106 research outputs found

    Digital Image Steganography

    Get PDF
    Steganography is defined as the science of hiding or embedding data in a transmission medium. Its ultimate objectives, which are undetectability, robustness (i.e., against image processing and other attacks) and capacity of the hidden data (i.e., how much data we can hide in the carrier file), are the main factors that distinguish it from other sisters-in science. techniques, namely watermarking and Cryptography. This paper provides an overview of well known Steganography methods. It identifies current research problems in this area and discusses how our current research approach could solve some of these problems. We propose using human skin tone detection in colour images to form an adaptive context for an edge operator which will provide an excellent secure location for data hiding

    Integration of biometrics and steganography: A comprehensive review

    Get PDF
    The use of an individual’s biometric characteristics to advance authentication and verification technology beyond the current dependence on passwords has been the subject of extensive research for some time. Since such physical characteristics cannot be hidden from the public eye, the security of digitised biometric data becomes paramount to avoid the risk of substitution or replay attacks. Biometric systems have readily embraced cryptography to encrypt the data extracted from the scanning of anatomical features. Significant amounts of research have also gone into the integration of biometrics with steganography to add a layer to the defence-in-depth security model, and this has the potential to augment both access control parameters and the secure transmission of sensitive biometric data. However, despite these efforts, the amalgamation of biometric and steganographic methods has failed to transition from the research lab into real-world applications. In light of this review of both academic and industry literature, we suggest that future research should focus on identifying an acceptable level steganographic embedding for biometric applications, securing exchange of steganography keys, identifying and address legal implications, and developing industry standards

    Design and simulation a video steganography system by using FFT­turbo code methods for copyrights application

    Get PDF
    Protecting information on various communication media is considered an essential requirement in the present information transmission technology. So, there is a continuous search around different modern techniques that may be used to protect the data from the attackers. Steganography is one of those techniques that can be used to maintain the copyright by employing it to cover the publisher logo image inside the video frames. Nowadays, most of the popular known of the Video-Steganography methods become a conventional technique to the attacker, so there is a requirement for a modern and smart strategy to protect the copyright of the digital video file. Where this proposed system goal to create a hybrid system that combines the properties of Cryptography and Steganography work to protect the copyright hidden data from different attack types with maintaining of characteristics of the original video (quality and resolution). In this article, a modern Video-Steganography method is presented by employing the benefits of TC (Turbo code) to encrypt the pixels of logo image and Least two Significant Bit Technique procedure to embed the encryption pixels inside the frames of the video file. The insertion is performed in the frequency domain by applying the Fast Fourier Transform (FFT)on the video frames. The examination of the suggested architecture is done by terms of Structural Similarity Index, MSE (mean squared error), and PSNR (peak signal-to-noise ratio) by comparing between an original and extracted logo as well as between original and Steganographic video (averaged overall digital frames in the video). The simulation results show that this method proved high security, robustness, capacity and produces a substantial performance enhancement over the present known ways with fewer distortions in the quality of the vide

    Design and simulation a video steganography system by using FFT­turbo code methods for copyrights application

    Get PDF
    Protecting information on various communication media is considered an essential requirement in the present information transmission technology. So, there is a continuous search around different modern techniques that may be used to protect the data from the attackers. Steganography is one of those techniques that can be used to maintain the copyright by employing it to cover the publisher logo image inside the video frames. Nowadays, most of the popular known of the Video-Steganography methods become a conventional technique to the attacker, so there is a requirement for a modern and smart strategy to protect the copyright of the digital video file. Where this proposed system goal to create a hybrid system that combines the properties of Cryptography and Steganography work to protect the copyright hidden data from different attack types with maintaining of characteristics of the original video (quality and resolution). In this article, a modern Video-Steganography method is presented by employing the benefits of TC (Turbo code) to encrypt the pixels of logo image and Least two Significant Bit Technique procedure to embed the encryption pixels inside the frames of the video file. The insertion is performed in the frequency domain by applying the Fast Fourier Transform (FFT)on the video frames. The examination of the suggested architecture is done by terms of Structural Similarity Index, MSE (mean squared error), and PSNR (peak signal-to-noise ratio) by comparing between an original and extracted logo as well as between original and Steganographic video (averaged overall digital frames in the video). The simulation results show that this method proved high security, robustness, capacity and produces a substantial performance enhancement over the present known ways with fewer distortions in the quality of the vide

    Fair comparison of skin detection approaches on publicly available datasets

    Full text link
    Skin detection is the process of discriminating skin and non-skin regions in a digital image and it is widely used in several applications ranging from hand gesture analysis to track body parts and face detection. Skin detection is a challenging problem which has drawn extensive attention from the research community, nevertheless a fair comparison among approaches is very difficult due to the lack of a common benchmark and a unified testing protocol. In this work, we investigate the most recent researches in this field and we propose a fair comparison among approaches using several different datasets. The major contributions of this work are an exhaustive literature review of skin color detection approaches, a framework to evaluate and combine different skin detector approaches, whose source code is made freely available for future research, and an extensive experimental comparison among several recent methods which have also been used to define an ensemble that works well in many different problems. Experiments are carried out in 10 different datasets including more than 10000 labelled images: experimental results confirm that the best method here proposed obtains a very good performance with respect to other stand-alone approaches, without requiring ad hoc parameter tuning. A MATLAB version of the framework for testing and of the methods proposed in this paper will be freely available from https://github.com/LorisNann

    Efficient and Robust Video Steganography Algorithms for Secure Data Communication

    Get PDF
    Over the last two decades, the science of secretly embedding and communicating data has gained tremendous significance due to the technological advancement in communication and digital content. Steganography is the art of concealing secret data in a particular interactive media transporter such as text, audio, image, and video data in order to build a covert communication between authorized parties. Nowadays, video steganography techniques are important in many video-sharing and social networking applications such as Livestreaming, YouTube, Twitter, and Facebook because of noteworthy developments in advanced video over the Internet. The performance of any steganography method, ultimately, relies on the imperceptibility, hiding capacity, and robustness against attacks. Although many video steganography methods exist, several of them lack the preprocessing stages. In addition, less security, low embedding capacity, less imperceptibility, and less robustness against attacks are other issues that affect these algorithms. This dissertation investigates and analyzes cutting edge video steganography techniques in both compressed and raw domains. Moreover, it provides solutions for the aforementioned problems by proposing new and effective methods for digital video steganography. The key objectives of this research are to develop: 1) a highly secure video steganography algorithm based on error correcting codes (ECC); 2) an increased payload video steganography algorithm in the discrete wavelet domain based on ECC; 3) a novel video steganography algorithm based on Kanade-Lucas-Tomasi (KLT) tracking and ECC; 4) a robust video steganography algorithm in the wavelet domain based on KLT tracking and ECC; 5) a new video steganography algorithm based on the multiple object tracking (MOT) and ECC; and 6) a robust and secure video steganography algorithm in the discrete wavelet and discrete cosine transformations based on MOT and ECC. The experimental results from our research demonstrate that our proposed algorithms achieve higher embedding capacity as well as better imperceptibility of stego videos. Furthermore, the preprocessing stages increase the security and robustness of the proposed algorithms against attacks when compared to state-of-the-art steganographic methods

    Steganography and Cryptography Techniques Based Secure Data Transferring Through Public Network Channel

    Get PDF
    من المعلوم انه غالبا ما يتم مهاجمة البيانات المنقولة عبر شبكة الانترنيت ملايين المرات في اليوم الواحد. ولمعالجة هذه المشكلة، تم اقتراح طريقة آمنة تقوم بتأمين البيانات المنقولة عبر الشبكة. الطريقة المقترحة تعتمد تقنيتين لضمان النقل الآمن للرسالة المنقولة. اذ يتم تشفير الرسالة كخطوة أولى، ثم يتم إخفاؤها في غلاف فيديو معين. تقنية التشفير المقترحة هي خوارزمية تشفير انسيابية (RC4) لزيادة سرية الرسالة، وكذلك تحسين خوارزمية تضمين البتات الأقل أهمية (LSB) لتوفير مستوى أمان إضافي. يأتي تحسين طريقة الـ LSB التقليدية من خلال استبدال الاختيار المتسلسل المعتمد سابقا في طريقة الاختيار العشوائي لكل من الإطارات والبكسل من خلال استخدام مفتاحين عشوائيين سريين على التوالي. لذا، تبقى الرسالة المخفية محمية حتى إن تم اختراق الكائن المخفي(stego) لأن المهاجم سيكون غير قادر على معرفة الإطارات والبكسلات الحقيقية التي تتضمن كل جزء من أجزاء الرسالة السرية بالإضافة إلى صعوبة إعادة بناء الرسالة بشكل صحيح. النتائج المتحصلة من البحث تشير إلى أن الطريقة المقترحة توفّر أداءً جيدًا وفقا لمقاييس التقييم المعتمدة عند مقارنتها بعدد كبير من الطرق السابقة ذات الصلة بهذا النوع من الاعمال.Attacking a transferred data over a network is frequently happened millions time a day. To address this problem, a secure scheme is proposed which is securing a transferred data over a network. The proposed scheme uses two techniques to guarantee a secure transferring for a message. The message is encrypted as a first step, and then it is hided in a video cover.  The proposed encrypting technique is RC4 stream cipher algorithm in order to increase the message's confidentiality, as well as improving the least significant bit embedding algorithm (LSB) by adding an additional layer of security. The improvement of the LSB method comes by replacing the adopted sequential selection by a random selection manner of the frames and the pixels with two secret random keys. Therefore, the hidden message remains protected even if the stego-object is hacked because the attacker is unable to know the correct frames and pixels that hold each bit of the secret message in addition to difficulty to successfully rebuild the message. The results refer to that the proposed scheme provides a good performance for evaluation metric that is used in this purpose when compared to a large number of related previous methods

    Conditional Entrench Spatial Domain Steganography

    Get PDF
    Steganography is a technique of concealing the secret information in a digital carrier media, so that only the authorized recipient can detect the presence of secret information. In this paper, we propose a spatial domain steganography method for embedding secret information on conditional basis using 1-Bit of Most Significant Bit (MSB). The cover image is decomposed into blocks of 8*8 matrix size. The first block of cover image is embedded with 8 bits of upper bound and lower bound values required for retrieving payload at the destination. The mean of median values and difference between consecutive pixels of each 8*8 block of cover image is determined to embed payload in 3 bits of Least Significant Bit (LSB) and 1 bit of MSB based on prefixed conditions. It is observed that the capacity and security is improved compared to the existing methods with reasonable PSNR
    corecore