892 research outputs found

    Designing an Interval Type-2 Fuzzy Logic System for Handling Uncertainty Effects in Brain–Computer Interface Classification of Motor Imagery Induced EEG Patterns

    Get PDF
    One of the urgent challenges in the automated analysis and interpretation of electrical brain activity is the effective handling of uncertainties associated with the complexity and variability of brain dynamics, reflected in the nonstationary nature of brain signals such as electroencephalogram (EEG). This poses a severe problem for existing approaches to the classification task within brain–computer interface (BCI) systems. Recently emerged type-2 fuzzy logic (T2FL) methodology has shown a remarkable potential in dealing with uncertain information given limited insight into the nature of the data generating mechanism. The objective of this work is thus to examine the applicability of T2FL approach to the problem of EEG pattern recognition. In particular, the focus is two-fold: i) the design methodology for the interval T2FL system (IT2FLS) that can robustly deal with inter-session as well as within-session manifestations of nonstationary spectral EEG correlates of motor imagery (MI), and ii) the comprehensive examination of the proposed fuzzy classifier in both off-line and on-line EEG classification case studies. The on-line evaluation of the IT2FLS-controlled real-time neurofeedback over multiple recording sessions holds special importance for EEG-based BCI technology. In addition, a retrospective comparative analysis accounting for other popular BCI classifiers such as linear discriminant analysis (LDA), kernel Fisher discriminant (KFD) and support vector machines (SVMs) as well as a conventional type-1 FLS (T1FLS), simulated off-line on the recorded EEGs, has demonstrated the enhanced potential of the proposed IT2FLS approach to robustly handle uncertainty effects in BCI classification

    A fast algorithm to initialize cluster centroids in fuzzy clustering applications

    Get PDF
    The goal of partitioning clustering analysis is to divide a dataset into a predetermined number of homogeneous clusters. The quality of final clusters from a prototype-based partitioning algorithm is highly affected by the initially chosen centroids. In this paper, we propose the InoFrep, a novel data-dependent initialization algorithm for improving computational efficiency and robustness in prototype-based hard and fuzzy clustering. The InoFrep is a single-pass algorithm using the frequency polygon data of the feature with the highest peaks count in a dataset. By using the Fuzzy C-means (FCM) clustering algorithm, we empirically compare the performance of the InoFrep on one synthetic and six real datasets to those of two common initialization methods: Random sampling of data points and K-means++. Our results show that the InoFrep algorithm significantly reduces the number of iterations and the computing time required by the FCM algorithm. Additionally, it can be applied to multidimensional large datasets because of its shorter initialization time and independence from dimensionality due to working with only one feature with the highest number of peaks

    A Novel Robust Algorithm for Information Security Risk Evaluation

    Get PDF
    Abstract As computer becomes popular and internet advances rapidly, informatio

    Fuzzy subtractive clustering (FSC) with exponential membership function for heart failure disease clustering

    Get PDF
    The fuzzy clustering algorithm is a partition method that assigns objects from a data set to a cluster by marking the average location. Furthermore, Fuzzy Subtractive Clustering (FSC) with hamming distance and exponential membership function is used to analyze the cluster center of a data point. The data point with the highest density will be the cluster's center. Therefore, this research aims to determine the number of collections with the best quality by comparing the Partition Coefficient (PC) values for each number produced. The data set, which is heart failure patient data, is 150 data obtained from UCI Machine Learning. The data consists of 11 variables, including age

    An exploration of evolutionary computation applied to frequency modulation audio synthesis parameter optimisation

    Get PDF
    With the ever-increasing complexity of sound synthesisers, there is a growing demand for automated parameter estimation and sound space navigation techniques. This thesis explores the potential for evolutionary computation to automatically map known sound qualities onto the parameters of frequency modulation synthesis. Within this exploration are original contributions in the domain of synthesis parameter estimation and, within the developed system, evolutionary computation, in the form of the evolutionary algorithms that drive the underlying optimisation process. Based upon the requirement for the parameter estimation system to deliver multiple search space solutions, existing evolutionary algorithmic architectures are augmented to enable niching, while maintaining the strengths of the original algorithms. Two novel evolutionary algorithms are proposed in which cluster analysis is used to identify and maintain species within the evolving populations. A conventional evolution strategy and cooperative coevolution strategy are defined, with cluster-orientated operators that enable the simultaneous optimisation of multiple search space solutions at distinct optima. A test methodology is developed that enables components of the synthesis matching problem to be identified and isolated, enabling the performance of different optimisation techniques to be compared quantitatively. A system is consequently developed that evolves sound matches using conventional frequency modulation synthesis models, and the effectiveness of different evolutionary algorithms is assessed and compared in application to both static and timevarying sound matching problems. Performance of the system is then evaluated by interview with expert listeners. The thesis is closed with a reflection on the algorithms and systems which have been developed, discussing possibilities for the future of automated synthesis parameter estimation techniques, and how they might be employed

    Quality analyses and improvement for fuzzy clustering and web personalization

    Get PDF
    Web mining researchers and practitioners keep on innovating and creating new technologies to help web site managers efficiently improve their offered web-based services and to facilitate information retrieval by web site users. The increasing amount of information and services offered through the Web coupled with the increase in web-based transactions calls for systems that can handle gigantic amount of usage information efficiently while providing good predictions or recommendations and personalization of web sites. In this thesis we first focus on clustering to obtain usage model from weblog data and investigate ways to improve the clustering quality. We also consider applications and focus on generating predictions through collaborative filtering which matches behavior of a current user with that of past like-minded users. To provide dependable performance analysis and improve clustering quality, we study 4 fuzzy clustering algorithms and compare their effectiveness and efficiency in web prediction. Dependability aspects led us further to investigate objectivity of validity indices and choose a more objective index for assessing the relative performance of the clustering techniques. We also use appropriate statistical testing methods in our experiments to distinguish real differences from those that may be due to sampling or other errors. Our results reconfirm some of the claims made previously about these clustering and prediction techniques, while at the same time suggest the need to assess both cluster validation and prediction quality for a sound comparison of the clustering techniques. To assess quality of aggregate usage profiles (UP), we devised a set of criteria which reflect the semantic characterization of UPs and help avoid resorting to subjective human judgment in assessment of UPs and clustering quality. We formulate each of these criteria as a computable measure for individual as well as for groups of UPs. We applied these criteria in the final phase of fuzzy clustering. The soundness and usability of the criteria have been confirmed through a user survey
    • …
    corecore