.3.1 Type of Weak Classifier Three different linear model-based weak
classifiers are reviewed in Section 3.2.2.2. The cost sensitive method is applied
in the training phase of these weak models. We compare the alignment results
achieved from the appearance models based on these weak models. Table 3.2
lists the alignment convergence rates on the four evaluation data sets at two lev-
els of shape perturbation, namely, at 0.8σ level and 1.6σ level. From this table,
we observe that the logistic regression (LR)-based weak model outperforms the
other two models in most cases. Yet on Set 3, SVM achieves a slightly better
AFC rate at 1.6σ perturbation level than LR. The results of LDA-based weak
model are the worst over all sets and perturbation levels, due to its generative
modeling and additional parameters estimation for Gaussian models. However,
the differences between the results are not very high. The largest absolute per-
formance difference in AFC rate is 4.3%, which is between LDA and LR on Set
1 at the highest perturbation level.

3.4.2.3.2 Number of Weak Classifiers The number of boosted weak clas-
sifiers is an important parameter for learning a good appearance model. On one
hand, we want to select more distinct features to improve the representation
power of the model. On the other hand, we also want to avoid overtraining.
Also, the increased number of weak classifiers increases the computation load
for model fitting. We plot the alignment results in Figure 3.16 with an increas-
ing number of weak classifiers selected. The appearance model uses linear SVM
as weak classifier. The number of weak classifiers (or selected features) ranges
from 10 to 100. Average convergence rates are reported at 0.8σ and 1.6σ per-
turbation levels. From Figure 3.16(a) and (b), we can see that the alignment
performance increases drastically, when less than 50 features are selected. Af-
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Figure 3.16: Effects of different number of weak classifiers in PCT-BAM. (a)

AFC at perturbation level 0.8σ; (b) AFC at perturbation level

1.6σ.

terwards, the convergence rates are still increasing, but not very remarkably.
On Set 3 and Set 4, the alignment performance stops to increase as the num-
ber of selected features is approaching 100. This shows the evidence that the
learned appearance model tends to be overtrained, when more weak classifiers
are added.

3.4.2.3.3 Size of Reference Shape Until now, the appearance models are
trained using a reference shape, which has a width of 30 pixels. As the hypothesis
space of the PCT feature is low, it is tractable to train models with a larger
reference shape. We analyze the effects of reference shape size for alignment
by changing the size ranging from 20 to 60 pixels. Note the size of a reference
shape corresponds to the scale of the masked shape-free image. We train the
appearance models with linear SVM as weak classifiers and in total 100 weak
classifiers are boosted. The alignment results are compared in Figure 3.17(a)
and (b), at 0.8σ and 1.6σ perturbation levels, respectively. We observe that
the alignment performance is enhanced with enlarged mask size. The alignment
AFC rate with 1.6σ perturbation on Set 3 approaches to its peek of 42%, when
the mask image has a width of 35 pixels. When the mask size increases further,
the performance starts to decrease again. This observation suggests that a
larger reference shape provides more detailed and distinctive feature for learning
a good appearance model. However, an overlarge mask may introduce noise
in the appearance modeling, due to the locality property of the PCT feature.
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Figure 3.17: Effects of different size of masks (width in pixels) in PCT-BAM.

(a) AFC at perturbation level 0.8σ; (b) AFC at perturbation level

1.6σ.

Furthermore, the hypothesis space is also extended with increasing mask size,
therefore, boosting 100 features might be suboptimal. We leave this for future
study.

3.4.2.3.4 Effects of Sampling We finally discuss the effects of the training
samples for learning classification based appearance models. In particular, we
address the imbalanced data problem in model training. First, we show the
necessity of generating more negative training samples for covering the varia-
tions of image background. Figure 3.18 demonstrates the alignment results for
the appearance models trained with an increasing number of negative samples.
The horizontal axis indicates the ratio of negative samples to positive samples.
From the plots, we see that generating one negative sample from one labeled
image is not enough. Setting the ratio to 10 is already a good number, yet
the performance gain is limited, if a higher ratio is used. Note that the results
plotted in Figure 3.18 are achieved with the cost sensitive method applied.

In addition, we also show the effectiveness of oversampling for augmenting the
positive training samples. Figure 3.19 compares two oversampling methods.
AUG+I denotes the first method as described in Section 3.2.3.2.1, where the
positive training samples are augmented with slightly perturbed ground truth
data. AUG+II denotes the second method, where synthetic positive samples
are generated. Note for both methods, 10 positive and negative samples are
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Figure 3.18: Effects of training sample ratio in PCT-BAM. (a) AFC at pertur-

bation level 0.8σ; (b) AFC at perturbation level 1.6σ.

generated with each labeled image. The method AUG0 means no sample aug-
mentation is applied, i.e., one labeled image generates a pair of positive and
negative samples. The method AUG- corresponds to the cost sensitive ap-
proach, in which a sample ratio of 10 is used. From the results, we learn that
the first oversampling method is a good choice for handling the imbalanced
data problem. The cost sensitive method is suboptimal, but the differences are
minor.

3.5 Conclusions

We introduce the PCT-based boosted appearance model (PCT-BAM), a new
discriminative appearance model, which is found to be suitable for robust face
alignment. The adopted PCT feature has a much smaller parameter configura-
tion space, which enables efficient model training compared to the training pro-
cedure of the Haar-BAM. We compared the proposed PCT-based alignment to
the Haar-BAM on seen data and unseen data. Our experimental results on seen
data are slightly better. However, our PCT-BAM model shows significant per-
formance improvement on unseen data, which means that the proposed model
has a better generalization capability on unseen data. Additional PCT features
selected on other scales also improve the robustness of alignment with large
perturbation as can be observed consistently through all the experiments.
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Figure 3.19: Effects of training sample augmentation in PCT-BAM. (a) AFC at

perturbation level 0.8σ; (b) AFC at perturbation level 1.6σ.
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4 Ranking Appearance Models

In this chapter, a ranking based discriminative appearance model is presented.
We start this chapter with a short motivation of formulating the appearance
modeling as a learning to rank problem in Section 4.1. Section 4.2 and 4.3 de-
scribe the details of learning a ranking face model and training data generation.
The experimental results for assessing the effectiveness of the ranking-based
model are given in Section 4.5. We give concluding remarks for this chapter in
Section 4.6.

4.1 Introduction

The proposed classification-based appearance model has shown its improved
robustness and generalization ability compared to AAM and the Haar-based
model. However, it suffers from the imbalanced training data problem as has
been shown in Section 3.2.3.2. We propose a few solutions to mitigate the
problem by applying the sampling or cost sensitive method. However, avoiding
the imbalanced problem by reformulating the model learning is a more elegant
solution. On the other hand, as shown in Figure 4.1(a), the classification based
score function might not be smooth enough due to the nature of the classification
loss functions. As the classification loss functions do not distinguish different
negative samples, the resulting score function might be flat or contains many
local maxima at the locations that are far from the true shape. This leads to
a slow convergence, if the local minimizer uses a fixed step size and often the
fitting can easily get stuck in local extrema.

In this chapter, we present another discriminative appearance model, which is
based on learning ranking models. Instead of distinguishing the correctness of
alignments, the ranking models infer the order of two paired alignments. The
ranking-based appearance model (RAM) is trained by boosting a score function
in a pairwise ordinal classification way. This model ensures that the score func-
tion returns a higher value, if the current alignment is closer to the ground truth
than the others in the shape parameter space (cf. Figure 4.1(b)). Figure 4.1(b)
illustrates the iso-contours of a ranking score function in the shape parameter
space. The superimposed shape-free images reflect the preference of alignments.
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A local optimizer benefits from such a model as the gradient of the learned
score function is constrained to the same direction towards the ground truth.
The proposed ranking appearance model shares a similar idea as presented
in [WLD08, ZZCM08], however, we apply the pairwise RankSVM [HGO00] over
the PCT features to build weak rankers and the final strong ranking function is
obtained by selecting and combining weak rankers in a boosting framework.

We demonstrate in the experiments that the ranking based appearance model
achieves better alignment convergence rates than the classification based model.

(a) (b)

(c)

Figure 4.1: (a) Classification cost function; (b) Ranking cost function; (c) Learn-

ing preference (partial ordering).
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4.2 Face Model

The presented face model in this chapter includes a shape model and an ap-
pearance model. The shape model is a generative model, which is also applied
in Chapter 3, as well as in many other statistical deformable models [CT92,
CET98a]. The appearance model in this chapter is constructed with the appli-
cation of a ranking model.

4.2.1 Appearance Model

As with the classification-based appearance model, we define the ranking-based
appearance model on the shape-free images I(W(x; p)). Here, W(x; p) is a
nonlinear warping function defined by the shape parameters p. In other words,
a shape-free image is a shape normalized image, which is also parametrized by p.
We extract a set of local features on the shape-free images and learn a ranking
function F (I(W(x; p))), which predicts the preference of alignments.

The PCT features are adopted as our feature representation, which show supe-
rior alignment performance in Chapter 3 compared to the Haar features. For the
detailed description of the proposed PCT feature, please refer to Section 3.2.2.
For simplicity, we again fix the parameter K = 9, i.e., we extract a PCT feature
in a 3× 3 local neighbourhood.

4.3 Learning Ranking Appearance Models

Learning ranking models is a supervised or semi-supervised machine learning
problem, which is becoming a popular research topic due to the increasing de-
mand on internet services, such as information retrieval and recommender sys-
tems. The problem differs from other supervised machine learning problems,
such as classification and regression in the characteristic of the output space
and the loss function. The classification output space is a finite unordered set
and usually the 0 − 1 loss is used. The output space for regression is a metric
space, i.e. a set of real numbers. The L2 metric is often used for defining a loss
function. The output space for ranking is also a finite set, however, there exists
a partial ordering among the elements. As there is no metric defined on this
space, we cannot use metric loss function. The simple 0−1 loss for classification
problem cannot reflect the partial ordering in the ranking output space.

According to [Liu09], the learning to rank problems can be categorized into three
groups by their input representation and loss function: (a) pointwise approach,
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(b) pairwise approach, and (c) listwise approach. The pointwise approach as-
sociates each training sample with a numerical or ordinal score. This approach
is approximated with conventional machine learning methods, such as ordinal
classification [LBW07b] or regression [ZCSZ07]. In Chapter 5, we discuss an
appearance model based on ordinal regression. We categorize it as a regression
model due to the defined loss function. The pairwise approach learns a binary
classifier, which determines the preference between a given pair of data sam-
ples. The goal is to minimize the average number of swaps in ranking. There
are many successful works, which are based on the pairwise approach, such
as RankSVM [HGO00] and BoostRank [FISS03]. The listwise approach tries
to optimize directly some evaluation metrics, such as mean average precision.
Examples of such approach are ListNet [CQL+07] and many of its extensions.

As we are not interested in optimizing any measures for information retrieval,
we focus on minimizing the error of pair swapping. Hence we adopt a pairwise
approach for learning our ranking based appearance model. In particular, we
use a pairwise ordinal classification based method.

4.3.1 Pairwise Ordinal Classification-based RAM

The pairwise approach does not focus on accurately predicting the preference
degree of each data sample (in this case alignment). It cares about the relative
order between two alignments, which reflects relative preferences. In this sense,
it is closer to the concept of “ranking” than the pointwise approach.

As mentioned before, the pairwise approach is usually approximated with a
classification problem on pairs of alignments, i.e., to determine which alignment
in a pair is preferred. In other words, the goal of learning is to minimize the
number of miss-ordered alignment pairs. Note that this pairwise classification
differs from the classification in the pointwise approach, since it operates on
every two alignments under investigation.

The input space of the pairwise classification approach contains pairs of align-
ments; both are represented by the feature vectors extracted on their corre-
sponding shape-free images. The output space contains the pairwise preferences
Y ∈ {+1,−1} between each pair of alignments. The hypothesis space contains
bi-variate functions h that take a pair of alignments as input and output the
relative order between them. In this work, we use a scoring function (ranking
function) f to define the hypothesis, i.e. h(x(1),x(2)) = 2 · If(x(1))>f(x(2)) − 1, or
to be more precise:

h(x(1),x(2)) =

{
+1 f(x(1))− f(x(2)) > 0
−1 f(x(1))− f(x(2)) ≤ 0

(4.1)
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The loss function measures the inconsistency between h(x(1),x(2)) and the ground
truth label y(1),(2). The classification loss is usually expressed with the differ-
ences (f(x(1))− f(x(2))).

Similarly as in Chapter 3, we learn a score function in a boosting framework as
our appearance model. The score function is a combination of a set of selected
weak ranking functions.

4.3.2 Weak Ranking Function

The weak ranking function is learned with pairwise ordinal classification with
the pairs of extracted feature vectors (in this case the PCT features). We use
RankSVM [HGO00] for learning our weak ranking functions.

RankSVM applies the maximum margin principle to perform pairwise classifi-
cation. Given a set of paired feature vectors (x

(1)
i ,x

(2)
i ) extracted from paired

alignments, where i = 1, . . . , N , and the corresponding ground truth label yi, the
mathematical formulation of RankSVM is shown below, where a linear scoring
function is used, i.e., f(x) = w>x,

min
1

2
‖w‖2 + λ

N∑
i=1

∑
yi

ξi (4.2)

s.t. w>(x
(1)
i − x

(2)
i ) ≥ 1− ξi, if yi = 1, (4.3)

ξi ≥ 0, i = 1, . . . , N. (4.4)

As we can see, the objective function in RankSVM is very similar to that of
in SVM (cf. Section 3.2.2.2.3), where the term 1

2
‖w‖2 controls the complexity

of the model w. Minimizing this term also corresponds to maximizing the
margins between different rank levels. The difference between RankSVM and
SVM lies in the constraints, which are constructed from alignment pairs. The
loss function in RankSVM is a hinge loss defined on data pairs. For example,
for a training pair, if alignment x(1) is labeled as being better than alignment
x(2), i.e., y = 1. Then, if w>x(1) is larger than w>x(2) by a margin of 1, there
is no loss. Otherwise, the loss will be ξ.

Since RankSVM is well rooted in the framework of SVM, it inherits desir-
able properties of SVM. For example, with the help of margin maximization,
RankSVM can have a good generalization ability. Kernel tricks can also be ap-
plied to RankSVM, so as to handle complex non-linear problems. In this study,
however, we focus on the linear kernel for easing the derivation of the alignment
algorithm.
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4.3.3 Boosting A Strong Ranking Function

The RankSVM described above provides a linear ranking function f(x) = w>x,
which predicts the absolute preference degree of an alignment with its corre-
sponding shape parameter p. To learn a strong ranking function, we select
and aggregate the most discriminative weak ranking functions in a boosting
framework. We define a weak ranking function as follows:

fm(p) =
1

π
atan(wm>S(ϕm)− tm). (4.5)

Note that fm(p) is continuous within (−0.5, 0.5), the atan() function is used to
ensure both discriminability and derivability. ϕm is a PCT vector as defined in
Section 3.2.2. The S(·) is a sigmoid function, which normalizes the raw PCT
feature values into a range of (0, 1) before the linear projection defined by a
projection vector wm learned with RankSVM. The threshold tm needs to be
determined during boosting. The strong ranking function is assumed to be an
additive model:

F (p)=̇
∑M

m=1
fm(p). (4.6)

With the ranking function given above, we define the strong hypothesis function
for pairwise classification: H(p1,p2) = sign[F (p1)−F (p2)], i.e. H(p1,p2) = +1
if p1 � p2, else H(p1,p2) = −1. We assume H to be an additive model:
H =

∑M
m=1 h(p1,p2), where hm(p1,p2) = fm(p1) − fm(p2). The Gentleboost

algorithm is applied for boosting the strong pairwise classifier, and eventually
the strong ranking function.

4.3.4 Training Data for Learning

To learn the strong ranking function F , we sample ordering pairs from a train-
ing data set containing D facial images with annotated landmarks. For each of
the training images, we randomly perturb the ground truth pi in U different
directions {∆piu}u=1,...,U . In each direction we evenly sample V shape param-
eters {pi + v ×∆piu}v=1,...,V . Note the samples generated in one perturbation
direction result in a list of fully ordered data, i.e. pi � piu1 � . . .piuV , which
corresponds to a correctly ranked query in the context of information retrieval.
Figure 4.2(a) illustrates the applied scheme for data sampling. Note that p0

stands for the ground truth shape parameter. The ellipse limits the range for
parameter perturbation and the rays denote the random directions of pertur-
bations. Figure 4.2(b) shows examples of shape-free-images extracted using the
perturbed ground truth shapes. Each row shows different random perturbation
directions and the columns show increasing perturbation levels in each direction.
From each direction, we can generate V ordinal adjacent pairs using the samples
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(a) (b)

Figure 4.2: (a) Sampling scheme; (b) Generated training samples.

including the ground truth. In total, N = D×U×V ordinal pairs are generated.
We denote each of the pairs as {x` = (x

(1)
` , x

(2)
` )}`=1,...,N , where x

(1)
` � x

(2)
` and

their corresponding label as z` = +1. The negative samples can be generated
by reversing the order of each pair and assigning corresponding label with −1.
However, due to the definition of the hypothesis function for the pairwise ordi-
nal classification (cf. Equation 4.1), the negative pairs have the same impact
as the positive pairs. Hence we do not include the negative pairs to reduce
the redundancy and speed up training. The boosting procedure is summarized
in Algorithm 3. Equation 4.7 denotes that in each boosting iteration, a weak
ranking function fm is found by fitting weighted least squares.

4.4 Face Alignment with Rank Appearance

Model

We use gradient ascent method for model fitting in a similar way to Chapter 3.
Fitting the learned model to a novel image is done by maximizing Equation 4.6
with respect to the shape parameter p. A fixed step size is used in the iterative
optimization.
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Algorithm 3: PCT-RAM Learning

Data: Training samples, with labels {z` = +1}

Result: The alignment score function F

Initialize the weights w` = 1
N

and the score function F = 01

foreach m=1,. . . , M do2

Fit fm with weighted least squares, such that3

fm = arg min
f

∑
`
w`(z` − h(x`))

2 (4.7)

where h(x`) = f(x
(1)
` )− f(x

(2)
` )

F ← F + fm4

w` ← w` exp(−z`hm(x`))5

Normalize the weights such that
∑

`w` = 16

return F =
∑M

m=1 fm7

4.5 Experiments

4.5.1 Data and Setup

For evaluating face alignment using the proposed appearance model, we use
the data sets presented in Section 3.4.1. Set 1 is used for training the shape
and appearance models, and testing is conducted on all the four data sets for
analyzing generalization capability at different levels.

We denote the proposed appearance model as PCT-SVM-RAM, as it uses
RankSVM as weak classifier and PCT as feature representation. We train a
shape model with 15 components preserving 95% of shape variations. The size
of the shape-free images is 30×30 pixels. For each annotated training image, we
select U = 10 random directions and in each direction V = 6 positions are evenly
sampled. Including the position at ground truth, in total 6 adjacent ordinal pairs
can be generated. The overall training set includes N = 24000 (400×10×6) or-
dinal pairs. The resulting ranking appearance model includes 100 weak ranking
functions.
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In testing, we randomly perturb ground truth landmarks at different noise levels
for initializing each alignment. We repeat the random perturbation for each
noise level multiple times on each test image in order to perform a statistical
evaluation of the results. A fitting is considered as converged if the Root Mean
Square Error (RMSE) between the aligned landmarks and the ground truth is
less than one pixel. The Average Frequency of Convergence (AFC) is used as
the evaluation metric, which assesses the robustness of the alignment. The same
termination condition is applied for the fitting procedure as in Section 3.4.2.1.
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Figure 4.3: (a) The ranking score surface while perturbing the shape parameters

in the neighborhood of the ground truth along the 4th and 5th shape

bases (in the same way as in Figure 3.14(a)); (b) The ranking score

surface of 5 facial images (one by each column) while perturbing the

shape parameters along pairs of shape bases (from top to bottom

(p1, p2), (p2, p3), (p3, p4), (p4, p5),(p5, p6)).

4.5.2 Comparison

We analyze the response surface of the learned score function as in Section 3.4.1.
The response surface of the trained PCT-SVM-RAM is plotted in Figure 4.3(a),
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where the same test image (cf. Figure 3.14(b)) is used for generating the re-
sponse surface. The x-axis and y-axis correspond to the perturbation indexes
for the 4th and 5th shape bases, respectively. The z-axis corresponds to the
ranking score. The response surface is smooth and concave, which is favorable
for a local optimizer to find the global maximum. Note that the iso-contours of
the response surface are smoother than those in Figure 4.3(a), which indicates
that the ranking score function is smoother than the classification score func-
tion, due to the ordering constraints on the negative samples. Further response
maps are plotted in Figure 4.3(b) in contrast to Figure 3.14(c). They are gener-
ated on five different test images by perturbing parameters along two adjacent
shape bases.

We compare the alignment performance of the ranking appearance model with
the classification appearance model. The results are plotted in Figure 4.4 in
AFC rates at increasing perturbation levels. The methods PCT-BAM-W50
and PCT-BAM-W100 correspond to the PCT-based classification appearance
models with 50 and 100 weak classifiers, respectively. Linear SVM is used for
training weak classifiers. The methods PCT-RAM-W50 and PCT-RAM-W100
denote the ranking appearance models with 50 and 100 weak ranking functions,
respectively. MSPCT-RAM-W100 stands for the method with multi-scale mask
images. The AFC curves show that PCT-RAM improves the robustness of
face alignment compared to the PCT-BAM. When we observe the AFC rates
at the highest noise level, PCT-RAM-W100 outperforms PCT-BAM-W100 by
about 6.9% − 13.7% on different data sets. The most noticeable performance
gain is achieved on Set 3. Improving alignment on Set 4 is difficult, probably
due to the limitation of the shape model learned on Set 1. Interestingly, the
performance gains achieved by selecting increasing numbers of PCT features
in PCT-RAM are significant. For example, on Set 3, the AFC rate for PCT-
RAM-W100 at 1.6σ noise level outperforms PCT-RAM-W50 by 15.3%. This
indicates that the PCT-RAM selects more distinctive features than the PCT-
BAM and is less likely to be overtrained. Thus, the PCT-RAM is able to
generalize better on unseen data. The multi-scale appearance model, MSPCT-
RAM-W100, demonstrates its effectiveness on Set 1 and Set 2. However, the
performance gains on Set 3 and 4 are minor.

4.5.3 Effects of Reference Shape Size

We study the influence of mask size in the ranking appearance model learning.
In Section 3.4.2.3, we show that a proper mask size used in the classification
appearance modeling is essential. In this study, we train PCT-RAM-W100
with different mask image widths, ranging from 20 to 60 pixels. The AFC
curves are compared in Figure 4.5(a) and (b), at two different perturbation
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Figure 4.4: Alignment results of ranking-based appearance models on Set 1, Set

2 (first row) and Set 3, Set 4 (second row).

levels for alignment initialization. The results show that increasing mask size in
the PCT-RAM training also improves the alignment performance over all data
sets. Especially, on Set 1 and Set 2, the AFC rates keep increasing until the mask
image is enlarged to 45 pixels width. However, on Set 3, the optimal size for
the mask image is 35 pixels width at 1.6σ perturbation level. The performance
gains on Set 3 and Set 4 with enlarged mask size are less notable than on Set 1
and Set 2.

4.5.4 Effects of Training Pair Sampling

Instead of generating training pairs using the adjacent pairs sampled in each
perturbation direction, we also investigate random permutation of ordinal pairs.
In the experiment, we train PCT-RAM-W100 with R random ordinal pairs per
direction, where R = {1, 5, 6, 10, 15, 20, 21}. We repeat the training process 20
times to avoid randomness. The alignment AFC results at 1.6σ noise level are
shown in Figure 4.6, in which the average AFC rates and their variances are
plotted. The fitting performance of the models trained with only one ordinal
pair per direction does not degenerate much. In fact, the mean AFC rates vary
slightly with an increasing number of ordinal training pairs used. However, the
variances of the AFC rates decrease a lot when R increases.
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Figure 4.5: Effects of different size of masks (width in pixels) in PCT-BAM. (a)

AFC at perturbation level 0.8σ; (b) AFC at perturbation level 1.6σ.
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4.5.5 Effects of Number of Perturbation Directions

We finally discuss the effects of the number of perturbation directions for model
learning, i.e., the parameter U in Section 4.3.4. We vary this parameter from 1
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to 30 and train PCT-RAM-W100 with adjacent ordinal pairs sampled in each
perturbation direction. The alignment results at two noise levels are plotted in
Figure 4.7. Surprisingly, we observe that the alignment convergence rates do
not always increase, when the parameter U increases. Sometimes, the alignment
performance even degrades on Set 2 and Set 3. Based on this observation, we
argue that the number of perturbation directions is not a critical parameter in
training ranking appearance models, at least when trained on Set 1.
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Figure 4.7: Effects of number of queries in PCT-RAM. (a) AFC at perturbation

level 0.8σ; (b) AFC at perturbation level 1.6σ.

4.6 Conclusions

We investigate deformable appearance models for face alignment based on learn-
ing a ranking function. A pairwise ordinal classification-based method is adopted
for learning the ranking model. The PCT feature and RankSVM are used to
build weak ranking functions and a strong ranking function is learned via boost-
ing regression stumps. We compare the alignment performance of the proposed
ranking appearance model with the classification appearance model. Experi-
ments show that the alignment robustness and generalization ability is signifi-
cantly improved due to the smoothed cost function.
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5 Regression Appearance
Models

This chapter presents a regression based appearance model. We explain the
motivation of this method in Section 5.1. The face appearance model based
on an ensemble of regression trees is described in Section 5.2. We describe
the simplex-based optimization method for model fitting in Section 5.4. The
experimental setup and results are discussed in Section 5.5, and we conclude
this chapter in Section 5.6.

5.1 Introduction

Pointwise ranking learning is another effective approach for solving the learn-
ing to rank problem, as is stated in Section 4.3. Popular methods for this
type of ranking learning can be pointwise classification [LBW07b] or regres-
sion [ZCSZ07]. The pointwise classification method actually corresponds to a
multi-class classification problem, in which the relationship of partial ordering
is ignored. Although there is no metric defined in the ranking output space,
the partial ordering relationship is preserved in the regression method in a more
constrained way. Recent works in information retrieval demonstrate that the
pointwise ordinal regression methods achieve appealing performance in solving
the learning to rank problem.

In this chapter, we focus on learning a ranking appearance model based on a
pointwise regression method. Due to the fact that the model training is based
on minimizing regression loss, we categorize this approach as the regression-
based appearance model (REAM). In particular, we propose to use the gradient
boosting regression trees (GBRT) [Fri00] for learning a REAM. As the GBRT
is well-known for function approximation, we use it for approximating a desired
cost function for face alignment. In addition, it has been shown that the GBRT
achieves top results in the domain of web-search ranking [MCW11]. To over-
come the drawbacks of the GBRT, e.g. prone to overfitting and slow convergence
rate, we train Random Forests (RF) and use the outputs as the initial estima-
tion for the GBRT learning. The PCT features and the MCT features are used
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for appearance representation. A simplex-based direct search method is applied
for optimizing the learned alignment cost function. Experimental results show
that the regression trees-based REAM achieves superior results than the pair-
wise ordinal classification model. The initialization step for the GBRT learning
results in a very robust face alignment, which improves performance by about
23.4%− 26.1% on different data sets compared to the model based on pairwise
ordinal classification.

5.2 Face Model

The presented regression-based appearance model includes a statistical shape
model based on the 2D PDM (cf. Section 3.2.1) and an appearance model,
which is constructed with the application of a regression model.

5.2.1 Feature Representation for the Appearance

Model

The regression-based appearance model is again defined on the masked shape-
free images I(W(x; p)), which represents the texture information inside the
convex hull of a shape, controlled by the parameter vector p. The nonlinear
warping function W(x; p) defines the texture mapping from a shape instance
to a reference shape.

We extract local structural features from the masked shape-free images and use
them as our appearance model representation. In this work, the Modified Cen-
sus Transform (MCT) and the Pseudo Census Transform (PCT) are applied.
The MCT is originally proposed in [FE04] for developing an efficient and ro-
bust face detection algorithm. It is a non-parametric transform inspired by the
Census Transform, which is first introduced by Zabih and Woodfill [ZW94] for
texture analysis. The transform is defined as a set of 3 × 3 kernels which cap-
tures the local spatial structure of an image. It compares the pixel intensities
between all the pixels of the 3 × 3 neighborhood and the average intensity in
the neighborhood. More formally, we define Ī(x) as the average of the pixel
intensities in a 3× 3 local spatial neighborhood N(x) of the pixel x. The MCT
generates an ordered bit string indicating which pixels in N(x) have an inten-
sity higher than Ī(x). Let ζ(Ī(x), I(y)) = 1 if Ī(x) < I(y) be the comparison
function and ⊗ be the concatenation operator, then the transform is defined
as: Γ(x) = ⊗y∈Nζ(Ī(x), I(y)). An example MCT feature is illustrated in Fig-
ure 5.1(a), in which the resulting MCT has a binary value of 101111000 (=376 in
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decimal). Figure 5.1(c) shows a sample output of the MCT applied on a shape-
free image displayed in Figure 5.1(b). It has been proven that the transform
is fast and robust to illumination changes. The PCT feature is an unbinarized
version to the MCT and is introduced in [GEFS11] for deriving analytical align-
ment algorithm. The detailed description of the PCT feature can be found in
Section 3.2.2.

(a) (b) (c)

Figure 5.1: (a)MCT for extracting local structure feature; (b) A shape-free face

image; (c) MCT output of a shape-free image.

5.3 Learning Regression Appearance Models

The pointwise ranking function learning is a popular trend and achieves re-
markable results in the information retrieval domain [MCW11, CC11]. The
approaches based on the gradient boosting regression trees enjoy their impres-
sive success for learning ranking function with pointwise training [LBW07a,
MCW11], despite its simplicity. This inspires us to employ the GBRT for learn-
ing our regression-based appearance model.

5.3.1 Gradient Boosted Regression Trees

The gradient boosted regression trees (GBRT) [Fri00] is a machine learning
technique for function approximation, which is based on tree averaging. It
iteratively adds shallow trees with biased estimation. Each iteration focuses on
the data that are responsible for the current regression residue.
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We denote T (xi) as the current prediction of sample xi, and yi as the corre-
sponding ground truth response. The square loss: L = 1

2

∑N
i=1(T (xi) − yi)2 is

adopted as the loss function as it is widely used in solving regression problems.
The GBRT applies the gradient descent method to minimize the loss function in
the data space x1, . . . ,xN . During each iteration, the current prediction T (xi)
is updated with a gradient descent step:

T (xi)← T (xi)− α
∂L

∂T (xi)
, (5.1)

where α > 0 denotes the learning rate. Thus, a new tree ht(·) is chosen with
its responses most highly correlated with the negative gradient − ∂L

∂T (xi)
over the

data distribution:

ht ≈ arg min
h∈Td

N∑
i=1

(ht(xi)− ri)2,where : ri =
∂L

∂T (xi)
. (5.2)

As L is the squared loss, the gradient for a sample xi becomes the residual from
the previous iteration, i.e. ri = yi − T (xi). The standard CART (Classification
and Regression Trees) [Bre84] is applied to find a solution to Equation 5.2. Td
denotes the hypothesis space of regression trees with a depth of d.

The GBRT has a weakness, which lies in the inherent trade-off between the
step-size and early stopping. To obtain the true global minimum, the step-size
needs to be very small and the number of iterations becomes very large. This
results in a large number of regression trees, which essentially decreases the
efficiency of the model fitting. To tackle this problem, we try to initialize the
GBRT learning with a reasonable start point, which is close enough to the global
minimum. We borrow the idea in [MCW11], in which the Random Forests
(RF) [Bre01] method is applied for initialization. Basically, Random Forests
apply bagging and random feature selection to CART. The bagging (Bootstrap
aggregating) [Bre96] technique combines models that are trained on randomly
generated training sets. It improves the accuracy and robustness of predictions
by reducing estimation variance and avoiding overfitting. The Random Forest
is considered to be a good choice as it is insensitive to parameter choices and
offers low bias estimation as each of the trees are fully grown. One difference
between the RF and the GBRT is that, in the RF, only K uniformly chosen
features are evaluated to find the best point for each split. Furthermore, unlike
the sequential tree construction in the GBRT, the construction of a single tree in
the RF is independent of earlier trees; thus the algorithm is easily parallelizable.
Only two parameters need to be tuned. MRF specifies the number of trees in
the forest and K determines the number of features that each node considers
for finding the best split. As suggested in the original paper, we set K =

√
f ,

where f is the number of features.
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Algorithm 4: Random Forests initialized Gradient Boosted Regression

Trees
Data: D = {(x1, y1), . . . , (xN , yN)}, Parameters: α,MB, d,KRF ,MRF

Result: The initialized Gradient Boosted Regression Trees T

F ← RandomForest(D,KRF ,MRF )1

Initialization: ri = yi − F (xi), i = 1, . . . , N2

for t = 1 to MB do3

Find the ht with the CART according to Equation 5.2;4

Update residue ri ← ri − αht(xi), i = 1, . . . , N ;5

T (·) = F (·) + α
∑MB

t=1 ht(·)6

return T (·)7

5.3.2 Initialized GBRT-based Regression Model

The original GBRT is initialized with the average of the ground truth responses,
i.e. T0(xi) = ȳ, where ȳ = 1

n

∑N
i=1 yi. Consequently, the initial residual is

ri = yi − ȳ. To initialize the GBRT with a better estimation, which is closer to
the global minimum, the responses of the RF are used as the initial point for
the GBRT. We denote this initialized GBRT as iGBRT. Algorithm 4 details the
steps in iGBRT. The output of the final boosted regression model is actually
the response of the RF combined with the boosted regression trees.

5.3.3 Training Data for Learning

We apply iGBRT for learning a discriminative score function for face align-
ment. Basically, an ideal score function should return higher values, if the
shape parameter is closer to ground truth than the others. We adopt the data
perturbation approach introduced in Section 4.3.4 to generate samples from a
training data set containing D facial images with annotated landmarks. For
each of the training images, we randomly perturb the ground truth parameter
pi in U different directions {∆piu}u=1,...,U . In each direction we evenly sample
V shape parameters {pi+v×∆piu}v=0,...,V−1. In total, N = D×U×V samples
are generated. Instead of assigning ordinal class labels to the ordered pairs as in
Section 4.3.4, we assign ranking labels to each of the generated data point. That
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means we assign yi ∈ {1, . . . , V }, where the data generated using the ground
truth is assigned with the highest value, i.e. V . The other samples in the same
direction are assigned with V − ν, where ν = 1, . . . , V − 1.

The assignment with ranking values corresponds to a triangle target function
as displayed in Figure 5.2(a). In addition, we also investigate other nonlinear
functions as our regression target function. The Gaussian function (cf. Fig-
ure 5.2(b)) and cosine function (cf. Figure 5.2(c)) are used, expecting to learn
a smoother regression function. For the Gaussian function, we evenly assign
function values within three standard deviations. For the cosine function, the
function values are evenly assigned within the range [−π, π].

(a) (b) (c)

Figure 5.2: Functions for regression target assignment: (a) Triangle function;

(b) Gaussian function; (c) Cosine function.

5.4 Face Alignment with Regression

Appearance Models

The regression model with combined regression trees is considered as the cost
function for face model alignment. Our goal is to find the optimal shape pa-
rameters, which maximize the regression function given a testing image. The
optimization is a constrained optimization problem, in which the shape parame-
ters searching is limited with a shape prior. We convert the alignment objective
function to an unconstrained optimization as follows:

O(p) = −T (p) + β

n∑
i=0

p2i
λi
, (5.3)

where β is the parameter, which we estimate from the training data. λi is the
eigenvalue corresponding to the shape parameter pi. The first term in Equa-
tion 5.3 corresponds to the regression function to be maximized. The second
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term corresponds to the negative log-likelihood of the shape parameters, which
needs to be minimized.

We add an additional term to the alignment objective function based on the
idea of the Active contours [KWT88]. Here, an edge energy term is added to
the objective function (cf. Equation 5.3), meaning that a good alignment should
also have large edge responses along the contours of a face or other sub-regions
such as the nose and mouth. Example edge responses on different images are
shown in Figure 5.3. The edge responses are obtained by applying the Canny
edge detector on the Gaussian smoothed images. A post processing step with
morphological dilation is applied to connect the detected contours. With the
additional constraint on the edge responses, the alignment objective function is
then defined as:

O(p) = −T (p) + β

n∑
i=0

p2i
λi
− γ

v∑
j=0

E(xj). (5.4)

Where γ denotes the weight for the edge term, which is also estimated from the
training data. E(xj) denotes the edge response value at location xj for the j-th
vertex in a model shape.

Figure 5.3: Edge responses (second row) superimposed on the original images.

The first row shows the corresponding original images.

As it is difficult to derive the analytical gradient for the learned objective func-
tion using regression trees, we apply the Nelder-Mead simplex method [NM65]
to minimize Equation 5.3. The Nelder-Mead algorithm is designed to solve the
classical unconstrained optimization problem of minimizing a given nonlinear
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function f : Rn → R. The method uses only function values at some points in
Rn and does not try to form an approximate gradient at any of these points.
Hence it belongs to the general class of direct search methods [KLT03].

The Nelder-Mead method is simplex-based. A simplex S in Rn is defined as the
convex hull of n+ 1 vertices x0, . . . ,xn ∈ Rn. For example, a simplex in R2 is a
triangle and simplex in R3 is a tetrahedron.

The simplex-based direct search method begins with a set of n + 1 points
x0, . . . ,xn ∈ Rn that are considered as the vertices of a working simplex, S,
and the corresponding set of function values at the vertices fj := f(xj), for
j = 0, . . . , n. The initialized simplex is applied with several transformations
including reflection, expansion, contraction, and multi-contraction, which are
illustrated in Figure 5.4. The transformations are repeated until the termina-
tion criteria are met.

5.5 Experiments

5.5.1 Data and Setup

For evaluating face alignment using the proposed appearance model, we use
the data set presented in Section 3.4.1. Set 1 is used for training the shape
and appearance models and testing is conducted on all the four data sets for
analyzing generalization ability at different levels.

Using Set 1, we train a shape model with 15 components preserving 95% of shape
variations. The size of shape-free images is 30 × 30 pixels. For each image,
we select U = 10 random directions and in each direction V = 6 positions
are evenly sampled. Including the position at the ground truth, in total 7
ordered data samples can be generated. The overall training set includes N =
24400 (400× 10× 6 + 400) ordered data samples.

In testing, we randomly perturb ground truth landmarks at different noise levels
for initializing each alignment. We repeat the random perturbation for each
noise level multiple times on each test image in order to perform a statistical
evaluation of the result. A fitting is considered as converged if the Root Mean
Square Error (RMSE) between the aligned landmarks and the ground truth
is less than one pixel. The Average Frequency of Convergence (AFC) is used
as the evaluation metric, which assesses the robustness of the alignment. The
metric AFC is calculated as the number of converged trials divided by the total
number of trials.
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initial simplex

reflection expansion

contraction multi-contraction

Figure 5.4: Simplex transformations in the Nelder-Mead algorithm.

5.5.2 Comparison

We first evaluate the REAM with regression trees and the MCT is used as
feature. To assess the effectiveness of the RF initialized GBRT, we first compare
the ranking performance for different models based on regression trees, i.e. RF,
GBRT, and iGBRT. The training data for building the regression trees are
prepared according to Section 5.3.3. We again use Set 1 as training set to
extract the training samples. We set MRF = 100 and MB = 100. For GBRT
and iGBRT, we set the tree-depth d = 4 and the learning rate α = 0.05. The
testing data is extracted in the same scheme on all four data sets. The ranking
results are plotted in Figure 5.6(a), in which the percentage of the swapped pairs
is considered as the ranking error rate. From the plot, we can observe that, for
all data sets, the ranking error rates of RF are always lower than GBRT. The
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Figure 5.5: Regression trees-based alignment results on Set 1, Set 2 (first row)

and Set 3, Set 4 (second row).

bagging technique and low bias regression make RF resist to overfitting. The
iGBRT outperforms RF and GBRT consistently on all data sets.

The superior performance of iGBRT is proven again in the face alignment exper-
iments. The REAM based on Random Forests (MCT-RF-REAM) shows large
improvement compared to the pairwise RAM (PCT-SVM-RAM). The most sig-
nificant improvement is observed on Set 2, where MCT-RF-REAM obtains
around 22.3% performance gain over PCT-SVM-RAM at the highest pertur-
bation level. It is found that MCT-RF-REAM already boosts the fitting per-
formance to a large extent. The introduction of iGBRT-based REAM increases
the robustness further. In order to show that iGBRT also works for the PCT
feature based representation, we train regression trees on top of PCT features af-
ter RankSVM scores are obtained. The alignment results (PCT-iGBRT-REAM)
are plotted in Figure 5.5, which show further improvement over MCT-iGBRT-
REAM. This proves that the unbinarized census transform provides additional
discriminative information for training the regression trees-based REAM. Fi-
nally, in Figure 5.6(b), we show the face alignment accuracy (pixels in average)
of the converged trials with different models. The iGBRT-based REAM almost
always outperforms the other models.
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Figure 5.6: (a) Ranking error rates of different regression trees-based REAM;

(b) Average face alignment accuracy (in pixels) of the converged

trials.

Models MCT-GBRT MCT-RF MCT-iGBRT PCT-iGBRT

Fitting cost 15.67ms 29.88ms 34.72ms 256.95ms

AFC @ 1.6σ 57.90% 61.9% 65.7% 72.89%

Table 5.1: Computational cost (ms in average) and fitting performance on Set

3
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Triangle Gaussian Cosine Triangle Gaussian Cosine

Perturbation 0.8σ 1.6σ

Set 1 0.983 0.983 0.979 0.851 0.808 0.826

Set 2 0.996 0.996 0.987 0.885 0.852 0.855

Set 3 0.915 0.908 0.913 0.657 0.609 0.617

Set 4 0.732 0.729 0.710 0.406 0.390 0.381

Table 5.2: Comparison of alignment performance in AFC rates applied with dif-

ferent target functions for learning regression models. The AFC rates

are obtained at 0.8σ and 1.6σ perturbation levels for initialization.

We analyze the computational cost for fitting different models in Table 5.1. We
run the fitting experiments on a machine with Intel Xeon CPU (2.93GHZ) in
an unparallelized C++ implementation. The second row in Table 5.1 lists the
average fitting time (in millisecond) on the images in Set 3. The third row shows
their AFC rates at 1.6σ noise level. We observe that although PCT-iGBRT-
REAM achieves better results than MCT-iGBRT-REAM, the computational
cost for each fitting is much higher due to the projection step using RankSVM.

5.5.3 Effects of Regression Target Function

In addition to assigning rank values as regression targets, we also employ non-
linear functions as our regression target function. The Gaussian function and
cosine function are used. We train regression appearance models with MCT-
iGBRT using the evenly sampled function values as regression targets. Table 5.2
lists the alignment AFC rates achieved on all four testing data sets at two initial
perturbation levels. We notice that using rank values (triangle function) as re-
gression target always outperforms the other two nonlinear functions. However,
the differences are rather small. The only notable performance gain is achieved
on Set 3 at 1.6σ perturbation level, where the linear target function performs
4.8% better than the Gaussian function and 4.0% better than the cosine func-
tion.
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iGBRT iGBRT+Edge iGBRT iGBRT+Edge

Perturbation 0.8σ 1.6σ

Set 1 0.983 0.987 0.851 0.858

Set 2 0.996 0.992 0.885 0.886

Set 3 0.915 0.922 0.657 0.674

Set 4 0.732 0.734 0.406 0.42

Table 5.3: Comparison of alignment performance in AFC rates applied with and

without edge constraint. The AFC rates are obtained at 0.8σ and

1.6σ perturbation levels for initialization.

5.5.4 Effects of Edge Constraint

We assess the effectiveness of the additional edge constraint in the alignment
cost function. Table 5.3 compares the alignment results obtained with edge
constraint (iGBRT+Edge) to the results obtained without edge constraint (iG-
BRT). We notice that at 1.6σ noise level, the edge constraint always improves
the alignment performance. The improvements are more notable on Set 3 and
Set 4, which indicates that the edge information can be helpful for avoiding some
local minima. Note that the cluttered background in the images in Set 4 may
also result in strong edge responses (cf. Figure 5.3). These edge responses may
confuse the alignment cost function and eventually have a negative impact on
the alignment performance. However, the improved alignment convergence rate
on Set 4 proves that the negative impact is surpassed by the positive impact.

5.6 Conclusions

We present a regression appearance model based on the gradient boosted re-
gression trees. The Random Forests technique is used to initialize the GBRT
training iterations. The initialization provides the GBRT with an initial es-
timation with low bias and requires fewer iterations to converge to the global
optimum. We conduct experiments on four different data sets. The results show
that the regression trees-based REAM significantly improves the robustness and
accuracy in terms of face alignment. Our best proposed model (PCT-iGBRT-
REAM) boosts the alignment performance about 23.4% − 26.1% on different
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data sets compared to the model based on pairwise ordinal classification (PCT-
SVM-RAM).
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6 Regression Appearance Model
based on Random Pixel
Intensity Differences

This chapter presents a novel feature representation for building regression based
appearance models. The feature employed in this study is simple but effec-
tive. Moreover, it provides semantic meanings for assessing the correctness of
alignments. In Section 6.1, we give a short introduction and motivation of the
proposed approach. We address the details of the feature representation in Sec-
tion 6.2 and its learning procedure for training a regression appearance model in
Section 6.3. The experimental results are discussed in Section 6.5. And finally,
we draw some conclusions for this chapter in Section 6.6.

6.1 Introduction

The local structural feature-based appearance models are designed to be ro-
bust against illumination changes. However, this type of feature only compares
pixel intensities in a local neighborhood. In this work, we propose a novel
appearance model based on RAndom Pixel Intensity Differences (RAPID) fea-
tures. The intensity differences are extracted on pixel locations within a certain
distance range. The motivation behind this feature is that meaningful contex-
tual difference features can be selected for learning a smooth alignment cost
function. A quantization technique is applied on the difference features for mit-
igating the inherent image noise. The quantized pixel intensity differences are
selected and randomly sampled for learning a robust alignment cost function.
The cost function is learned in an ordinal regression manner using Random
Forests. To ensure that more informative features are selected, we propose a
correlation-based approach to filter out features, which are less correlated to
the regression labels. We also utilize the label distribution information stored
on the leaf nodes of each regression tree in the RF to discard highly uncer-
tain estimates. We evaluate the proposed appearance model on four different
data sets. Experiments show that the quantization technique makes alignment
more robust against image noise. The uncertainty-based estimation filtering
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(a) (b) (c) (d)

Figure 6.1: (a) A shape-free face image; Pixel intensity differences extracted

around texture-rich face regions such as between eye center and eye

corner (b); and between nostril and nose bridge (c); Pixel differ-

ences extracted around homogeneous regions (d) are less likely to be

selected.

increases the average convergence rate slightly. We also show that our model
boosts the alignment performance about 8.7% − 17.2% compared to the MCT
feature and about 5.5%−10.32% compared to the PCT feature. In addition, we
compare the proposed alignment algorithms with two state-of-the-art discrim-
inative face alignment models. Experiments demonstrate that the appearance
model proposed in this chapter achieves superior alignment performance as well
as generalization capabilities.

6.2 Face Model

The presented appearance model consists of a shape model and an appearance
model. A statistical shape model is adopted as in Section 3.2.1. The appear-
ance model is constructed independently in a sense of discriminative learning.
The following subsections describe the feature representation of the appearance
models, as well as the learning problem for face alignment.
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6.2.1 Feature Representation for the Appearance

Model

The proposed appearance model is again defined on the masked shape-free
images I(W(x; p)). The local structure features such as the MCT [FE04]
and the PCT [GEFS11, GES12] compare pixel intensities in a local neighbor-
hood, which results in an illumination invariant feature representation. How-
ever, relationships between pixels that are far apart might convey more dis-
criminative information for representing the appearance model. Differences of
pixel intensities provide a simple representation and effective computing, yet
also yields impressive performance given sufficient training data as reported
in [GL09, DWP10, CWWS12]. In this work, in addition to the pixel intensity
differences, we also investigate the absolute intensity differences. The quanti-
zation of the differences is employed to make the representation more robust
against the inherent image noise.

6.2.1.1 Pixel Intensity Difference

The intensity relationship reveals reasonable confidence of whether a face im-
age is well aligned. Good features are usually located at texture rich areas,
i.e. around the facial features. For example, a good pixel difference feature
could be “the eye center is darker than the nose bridge” (cf. Figure 6.1(b)), or
“the nostril is darker than the nose tip” (cf. Figure 6.1(b)). The features lo-
cated in homogeneous regions suppose to be less informative (cf. Figure 6.1(c)).
We denote each of the intensity difference feature as fx1,x2(I) = I(x1) − I(x2),
where x1 and x2 are the pixel locations defined in the image coordinate of a
shape-free image I(W(x; p)) (For simplicity we denote I as the shape-free im-
age I(W(x; p))). We also consider absolute differences |fx1,x2(I)| by omitting
the sign of differences.

6.2.1.2 Intensity Difference Quantization

We propose a quantization method to encode the difference values into bit
strings. The quantization function is defined as

Γ(f) = sign[f ]
⊗
i=1..7

ζ(bi, |f |), (6.1)

where b = [5, 10, 25, 50, 85, 130, 185]> is a quantization reference vector. The
operator

⊗
denotes the operation for concatenating bits. Figure 6.2(a) displays
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Figure 6.2: (a) Coding of the pixel intensity difference with quantization method

“Q-DIFF1” ; (b) The quantization function corresponds to “Q-

DIFF1”.

how a pixel difference feature f = 65 is quantized. The quantized feature
results in Γ(f) = 15. Figure 6.2(b) plots the quantization function Γ, with
the axis “DIFF” as input and axis “Q-DIFF” as output. We notice that the
quantization function approximates the discretized logit function. The idea
behind this coding is to smooth more noise with increasing absolute intensity
difference. We also tried another quantization method (Q-DIFF2), in which an
additional high order bit is added: Γ(f) =

⊗
i=1..7 ζ(bi, |f |)

⊗
1f>0. Here 1f>0

is the indicator function defined as

1f>0 =

{
1 f > 0
0 f <= 0.

(6.2)

6.3 Learning Appearance Models

We apply ordinal regression to learn a ranking-based appearance model. It
has been demonstrated in Chapter 5 that learning ranking models with ordinal
regression yields better performance than a pairwise ordinal classification model.
We employ Random Forests for ordinal regression due to its robustness and
simplicity.

There are N2 possible pixel difference features, where N is the number of pixels
inside the shape-free image mask. The number of possible features is huge
and moreover, a large percentage of the features are not very informative for
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learning a good model, including those features may increase the variance of the
final estimation. For this reason, we only consider features extracted within a
certain maximum distance dmax, under the assumption that meaningful features
are located at the positions around facial features but not regions between the
forehead and chin, where the pixel distances are large. In addition, we propose
a correlation based feature selection to remove less informative features. We
consider those features, which are highly correlated to the labels assigned to
training samples, as good candidates for training.

6.3.1 Preparation of Training Data for Learning

The training samples are generated as suggested in Section 5.3.3. We generate
data samples from a training data set containing D facial images with annotated
landmarks. For each of the training images, we randomly perturb the ground
truth pi in U different directions {∆piu}u=1,...,U . In each direction we evenly
sample V shape parameters {pi + v × ∆piu}v=0,...,V−1. For each direction, we
can generate V ordered samples including the ground truth. The ideal cost
function, which we want to learn, is supposed to return higher values, if the
shape parameter is closer to ground truth than the others. We assign ranking
labels to each of the data points. That means we assign yi ∈ {1, . . . , V }, where
the samples generated using the ground truth are assigned with the highest
value, i.e. V . The other samples in the same direction are assigned with V − ν,
where ν = 1, . . . , V − 1.

6.3.2 Feature Selection

We use a correlation-based method to select distinctive features on the generated
samples using the assigned labels y. In particular, for a single pixel intensity
difference feature extracted on all samples f , we calculate a correlation coeffi-
cient Corr(f ,y) for measuring its relationship to the assigned labels. We sort
the features according to the absolute correlation coefficients |Corr(f ,y)| in a
descending order. The informative features are selected by preserving a fixed
number of features in the sorted list resulting a feature set S. Alternatively, one
can also select features with |Corr(f ,y)| above a threshold τcorr. The selected
features are, however, redundant. To remove the redundancy, we randomly
select a subset R from S.

Following correlation coefficients are considered for the feature selection, namely,
the Pearson correlation, Spearman rank correlation, and Kendall rank correla-
tion.
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6.3.2.1 Pearson Correlation

The Pearson correlation coefficient is the most common measure of correlation
in statistics, which shows the linear relationship between two variables. The
Pearson correlation between variable x and y is calculated as:

Corr(x,y) =
Cov(x,y)

σxσy
, (6.3)

where Cov(x,y) denotes the covariance between x and y. σx represents the
standard deviation of the elements in x, while σy represents the standard de-
viation of the elements in y. The results of Equation 6.3 are between -1 and
1. A result of -1 means that there is a perfect negative correlation between the
two variables, while a result of 1 means that there is a perfect positive corre-
lation between the two variables. A result of 0 means that there is no linear
relationship between the two variables.

6.3.2.2 Spearman Rank Correlation

The Spearman rank correlation is a nonparametric measure of statistical depen-
dence between two variables. It assesses how well the relationship between two
variables can be described using a monotonic function. A Spearman correlation
of 1 (or -1) results, when two variables being compared are monotonically re-
lated, even if their relationship is not linear. In contrast, this does not give a
perfect Pearson correlation.

The Spearman correlation is calculated by applying the Pearson correlation to
the rank values of the data rather than the actual data values. For two n
dimensional random variables x and y, the n raw values xi, yi are converted
to ranks x̂i, ŷi, and the correlation ρ is computed using the Pearson correlation
between the ranked variables. Identical values are assigned a rank equal to the
average of their positions in the ascending order of the values. In applications,
where ties are known to be absent, a simpler procedure can be used to calculate
ρ. The difference di = x̂i− ŷi between the ranks of each observation on the two
variables are calculated, and ρ is given by:

ρ = 1− 6
∑
d2i

n(n2 − 1)
. (6.4)

6.3.2.3 Kendall Rank Correlation

The Kendall rank correlation is another measure of rank correlation, which
is usually called the Kendall τ . The calculation of this correlation is based
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on counting the number of concordant pairs and discordant pairs in the n-
dimensional joint random variables x and y. Any pair of observations (xi, yi)
and (xj, yj) are said to be concordant if their ranks for both elements agree.
Otherwise they are considered as a discordant pair.

The Kendall τ coefficient is defined as:

τ =
#concordant pairs−#discordant pairs

1
2
n(n− 1)

. (6.5)

The denominator is the total number of pair combinations, so the coefficient
must be in the range [−1, 1]. If the agreement between the two rankings is
perfect (i.e., the two rankings are the same), the coefficient has the value 1. If
the disagreement between the two rankings is perfect (i.e., one ranking is the
reverse of the other), the coefficient has the value -1. If x and y are independent,
then we would expect the coefficient to be approximately zero.

6.3.3 Random Forests

Random Forests are proposed by Breiman [Bre01], which basically apply bagging
and random feature selection to CART. It builds an ensemble of fully grown
trees, Ti(f), with a random subset of the training data. For each node split,
only K random features are considered. The bagging technique reduces the
estimation variance of the individual regression tree with slightly increased bias.
The random feature selection makes the model robust to noise and outliers. On
each leaf node of a regression tree, we store the distribution of the samples
attached to this node with normal distribution N (µ, σ2), where µ is the mean
and σ2 is the variance of the labels assigned to the samples. The parameter
setting in RF training is simple. As reported in the original paper [Bre01], the
estimation performance saturates as the number of trees MRF increases. Hence
setting this parameter is not essential. The parameter K, which determines the
number of features used for node splitting, is set to be K =

√
|f |, as suggested

in [Bre01]. After RF training, we obtain a discriminant appearance model with
a fitting cost function defined as:

T (f) =
1

MRF

∑MRF

i=1
Ti(f), (6.6)

where Ti(f) returns the µ value stored on the leaf node it reaches and the final
estimation is averaged over all trees. We also use the variance σ2 to determine
the uncertainty of estimation. If the uncertainty is high (σ > τσ), the prediction
from this tree will be discarded. This filtering results in M ′

RF activated trees
and the fitting cost function is defined by averaging the predicts over the M ′

RF

activated trees. We illustrate an overview of the training and testing procedure
in Figure 6.3.
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Figure 6.3: Overview of model training and testing.
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6.4 Fitting the Appearance Model

Face alignment is equivalent to maximizing the cost function defined in Equa-
tion 6.6, subject to the additional constraint on shape prior. The shape prior
ensures that the optimization is constrained within a pre-trained face shape
space as defined in Section 3.2.1. As the shape parameters are modeled with a
multivariate Gaussian with diagonal covariance matrix, we ensure the constraint
by maximizing the likelihood of a shape parameter p defined by

L(Λ|p) ∝
n∏
i=1

exp(
−p2i
λi

), (6.7)

where λi is the eigenvalue corresponding to shape parameter pi. Maximizing
L(Λ|p) is equivalent to minimize the negative log-likelihood, and the constraint
objective function can be then defined as follows:

O(p) = −T (p) + β

n∑
i=1

p2i
λi
, (6.8)

where β is the parameter that we estimated from the training data. As with in
Section 5.4, the Nelder-Mead simplex method [NM65] is applied for minimizing
the alignment objective function.

6.5 Experiments

6.5.1 Data Sets

For evaluating face alignment using the proposed appearance model, we use
the data set presented in Section 3.4.1. Set 1 is used for training the shape
and appearance models and testing is conducted on all the four data sets for
analyzing the generalization ability at different levels.

6.5.2 Evaluation

Throughout the experiments in this chapter, we use Set 1 for training shape
model and appearance models. We train a shape model with 15 components
preserving 95% of shape variations. The size of shape-free images is 30 × 30
pixels. For each image, we select U = 10 random directions and in each direction
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V = 6 positions are evenly sampled. Including the position at ground truth, in
total 7 ordered data samples can be generated. The overall training set includes
N = 24400 (400×10×6+400) ordered data samples. We generate 100 regression
trees in the RF training. The maximum depth of each tree is 20.

In testing, we randomly perturb ground truth landmarks at different noise levels
for initializing each alignment. We repeat the random perturbation for each
noise level 5 times on each test image in order to perform a statistical evaluation
of the result. We claim a fitting is converged if the Root Mean Square Error
(RMSE) between the aligned landmarks and the ground truth is less than one
pixel. The Average Frequency of Convergence (AFC) is used as the evaluation
metric, which assesses the robustness of the alignment. The metric AFC is
calculated as the number of converged trials divided by the total number of
trials.

6.5.3 Results and Analysis

6.5.3.1 Model Parameters

Effect of Quantization The first experiment compares (absolute) intensity
differences and their quantized versions. We compare the alignment metric
AFC on the difficult data sets (Set 3 and Set 4) to see clear differences between
the various feature representations. Figure 6.4 plots the average convergence
rates at the highest perturbation level with 1.6σ. Results show that quantizing
the difference features increases the robustness of face alignment on both data
sets. Preserving the sign of the differences (Q-DIFF1) helps and setting the sign
indicator on the high order bit (Q-DIFF2) is suboptimal. In this experiment, we
fix the parameter dmax = 16 and |S| = 80000. We randomly select |R| = 2000
features in total.

Range of Pixel Distance We explore the range of distance between two pix-
els for extracting the features. We vary the parameter dmax from 2 to 31. The
achieved results on Set 3 and Set 4 are plotted in Figure 6.5. We observe that se-
lecting features in a small distance range already produces decent performance.
When dmax increases, the average convergence rate increases due to more infor-
mative features with larger distances being selected. However, the performance
decreases, when the distance range increases further. This indicates that infor-
mative features are mainly found in mid-range distances such as pixels between
the eye corners and the eye centers or between the nostril and the nose tip, etc.
The pixel difference in large distance ranges introduces noise as they are mainly
extracted in homogeneous regions such as the forehead and chin.
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Figure 6.5: Effects of alignment performance by varying distance range dmax for

selecting random pixel intensity differences.

Uncertainty Filtering The goal of this experiment is to check whether dis-
carding individual trees in RF with large uncertainty can improve the robustness
of the RF estimation. Figure 6.6 plots the average convergence rates on Set 3
and Set 4 with increasing τσ. When the threshold is low, the estimation focuses
only on trees with high certainty. However, this will discard too many trees and
increase the estimation bias. When τσ increases, the AFC metric increases until
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a peak, when τσ = 1.2. We observe that with a proper threshold, the robustness
of alignment is slightly improved compared to without uncertainty filtering.

Feature Dimension In this experiment we analyze how the number of fea-
tures used in the RF training affects the cost function estimation. We conduct
experiments on Set 3 and Set 4 with an increasing number of features randomly
selected with distance range threshold dmax = 16. Results presented in Fig-
ure 6.7 show that selecting 2000 features yields optimal performance. When
fewer features are used, the estimation is biased due to limited informative fea-
tures. Using more features does not improve the results. Thus, we set the
parameter |R| = 2000 in all other experiments, which results in decent AFC
and optimal computational cost.
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Figure 6.6: Selecting threshold τσ.

Correlation Methods for Feature Selection Different correlation methods
for RAPID feature selection are studied in this experiment. We compare the
simple Pearson correlation coefficient to the other rank correlation coefficients,
namely, the Spearman rank correlation and the Kendall rank correlation. The
other model parameters are set as follows, |R| = 2000, dmax = 16 and τσ = 1.2.
We train an appearance model using the Q-DIFF1-based feature. The align-
ment results are given in Table 6.1, where PC denotes for Pearson correlation,
SRC denotes for Spearman rank correlation and K-τ stands for Kendall rank
correlation. The results suggest that the Pearson correlation-based method se-
lects more distinctive features for training a good appearance model. Although
SRC and K-τ are designed for measuring rank correlations, the alignment re-
sults based on these measures are not as reliable as the PC. We conjecture that
feature selection based on a linear correlation has a better generalization ability
as the AFC result using PC at 1.6σ perturbation level is 2% better than the

108



 0.4

 0.5

 0.6

 0.7

 0.8

 2000  4000  6000  8000  10000

A
F

C

Dimension

Set 3

Set 4

Figure 6.7: Alignment performance vs. feature dimension.

other two rank-based correlations, when tested on Set 4. While on Set 1 and
Set 2, the AFC rates are more or less similar.

PC SRC K-τ PC SRC K-τ

Perturbation 0.8σ 1.6σ

Set 1 0.997 0.998 0.997 0.968 0.974 0.968

Set 2 0.998 0.999 0.996 0.966 0.959 0.962

Set 3 0.920 0.898 0.888 0.805 0.772 0.749

Set 4 0.779 0.767 0.773 0.582 0.559 0.556

Table 6.1: Comparison of alignment performance in AFC rates resulted from

using different correlation methods for selecting feature candidates.

6.5.3.2 Comparison

Comparison of the Proposed Models We finally compare our proposed
appearance model to the models based on local structure features such as the
MCT and the PCT [GES12]. The average convergence rates at different per-
turbation levels obtained on all four data sets are plotted in Figure 6.8. The
best model proposed in this chapter is denoted as RAPID-REAM, where the
Q-DIFF1-based feature is applied. The results are reported with the following
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Figure 6.8: RAPID-based alignment results on Set 1, Set 2 (first row) and Set

3, Set 4 (second row).

parameter setting: |R| = 2000, dmax = 16 and τσ = 1.2. MCT-iGBRT-REAM
corresponds to the regression-based appearance model proposed in Chapter 5 us-
ing the MCT feature, and PCT-iGBRT-REAM corresponds the model based on
the PCT feature. PCT-SVM-BAM denotes the classification-based appearance
model proposed in Chapter 3, and PCT-SVM-RAM corresponds to the ranking-
based appearance model presented in Chapter 4. From the plots, we notice that
the RAPID-based appearance model clearly outperforms all the models based
on local structure features. This gives evidence that comparing pixels at a cer-
tain distance learns the pixel contextual relationships in the shape-free image
coordinates, which is more informative for learning alignment cost functions
than comparing pixels in a neighborhood.

Comparison with Other Discriminative Appearance Models In addi-
tion, we compare all the models proposed so far in this thesis with two other
representative discriminative appearance models. The first model [SG07] is
based on a holistic appearance model, which we denote as DI-AAM. The sec-
ond model [SLC09b] is based on a local patch-based model, which is known
as the Constrained Local Model (CLM). We use Set 1 for training DI-AAM
and CLM. The same parameter settings are applied for training the models as
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Figure 6.9: Comparison with other discriminative appearance models, namely,

DI-AAM [SG07], and CLM [SLC09b]. The alignments are initialized

with 1.6σ perturbation noise.

suggested in both papers1. Figure 6.9 plots the cumulative distribution of the
landmark errors of alignments on four test sets. The alignments are initialized
with 1.6σ perturbation noise. The curve INIT corresponds to the initial cu-
mulative distribution of landmark errors. If we consider RMSE < 1 pixel as
converged alignments, our best model, i.e., RAPID-REAM, always outperforms
DI-AAM and CLM. We notice that the convergence rates of DI-AAM are close
to the rates of RAPID-REAM on Set 1 and Set 2. However, on Set 3 and Set
4, the convergence rates of DI-AAM drop drastically. It is very likely that the
model is overfitted on seen subjects trained with suggested parameter settings.
CLM has different problems than DI-AAM. When it is tested on Set 2, in which
all testing images contain frontal faces, the convergence rate of CLM is quite
close to RAPID-REAM. However, the alignment performance of CLM degener-
ates clearly on Set 1, 3, and 4, in which non-frontal facial images are included.
The local patch-based model has difficulties in aligning non-frontal faces, due

1We use J. Saragih’s implementation for both models, and the source code is available on

http://jsaragih.org/
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to the simple similarity warping of local patches. In addition to using random
perturbation for initializing alignments, we also apply a mean shape for initial-
ization (cf. Figure 6.11). The mean shape is translated and scaled accordingly
to cover the face area of a test facial image. Figure 6.10 plots the cumulative
distribution of the landmark errors obtained by different models. The curve
INIT corresponds to the initial cumulative distribution of landmark errors. Our
best model, RAPID-REAM, again outperforms DI-AAM and CLM, as well as
other discriminative appearance models presented in the previous chapters.
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Figure 6.10: Comparison with other discriminative appearance models, namely,

DI-AAM [SG07], and CLM [SLC09b]. The alignments are initial-

ized with a mean shape.

6.6 Conclusions

In this chapter, we propose a novel discriminative appearance model based on
pixel intensity differences. To ensure that the representation is robust against
image noise, we apply a quantization technique on the difference features. The
quantized pixel intensity differences are selected and randomly sampled for
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Figure 6.11: Initialized with a mean shape and aligned shapes.

learning a robust alignment cost function. We learn the cost function in an
ordinal regression manner using Random Forests. The evaluation of the pro-
posed appearance model is conducted on four different data sets. Experiments
show that the quantization technique makes alignment more robust. The ap-
pearance model based on the proposed RAPID-feature boosts the alignment
performance by about 8.7% − 17.2% compared with the MCT feature, and
about 5.5%− 10.32% compared with the PCT feature. A comparison with two
state-of-the-art discriminative face alignment approaches further demonstrates
the superiority of the proposed appearance models in this work.
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7 Robustness Analysis and
Applications

This chapter is split into two parts, the first part systematically analyzes the in-
fluences of different imaging conditions for face alignment, while the second part
presents an application for the proposed alignment algorithms. We first com-
pare the alignment performance of different models with an increasing amount of
noise added to the original images. Alignment robustness under the occurrence
of partial occlusion is studied, in which the occlusion is simulated by rendering
random 2D boxes of increasing size. The influence of lighting conditions is also
investigated, where additional data are used for evaluation. In the second part,
we apply the proposed face alignment algorithms in cross-pose face recognition.
We show improved recognition performance with the extension to the PLS-based
framework.

7.1 Robustness Analysis

In this section, we analyze face alignment performance of the proposed models
under various confounding factors, such as image noise, occlusion, and illumi-
nation variations.

7.1.1 Image Noise

By image noise, we mean the random variations in intensity or color values in
images. Usually, noise is introduced by the sensor or circuitry of photo scanners
or digital cameras. It degenerates the quality of an image by adding additional
unwanted signals. In other words, the original image signals are corrupted
by the noise signals. Figure 1.1(d) displays a scanned old image, in which
noticeable image noise is produced by the scanner. For modern digital cameras,
the signal gain is increased for correct exposure under low lighting condition,
which significantly increases the salt-and-pepper noise due to photodiode leakage
currents. There are also other types of image noise such as Gaussian noise or
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film noise. Because the salt-and-pepper noise often presents in digital images,
we study its influence on the robustness of face alignment.

The salt-and-pepper noises are uniformly distributed random white and black
pixels in an image. Figure 7.1(b) shows an example of a facial image with such
noise added. The noise can be reduced by applying a median filter. In this
study, we create salt-and-pepper noise at different levels on the testing images.
The noise level is defined by the percentage of noise pixels. Figure 7.1(b), (c),
and (d) show noise level at 0.02, 0.2, and 0.4, respectively, where Figure 7.1(a)
is the corresponding original image at noise level 0. We notice that, at noise
level 0.4, the details of the facial components are rather vague while one can
still see the overall structure of a human face.

(a) (b) (c) (d)

Figure 7.1: Artificial image noise at different levels. (a) original image, (b) 2%

noise, (c) 20% noise, (d) 40% noise.

We evaluate face alignment using different models with up to 0.5 noise level. The
evaluated models include the generative AAM-SIC, the discriminative HAAR-
BAM, PCT-SVM-BAM, PCT-SVM-RAM, MCT-iGBRT-REAM, and RAPID-
REAM. At first glance, the pixel comparison based approaches suppose to be
sensitive to the salt-and-pepper noise, as each of the features is extracted only
based on a few pixel intensity values, which may be easily affected by the in-
creasing noise. However, from Figure 7.2, the appearance models based on the
proposed feature representations are actually more robust against noise than the
holistic intensity based appearance model (i.e. AAM). The rows in Figure 7.2
plot the alignment results (in AFC) on Set 1, Set 2, Set 3, and Set 4, respec-
tively. The plots on the left column display the AFC rates with the shapes
initialized at 0.8σ noise level, while the plots on the right column show the
AFC rates with the shapes initialized at 1.6σ noise level. The alignment con-
vergence rates of the compared models all decrease as more image noise is added
to the testing images, which is expected due to the loss of information. Over all
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Figure 7.2: Alignment results with noise effects on Set 1, 2, 3, and 4.
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data sets and initialization conditions, AAM-SIC fails to converge at all when
more than 30% image noise is added. However, the alignments based on the
proposed models can still achieve moderate convergence rates. At the highest
noise level in this study, where 50% of the pixels are corrupted with noise, the
proposed appearance model based on the RAPID feature obtains 56.4% AFC
rate on Set 4 at 0.8σ perturbation level, and 14.2% AFC rate at 1.6σ perturba-
tion level. Although significant improvements can be observed when comparing
the HAAR-BAM and the other proposed discriminative appearance models, we
have to admit that the curves for the MCT-iGBRT-REAM decrease faster than
HAAR-BAM at the small image noise levels, especially when the shapes are
initialized at 1.6σ perturbation level. We conjecture that a small percentage of
image noise does have an impact on the local structure feature-based appear-
ance models. However, when the noise percentage is small, one can easily apply
median filters (or bilateral filters) to eliminate the noise.

7.1.2 Occlusion

In real-world applications, the face of a recorded subject can often be partially
occluded by accessories such as sunglasses, scarves, or other objects such as a
cup. Analyzing the occluded facial images is difficult, as part of the image signals
are missing, or in the worst case, replaced with random textures from the oc-
cluding objects. Apparently, aligning partially occluded facial images is also not
a trivial task. Ekenel et al. [ES09] argue that often the problem in recognizing
occluded faces is not only the occlusion itself, but also the alignment. Even with
a manual alignment, the reference points for alignment are difficult to locate for
human annotators, when the facial components are occluded. The experiments
in [ES09] show that with proper alignment, face recognition performance under
occlusion can be significantly improved.

We study the robustness of our proposed appearance models with partial occlu-
sion. As there is no data set available, which contains occlusion in face images
in various regions and scales, we simulate occlusion by placing white boxes of
increasing sizes at random locations in the face area. Figure 7.3 shows example
images at different occlusion levels. Figure 7.3(b) displays an image with 20%
amount of face pixels are occluded. Figure 7.3(c) and Figure 7.3(d) show 40%
and 60% of occlusion. Note that in reality, occluded pixels can be arbitrary sig-
nals depending on the occluding objects. One could also render virtual objects
on the images for more realistic simulation. In this study, we use homogeneous
texture only to investigate the behavior of face alignment under missing image
signals.

In a similar vein as in Section 7.1.1, we evaluate face alignment with up to 0.6
occlusion level. Figure 7.4 shows the alignment convergence rates on the four
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(a) (b) (c) (d)

Figure 7.3: Synthetic image occlusion at different levels. (a) 10% occlusion, (b)

20% occlusion, (c) 40% occlusion, (d) 60% occlusion.

benchmarking data sets. Each row corresponds to the AFC results achieved on
Set 1, Set 2, Set3, and Set 4, respectively. The left plots show the results with
shape initialization at 0.8σ perturbation level, while the right plots corresponds
to 1.6σ perturbation level. The convergence rates for AAM-SIC degrade very
quickly as the occlusion level increases. When the alignments are initialized
further apart from the ground truth (1.6σ), they are hardly converged. On the
other hand, we observe relative mild degeneration of alignment performance in
the local feature based appearance models. Especially for the MCT-iGBRT-
REAM, the AFC rate only decreases about 11.8%, when the occlusion level
increases to 0.6 on Set 4 at 1.6σ perturbation level. When the initial shapes
are less perturbed, the convergence rates of the MCT-iGBRT-REAM become
better than the RAPID with the increasing occlusion level. In other words, the
MCT-based regression appearance model is less sensitive to partial occlusion
than the RAPID-based model.

7.1.3 Illumination

Illumination is another crucial factor that affects the robustness of face align-
ment. Especially, the side illumination produces local shadows, which deform
the facial appearance in local regions. It is thus difficult to handle the effects of
side illumination for holistic intensity based models due to the non-linearity of
the deformations. In this section, we evaluate the proposed models for aligning
faces in poorly lit images at different levels.

Although the benchmarking data sets used in the previous experiments contain
variations of lighting conditions, the evaluation results do not clearly show the
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Figure 7.4: Alignment results with occlusion effects on Set 1, 2, 3 and 4.
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subset 1

subset 2

subset 3

subset 4

subset 5

Figure 7.5: Sample images from the extended YaleB database.

alignment behavior of the proposed models under different illumination con-
ditions. On one hand, the data sets are not split specifically for analyzing
illumination problems with different levels of lighting effects. In addition, the
lighting effects under extreme cases are not considered. We use a subset of the
extended Yale face database B [LHK05b] as our evaluation database for this
purpose, as it covers illumination variations at different levels.

The extended Yale face database B was collected at the Yale University. The
database contains pose and illumination variations. There are 38 subjects in the
extended Yale face database B. Illumination variations are obtained by using a
geodesic lighting rig with 64 computer controlled strobes. This way, for each
person, in each pose, 64 images with different illumination conditions have been
captured.

These 64 images are divided into five subsets according to the angle between
light source direction and camera’s optical axis. Subset 1, with the angles less
than 12 degrees, contains seven images. Subset 2, with the angles between 20
and 25 degrees, contains 12 images. Subset 3, with the angles between 35 and
50 degrees, contains 14 images. Subset 4, with the angles between 60 and 77
degrees, contains 12 images and finally subset 5, with the angles larger than
77 degrees, contains 19 images. From the database, frontal face images under
all illumination variations were selected. With an increasing subset number,

121



illumination variations become stronger as can be observed from the sample
images in Figure 7.5.
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Figure 7.6: Alignment results on the illumination subsets from the extended

YaleB database.

The alignment convergence curves achieved on the five illumination subsets are
plotted in Figure 7.6. AAM fails to deal with the strong illumination variations,
and results in very low AFC rates even at low perturbation levels. The PCT-
based appearance models show improved robustness compared to the Haar-
based model, especially on subset 3, 4 and 5. This proves the PCT feature
representation is less sensitive to illumination changes than the Haar-based rep-
resentation. However, the PCT feature has also its limitation in dealing with
the illumination problem. As the illumination level increases, the performance
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gaps between the PCT-based models and MCT and RAPID based models get
larger. The performance difference between the PCT-SVM-BAM and PCT-
SVM-RAM is getting smaller. This is because the distribution of the PCT
features is changed, if a large portion of the facial region is poorly illuminated,
which eventually brings a negative impact on the alignment cost function even
with a more sophisticated learning algorithm. An interesting observation is that
the alignment performance of the RAPID-based appearance model degrades,
when the lighting conditions become very poor. The appearance model based
on the MCT feature is able to handle tremendous illumination mismatch re-
markably well. We conclude from this study that the local structural binary
patterns are more robust against large illumination changes than the unbina-
rized local structure feature. The structure information is still preserved in the
binary patterns under the extreme lighting conditions.

7.2 Application: Face Alignment in Cross-pose

Face Recognition

Face recognition in frontal face images has achieved considerable success in
the past two decades [ZCPR03]. Nowadays, researchers focus more on face
recognition under pose variations for real-world applications. Recognizing faces
across different poses is still a difficult task due to the nonlinear appearance
deformation and self-occlusion in profile face images [ZG09]. It has been shown
in [GES09] that aligning face images in different poses using a simple affine
transformation results in significant performance drops, when the pose mismatch
between the gallery set and the probe set is high. Several approaches have
been proposed to solve the pose mismatch problem. The basic idea is to apply
transforms between face images in different poses, either in the image space or
in the feature space. The typical transforms in the image space are based on
nonlinear image warping [GES09, GKSC06] or image synthesis [ECT98]. The
typical feature-based transforms are based on regression [FES12, SH08]. In this
study, we investigate both type of transforms for cross-pose face recognition
using the proposed face alignment algorithm.

7.2.1 Canonical Pose Normalization

The canonical pose normalization method normalizes face images in different
pose angles to a single canonical pose, e.g. the frontal pose [GES09]. The
transform is defined with a nonlinear warping based on a set of localized facial
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landmarks. The most straightforward warping method is the piecewise affine
warping, which can also be used in the shape fitting for sampling the texture
inside a face mesh (cf. Figure 3.7). The warping is realized by mapping the
pixels in the fitted and triangulated shape s to a reference shape s0. For each
pixel x = (x, y)> in a triangle in the reference shape s0, it finds a unique pixel
W (x; p) = x′ = (x′, y′)> in the corresponding triangle in the triangulated shape
s. The implementation for the piecewise affine warping is detailed in [MB04].
The piecewise affine warping is simple, yet the deformation field is not smooth.
Straight lines may be bended across triangle boundaries, which results in unex-
pected artifacts.

The facial landmarks were localized with AAM fitting in [GES09] with a pro-
gressive method for improving the alignment robustness against pose angle.
In this work, we show that improved alignment performance leads to superior
pose normalization quality, hence increases face recognition accuracy. We align
facial images with view-based models, i.e., a frontal-view model and a side-
view model, to mitigate the large pose problem. The RAPID-based appearance
model is trained due to its superior performance. Annotated images in a subset
of the Multi-PIE database [GMC+10] are used for training the frontal and side-
view models. Three manually labeled anchor points are used for initializing the
alignments, namely, the eye centers and mouth center.

After applying pose normalization, the masked shape-free facial images are ob-
tained, which have a resolution of 120× 120 pixels size. The conventional face
recognition techniques can be applied for face identification. In a similar vein as
in [GES09], we crop out the chin area in the pose normalized facial images, as
it does not contribute too much discriminative information compared to other
facial regions. Following the approach in [ES06], we scale the cropped images
to 64 × 64 pixels size and then divide them into 64 non-overlapped blocks of
8 × 8 pixels size. On each local block, the discrete cosine transform (DCT) is
performed. The obtained DCT coefficients are ordered using a zig-zag scanning.
The first component is skipped, because it represents the average pixel intensity
of the entire block. The following ten low frequency coefficients are retained,
which yields a ten dimensional local feature vector. Finally, the 64 local fea-
ture vectors are concatenated to construct the feature vector of a whole face
image. The DCT preserves the total image energy of the processed input block;
therefore blocks with different brightness levels lead to DCT coefficients with
different magnitudes. In order to balance each local block’s contribution to the
classification, the local feature vector is normalized to unit norm. To balance
the contribution of each DCT frequency, each DCT coefficient is divided by
its corresponding standard deviation [ES06] before the unit normalization. The
nearest neighbor classifier with the L1 distance metric is used for classification.

The cross-pose face recognition experiments are conducted on a subset of the
FERET database [PWHR98]. This subset contains 200 subjects, where each
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Figure 7.7: Inconsistency in pose angle annotation in FERET database. Left im-

age (id: 00700) and right image (id: 01042) are selected from subset

bi, in which the pose angles of all images are annotated with −60◦.

Yet apparently, the annotations are inconsistent and inaccurate.

subject has nine image sessions corresponding to nine different pose angles. As
is illustrated in Figure 7.7, due to the way of recording of this database, in which
the subjects were asked to facing to different orientations in discrete angles, the
variation of actual pose angle in each subset is large. Sample images of a single
subject are shown in Figure 7.8. The label ba indicates the frontal session, which
is used as the gallery set. The remaining eight sessions contain non-frontal face
images with different pose angles (±60 ◦, ±40 ◦, ±25 ◦, and ±15 ◦). Each of these
eight sessions is used as probe set. Sample pose normalized images are depicted
in Figure 7.9.

In general, fitting shape in near-frontal face images is more robust than in semi-
profile face images. In case of alignment in semi-profile face images, even a small
misalignment in the chin area may cause a large error in the warped face image.
The reason is that the partially self-occluded face part is over-sampled during
the warping, which exaggerates the misalignment error. Another fact, which we
have noticed is that even if the fitting on a semi-profile face image is perfect,
the warped frontal-view face still looks different from the real frontal face due to
artifacts. Take the image session bi in Figure 7.9 for example: the left half-face
is over-sampled and the right half-face is down-sampled after texture warping.
This effect makes the left-eye wider and the right-eye narrower, which results in
a different local appearance compared to the gallery image ba in Figure 7.9.

The recognition results are listed in Table 7.1. The method AAM denotes
the system presented in [GES09]. The method DAM denotes the proposed
discriminative appearance model with the RAPID feature representation. The
method GT stands for the pose normalization with perfect alignments, i.e., the
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ba bb bc bd be

bf bg bh bi

Figure 7.8: Sample images from the FERET database in nine different pose

angles.

ba bb bc bd be

bf bg bh bi

Figure 7.9: Canonical pose normalization.

ground truth shapes. The experiment shows improved recognition rates over all
pose angles with the proposed DAM-based alignment compared with the AAM.
In particular, the performance gains on large pose angles are remarkable. On
the probe set bb (−60 ◦), the absolute improvement of the correct recognition
rate is 11%, while on the probe set bi (60 ◦), the recognition rate has an absolute
improvement of 3%. The performance improvements on the other probe sets
are less significant; probably the alignment performance is already good and
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space for improvement is limited on those sessions. As demonstrated by the GT
method, we notice that the canonical pose normalization method has its limit
in cross-pose face recognition. Except for the large pose angles, the recognition
rates achieved by DAM are already very close to those achieved by using the
perfect alignments. The limitation of this approach could be caused by the
artifacts introduced in the piecewise affine warping due to the sparse vertices
in the adopted shape model. A dense shape model might solve the problem to
some degree [BV03], yet the computational cost is high.

Pose session bb bc bd be bf bg bh bi

GT 0.605 0.835 0.985 0.995 0.995 0.965 0.87 0.595

AAM 0.44 0.815 0.93 0.97 0.985 0.915 0.785 0.525

DAM 0.55 0.82 0.945 0.995 0.99 0.945 0.795 0.555

Table 7.1: Cross-pose face recognition with canonical pose normalization on the

FERET pose data sets. The columns in this table correspond to

the correct recognition rates of different alignment methods tested

on different probe sets.

7.2.2 View-based Pose Normalization

To overcome the limitation in the canonical pose normalization approach, we
present a view-based pose normalization method. This method combines the
image transform and feature transform. Instead of normalizing a face image
to a single canonical pose, it splits the continuous pose space into several dis-
crete pose angles. For a given face image, the method warps it to the closest
discrete pose angle, and apply feature transform with the warped image. The
benefits of this method are three-fold: (1) The view-based image warping mit-
igates the impacts of artifacts that are introduced in the large pose mismatch.
(2) It normalizes the pose variation in a probe set due to inaccurate pose la-
beling or estimation. (3) The method enables the feature transform method in
handling continuous pose, as face images are normalized to shape templates in
discrete view angles. A numerable set of view dependent regression models can
be applied on the view normalized facial images.

We apply face alignment using multiple view-based discriminative appearance
models on images in different poses (pan angles). Three view-based DAMs (in
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ba bb bc bd be

bf bg bh bi

Figure 7.10: View-based pose normalization.

0◦, 30◦, and 60◦ pan angles) are trained again using annotated face images in
the Multi-PIE database [GMC+10], as this database contains facial images with
pose angles (in pan) ranging from −90◦ to 90◦ with a step of 15◦. After localiz-
ing the facial landmarks, we normalize the facial images with their closest view
dependent reference shapes. Figure 7.10 lists the view-based pose normaliza-
tion outputs corresponding to the original images in Figure 7.8. Note as the
images are warped using view-dependent shape models, artifacts in canonical
pose normalization due to large pose mismatch is avoided. View dependent re-
gression models are applied on the features extracted on the view normalized
facial images.

In this study, we adopt partial least squares (PLS) as the regression models for
feature transform. PLS is a statistical technique originally proposed as an alter-
native to ordinary least squares regression in the field of chemometrics [RK05].
The method finds a common vector space for input vectors xi and correspond-
ing output vectors (responses) yi, in a way that the covariance between the
projected input vectors and projected output vectors is maximized:

[w, c] = arg max
‖w‖=‖c‖=1

[cov(Xw; Yc)]2 , (7.1)

where X is a given input matrix and Y is the corresponding output matrix.
w and c are the corresponding projection basis vectors, with which the latent
scores t and u are obtained:

t = Xw and u = Yc. (7.2)

An iterative algorithm [RK05] is applied for computing the basis vectors of an
N dimensional latent space. After N iterations, it computes projection matrices
W = (w1, . . . ,wN) and C = (c1, . . . , cN) containing the iteratively computed
basis vectors.
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Training Testing

Figure 7.11: Overview of the view-based pose normalization for cross pose face

recognition.

One can use PLS as a regression method to predict output vectors y from input
vectors x. However, one can also match features directly in the latent space.
In the particular case of pose invariant face recognition, we consider vectors
from pose p0 as X and vectors of the same faces from a different pose p1 as Y.
We compute PLS projection matrices W and C over the data. As matrix X
covariates with matrix Y in the latent space, it enables us to exploit recognizing
face images in different poses by matching the pose-independent latent identity
vectors x̃ = W>x and ỹ = C>y, instead of directly on the pose-dependent
input vectors x and y. The PLS based cross-pose face recognition is explored
in [FES12], in which superior recognition results are achieved compared to other
regression models such as linear regression.

We apply necessary cropping depending on the view angles of the normalized
facial images, based on the belief that some part of the region, e.g. one fourth
of the image area in the left part of the normalized image from subset bb in
Figure 7.10(c), might not contribute biometric discriminative information but
resulting noise due to facial hair. The raw pixel values are stacked to build
feature vectors for learning PLS models as well as testing. Figure 7.11 illus-
trates the overview idea of the view-based pose normalization for cross-pose
face recognition. In the training phase, PLS regression models are learned for
the coupled views in gallery and probe sets. In the testing phase, the view nor-
malized gallery images and probe images are projected into the learned latent
identity space, in which face matching is applied.

To evaluate the recognition performance of the proposed method, we conduct
experiments on the pose subset of the FERET database as in Section 7.2.1. As
with in [FES12], for each probe session, we use 100 image pairs (coupled image
from gallery and probe set) for training the pose dependent PLS models, and
the remaining 100 image pairs for testing.
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Pose session bb bc bd be bf bg bh bi

DAM 0.54 0.82 0.95 1.0 1.0 0.97 0.79 0.55

PLS 0.67 0.78 0.80 0.81 0.79 0.8 0.66 0.51

DAM-PLS 0.8 0.83 0.86 0.95 0.94 0.92 0.84 0.82

GT-PLS 0.82 0.92 0.96 0.99 0.97 0.96 0.95 0.83

Table 7.2: Cross-pose face recognition with view-based pose normalization on

the FERET pose data sets. The columns in the table correspond to

the correct recognition rates of different alignment methods tested on

different probe sets.

The average of the aligned shapes in the training set in each pose session is used
as the view dependent reference shape. The view-based pose normalization
is applied on the images in the training set for training pose dependent PLS
models. In testing, the view-based pose normalization is again applied on the
testing images, and afterwards the pose dependent PLS models are applied for
classification. The intensity values in the cropped holistic images are used as
features. We use the nearest neighbour classifier with the L2 distance metric in
latent identity vector space.

The recognition results are presented in Table 7.2. The PLS (with a bit abuse
of notation) denotes the holistic intensity based approach presented in [FES12],
in which face is aligned with affine transformation. The DAM-PLS method
denotes the view-based pose normalization using RAPID-based DAM, while
the GT-PLS approach uses ground truth for the view-based pose normalization.
The results show that the PLS method is sensitive to the pose variation in each
probe session. The recognition performance on the small pose angle sessions,
such as be and bf , drops by around 20%, compared with the canonical pose
normalization with DAM. On the other hand, however, this method achieved
better results on the probe set bb than any of the canonical pose normalization
methods. This implies that the PLS regression model is effective in solving
the cross-pose face recognition problem, when the pose variation in a probe set
is small. The proposed DAM-PLS method outperforms the PLS method on all
eight probe sets. Especially, the recognition performance on set be increases 13%
and 31% on set bi. The absolute improvement is 14.25% in average. However,
the recognition rates on the sessions with smaller pose angles are not as good as
expected, comparing to the methods based on the canonical pose normalization.
The reason for this observation is that the PLS is a subspace based regression
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Figure 7.12: Cross-pose face recognition with canonical and view-based pose

normalization on the FERET pose data sets. The horizontal axis

corresponds to different pose sessions as probe sets. The vertical

axis denotes the corresponding correct recognition rates.

model, which is also sensitive to alignment errors. The results with the GT-
PLS method show that perfect alignments provides as good recognition rates
on small pose angles as the canonical normalization approach. However, for
semi-profile faces, the performance gains of using the proposed view-based pose
normalization are significant. For the sake of clear comparison, the recognition
rates listed in Table 7.1 and Table 7.2 are plotted together in Figure 7.12. Note
that the results in Table 7.1 and Table 7.2 are not directly comparable, due to
different number of test images. However, as recognition performance based on
DAM are more or less consistent in these two tables, an indirect comparison is
still valid. Based on the above observations, we recommend a hybrid solution
for cross-pose face recognition. When the facial pose is small (within a range
of ±25 ◦), the canonical pose normalization is favorable; when the pose angle is
large, the view-based normalization method is favorable. Moreover, we expect
the recognition performance to be improved further with advanced features in
stead of raw intensity values.

131



7.3 Conclusions

We conduct robustness analysis for the proposed discriminative appearance
models. The influential factors such as image noise, occlusion, and lighting
conditions are considered. The synthetic image noise and occlusion is gener-
ated at different levels in the experiments. Results show that the proposed
local gradient feature based appearance representation is more robust against
noise and occlusion compared to the local region or holistic representation. In
terms of illumination, we observe the MCT-based appearance model is superior
to PCT-based and RAPID-based models. In the second part of this chap-
ter, we apply the proposed discriminative appearance model face alignment in
cross-pose face recognition. We show improved recognition performance with
canonical pose normalization method using the DAM-based face alignment. A
view-based pose normalization approach is also presented combined with the
PLS-regression model. Experiments show that this approach significantly im-
proves recognition performance, when the testing face pose angles are large.
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8 Conclusions

In this thesis, we present discriminative appearance models for aligning facial
images robustly under different imaging conditions. We address the robust-
ness and generalization problems of face alignment. The proposed appearance
models use feature representations based on local gradient features such as the
PCT, MCT, and RAPID. The gradient features are based on pixel value com-
parisons, which provide robustness against changes in illumination. Due to the
locality, the local gradient features are less sensitive to appearance variations
in local regions caused by partial face occlusion or facial expression. Another
important contribution in this thesis is the discriminative modeling of the fea-
tures for learning deformable appearance models with enhanced generalization
capacity. Unlike the generative modeling, the use of discriminative models re-
duces the dimension of the search space on one hand, on the other hand, it
enables a framework for learning an alignment cost function with the desired
properties. The discriminative appearance modeling is explored in three differ-
ent perspectives of machine learning problems, i.e. classification, ranking, and
regression.

To evaluate the proposed discriminative appearance models in face alignment,
we prepare and propose a benchmarking data set, which includes images col-
lected from four publicly available face databases, namely, the FERET [PWHR98],
FRGC [PFS+05], IMM [SEL03], and LFW database [HRBLM07]. Extensive ex-
periments have been carried out to analyze the effects of the training parameters
for different models on the alignment performance. The parameters include the
size of the reference shape, number of features selected in the model, number
and distribution of training samples, etc. As we are using the local gradient
based features, a proper size for the reference shape should be used as suggested
by the experimental results. A small size may lose the details of facial appear-
ance, while a large size may introduce noise in the model. For the PCT-based
classification appearance model, a reference shape with 35 pixels width achieved
the best alignment performance. The feasibility of applying a larger reference
shape is enabled by the use of local structural features, which have a low dimen-
sional configuration space. This makes the appearance learning tractable in the
boosting framework, while the Haar based feature might be intractable due to
the high configuration dimension. The experimental results also show that the
PCT based appearance model outperforms the Haar based model.
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To mitigate the imbalanced data problem in the classification based appear-
ance models, we investigate ranking based models by learning partial ordering
of alignments. The ranking appearance model is realized with pairwise classifi-
cation, which classifies correctness of ordering paired alignments. The ranking
based modeling also enforces constraints on the incorrectly aligned data in learn-
ing the alignment cost function, which results in a smoother score function than
in the classification based models. Experiments show superior alignment per-
formance of the ranking appearance models. We also show that extracting more
alignment pairs for training using random permutation improves alignment per-
formance slightly.

The regression-based appearance model enforces even more constraints on the
alignment cost function learning, where the response target of the regression
model is defined with e.g. a triangle function. The gradient boosted regression
trees (GBRT) is adopted for learning our regression model due to its success in
solving learning to rank problems. The random forests technique is used to ini-
tialize the GBRT training iterations. The initialization provides the GBRT with
an initial estimation with low bias and requires less iterations to converge to the
global optimum. The experimental results show that the regression trees-based
appearance models significantly improve the robustness and accuracy in terms
of face alignment. Our best proposed model (PCT-iGBRT-REAM) boosts the
alignment performance by about 23.4%−26.1% on different data sets compared
to the model based on pairwise ordinal classification (PCT-SVM-RAM). To
learn appearance models with features, which have semantic meanings, we pro-
pose another regression based model, where the model representation is based
on the RAPID features. Instead of using a gradient feature in a local adja-
cent region, the RAPID features are extracted between pixel locations at a
certain distance. The experiments demonstrate that the RAPID based appear-
ance model is more robust in face alignment than local structural features such
as the PCT and MCT on the benchmarking data sets. Furthermore, we show
in the experiments that the RAPID-based appearance model outperforms two
state-of-the-art discriminative face alignment models.

To analyze the properties of the proposed discriminative appearance models fur-
ther, we thoroughly evaluate the alignment robustness under various imaging
conditions, such as image noise, partial occlusion, and lighting. Through the
experiments, we found out that the proposed feature and appearance modeling
is robust against these confounding factors. In particular, fitting with regres-
sion based appearance models still has a decent convergence rate under large
occlusion and a large amount of image noise. In addition, we found out that
although random pixel intensity features achieved best results on the bench-
marking data set with moderate illumination changes, it is less robust than the
local structural features, when tested on extreme lighting variation presented in
the extended YaleB database.
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As an application for the proposed discriminative appearance model, we applied
the alignment for pose normalization in cross-pose face recognition. The experi-
mental results show that the improved alignment results enhance the recognition
performance. In addition, we extend the cross-pose face recognition by using
partial least squares (PLS) for learning a latent space, which maximizes corre-
lation between different view-points. The view-based normalization mitigates
the weakness in the original PLS-based approach, in which a discrete and pre-
cise pose estimating is required. This makes the PLS-based framework more
applicable in real-world applications.

8.1 Future Work

There are several possibilities to further improve or extend the proposed dis-
criminative appearance models. The Nelder-Mead simplex-based method is sen-
sitive to initialization. Applying a stochastic Nelder-Mead method might help
the optimization avoiding some local extrema. The current regression-based
appearance model learns a single regression model, which is suboptimal for
approximating a local extrema free cost function. A cascaded or stage-wise re-
gression model might be a better solution. For the RAPID-based appearance
models, more sophisticated feature selection methods can be applied. Good
features should not only be correlated to the regression targets, but also be
less dependent from the selected candidate feature set. The artifacts from the
piecewise affine warping on semi-profile facial images should also be considered.
Features extracted on the self-occluded facial part can be less reliable for con-
tributing to learning a smooth cost function. Finally, a 3D shape model can be
applied to mitigate pose ambiguity to some degree.
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