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Abstract

The amount of water lost in various leakage events in water networks in the

UK not only generates economic loses for the water management companies,

but more importantly, threatens supplies to households and businesses in

times of severe drought. To address this problem, a novel forecasting

approach is presented in this thesis that aims at predicting the leaks so that

appropriate resources can be planned to handle them.

A modified Fuzzy Evolving Takagi-Sugeno (Mod eTS) algorithm has been

developed and applied to the leakage forecasting problem. The algorithm

recursively clusters the data samples as soon as they become available and

builds the fuzzy structure based on the generated clusters. Each new data

sample is compared to already gathered data by calculating its potential.

Based on that, the new data sample can modify the structure of existing

clusters or initiate a new one. The modification may not only shift the cluster

centre, but can also change the area of influence of the cluster, by adjusting

its radius. The clusters are used to generate fuzzy If-Then rules through

Takagi-Sugeno inference. The modified version of Recursive Least Squares

algorithm is used to estimate parameters of the resulting linear equations,

by taking into account the firing strength of the Fuzzy If-Then rules. This

way the system is allowed to evolve, by constantly learning and adapting to
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ABSTRACT

changes in the data.

The algorithm has been applied to two sets of data: the leakage data

from 8 regions of operation of one of the biggest water suppliers in the

UK and to artificially generated time-series data using the Mackey-Glass

process. The novel approach is evaluated and compared with a number

of computational intelligence and widely accepted, statistical methods and

consistently demonstrated highest accuracy for the leakage data sets (MASE

of 1.263 as compared to 2.319 on average for other methods). It also

preformed well on the Mackey-Glass time-series when both the accuracy and

the complexity of the model were considered. Its performance demonstrated

the potential to be further developed and applied in the industrial setting,

not only in the water industry, but also in other areas.
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”Prediction is very difficult, especially if it’s about the future.”
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Chapter 1

Introduction

In the last few decades, fuzzy logic has been successfully used to model

complex, dynamic problems that would otherwise be difficult to accomplish

using conventional mathematical approaches. The advantage of using fuzzy

logic lays in its ability to express non-linear relations among variables,

typically by combining several linear sub-models, expressed in the form of

fuzzy If-Then rules. The rules are often generated based on an expert’s

knowledge. This, however, requires the presence of an experienced specialist,

and it is usually time consuming and not feasible for large scale applications.

One of the ways to overcome this problem is to use data clustering. The data

points which share similar properties are automatically grouped into clusters

which in turn are a base for the fuzzy If-Then rules. The recent advances

in the field of fuzzy clustering (Lughofer 2011b, Angelov et al. 2010) have

allowed for real-time generation and update of fuzzy If-Then rules. This

is particularly helpful in situations where it is important to adapt the rule

structure to changing conditions as well as being able to control the way the

clusters are generated in the real time. The applications of this approach have
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not yet been thoroughly explored in all prospective research areas, forecasting

being one of them. As development and application of forecasting models to

be used in real-world scenarios are often difficult tasks because of non-linear

relationships between dependent and independent variables, measurement

errors and incomplete datasets, the application of the fuzzy evolving methods

in forecasting is a promising research direction for scientists working in those

research areas.

1.1 Forecasting

Forecasting is the process of predicting future events based on data from

the past and present. Forecasting has been widely researched by scientists

around the world and it is integral to any business activity, especially in sales,

finance, utilities and weather forecasting.

There are many forecasting methods, which can be divided into two groups:

qualitative (or judgemental) and quantitative forecasting.

1.1.1 Qualitative forecasting

Judgemental methods involve subjective opinions and decisions, which are

formed based on the knowledge from experts, group of experts or are formed

as a result of opinion of a target group. The most commonly used methods

are:

� Judgemental adjustments, where all or parts of the forecasts are

adjusted by an expert in the field. This is a very common approach,
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as in many cases statistical methods cannot incorporate the effects of

some future events that may be known to the expert, or incorporate

past experiences.

� Delphi method is a formalized way of obtaining a forecast from a group

of experts in a structured, iterative manner, and was invented by Dalkey

& Helmer (1963).

� Forecasting by analogy, where forecast is obtained based on the

comparison with data from a similar scenario - ”what forecast did we

use last time when this event happened?”

� Scenario forecasting, where experts generate several outcomes of the

forecast, usually, worst, middle and best cases scenarios. Forecasts

based on scenarios allow for many possible forecasts to be generated in

order to identify the likely extremes.

Some of those methods will be discussed in more detail in Section 2.2 of

Chapter 2.

1.1.2 Quantitative forecasting

In quantitative forecasting the future data is mathematically predicted as a

function of past and present data. Those methods are applicable when the

data gathered so far indicates that the events of the future can be predicted

based on that data (Hyndman & Athanasopoulos 2014). There are many

quantitative methods, the most used and popular ones being:

� Simple regression methods, which assume that the outcome of the
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forecast can be described by a linear relationship with one predictor

variable.

� Multiple regression methods, which are very similar to simple regression

methods, except that the forecast can be described by a linear

relationship with more than one predictor variable.

� Exponential smoothing methods, which produce forecasts that are

weighted averages of past observations, with the weights decaying

exponentially as the observations get older. More details on those

methods will be included in Section 2.3 of Chapter 2.

� ARIMA models, which use the similarity between observations as a

function of the time lag between them (autocorrelation) in order to

generate the forecast. More details on those will be provided in Section

2.4 of Chapter 2.

� Computational Intelligence methods, which try to automatically

establish relationships (linear and non-linear) between the input

variables and the output in order to generate a forecasting model.

Those will be discussed in Section 2.5 of Chapter 2.

1.2 Fuzzy logic systems and fuzzy clustering

1.2.1 Fuzzy logic systems

The concept of fuzzy logic was introduced by Zadeh (1965) who proposed

a methodology of processing data by allowing a partial set membership

rather than a crisp set membership or non-membership. This allowed
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the mathematical representation of vague, uncertain statements to create

solutions with smoother transition between states.

The concept of fuzzy logic has been used to build fuzzy logic systems.

Those systems use a combination of membership functions (an example of

a membership function is presented below in Fig. 1.1) connected by fuzzy

statements in order to model the behaviour of a system. This can be a

physical system or, as in the case in this thesis, a system that describes the

relationships between variables in order to generate a forecast.

Figure 1.1: Gaussian membership function.

An example of the fuzzy statement can be seen below. The predictor variables

are modelled using fuzzy membership functions and the outcome is obtained

through defuzzification of the system. The outcome can be represented by a

fuzzy set (this is called Mamdani inference - Eq. 1.1) or may be represented as

a linear function (similar to multivariate models) and is called Takagi-Sugeno
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inference - Eq. 1.2.

R1: IF x1 is FREEZING AND x2 is WINTER1 THEN y = MANY (1.1)

where x1 and x2 are predictor variables modelled by fuzzy sets through

fuzzy membership functions (those could be similar to Fig. 1.1) described

as FREEZING and WINTER1 and the outcome y modelled by the fuzzy

set MANY .

R1: IF x1 is FREEZING AND x2 is WINTER 1

THEN y1 = ax1 + bx2 + c
(1.2)

where y1 = ax1 + bx2 + c is an output equation, where y1 is the estimated

output, a, b and c are equation parameters that are usually estimated using

least squares method, and x1 and x2 are defuzzified values of fuzzy sets (in

this case FREEZING and WINTER1).

More detailed discussion and explanation of fuzzy systems will be presented

in Section 3.3 of Chapter 3.

1.2.2 Fuzzy clustering

Clustering is a process where data is grouped based on observed similarities

and patterns (Jain et al. 1999). An example of this can be seen in Fig. 1.2,

where data is automatically grouped into 3 clusters based on the distance

from the cluster centres.
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Figure 1.2: k-means clustering algorithm.

Much like the fuzzy and boolean logic, clustering can be crisp or fuzzy. In

crisp clustering each observed data point can only belong to one cluster.

An example of the crisp clustering method is k-means. In fuzzy clustering a

point belongs to a cluster with a degree of membership, which can depend on

variety of factors, most often the distance to the cluster centre. An example of

a fuzzy clustering can be c-means clustering method or subtractive clustering.

Both approaches will be discussed in Section 3.4 of Chapter 3.

1.2.3 Automatic rule generation

One of the big issues of fuzzy systems is that fuzzy rules describing a system

have to be built by an expert using domain knowledge. The developments in

the area of fuzzy clustering methods allowed for automatic rule creation from

data based on the position and spread of the cluster centres. More detailed
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discussion on this approach and the algorithms will be presented in Section

3.5 of Chapter 3.

1.2.4 Evolving fuzzy systems

One of the drawbacks of the classic automatic rule generation is that rules

could only be created once all, or a significant portion, of data has been

collected. It was very difficult or almost impossible to easily extend the

model once new data became available. Evolving fuzzy systems allow for

recursive generation and update of both antecedent and consequent parts of

fuzzy rules. This is achieved by using automatic on-line fuzzy rule creation

based on the recursive clustering techniques. The model adapts itself based

on the incoming data, without the need to manually build and estimate

the parameters of the output functions. This approach has application to

real-time systems or problems with non-linear, non-stationary data, since

those can be approximated by a set of linear models (Wang & Mendel 1992).

More details and the review of the existing algorithms will be presented in

Chapter 4 of this thesis.

The approach is also applicable to problems in which relationships between

different inputs and an output are not well understood and cannot be easily

modelled, which is the case in the leakage forecasting problem described

below.
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1.3 Use case: water leakage

As demand for water increases every year together with an increase of

population and overall level of life (Babovic et al. 2002), water distribution

companies face the problem of maintaining and constantly improving their

water networks. This issue is especially visible in countries such as the United

Kingdom, which has many pipelines dating back to 1940’s and experiences

frequent structural failures, water leakages and interruption in service (Savic

et al. 1997). In 1974 an extensive transformation started in the UK water

industry when numerous small local water companies were merged to create

regional authorities. Further changes were made when local authorities were

privatized in 1989 and a regulatory body called OFWAT (Office of Water

Services) was established. All these changes meant that water companies

have to provide not only a certain level of service to their customers, but

also satisfy requirements of the company’s board and shareholders. One of

the biggest problems which water companies face nowadays is to not exceed

maximum agreed leakage levels.

Leakage detection and estimation of actual losses is a difficult task. Most

households do not have meters installed to precisely measure the usage of

water. The common approach is to measure the flow of water in different

areas of the network during the night, when the demand for water is at its

lowest level. The obtained measurements are compared during the course

of a few days and the differences between the flow rates are investigated

as possible leakage events. However, this approach is prone to errors as a

sudden increase in demand, referred to as unaccounted night use, may lead

to misreading the increase in usage of water as a leakage.
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Leakage does not remain constant throughout the year and is subjected to

the influence of seasonal factors, such as the temperature and rainfall, but

also the investments made prior to the expected increase in leakage, water

demand and materials used for pipes. All these factors have a big influence

on the service levels and economic loss of water companies.

The difficulties in predicting the leakage which are caused by uncertainties

in the data and relationships between the various explanatory variables

are a promising area for exploration. These uncertainties are a result of

measurement errors in water flows, unaccounted use of water (water theft,

or simply lack of meters in households). They are also related to the

relationships between the data. It is difficult to establish a simple relationship

between the factors affecting the leakage, such as the effect of increase of

resources in order to decrease the leakage.

As company operates across a considerable area, there are a number of factors

which make different areas of operation unique. Those include structure of

pipes, terrain or urbanisation level. This means that the forecasting model

had to be tailored to the area of operation that it was applied to. Having

an evolving, data focused, model that could be applied with minimal tuning

would be beneficial and evolving fuzzy algorithms fulfil that need.

The company very often judgementally adjusts the forecasts, however those

adjustments have not really been measured, and they can often be biased

(Harvey & Harries 2004). Judgement should be incorporated in the

forecasting support system and some researchers (Yager 1984) suggested

using fuzzy subsets to provide a quantitative framework in which to represent

linguistic forecasts.
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The difficulties in predicting the leakage mentioned above are a promising

area for exploration and work on the use of fuzzy methods in forecasting for

this application. The fuzzy approach has been successfully used to model

complex, dynamic problems, such as blood pressure monitoring (Omron

Healthcare 2016) or control system for camera’s auto-focus (Wilamowski

& Irwin 2011), that would otherwise be difficult to accomplish using

conventional mathematical approaches. The addition of real-time generation

and data-based update of fuzzy If-Then rules through recursive clustering in

evolving fuzzy systems can possibly mitigate issues related to difficulty in

forming the rules manually.

1.4 Aims and objectives

The main aim of the research presented in this thesis is to evaluate the

use of Mod eTS algorithm in forecasting the water leakage. This approach

may prove particularly useful for this application as it is often difficult to

determine the relationship between the dependent and independent variables

(Makinde et al. 2014) and it is important to adapt the forecasting model to

changing conditions. Having a number of regions of operation, it is also

inconvenient to manually create forecasting models for each of these regions

separately. An automatic method to generate those forecasts could be of

great help to managers. The generalizability of the new method is also

evaluated by using a benchmark data; the Mackey-Glass time series. With

this in mind, the following objectives are considered in this thesis:

1. Investigate issues and difficulties that exist in forecasting water leakage

and identify some possible areas for improvements.
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2. Review of the existing statistical and computational intelligence

forecasting methods.

3. Review the existing research on fuzzy evolving methods and the

applications of those methods to forecasting.

4. Analyse the leakage data and choose appropriate predictor variables to

be used in the forecasting process.

5. Develop the new fuzzy evolving algorithm and adapt it to work for the

particular application of leakage forecasting.

6. Investigate the fine tuning of the parameters of the novel fuzzy evolving

algorithm and recommend the choice of parameters for the leakage

forecasting problem in order to obtain the best results.

7. Compare the performance of the novel algorithm to a number of well

established statistical and computational intelligence methods, and also

to other fuzzy evolving algorithms using the data of leakage problem.

8. Apply the novel algorithm to another, non-leakage, data set in order to

evaluate its usefulness in other forecasting applications and analyse the

differences in the obtained results (if any). Compare the performance

on that new dataset to other forecasting algorithms.

1.5 Outline of the thesis

This thesis consists of 9 chapters (including this one). The brief outline of

the thesis is presented below and the logical flow of the thesis is shown in

Fig. 1.3.
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Chapter 2: Forecasting: overview of basic forecasting methods. This

chapter provides an overview of research on some of the more popular

and established forecasting methods, such as judgemental forecasting, the

exponential smoothing methods, and ARIMA models. A more detailed

review on the use of other (not related to fuzzy clustering) Computational

Intelligence methods in forecasting is also presented.

Chapter 3: General fuzzy methods and clustering. The aim of this chapter

is to introduce the reader to the concept of fuzzy systems and clustering.

The chapter discusses the fuzzy statements, fuzzy membership functions

and fuzzy inference techniques. It explains what data clustering is and

merges those two concepts to form a method for identification and automatic

generation of fuzzy models, which is the foundation upon which the evolving

fuzzy systems are built.

Chapter 4: Evolving fuzzy identification methods and their applications.

In this chapter the concept of evolving fuzzy systems is presented. This

approach allows for recursive generation and update of both antecedent

and consequent parts of fuzzy rules, which is achieved by using automatic

on-line fuzzy rule creation based on recursive clustering techniques. Three

main families of evolving fuzzy algorithms are discussed: the eTS and its

extensions, FLEXFIS and DENFIS. The advantages and disadvantages of

those methods will be considered and some applications will be demonstrated.

Chapter 5: Use case - forecasting leakage in the water industry. The aim

of this chapter is to outline the problem of water leakage forecasting and

the factors which influence it. The current method of leakage forecasting

is described and some issues and open questions are presented along with a

possible approach to solve those.
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Chapter 6: Modified Evolving Takagi-Sugeno (Mod eTS) algorithm for

forecasting. In this chapter a novel algorithm, Mod eTS, is introduced. The

algorithm was developed in order to increase the accuracy of prediction of the

leakage forecasts, especially for periods and areas with high levels of leakage.

The chapter provides a detailed description of how the algorithm can be

utilized in forecasting and discusses the novel aspects that are introduced by

the new algorithm.

Chapter 7: Application of the Mod eTS algorithm to leakage forecasting.

This chapter presents the results and conclusions from the application of

the Mod eTS algorithm to the leakage forecasting problem. It explains the

process of choosing the explanatory variables and the pre-processing steps on

the provided data sets. Further on, a sensitivity analysis on the configurable

parameters is performed in order to establish their influence on the obtained

results. Finally, the results of the application of the method to the leakage

forecasting problem are compared with the results obtained from using other

fuzzy forecasting and statistical methods.

Chapter 8: Evaluation of the Mod eTS algorithm on additional data set. In

this chapter the Mod eTS algorithm is tested on the additional data set in

order to establish if the conclusions and results from the previous chapter

are still applicable to other data sets. The data used in this chapter is a

well known non-linear time-series which is generated by the Mackey-Glass

process. In addition to the Mod eTS three other algorithms are evaluated

and the accuracy results are compared.

Chapter 9: Conclusions and Further Work. The last chapter summarises the

outcomes of the research conducted in this thesis. The results obtained on

both data sets are discussed and a number of directions for future research
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in the area of forecasting and evolving fuzzy systems is suggested.

Chapter 1: Introduction

Chapter 2: Forecasting: 

overview of basic 

forecasting methods

Chapter 3: General fuzzy 

methods and clustering

Chapter 4: Evolving fuzzy 

identification methods and 

their applications

Chapter 6: Modified Evolving 

Takagi-Sugeno (Mod eTS) 

algorithm for forecasting

Chapter 5: Use case -

forecasting leakage in the 

water industry

Chapter 7: Application of 

the Mod eTS algorithm to 

leakage forecasting

Chapter 8: Evaluation of the 

Mod eTS algorithm on 

additional data set

Chapter 9: Conclusions and 

Further Work

Figure 1.3: Logical flow of the thesis.
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Forecasting: overview of basic

forecasting methods

2.1 Introduction

Even though this thesis will focus on the use of fuzzy evolving methods in

forecasting, and particularly, their application to water leakage forecasting, it

is important to introduce other methods that are used in that field and their

applications, advantages and weaknesses. The results obtained using these

methods will be compared with the results of the fuzzy evolving methods. In

this chapter the overview of some of the well used and established forecasting

methods will be presented. One of the most frequently used approaches is

judgemental forecasting, which is a family of methods where all or parts

of the forecasts are made or adjusted by an expert in the field. This

is a very common approach, as in many cases statistical methods cannot

incorporate the effects of some future events that may be known to the
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expert, such as promotions, sales and holidays. In the further sections of

this chapter two other families of methods are described: the exponential

smoothing methods, and ARIMA models. These two statistical methods

are very well established and are widely used in research as well as in

practise. Finally a quick overview of the application of computational

intelligence methods to forecasting problems is presented. Those methods

try to automatically establish relationships (linear and non-linear) between

the input variables and the output in order to generate a forecasting model.

Computational intelligence methods have had a mixed success. They have

often outperformed statistical methods, but no consistent conclusion has been

drawn as to what factors contributed to the success of those methods in some

applications. Those methods, and particularly clustering methods and their

use in automatically and recursively generating fuzzy systems for forecasting

will be in focus for the remainder of the thesis. Finally, the forecasting

methods applied to water industry, and particularly to water demand and

leakage forecasting are reviewed in the last section of this chapter.

2.2 Judgemental forecasting

Judgemental forecasts are frequently used to generate forecasts when no

historical data is available (or when historical data is no longer relevant)

or as a means to adjust the results obtained from statistical methods. In

a dynamical environment statistical forecasting methods that are affected

by past patterns can be perceived as being slow to react to change. Also

it is not straightforward to include special events that are known to occur

in the future (for example sales or promotions) into statistical methods
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(Webby et al. 2005). On the other hand, the accuracy of judgemental

adjustments is affected by unskilled personnel or by human behavioural

factors. Direct judgement is very widely used in forecasts, but the human

mind has limited information processing capacity and, often, heuristics are

used to cope with the complexity of statistical models (Goodwin 2000).

Integrating judgemental forecast with statistical methods has been a focus of

a number of research investigations, since both have complementary strengths

and weaknesses. Collopy & Armstrong (1992) examined the feasibility of

rule-based forecasting. They proposed a procedure that applied forecasting

expertise and domain knowledge to produce forecasts according to features

of the data. Armstrong (1998) looked at how judgemental and statistical

methods should be integrated for time-series forecasting. In Goodwin (2002)

two methods of integration were discussed. The first one is voluntary

integration, where the forecaster is supplied with information on a statistical

forecast, and decides how to use it in forming the judgement. The second

one is mechanical integration, where the average of independent judgemental

and statistical forecasts is calculated. The conclusion from the investigation

was that the forecasting support system, which allows and encouraged judges

to interact with statistical methods appear to offer the most promising way

forward. Harvey & Harries (2004), in their psychological study, investigated

the practice of using multiple judgemental forecasts to adjust the statistical

model. It was concluded that people put too much weight on their own

opinion, whereas they should pay more attention to new information from

more experienced or knowledgeable advisers.

Fildes et al. (2009) collected data of more than 60,000 forecasts in order to

evaluate the effects of judgemental adjustments on accuracy of supply-chain

planning. The analysis revealed that in 3/4 companies the adjustments
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in general improved the accuracy. However more detailed analysis showed

that small adjustments often damaged accuracy and, on top of that, they

were made in wrong direction suggesting bias towards optimism. Trapero

et al. (2013) showed that judgemental adjustments in the presence of

promotions can enhance baseline forecasts, but not systematically. Transfer

function models were then developed based on past promotional events

that were able to achieve higher accuracy. Davydenko & Fildes (2013)

addressed an issue in using many existing error measures to evaluate

accuracy of judgemental adjustments. The authors suggested a method

based on aggregating performance ratios across time series using the weighted

geometric mean, which treats under and over forecasting evenly, has more

symmetric distribution and is robust.

A range of research on Forecasting Support Systems (FSS) is also present.

FSS is a set of procedures that enables users to combine relevant information,

analytical models, and judgements, as well as visualizations, to produce

forecasts and monitor their accuracy (Ord & Fildes 2013). The issue of

trust in the results and methods of FSS were looked at by Goodwin et al.

(2012). The conclusions were that trust was affected by level of noise in

time series and whether the trend was present, but unaffected by presence or

absence of point forecasts. When FSS labelled the results as best/worst

case and provided an explanation, the level of trust increased. Fildes

& Goodwin (2013) summarised that the key challenges for FSS relate to

behavioural issues rather than the technical aspects of statistical forecasting.

Spithourakis et al. (2015) evaluated the use of simple implementation

of the FSS in undergraduate course to train students in use of support

systems. A purpose-built questionnaire was used to determine the systems

acceptance and perceived educational effects. The results were encouraging
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and amplified the learning effect. The proposed improvement considered

adding the aspects of Delphi method (Rowe & Wright 1999), which is a

way of combining the forecast of several experts commonly used in business

industry (Kauko & Palmroos 2014).

Several publications used computational methods in an attempt to aid or

model the judgemental aspect of forecasting. Yager (1984) suggested using

fuzzy subsets to provide a quantitative framework in which to represent

linguistic forecasts. Lee & Yum (1998) used neural networks to model

judgemental adjustments in time-series. In Ben Ghalia & Wang (2000) an

intelligent system that used fuzzy rules and inference to support judgemental

business forecasting in estimating hotel room demand was proposed.

The accuracy implication of judgemental adjustments in intermittent demand

(demand that appears occasionally, with some periods of time with no

demand at all) forecasts was a focus of investigation by Syntetos et al. (2009).

The conclusions of the research was that although adjusted forecasts were

more accurate than system forecasts, they did not improve over time. The

follow up research by the same authors (Syntetos et al. 2010) focused on

assessing the impact of judgemental adjustments on service and inventory

levels in a manufacturing environment. The judgementally adjusted forecast

had a big positive impact on service levels (the ability to deliver complete

demand from the stock). The results obtained were much better compared

to system forecasts. When adding lower inventory costs, the combined

performance of the final forecast was even higher.

For more detailed review, readers should refer to Lawrence et al. (2006),

where an overview of progress of research on judgemental forecasting is

presented. Some of the more interesting conclusions from the review were
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that small adjustments were not as useful as the big ones. The view on

the future was that more investigation into the performance of experts in

forecasting had to be carried out since different studies yielded contradictory

conclusions. Also it is important to investigate how people acquire and use

information when they make forecasts and the effects of differences in the

availability of information. The research should focus on the influence of

heuristics and biases on forecast accuracy and development of improved

methods for supporting judgemental forecasters, particularly support in

identifying when judgemental intervention is needed.

2.3 Exponential smoothing methods

Exponential smoothing is a family of forecasting methods where forecasts

are weighted averages of past observations, with the weights decaying

exponentially as the observations get older. The work on exponential

smoothing methods was initiated in the late 1950s by Brown (1959), Holt

(2004) (a re-print of the article from 1957) and Winters (1960). For many

years exponential smoothing methods have been considered as the most

popular forecasting methods used in business and industry (Hyndman et al.

2008). The different exponential models are presented and explained in the

Appendix, in section A.1.

In recent years most research in the area of exponential smoothing has

focused on state space models of exponential smoothing (Ord et al. 1997,

Hyndman et al. 2002), which allow the production of not only point forecasts

but also the confidence intervals around them. A comprehensive overview of

the progress made in this area has been presented in the book by Hyndman
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et al. (2008). Some other methods based on series decomposition also evolved,

such as Theta model (Assimakopoulos & Nikolopoulos 2000). The proposed

method decomposes the original time series into two or more different

Theta-lines. These are extrapolated separately and the subsequent forecasts

are combined. The method performed particularly well in the M3 forecasting

competition (Makridakis & Hibon 2000).

Smoothing methods have been applied to virtually every area of forecasting,

as they work particularly well in business context and are easy to implement.

Syntetos et al. (2009) reviewed the progress of research on forecasting for

inventory planning and pointed out that damped trend smoothing methods

worked particularly well for those applications. However, in cases where

external factors may affect the forecast, such as day of the week, time of the

year, some known events, usually more complex multivariate methods work

better. Fildes et al. (1997) described two use cases for short-term demand

forecasting for the utilities, water and gas. In these two cases extrapolative

methods based on the past data history alone were outperformed by more

complex multivariate approaches that included information on the effects of

weather.

For further reading both papers by Gardner (1985, 2006) provide

comprehensive overviews of the research on exponential smoothing.

2.4 ARIMA models

Similarly to exponential smoothing, ARIMA models are one of the most

widely-used approaches to time series forecasting. While exponential
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smoothing models are based on a description of trend and seasonality in

the data, ARIMA models aim to describe the autocorrelations in the data

(Hyndman & Athanasopoulos 2014), where autocorrelation is the similarity

between observations modelled as a function of the time lag between them.

There is a number of ARIMA models, a few of the most popular and used

are defined in the Appendix, in section A.2.

The ARIMA models have been used extensively in the area of energy,

financial and inventory (Syntetos et al. 2009) forecasting. Hagan & Behr

(1987) reviewed the application of time series analysis methods to electricity

load forecasting and shown that they are well suited to this application,

with the drawback of the inability to accurately represent the nonlinear

relationship between load and temperature. Pai & Lin (2005) presented a

methodology that tries to overcome that weakness, as it exploits the hybrid

approach where ARIMA and SVM (Support Vector Machine) models are

used in forecasting stock prices. Kavasseri & Seetharaman (2009) examined

the use of ARIMA models to forecast wind speeds on the day-ahead (24

h) and two-day-ahead (48 h) horizons with results indicating significant

improvements compared to other methods.

2.5 Computational intelligence methods

A number of computational intelligence methods have been also applied

to forecasting problems. Hand (2009) in his paper on data mining

and forecasting highlights that use of empirical models might lead to

effective prediction and forecasting, but often does not lead to an enhanced
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understanding of the effect of the change in input data on the forecast.

Stepnicka et al. (2012) compared several computational intelligence methods

in their study which evaluated Artificial Neural Networks (ANNs), Support

Vector Machines (SVMs) and combinations of those methods with fuzzy rules

on several seasonal time-series. The results showed that those methods were

comparative in performance and accuracy to forecasts using ARIMA models.

Zhang et al. (1998) reviewed the progress of using artificial neural networks

for forecasting. He concluded that while ANNs provide a great deal of

promise, they also embody much uncertainty as researchers to date are still

not certain about the effect of key factors on forecasting performance of

ANNs. Research indicated that the ensemble (combination) of networks

proved to outperform the single ”best” network. Kourentzes et al. (2014)

proposed an enhanced mode ensemble operator. Results indicated that mode

ensembles overcame issues of uncertainty associated with data sampling, the

stochasticity of neural network training and the distribution of the forecasts.

Crone et al. (2011) reported on results of the extension of M3 forecasting

competition aimed at Computational Intelligence methods. The results

highlighted the ability of Neural Networks to handle complex data, including

short and seasonal time series. The authors concluded, that although results

were promising, the sheer number of methods that have been used in the

competition makes it very difficult to establish what actually makes them

perform well, and therefore a more focused approach is needed.

Song & Chissom (1993b) introduced the idea of fuzzy time series, where

the time series data is partitioned into a set of distinctive fuzzy sets. This

allows for forecasting in fuzzy environments, in which the historical data

are fuzzy sets or linguistic values. The method has been applied by the
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same authors to forecasting university enrolments (Song & Chissom 1993a,

1994). The results indicated, that the application of this method resulted in

lower forecasting errors (3.18% and 4.37% on average) than in other studies

on the same dataset. A number of other applications and extensions were

also studied. In Chen & Tanuwijaya (2011) multivariate fuzzy forecasting

based on fuzzy time series and automatic clustering was applied to forecast

the Taiwan Stock Exchange Capitalization Weighted Stock Index. Here

the proposed approach outperformed a number of other fuzzy forecasting

methods, but was not compared to results obtained from any statistical

approaches. In Egrioglu et al. (2011) the fuzzy time series forecasting

method based on Gustafson-Kessel fuzzy clustering was introduced and

applied to the same problem of forecasting university enrolments. The

results indicated lower MSE when compared to the results obtained from

earlier research on this dataset. Duru (2012) used a fuzzy integrated logical

forecasting method (M-FILF) and multiplicative time series clustering to

model a time-varying volatility for dry cargo (cargo that is of solid, dry

material) freight market. The proposed algorithm was superior to GARCH

(Generalised Autoregressive Conditional Heteroscedasticity) method, which

was applied to freight market problems in earlier research.

Use of fuzzy sets and clustering in forecasting has also been explored by

research community in a number of papers. Different clustering methods were

used to model the fuzzy rules which were later used to produce the forecasts.

Cardoso & Gomide (2007) and Chen & Chang (2010) used various versions

of c-means clustering. Hadavandi et al. (2011) used k-means clustering to

categorize data into k clusters and feed into a genetic fuzzy system for sales

forecasting.
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Evolving methods, in which the cluster structure and fuzzy rules evolve

as new data becomes available have also been investigated in financial

applications. In Maciel et al. (2011) evolving fuzzy systems were used for

pricing fixed income options and in Dovzan et al. (2012) for petrol sales

prediction.

There has been a considerable amount of research that focused on using

Computational Intelligence methods in forecasting for utilities (particularly

water) industry. As an example, in Kelo & Dudul (2011) a time lagged

recurrent neural network was used to predict short-term electrical power

load and Alvisi & Franchini (2011) used fuzzy neural networks to forecast

water level and discharge. Li & Huang (2009) used fuzzy-stochastic-based

violation analysis method for planning water resources management systems.

Mangalova & Agafonov (2014) used k-nearest neighbour (kNN) algorithm to

predict the wind power plants’ power output. Based on RMSE criterion, the

method achieved 2nd place in the Global Energy Forecasting Competition

in 2012. Weron (2014) reviewed forecasting methods for Electricity price

forecasting. The author pointed that Computational Intelligence (Neural

Networks, Fuzzy Neural Networks and Support Vector Machines) methods

have the advantage over statistical methods at better handling of complexity

and non-linearity. At the same time, this flexibility is also their weakness as

this behaviour does not necessarily result in better point forecasts. The

pool of available Computational Intelligence tools is so diverse and rich

that it is hard to find an optimal solution. It is also hard to compare the

different methods thoroughly, as conclusions can only be drawn about the

performance of a given implementation of a method, with certain initial

conditions (parameters) and for a certain calibration dataset.
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2.6 Forecasting in water industry

A number of approaches have been used to improve forecasting in water

industry. In general, two most important factors for water industry are being

forecasted: the demand for water and the amount of leakage that may occur

in the water network. The problem of water demand and leakage prediction is

complex due to non-linearities, therefore this limits the number of forecasting

models that can be applied. The non-linearities originate from the nature of

the problem - nearly all the physical phenomena are obtained by principles

of conservation and are expressed in terms of non-linear partial or ordinary

differential equations expressing these principles (Makinde et al. 2014).

In Herrera et al. (2010), different predictive approaches have been described

and compared. This, among others, included Artificial Neural Networks

(ANN), random forest, support vector regression and a heuristic model

which was built based on the empirical analysis of the time-series. The

results showed that, in general, machine learning methods outperformed

different variants of ANN, as well as showing poor performance of the

heuristic method. In Nasseri et al. (2011) the use of Extended Kalman

Filter (EKF) and Genetic Programming (GP) approaches have been tested.

The GP has been used to generate candidate models, which were then

used for filtering based on the EKF. Although authors claimed promising

results, the dataset consisted of only water demand time-series and did

not include any explanatory variables, which, as described in Herrera et al.

(2010), have influence on the water demand. Bennett et al. (2013) included

those components and built an ANN-based residential water end-use demand

forecasting model, where ANNs were used to model relationships between

micro-components, such as demography, water efficiency of household
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appliances and the use of water. It is worth mentioning, that in addition

to that, as highlighted by Obradović (2000), in order to properly predict the

water demand in real-life systems, the water losses must also be taken into

account and should also be modelled separately.

With regards to leakage forecasting, some research has been done in the way

the various regions of the network should be prioritized for inspection in order

to prevent the leaks from occurring. In Francisque et al. (2009) a fuzzy risk

approach was employed, which helped to deal with vague and imprecise data,

such as water age, structural integrity of the pipes, water quality parameters

and consumer sensitivity to water-related illness. This approach helped the

experts to identify the most significant inputs by conducting a sensitivity

analysis. Another approach, which was also able to deal with unavoidable

uncertainties, involved using a Bayesian probabilistic framework (Poulakis

et al. 2003). It predicted the most probable leakage locations and identified

the noise threshold beyond which reliable diagnosis is not possible. Similar

research was conducted by Babovic et al. (2002) who used Bayesian methods

to determine the risks of pipe bursts and improve leakage detection in water

pipe networks.

2.7 Conclusions

In the next few chapters, the focus will be put on the use of computational

intelligence methods in forecasting, in particular the use of clustering

methods and fuzzy systems. The principles of clustering and fuzzy systems

will be introduced and the recent extension to those methods, fuzzy evolving

systems, which allow for automatic generation of fuzzy rules as the data
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becomes available will be presented. It is important however, to have a

bigger picture on what other forecasting methods are being used in research

and in practice. It is worth remembering, that the methods described in

this chapter are only a small subset of what researchers and professionals

are using in forecasting. However those methods described here are one of

the most frequently used and many new statistical forecasting methods take

inspiration from them. Later on in the thesis, several methods described

here will be compared with a novel fuzzy evolving forecasting algorithm

(introduced Chapter 6) on a leakage forecasting problem and on an artificial

time series generated by the Mackey-Glass process. The methods will be

assessed in terms of accuracy and a number of clusters, where applicable.
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General fuzzy methods and

clustering

3.1 Introduction

In order to understand the fuzzy evolving methods and their use in forecasting

some basic knowledge of fuzzy systems and clustering is required. The

chapter is split into 3 sections. In the first one the fuzzy statements,

fuzzy membership functions and fuzzy inference techniques are explained.

In the second section the idea of data clustering is shown and two methods:

k-means, which is a crisp clustering method; and c-means, a fuzzy clustering

method are described. In the last section those two concepts are merged to

form a method for identification and automatic generation of fuzzy models.

The principles of this method form the foundation upon which the evolving

fuzzy systems are built.
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3.2 Notation

Common symbols

k time instance

i cluster, rule index

R total number of clusters, rules

j index of the input

h total number of inputs

n total number of data samples

m total number of outputs (usually m = 1)

σ2 variance, or width of the Gaussian membership function

σ standard deviation

Aij an jth fuzzy set of rule i

xk =
[
xk1 xk2 . . . xkh

]
data point, data sample, data vector

xek =
[
xk1 xk2 . . . xkh 1

]
extended data sample

x̃k normalized or standardized data sample

xk mean of the k data samples

ŷ estimated output

ci =
[
ci1 ci2 . . . cih

]
cluster centre

cwin winning (for example closest to the data sample) cluster

dist(a, b) distance measure between two points or vectors,

usually Euclidean distance

rα, rβ cluster radii

P (xk) potential of data sample xk

Pk (xk) potential of data sample xk at time instance k

µi activation/membership degree of rule i

τi firing degree of rule i

c-means clustering

ε threshold for c-means clustering

Parameter estimation

ψi regressor vector of rule i
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Ψ data matrix of regressor vectors ψ

aij parameter of jth input for rule i

θi =
[
ai1 ai2 . . . aih+1

]
vector of parameters for rule i

Θ matrix of parameter vectors θ

J cost function of the Least Squares algorithm

Mountain method

Ni node in Mountain method

t step index of the clustering process

M (Ni) Mountain function

α, β parameters used in Mountain function calculation

and update

γ threshold parameter

Subtractive algorithm

α, β parameter used in Subtractive clustering potential

calculation and update

γ, γup, γdown threshold parameters

3.3 Fuzzy logic

3.3.1 Principles of Fuzzy Logic Systems

Physical systems and processes are most commonly modelled using statistical

or mathematical models. However very often the knowledge of an expert,

accumulated over a period of time, is added to include the events or states

which are not easily modelled using classical approaches. The knowledge

of an expert is usually collated and formulated using linguistic rules (for

example If-else statements) and is formed into what is called an expert
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system. Fuzzy logic systems form a subset of rule based expert systems in

which empirical knowledge of the described process or a system is modelled

using fuzzy logic approach (Lughofer 2011a).

The concept of fuzzy logic has been introduced by Zadeh (1965). In

boolean logic the outcome of the logic statement is either true or false.

In Fuzzy Logic, the outcome values belong to a set between [0, 1], also

called a membership degree. This allows to mathematically represent vague,

uncertain statements, such as Vehicle is moving slow or Vehicle is moving

fast. Those statements would be very difficult to model using boolean logic

as it would require determining from which speed exactly the vehicle stops

moving slow and starts moving fast. With fuzzy logic the task becomes easier

as you can assign different membership degrees of various values of speed to

express the word slow and fast, so that the speed can belong to both sets with

varying membership degree. This creates solutions with smoother transition

between states. It can also capture some of the cases which would require

additional logic statements if the boolean logic approach was used.

3.3.2 If-then statements

The expert systems are frequently modelled using If-then statements. If more

inputs are used, they are connected with logic operators, such as AND, OR

or NOT . An example of the simple expert system could be one which aim is

to decided on number of engineers to be used on field to detect the number

of leaks in the water network. The inputs to that system are x1, the average

temperature in deg. Celsius, and x2, the season of the year, expressed in

months, starting from January. The output y is the number of engineers

55



Chapter 3.

required to be send to the field to maintain the detection rate at an acceptable

level. One of the rules of such an expert system could be represented as:

IF x1 is − 5 AND x2 is 12 THEN y = 100 (3.1)

meaning that if the temperature is -5 deg. and it’s December, 100 engineers need

to be send to the field.

If the system is complex, this approach would require generation of many rules

and use of inequalities to accurately represent all of the possible states. It would

also be prone to errors as it is necessary to cover the whole data space to make

sure that all of the possible combinations of inputs are considered.

In fuzzy expert systems the structure of the rules stays the same but the crisp

values of inputs are replaced with fuzzy sets. The fuzzy sets are used to model

the inputs so that their values can be represented as linguistic equivalents, making

it easier to build up the rule system. The equivalent of the crisp rule presented

above can be represented as a fuzzy rule in the following manner:

IF x1 is FREEZING AND x2 is WINTER THEN y = PLENTY (3.2)

where FREEZING, WINTER and PLENTY are fuzzy sets modelled to

represent the numerical values of the inputs and outputs. The parts of the rule

describing the interaction of inputs are called antecedents, while the result of

the rule is called consequent. The fuzzy systems consist of a set of rules which

usually cover all combinations of the inputs and outputs. The creation of fuzzy

system is usually a time consuming process requiring knowledge of an expert in

the particular field. Further in this chapter some of the methods to generate the
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rules automatically from the data will be demonstrated.

3.3.3 Fuzzy Sets and fuzzy operators

Fuzzy sets are the main building blocks of a fuzzy system. The members of fuzzy

sets belong to the set with various membership degrees in the interval [0, 1]. The

way the membership value is calculated depends on the type of a fuzzy set used.

The type is represented as a distribution function, such as triangle, trapezoid

or Gaussian. The aim of using those functions is to model uncertainties which

surround the inputs of the system. Three most popular types of fuzzy sets are

described in Appendix in section A.3. The advantage of triangular and trapezoid

fuzzy sets is that they have clearly defined ranges of maximum membership degrees

and are easy to interpret. The disadvantage on the other hand is that they may

not cover input space properly if the input data point falls outside of the set as

the membership value would then equal to 0. This may lead to the situation when

combination of inputs is not covered by the rules and will in turn fail to provide

an output. The drawbacks of those fuzzy sets are mitigated in Gaussian fuzzy set

as the Gaussian function will never provide 0 as a membership degree.

The antecedent part of fuzzy rule usually consists of more than one input. The

inputs are connected using various fuzzy operators: unions, intersections and

complements. The operators are described in the Appendix, in section A.4.

Having created a set of fuzzy If-then rules describing the system, the process is

required to compute the output given a set of inputs. In fuzzy systems this process

is called fuzzy inference. Two most popular inference systems in fuzzy logic are

Mamdani inference system and Takagi-Sugeno inference system.
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3.3.4 Mamdani inference

Mamdani inference was developed by Mamdani & Assilian (1975). In Mamdani

inference, the consequent part of the fuzzy rule is expressed as a fuzzy set, which

provides fully linguistic based system. The Mamdani inference process requires

several steps:

1. Determine the set of fuzzy rules describing the system.

2. Fuzzify (obtain membership degrees) the inputs using fuzzy membership

functions.

3. Combine the fuzzified inputs using the fuzzy operators to obtain the firing

strength of each rule.

4. Find the consequence of each rule by combining the firing strength of the

rule and the corresponding output membership function.

5. Combine the consequent value of each rule to get the output distribution.

6. Obtain the defuzzified output by using one of the defuzzifing methods.

Expanding on the leakage detection fuzzy system from previous section, an

example of simple Mamdani fuzzy inference system is presented in section A.5

of the Appendix.

Mamdani systems are well understood due to the simple, linguistic expression of

rules, but may struggle to give predictable outputs. Another type of fuzzy inference

method, Takagi Sugeno, will be described in the next section and partially solves

that issue.
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3.3.5 Takagi-Sugeno inference

The fuzzy inference in which the consequent part is described by the mathematical

equation rather than fuzzy set has been developed by Takagi & Sugeno (1985) and

is also called Takagi-Sugeno (TS) inference system. In principle the antecedent

part is described and evaluated in the same way as in Mamdani inference. The

main difference lays in the consequent part in which a set of equations is used to

describe all of the rules. The example rule from the previous section described

using TS inference (Eq. 3.3) can be seen below.

R1: IF x1 is FREEZING AND x2 is WINTER 1

THEN y1 = ax1 + bx2 + c
(3.3)

As in Mamdani inference, the firing strength τi of each rule i is calculated.

To obtain defuzzified output y, the weighted average of each of the consequent

functions yi is calculated using the firing strengths of each rule (Eq. 3.4).

y =

∑R
i=1 τiyi∑R
i=1 τi

(3.4)

The parameters of the consequent equations can be chosen empirically or, more

often, are estimated using well established identification techniques, such as Least

Squares method.

The TS method works really well as an interpolating supervisor of multiple linear

models that differ depending on observed conditions of a dynamic non-linear

system. It smoothly interpolates the linear gains that are applied across the input

space. In turn, a TS system is well suited for modelling non-linear systems as they

can be decomposed into a multi-model structure, where each subset of the data

space is described by a fuzzy set and the generated corresponding linear equation.
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3.4 Clustering

So far, all of the fuzzy models had to be built by an expert using domain knowledge.

While this can work well when evaluating simple systems, growing complexities

will deem that solution very difficult to implement. Increase in complexity of

the systems led to growing popularity of data-driven (DD) approaches. In DD

approach, the system or phenomena, is modelled automatically using the observed

data. In order to do that, data is usually grouped first based on the observed

similarities and patterns. This process is called clustering and will be briefly

described in this section. Much like the fuzzy and boolean logic, clustering can be

crisp or fuzzy. In crisp clustering each observed data point can only belong to one

cluster. An example of the crisp clustering method is k-means. In fuzzy clustering

a point belongs to a cluster with a degree of membership, which can depend on

variety of factors, most often the distance to the cluster centre. An example of

fuzzy clustering can be c-means clustering method or subtractive clustering. In

addition, an example of the application of the c-means algorithm in forecasting

will be presented below. Both approaches will be briefly discussed in the following

sections.

3.4.1 k-means clustering

The k-means clustering method has been developed by Hartigan (1975). Later,

faster and optimized version was introduced by the same author (Hartigan & Wong

1979). k-means is a crisp clustering method, meaning that each sample belongs to

only one cluster. It partitions the data into k mutually exclusive clusters. Data

points are partitioned so that they are as close to each other as possible within the

cluster, and as far as possible from data points assigned to other clusters. Each

cluster is characterized by its members (the data points belonging to the cluster)

and the centroid (or centre). The centre is the point at which the sum of distances
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to each member of the cluster is minimized. k-means uses a recursive algorithm

that minimizes the sum of distances from each data point to its cluster centre,

over all clusters. The algorithm moves data points between clusters until the sum

cannot be decreased further. As a result a set of clusters are created that are as

compact and well-separated as possible.

The algorithm can be described in 4 steps:

Algorithm 1 k-means clustering algorithm

1: Initialize k centroids by positioning them in the data space. The initialization
process can be random or using an initialization method, such as Random
Partition (Hamerly & Elkan 2002);

2: while centroids keep moving do
3: Assign each data point to the closest centroid;
4: Recalculate the position of each k centre by calculating the mean of all

of the points assigned to that centre;
5: end while

An example of clustering of a random 200 data points with two input values x and

y into k = 3 clusters can be seen below on Fig. 3.1.

Figure 3.1: k-means clustering algorithm.
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3.4.2 c-means clustering

Fuzzy c-means algorithm is a clustering technique in which each data point belongs

to a cluster with a certain degree of membership. This technique was originally

introduced by Bezdek et al. (1984) as an improvement on earlier clustering

methods. The fuzzy c-means clustering algorithm is very similar to k-means

clustering. The difference is that rather than assigning the explicit cluster to

the data sample it belongs to the cluster with a degree of membership depending

on the distance to its centre.

The membership degree µi(xk) is calculated at each iteration of the algorithm and

is described by the following equation:

µi(xk) =
1∑R

l=1

(
dist(ci,xk)
dist(cl,xk)

)2/(m−1) (3.5)

where xk is the kth data sample, R is the total number of clusters, dist(ci, xk) is

the distance between ith cluster centre ci and the data sample xk and m is the

fuzzifying factor. The larger the m the smaller the membership value resulting in

fuzzier clusters. Assigning m = 1 causes c-means to become a crisp algorithm as

the membership values will either be 1 or 0.

The centroid of the cluster ci is calculated as a mean of all points weighted by

their membership degree µi(xk):

ci =

∑k
j=1 µi(xj)

mxj∑k
j=1 µi(xj)

m
(3.6)

The c-means clustering algorithm is presented below:
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Algorithm 2 fuzzy c-means clustering algorithm

1: Choose a number of clusters R, and convergence threshold ε

2: Randomly assign R membership degrees to each data points

3: while change in µi between iterations < ε do

4: Calculate the centre ci of each cluster using Eq. 3.6;

5: For each point xk calculate (Eq. 3.5) the new membership degree µi(xk)

based on the new cluster centres;

6: end while

Fig. 3.2 illustrates an example of the implementation of c-means algorithm. Here

the points in black have not been assigned to any of the clusters because their

maximum membership is not higher than 0.5. It can be seen that cluster centres

are very similar to the ones obtained through k-means clustering.
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Figure 3.2: c-means clustering algorithm.
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3.4.3 Fuzzy c-means algorithm for forecasting

The c-means clustering algorithm was modified and used in forecasting by Chen

& Chang (2010), and later further assessed and evaluated in Birek et al. (2011).

The result of the c-means clustering algorithm is a set of cluster centres ci and

the membership degrees µi(Xk) of all of the k training samples Xk belonging to

the clusters. This information can be used to construct the fuzzy If-then rules.

Each cluster corresponds to a different fuzzy rule, therefore the total number of

rules is equal to the number of clusters. The membership functions used in the

fuzzy system are of triangle shape, due to the ease of implementation and low

computational burden (Pedrycz 1994).

The characteristic values of triangular membership function are obtained based

on the membership degrees of data vectors belonging to a cluster which forms the

corresponding fuzzy rule. The centre of the triangular set cij (Eq. 3.7) is formed

from the jth input value xkj of data vector Xk which has the highest membership

degree µi(Xk). The lower aij and upper bij bounds are obtained from Eq. (3.8)

and Eq. (3.9) for xkj that are smaller and bigger then cij respectively.

cij = xkj such that µi(Xk) = max
k=1,...,h

µi(Xk) (3.7)

aij =

n∑
k=1

µi(Xk)xkj

n∑
k=1

µi(Xk)

for xkj ≤ cij (3.8)

bij =

n∑
k=1

µi(Xk)xkj

n∑
k=1

µi(Xk)

for xkj ≥ cij (3.9)
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The fuzzy rules obtained from generated clusters allow generation of forecast based

on the previous observation values which are organized into a data vector Xk =

[x1 x2 ... xh]. The observation values activate a rule, if all membership values

of the triangular membership functions of this rule calculated by Eq. (A.7) are

bigger than 0. If at least one rule is activated, the forecast is obtained using Eq.

(3.10), where p is the total number of activated rules, min Ai(x) is a minimum

value of all of the membership values of ith rule and dBi is a defuzzified value of

the consequent part of the activated rule.

F =

p∑
i=1

minAi(x) dBi

p∑
i=1

minAi(x)

(3.10)

If none of the rules are activated, the forecast is derived using a weighting ratio of

all the rules with respect to the vector of the observation values Xk:

Wi =
1

c∑
d=1

(
‖Xk −D(dAi)‖
‖Xk −D(dAd)‖

)2
(3.11)

where ‖Xk − D(dA)‖ is the Euclidean distance between vector of the observed

values Xk and a vector of defuzzified values D(dA) of the fuzzy membership

functions A of the antecedent part of the corresponding rule. The forecast is

then obtained from (3.12) using the calculated weights and defuzzified values of

the consequent parts of the corresponding fuzzy rules.

F =

c∑
i=1

Wi dBi (3.12)
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3.4.4 Mountain method

The Mountain method was developed in order to facilitate the estimation of

the initial number and position of the cluster centres for a fuzzy c-means

clustering algorithm described in previous section. In the fuzzy c-means approach,

coordinates of the cluster centres are obtained as a result of minimizing the cost

function which takes into account the distance between cluster centres and data

samples and the corresponding membership degrees. This, however, requires the

number of clusters to be specified in advance.

The Mountain method divides the data space into a discrete grid. The rank of

each grid point is calculated using the Mountain function (Eq. 3.13):

M(Ni) =
n∑
k=1

e−αdist(xk,Ni) (3.13)

The function takes into account the distance dist (calculated using the chosen

distance measure, for example Euclidean distance) between the node Ni and all of

the data points xk, k = 1, . . . , n (α being a positive constant). Its value represents

the potential M(Ni) of the node Ni calculated as the density of the data points

surrounding the node, which can be seen as the potential of that node to be a

cluster centre. The grid point with the highest value of the potential is considered

as the first cluster centre (Eq. 3.14):

M1 = max
i

[M(Ni)] (3.14)

At stage t the next cluster is found after eliminating the influence of the newly

created centre at stage t − 1. This is done through lowering the potential values

of each node by the potential Mt−1 of the newly formed cluster. The exponential

function is used so that the nodes around the newly formed cluster have their

mountain values reduced more than the ones further away. The function is also
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bound by zero, so the result is always non-negative (Eq. 3.15):

Mt(Ni) = max[Mt−1(Ni)−Mt−1

n∑
k=1,k 6=i

e−β dist(Nk−1,Ni), 0] (3.15)

New clusters are formed until the current level of maximum mountain value Mt−1

becomes too low as compared to the original maximum M1. This can be expressed

as the ratio presented in (Eq. 3.16) with γ being a threshold parameter:

M1

Mt−1
< γ (3.16)

The algorithm can be summarised in Algorithm 3:

Algorithm 3 Mountain method

1: Set parameters α, β and threshold γ;
2: Divide the data space and form a discrete grid with n nodes;
3: Calculate the mountain value for each of the Ni nodes (Eq. 3.13);
4: Form the first cluster in the node with the highest mountain value (Eq.

3.14);
5: while inequality Eq. 3.16 doesn’t hold do {check the threshold value}
6: Modify the mountain values of other nodes and find another cluster

centre (Eq. 3.15);
7: end while
8: Finish clustering;

Although the method proves to be simple and effective, its computational efficiency

does not scale very well, as the complexity grows exponentially with dimension

(number of variables). Higher dimension requires more nodes to be created, which

has an impact on the performance as the mountain values need to be calculated

for each node. This requires setting the resolution of the grid carefully so that

both the quality of the solution and efficiency are considered.
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3.5 Basic identification of Fuzzy

Takagi-Sugeno models

As it has been described in the previous sections, Takagi-Sugeno models offer

the transition between a conventional fuzzy rule-based model and a mathematical

explanation of the system through a set of linear equations.

In this section the Subtractive clustering algorithm (Chiu 1994) will be described.

It is a fuzzy model-based identification method which uses a modification of the

Mountain method proposed by Yager & Filev (1994). The principles of the method

are based on the identification of the fuzzy structure and estimation of parameters

of the resulting linear equations. The structure identification is performed by

the estimation of the focal points of the fuzzy rules through fuzzy clustering.

The parameters of the consequent linear equations are obtained by applying a

parameter estimation method based on least squares (LS).

3.5.1 Subtractive clustering fuzzy model identification

method

The computational performance of the Mountain Method has been addressed in

the Subtractive clustering algorithm (Chiu 1994), where the data points, and not

the grid points, are considered for the cluster centre selection. This means that the

number of points to be evaluated depends only on the amount of available data

and is independent of the dimension of the data space. In addition, this eliminates

the need to specify the grid resolution. The proposed method forms the basis for

the fuzzy model identification algorithm. The cluster centres are automatically

generated from the collected training data through calculation of the potential of

data samples. The obtained cluster structure can then be used to build a fuzzy
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model based on Takagi-Sugeno inference and a fuzzy weighted Least Squares (LS)

estimation of the parameters of the consequent i.e., Then part of the rules.

For the data to be clustered correctly, the inputs need to be normalized so that

the range of all the normalized data points x̃k ∈ [0, 1]:

x̃k =
xk −min

k
[xk−1]

max
k

[xk−1]−min
k

[xk−1]
(3.17)

x̃k and xk may represent a vector if there is more than one input variable. The

min[xk−1] and max[xk−1] denote the minimum and the maximum of all previously

obtained data points over each dimension separately. The normalization is done

to compensate for the differences in the range of the values in different dimensions

(Dovzan et al. 2012), so that each dimension of the input data space is treated

equally when computing the distance between inputs. For the sake of simplicity,

the normalized input data will be described as xk = x̃k in the further steps of the

clustering part of the algorithm. However, when the parameters of the resulting

linear equations are estimated, real data is used.

The way the potential of the data points is calculated is similar to the mountain

function from the mountain method. The potential P of the training data point

xk is calculated as follows:

P (xk) =
∑n

l=1,l 6=k
e−αdist(xk,xl) (3.18)

α =
4

r2α
(3.19)

P1 = max
k

[P (xk)] (3.20)

where n is the number of data points and rα is a cluster radius, which defines the

influence of the data samples on the potential. The choice of rα can be based on

the grid search over the set of values, typically in the range of [0, 1], which yield
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lowest training error. The literature review reports values between [0.25, 0.5] as a

good starting point (Chiu 1994). The data sample xk with the highest potential

P1 is always chosen to be the first cluster centre c1 = xk.

After every step, the potential of the remaining data samples is updated to account

for the new cluster centre. It is bound by 0, similar to Equation (3.15):

P (xk) = max[P (xk)− P (ci)e
−β dist(xk,ci), 0] (3.21)

β =
4

r2β
(3.22)

where rβ is a radius defining the neighbourhood which will be impacted by the

reduction of the potential. It is set to be greater than rα (a good choice is 1.5rα

according to Chiu (1994)) as this prevents closely placed data samples to be chosen

as cluster centres. P (ci) is the potential of the newly obtained cluster centre ci.

The clustering is considered to be finished when the ratio between the potential

P (xk) of the currently considered data sample and the highest potential P1 is lower

than a certain threshold γ:
P (xk)

P1
< γ (3.23)

The value of γ affects the results considerably, as choosing it to be too small results

in generating too many clusters, whereas if it is too large, not enough data samples

will become cluster centres and consequently not enough fuzzy If-Then rules will

be created (Yager & Filev 1994).

As it is difficult to establish a single value of γ that works well for all data patterns,

Chiu (1994) propose alternative approach. Two values are used γup and γdown. The

γup specifies the threshold above which the data sample xk will be accepted as a

cluster centre. The value of γdown specifies the threshold below which the sample

will be rejected. Good starting values are γdown = 0.5 and γdown = 0.15 (Chiu

1994). The values in between are additionally checked if they provide a good
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trade-off between their potential and the distance to the closest cluster centre.

The assessment is done according to Algorithm 4.

Algorithm 4 Data sample assessment

1: if P (xk)
P1

> γup then
2: Accepted xk as a cluster and continue;
3: else if P (xk)

P1
< γdown then

4: Reject xk and finish clustering;
5: else
6: Find distmin - the shortest distance between xk and all identified

clusters;

7: if distmin
rα

+ P (xk)
P1
≥ 1 then

8: Accept xk as a cluster and continue;
9: else

10: Reject xk and set Pk = 0 and continue;
11: end if
12: end if

The Subtractive clustering algorithm is summarized in Algorithm 5.

Algorithm 5 Subtractive clustering

1: Set the radius rα, rβ = 1.5rα and thresholds γdown and γup;
2: Calculate the potential of all available data points from (3.18 - 3.19);
3: Find the data point with the highest potential P1 (3.20) and establish it as the

first cluster centre;
4: Update the potential of the remaining data points from (3.21);
5: Choose new candidate cluster xk by taking the remaining data point

with the highest potential;
6: while not finished do
7: Apply Algorithm 4;
8: Update the potential of the remaining data points from (3.21);
9: Choose new candidate cluster xk by taking the remaining data point

with the highest potential;
10: end while

When the clustering process is finished, the resulting structure can be used to

generate fuzzy If-Then rules. Each cluster corresponds to one fuzzy rule with the

cluster centre coordinates being the focal points of Gaussian membership functions

of the antecedent, i.e. If part of the fuzzy rule. The consequent, i.e., Then part is
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in the form of a linear function and Takagi-Sugeno inference is applied. Rule i has

the following form:

IF x1 is Ai1 AND x2 is Ai2 AND . . . AND xh is Aih

THEN yi = ai1x1 + ai2x2 + . . .+ aihxh + aih+1

(3.24)

where x =
[
x1 x2 . . . xh

]
is a data sample, j = 1, . . . , h is an index of h input

values and Aij represents a fuzzy set with the Gaussian membership function:

f(xj , cij , σ
2
ij) = e

−
dist(xj , cij)

2σ2ij (3.25)

with cij being the centre and σ2ij a variance (controls the width of the distribution)

of the Gaussian membership function.

The parameters of all linear functions of the consequent parts of fuzzy rules are

estimated using the Least Squares algorithm. The activation degree µi of each rule

is obtained as the membership degree of inputs of the considered data point xk

(note that xk and ci are vectors, therefore dist represents the Euclidean distance)

belonging to the corresponding Gaussian membership functions (3.25).

µi(xk) = e
−
dist(xk, ci)

2σ2i (3.26)

The firing degree τi of each rule, i.e. the degree to which the rule is used as

compared to other fuzzy rules, is then obtained as follows:

τi =
µi∑R
l=1 µl

(3.27)

where R is the total number of fuzzy rules (clusters). The firing degrees are
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combined with input values to create the data matrix Ψ used in the LS algorithm.

Ψ =


τ1x

e
1 τ2x

e
1 · · · τRx

e
1

...
...

...
...

τ1x
e
n τ2x

e
n · · · τRx

e
n

 (3.28)

where xek is an extended data vector with h input values and an additional

dimension to account for a parameter from a θ vector:

xek =
[
xk1 xk2 · · · xkh 1

]
(3.29)

The Θ =
[
θT1 θT2 · · · θTR

]
consists of vectors of estimated parameters of

the consequent part of each rule where θ1 =
[
a11 a12 · · · a1h a1h+1

]
,

θ2 =
[
a21 a22 · · · a2h a2h+1

]
, . . ., θR =

[
aR1 aR2 · · · aRh aRh+1

]
. The

parameters are chosen so that the sum of squared errors between real output values

Y and the outputs estimated by using fuzzy rules ΨTΘ is the lowest:

J =
(
Y −ΨTΘ

)−1 (
Y −ΨTΘ

)
(3.30)

The parameters can be estimated by the pseudo inverse:

Θ = (ΨTΨ)−1ΨTY (3.31)

Knowing the values of the dependent variables (inputs) of extended data vector xe,

the generated model can be used to predict the output based on the assessment of

the firing degrees τi using the estimated parameters Θ. The output ŷ is estimated

as:

ŷ =
∑R

i=1
τiθix

e (3.32)

The fuzzy model identification method with the use of Subtractive clustering
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algorithm is presented in Algorithm 6:

Algorithm 6 Subtractive clustering fuzzy model identification method

1: Find all cluster centres using the Subtractive clustering Algorithm 5;
2: Establish each cluster centre as an antecedent part of a fuzzy rule as in (3.24);
3: Calculate the degree µi at which each of the rules is activated by the available

data from (3.26);
4: Obtain the firing degree of each rule from (3.27);
5: Build a data matrix Ψ (3.28);
6: Obtain the parameters of the consequence linear equations by using Least

Squares optimization (3.30 - 3.31);
7: The output of each of the linear functions can then be estimated based on the

provided input values and the resulting firing degrees of the activated fuzzy
rules (3.32);

Subtractive clustering can be used as an initialization method for other clustering

algorithms, such as fuzzy c-means, which require the number and initial position

of clusters (these are usually chosen randomly) to be set. It can also be used as an

approximate clustering algorithm on its own. The presented combination of the

Subtractive clustering algorithm and Least Squares regression allows for automatic

generation of the Takagi-Sugeno fuzzy models. The algorithm is robust and can

work with noisy data due to the nature of the fuzzy systems (through firing degree

calculation from Equation 3.27).

3.6 Conclusions

In this chapter the idea of automatic generation of fuzzy models has been

introduced. This could be achieved by combining the data clustering approach and

fuzzy Takagi-Sugeno inference. The main drawback of the presented algorithm is

that for the estimation to take place all data needs to be available. Therefore, the

conditions under which the system operates need to be constant for the generated

model to keep its validity. If the conditions change, and the behaviour has not
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been captured by the data before, the whole model needs to be generated from

scratch (Angelov 2004a). The need for an adaptive version of the presented

algorithm arose, as some applications (e.g. forecasting or control engineering)

include systems that are dynamically changing. In the next chapter the idea

of evolving fuzzy systems will be introduced which overcomes that drawback by

dynamically building and evaluating fuzzy systems as new data becomes available.
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Evolving fuzzy identification

methods and their applications

4.1 Introduction

In the previous chapter the concept of fuzzy systems has been introduced. Initially

the fuzzy rules were generated based on the engineering knowledge and required

manual input. The developments in the area of fuzzy clustering methods allowed

for automatic rule creation from the data based on the position and spread of the

cluster centres. One of the drawbacks of that approach is that the rules could

only be created once all, or significant portion, of the data has been collected. It

was very difficult or almost impossible to easily extend the model once new data

became available.

The aim of this chapter is to introduce the reader to the concept of evolving

fuzzy systems which overcomes that drawback. Evolving fuzzy systems allow for

recursive generation and update of both antecedent and consequent parts of fuzzy
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rules. This is achieved by using automatic on-line fuzzy rule creation based on the

recursive clustering techniques. The model adapts itself based on the incoming

data, without the need to manually build and estimate the parameters of the

output functions. This approach has application to real-time systems or problems

with non-linear, non-stationary data, since those can be approximated by a set

of linear models (Wang & Mendel 1992). The approach is also applicable to

problems in which relationships between different inputs and an output is not

well understood and can’t be easily modelled.

Three main families of evolving fuzzy algorithms will be presented in this

chapter: the eTS and its extensions, FLEXFIS and DENFIS. The advantages

and disadvantages of those methods will be considered and some applications will

be demonstrated.

4.2 Notation

As a lot of algorithms will be presented in this chapter, it seems viable to provide

the reader with a notation which will be used to describe them. Some clarification

will be provided for the situations when the same notation is used to describe

different variables.

Common symbols

k time instance

i cluster, rule index

R total number of clusters, rules

j index of the input

h total number of inputs

n total number of data samples

m total number of outputs (usually m = 1)

σ2 variance, or width of the Gaussian membership function

σ standard deviation
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Aij an jth fuzzy set of rule i

xk =
[
xk1 xk2 . . . xkh

]
data sample

xek =
[
xk1 xk2 . . . xkh 1

]
extended data sample

x̃k normalized or standardized data sample

xk mean of the k data samples

ŷ estimated output

ci =
[
ci1 ci2 . . . cih

]
cluster centre

cwin winning (for example closest to the data sample) cluster

dist(a, b) distance measure between two points or vectors,

usually Euclidean distance

rk,ij radius of cluster i, input j at time instance k

P (xk) potential of data sample xk

Pk (xk) potential of data sample xk at time instance k

µi activation degree of rule i

τi firing degree of rule i

Parameter estimation

ψi regressor vector of rule i

Ψ data matrix of regressor vectors ψ

aij parameter of jth input for rule i

θi =
[
ai1 ai2 . . . aih+1

]
vector of parameters for rule i

Θ matrix of parameter vectors θ

Q high number used to initialise the covariance

matrix

Covk covariance matrix at time instance k

cov12 for global learning, an element of global covariance

matrix at row 1, column 2 (example)

covik for local learning, a local covariance matrix

of rule i at time instance k

L gain vector

ε̂ one step ahead prediction error

eTS algorithms
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σk, ϑk, βkj , νk components of recursive potential

calculation equation

Sk(xk) scatter of data sample xk at time k

Nk(ci) population of cluster ci at time k

agek(ci) age of cluster ci at time k

Atk(ci) accumulated time of arrival of cluster ci at time k

Il time instance of the lth data sample added to the cluster

Uk(ci) utility of the fuzzy rule i at time k

Lk(ci) local density in eTS+

γ parameter used to weight the influence of the radius

ωj ratio of contribution of the input j

ε threshold for ignoring the rules based on the population

FLEXFIS algorithms

ρ parameter used for cluster assessment

kci time index of creation of the new cluster ci

ε parameter used to initiate the range of the clusters

η learning gain

DENFIS algorithms

Dthr clustering threshold

λ forgetting factor

4.3 Evolving Takagi-Sugeno (eTS) family of

algorithms

The eTS family of algorithms is based on the Subtractive clustering algorithm

described in the previous chapter. The modification to the standard off-line

algorithm allows for recursive clustering and updating of parameters (fuzzy
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evolving model identification) as new data becomes available. Various modification

and extensions of the standard Evolving Takagi-Sugeno fuzzy identification method

were introduced over the years. They include better rule management, different

ways of regulating the cluster structure and modifications to the Recursive Least

Squares method for parameter estimation. The more important extensions to the

standard eTS algorithm will be described and the methods will be compared at

the end of the section together with some examples of the various applications to

real world problems which will be highlighted at the end of this chapter.

4.3.1 Evolving Takagi-Sugeno (eTS) algorithm

The Evolving Takagi-Sugeno (eTS) algorithm (Angelov & Filev 2004, Angelov

2004b) is based on the Subtractive clustering algorithm described in the previous

chapter, with modifications which allow the gradual update of the antecedent part

of the fuzzy If-Then rules, as well as the consequent parameters via a modified

Recursive Least Squares (RLS) algorithm. The algorithm can be initiated with

the already generated rules (e.g. through off-line identification of a fuzzy model

based on Subtractive clustering) or starting from the first data sample. The high

level diagram of the algorithm can be seen below:

New data sample Pre-processing or

normalisation

Recursive clustering

with rule evolution

of antecedent parts

Learning of

consequent

parameters

Update of the

fuzzy model

Prediction of

the output

Figure 4.1: High level diagram of fuzzy evolving algorithm.
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4.3.1.1 Data normalization in eTS

Similarly to the Subtractive algorithm (3.17), the data needs to be normalized

in advance, before the clustering can begin. When the data becomes available

gradually, the information of the maximum and minimum values may not be

available immediately. It is however often possible to estimate the maximum

and minimum values from some subset (training set) of available data or those

values can be chosen judgementally based on the expertise and knowledge about

the system. The incoming data is therefore normalized in the same manner as in

the Subtractive clustering algorithm using Equation 3.17.

4.3.1.2 Recursive potential calculation

For the algorithm to be viable in on-line applications, the potential Equation (3.18)

used in the Subtractive clustering algorithm needs to be modified so that it can be

updated recursively. The potential of the data samples in eTS is measured using

a Cauchy type function, which is an approximation of the Gaussian kernel. It has

similar characteristics, in that it is monotonic and inversely proportional to the

distance, and after modification allows for the recursive calculation. The formula

for the potential Pk(xk) in the step k is given by the Cauchy function:

Pk(xk) =
k − 1

(k − 1)(ϑk + 1) + σk − 2νk
(4.1)

where:

ϑk =
∑h+1

j=1
(xekj)

2

σk =
∑k−1

l=1

∑h+1

j=1
(xelj)

2 = σk−1 + ϑk−1

νk =
∑h+1

j=1
xekjβkj

βkj =
∑k−1

l=1
xelj = βk−1j + xek−1j

(4.2)
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The explanation of the above equation and the derivation can be found in Angelov

& Filev (2004).

If the algorithm starts from an empty rule base and the first data sample x1 is

considered, then the following initialization is performed:

1. The first data sample becomes the first cluster centre x1 : c1 = x1;

2. The potential P1(c1) of the first cluster is set to 1: P1(c1) = 1;

3. The values of the parameters (4.2) used to calculate the potential (4.1) are

initialized as follows:

(a) ϑ1 = 0;

(b) σ1 = 0;

(c) ν1 = 0;

(d) β1 = [β11 β12 · · · β1j · · · β1h+1] = [0 0 · · · 0];

Similarly to Subtractive clustering (Eq. 3.21), the potential has to be updated for

the already generated cluster centres after each step, as it depends on the distances

to all currently available data samples. The update is performed in a recursive

way:

Pk (ci) =
(k − 1)Pk−1 (ci)

k − 2 + Pk−1 (ci) + Pk−1 (ci)
∑h+1

j=1 (cij − xkj)2
(4.3)

where Pk (ci) is the potential of the k recursive step of the ith cluster centre ci. The

derivation of the above equations can be obtained from Angelov & Filev (2004).

4.3.1.3 Recursive cluster assessment

Due to the fact that the data becomes available gradually, there is a need for the

process of deciding when to add a new cluster, change the already existing one

or when to leave the cluster structure unchanged. This process is based on the
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values of the potentials, distance between cluster centres and new data sample and

cluster radius r. The potential of the candidate cluster Pk(xk) is compared with

the updated potentials of all previously selected clusters using the Algorithm 7:

Algorithm 7 Decision algorithm for recursive cluster assessment in the eTS

1: if Pk(xk) > max
i

[Pk(ci)] then

2: calculate distmin = min
i

[
‖ci − xk‖2

]
- the minimum distance between the

data sample xk and the cluster centre ci;

3: if
Pk(xk)

max
i

[Pk(ci)]
− distmin

r
≥ 1 then

4: The closest cluster centre ci is replaced by the current data sample xk;

5: The potential of the changed cluster is replaced by the potential Pk(xk)

of the data sample xk;

6: else

7: New cluster c(R+1) is added with the coordinates of data sample xk and

the potential Pk (xk);

8: end if

9: else

10: Ignore the data sample xk and proceed further;

11: end if

The meaning of the condition in step 3 of the above algorithm is similar to the

one in Algorithm 4 at step 7. The trade-off between the potential
Pk(xk)

max
i

[Pk(ci)]

and the distance
distmin

r
to the closest cluster centre is checked to assess if the

data sample should replace the closest cluster or if the new cluster centre should

be created in place of xk.
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4.3.1.4 Recursive rule generation - antecedent parts

When the new cluster ci is added, it automatically generates a Takagi-Sugeno

fuzzy If-Then rule as presented in (3.24) with antecedent part described by the

Gaussian membership function obtained from (3.25). The consequence part of the

rule is obtained via a modified RLS algorithm which will be described in the next

subsection. When the clusters are replaced (see Algorithm 7) the antecedent part

of the rule is also replaced and the new membership function is defined by the new

coordinates from xk.

4.3.1.5 Recursive rule generation - consequence linear equation

parameter estimation

The recursive process also involves the on-line estimation of the parameters of

the consequence linear equations. This is done through the use of the Recursive

Least Squares (RLS) algorithm. The estimation can be performed on the global

and local level. In the global learning one covariance matrix for all rules is

considered, whereas in the local learning each rule is described by a different locally

optimized covariance matrix. This introduces a variation in the algorithm which

will be presented below. In general, the local learning proves to have more locally

interpretable rules and sometimes may produce better results (Angelov et al. 2010).

The algorithm is initialized in the following manner:

1. The parameter vector θ1 of the consequent linear equation of the first rule

is set to: θ1 =
[
1 1 · · · 1

]h+1
, where h + 1 indicates the number of

columns in the vector (h being the number of inputs). In case of global

learning, the parameter matrix Θ of the consequent linear equations is set

to θ1, Θ = θ1. The local learning operates on the set of locally optimized

parameters, therefore there is no need to use the global matrix.

84



Chapter 4.

2. The fuzzy weight τ1 of the first rule is set to 1.

3. The covariance matrix Cov1 (or cov1 for local learning, although at this

stage they are the same) is initialized with a high number Q multiplied by

the (h+ 1)× (h+ 1) identity matrix:

Cov1 = cov1 =


Q 0 · · · 0

0 Q · · · 0
...

...
. . .

...

0 0 · · · Q



(h+1)×(h+1)

(4.4)

4. The regressor vector ψ1 which will store weighted input values for the

parameter estimation purpose is initialized with: ψ1 =
[
0 0 · · · 0

]h+1
,

Ψ1 = ψ1 for global learning.

The size of the covariance matrix will depend on the number of extended inputs

h+1 (h being number of inputs) and, for global covariance matrix, on the number

of existing rules R. Therefore, the old global covariance Covk−1 will have a size of

R(h+1)×R(h+1). When a new rule is added, the global covariance matrix needs

to be resized and reset as the addition affects the already existing rule structure:

Covk =



ρcov11 · · · ρcov1R(h+1) 0 · · · 0

· · · · · · · · · 0 · · · 0

ρcovR(h+1)1 · · · ρcovR(h+1)R(h+1) 0 · · · 0

0 0 0 Q · · · 0

· · · · · · · · · 0 · · · 0

0 0 0 0 · · · Q


(4.5)

where R is the number of rules before addition, cov are elements of the old

covariance matrix, and ρ = (R2 + 1)/R2 is the resetting factor.
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In the local learning the parameters of the consequence part of each rule are

described by separate, local covariance matrices covi. When the new rule is added,

the new covariance matrix is initialized in the same way as in (4.4).

Adding a new rule also requires setting the initial parameter vector θ(R+1) for the

consequence linear equation. This is done (for both global and local learning) by

weighted averaging parameters of all already generated rules with a weight set by

the firing degree τi (3.27) of each of the rules:

θ(R+1) =
∑R

i=1
τiθi (4.6)

When the rule is updated (replaced by the new cluster centre) the parameters and

the covariance matrix are inherited by the newly generated cluster for both local

and global learning.

After that, the regressor vector ψi is calculated for each rule using the firing degrees

τ1, τ2, . . . , τR obtained from Eq. 3.27 and the extended input data sample xek (Eq.

3.29):

ψi =
[
τixk1 τixk2 · · · τixkh τi

]
(4.7)

where i = 1, . . . , R.

In the case of global learning, the regressor vectors of all rules are additionally

combined into a data matrix Ψk:

Ψk =
[
ψT1 ψT2 . . . ψTR

]T
(4.8)

The recursive update of the parameters differs between global and local learning.

For global learning, the RLS estimation of the parameters of the linear consequent

86



Chapter 4.

part of the fuzzy If-Then rules is applied as follows:

L =
CovkΨk

1 + ΨT
kCovkΨk

ε̂ = yk −ΨT
k Θ(k−1)

Θk = Θ(k−1) + Lε̂

Cov(k+1) = Covk − LΨT
kCovk

(4.9)

where Covk is a global covariance matrix, Ψk is a global data matrix and Θ(k−1)

is a global matrix of previously estimated parameters at step k − 1 Θ(k−1) =[
θT1 θT2 · · · θTR

]
and k is the current time step. L is referred to as gain vector

and ε̂ as one-step ahead prediction error. Detailed derivation of the RLS algorithm

can be found in the book by Wellstead & Zarrop (1991).

In the local learning the following algorithm is performed for each rule:

L =
covk,ix

eT
k τi

1 + ψTk,icovk,ix
eT
k

ε̂ = yk − xeTk θ(k−1),i

θk,i = θ(k−1),i + Lε̂

cov(k+1),i = covk,i − LxeTk covk,i

(4.10)

The estimated output for the next period based on the input values and obtained

parameter estimates is given by Equation (3.32).
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The whole algorithm is summarized below:

Algorithm 8 Evolving Takagi-Sugeno algorithm

1: if First data sample then
2: Initialize the first cluster and the algorithm parameters;
3: Initialize the parameters θ1 of the consequent linear equation, the

covariance matrix Cov1 (cov1 for local learning) and the regressor vector
ψ1;

4: Create the first fuzzy rule, where the antecedent If-Else part is based on
the cluster centre c1 and the parameters of the consequence linear equation
are set to θ1, set the weight τ1 to 1;

5: else
6: Calculate the potential of the new data sample xk through (4.1);
7: Update the potential of already existing clusters through (4.3);
8: Using Algorithm 7 decide if the new data should become a new cluster,

replace already existing one or if it should be ignored;
9: if Global learning then

10: if New rule then
11: Resize and reset the global covariance matrix Covk (4.5);
12: Set the initial parameters of the new rule θ(R+1) (4.6);
13: else if Replace the rule then
14: Inherit the covariance matrix and the parameters of the consequence

equation from the rule which is being replaced;
15: end if
16: Calculate the regressor vector ψi for each rule and combine into a data

matrix Ψk;

17: Estimate the global parameter values Θk for all rules through (4.9);
18: else if Local learning then
19: if New rule then
20: Initialize the local covariance matrix covk,(R+1) (4.4);

21: Set the initial parameters of the new rule θ(R+1) (4.6);
22: else if Replace the rule then
23: Inherit the covariance matrix and the parameters of the consequence

equation from the rule which is being replaced;
24: end if
25: Calculate the regressor vector ψi for each rule;
26: Estimate the local parameter values θk,i for each rule separately (4.10);
27: end if
28: Obtain the output estimate (3.32);
29: end if
30: Read next data sample
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The block diagram of the algorithm is shown in Fig. 4.2

Figure 4.2: Block diagram of the Evolving Takagi-Sugeno algorithm.

4.3.1.6 Summary

The eTS algorithm brings a significant improvement to a Subtractive clustering

algorithm in terms of the usability and applicability to dynamic systems. The

research over the past few years resulted in numerous extensions to the standard

eTS algorithm, such as simplification of the potential calculation, dynamic cluster

radii, better rule validation and control or improvements to recursive data
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normalization to mention the few. Some of those improvements will be presented

below.

4.3.2 Simplified Evolving Takagi-Sugeno (Simpl eTS)

algorithm

The simpl eTS method was introduced by Angelov & Filev (2005) in order to

improve the computational speed of the eTS learning algorithm. The improvement

was achieved by implementing the scatter calculation instead of the potential.

The scatter is somewhat similar to the way potential is calculated in eTS, but

it improved the computational efficiency. Additionally, the Gaussian membership

functions have been replaced by the Cauchy type function and the concept of age

of the rules have been introduced in order to improve the readability of the rule

structure.

4.3.2.1 Recursive data normalization

The differences between the data samples are calculated through the Euclidean

distance; therefore it is important to normalize the data before the clustering step.

This is easily achieved in batch algorithms, where all of the data is available and

can be normalized based on the mean and the variance, but in the on-line case

some additional effort is required.

In simpl eTS the data is standardized based on the recursive calculation of mean

and standard deviation, with the initial values of mean x1 and variance σ21 equal

to 0. The recursive formulae for mean and variance are presented below:

xk =
k − 1

k
x(k−1) +

1

k
xk

σ2k =
k − 1

k
σ2(k−1) +

1

k − 1
(xk − xk)2

(4.11)
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Having those values, we can now obtain the standardized value x̃k of the data

sample xk:

x̃k =
xk − xk
σk

(4.12)

where xk is previously calculated mean of all obtained data samples and σk is a

standard deviation obtained by taking a square root of calculated variance σ2k. In

the following calculations it is assumed that the data sample xk has been already

normalized to simplify the notation.

4.3.2.2 Use of Cauchy type function

The Cauchy type function, introduced in Subsection 4.3.1.2 replaces the Gaussian

membership function for the antecedent parts of the rule. The motivation to use

this function comes from the fact that it is an approximation of the Gaussian kernel

and is faster to calculate, due to lack of exponential function. This significantly

improves the computational time (Angelov & Filev 2005), which is especially

important for real-time applications:

µi(xk) =
1

n∏
j=1

(
1 +

(
2(xk,j − cij)

r

)2
) (4.13)

where j denotes the input index, n is the total number of inputs, xk,j is the jth

input of the kth data sample, cij is the jth input of ith cluster centre and r is radius

of the cluster defining area of its influence. In general, the smaller the radius, the

lower the activation degree of the membership function (but it also heavily depends

on the distance of the data sample from the cluster centre).
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4.3.2.3 Use of Scatter

In simple eTS the importance of the incoming data samples is described by their

scatter rather than a potential. This change is also justified by the decrease in the

computation time while maintaining similarity to the potential (Eq. 3.18) in the

subtractive algorithm. In the formula below, n is the number of input values and

1 accounts for one output. Although it is possible to have m number of outputs,

multi-output systems are not in the scope of this thesis. The off-line scatter at

time k is given by:

S(xk) =
1

k(n+ 1)

k∑
l=1

n+1∑
j=1

(xl,j − xk,j)2 (4.14)

The scatter S(xk) represents the average distance of the data sample xk to all

other data samples.

To be able to use it in the evolving algorithm, the notion of scatter has to be

calculated in a recursive manner. The formula used in the simpl eTS to calculate

the importance of the new upcoming data recursively, similar to Eq. (4.1), is given

by:

Sk(xk) =
1

(k − 1)(n+ 1)

(k − 1)

n+1∑
j=1

x2k,j − 2

n+1∑
j=1

xk,jβk,j + ϑk

 (4.15)

where:

βk,j = β(k−1),j + x(k−1),j ,

ϑk = ϑ(k−1) +
n+1∑
j=1

x2k,j

(4.16)

The scatter for all existing cluster centres is also updated after each new data
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sample becomes available through the Eq. (4.17):

Sk(ci) =
k − 2

k − 1
Sk−1(ci) +

n+1∑
j=1

(
xk,j − x(k−1),j

)2
(4.17)

It is worth noting that for all of the equations involving scatter calculation,

the division is always performed on the simple integer values which leads to

simplification in computational calculations as compared to original eTS.

4.3.2.4 Recursive cluster assessment in simpl eTS and population

of the clusters

The scatter calculation is not the only characteristic which describes the clusters.

Additionally, each cluster ci maintains the information on how many data samples

belong to it in step k, as well as store the information about their age. The

population of the cluster Nk(ci) is increased by one if the data sample is close

enough to the cluster i:

Nk(ci) = N(k−1)(ci) + 1; (4.18)

The age of the cluster agek(ci) describes the accumulated time of arrival of the

data sample. If the new data sample is in close proximity to an already existing

centre, the value of the agek(ci) is going to increase by k:

agek(ci) = age(k−1)(ci) + k (4.19)

Similar to standard eTS, after the scatter calculation the new data sample can

become a new cluster, replace the already existing cluster centre or be assigned to

the nearest cluster (this step is new, in eTS the data sample was ignored). The

following algorithm presents the decision making process:
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Algorithm 9 Decision algorithm for recursive cluster assessment in the
simpl eTS

1: if Sk(xk) < min
i

[Sk(ci)] OR Sk(xk) > max
i

[Sk(ci)] then

2: calculate distmin = min
i

[
‖ci − xk‖2

]
- the minimum Euclidean distance ‖·‖2

between the data sample xk and the cluster centre ci;
3: if distmin < 0.5r then
4: The closest cluster centre ci is replaced by the current data sample xk;
5: The scatter of the changed cluster is replaced by the scatter Sk(xk) of

the data sample xk;

6: Increase the age of the cluster (4.19);
7: Increase the population of the cluster (4.18);
8: else
9: New cluster cR is added with the coordinates of data sample xk and the

scatter Sk (xk);
10: The age and the population of the new cluster is initiated: agek(cR) = k,

Nk(cR) = 1;
11: end if
12: else

13: The data sample xk is assigned to the nearest cluster i, i :
R

min
i=1
‖xk − ci‖2;

14: Increase the age of the cluster (4.19);
15: Increase the population of the cluster (4.18);
16: end if

Additionally the population of the clusters is monitored, and when no more new

samples are added to a certain cluster over a certain period of time, i.e. when the

population Nk of the cluster ci drops below 1% of the total number of N data

samples the cluster ci is ignored by setting the firing rule τi to 0:

IF
Nk(ci)

N
< 0.01 THEN τi = 0 (4.20)

The estimates of the parameters of the consequence linear equations are obtained

in the same fashion as in the standard eTS algorithm, including the possibility of

using global and local learning.

The algorithm is summarized below:
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Algorithm 10 Simpl eTS algorithm

1: Read xk;
2: Normalize xk using (4.11) - (4.12)
3: if k == 1 then {first data sample, initialize the structure}
4: S1(x1) = 0, β1 =

[
0 0 · · · 0

]
, ϑ1 = 0;

5: c1 = x1, N1(c1) = 1, age1(c1) = 1;
6: R = 1; {Initialize first fuzzy rule}
7: Initialize parameters of consequence equation (same as in eTS);
8: else {additional data sample, evolve the structure}
9: Calculate Sk(xk) using (4.15);

10: Update Sk(ci) of each centre using (4.17);
11: Apply Algorithm 9 to update the cluster structure accordingly;
12: Generate rule base from the cluster structure (same as eTS);
13: Apply rule (4.20) to reduce the rule base if necessary;
14: Estimate the parameters of consequent linear equations (local or global

learning). Same procedure as in eTS (4.4) - (4.10);
15: end if

4.3.3 Extended Evolving Takagi-Sugeno (exTS)

algorithm

The Extended Evolving Takagi-Sugeno algorithm (exTS) has been introduced by

Angelov & Zhou (2006) and included further improvements to the evolving fuzzy

identification method. The data samples were again assessed based on the potential

(like in eTS algorithm). The new addition was the introduction of the recursively

updated cluster radii, which adapted to the data characteristics of each cluster.

Additionally new condition which replaced the contradictory rules and additional

quality measures of the clusters (such as support) were introduced.

4.3.3.1 Measures of quality of the generated clusters

In the on-line applications only the cluster centres are kept in the memory, while

all other data samples are discarded. The issue arises as to how well those retained

data samples represent all of the ones which were discarded. One way is to monitor
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certain characteristics of the data which belong to a cluster. In the exTS algorithm

this includes the support (population), age and radius of the cluster.

The population of the cluster describes how many data samples are in close

proximity to the cluster centre, and is calculated in the same way as in Simpl eTS

algorithm (4.18).

The age of the cluster describes how recent was the last addition of the data sample

to a certain cluster. This is calculated in a different way as compared to Simpl eTS

algorithm (4.19). The age in exTS depends on the number of the data samples

which belong to that cluster and the average sum of the time indices of that data:

agek(ci) = k − 2Atk(ci)

k + 1
(4.21)

At represents the accumulated time of arrival:

Atk(ci) =

Nk(ci)∑
l=1

Il (4.22)

I is the time stamp at which the data sample was added to the cluster. If the data

sample xk has been added at time instance k, and it’s the lth data sample added

to the cluster ci, Il will equal to:

Il = k, l = [1, Nk(ci)] (4.23)

The values of age are interpreted in a following way: the ones close to 0 mean that

a recent data sample was included in that cluster, while higher values indicate that

no recent data was added to a cluster (the cluster is old).

In real world scenarios, the distribution of the data is hard to estimate and is

time-varying, making it difficult to capture with a pre-defined value of the cluster

radius. In exTS the varying, adaptive cluster radius is introduced which takes into
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account the variance of the data (local scatter):

rk,ij = γr(k−1),ij + (1− γ)Sk(cij) (4.24)

where γ is a weight which determines the importance of the new data as compared

to the one already included in the cluster. If γ = 0.5 the new information and the

previous value of the radius are treated equally. The Sk(cij) represents the local

scatter of the jth element of the cluster vector and is obtained from Eq. (4.25):

Sk(cij) =

√√√√ 1

Nk(ci)

Nk(ci)∑
l=1

(cij − xl,j)2 (4.25)

The scatter approximates the variance of the data samples and is based on the

distance of the data belonging to the cluster to its centre ci. High values of the

scatter mean that the data samples are spread around the centre with various

distances, whereas small value indicate more even distribution. It is worth noting

that concept of scatter has already been introduced in the previous section for

Simpl eTS (4.14). In this case we talk about local scatter which is limited to the

cluster centre and not the whole population of the data.

If the new cluster c(R+1) is added, new local scatter Sk(c(R+1)j) for each j variable

is initialized as an average of local scatters of all existing clusters:

Sk(c(R+1)j) =
1

R

R∑
i=1

Sk(cij) (4.26)

The radii of the clusters are different for each of the input’s dimension, which

makes it possible for them to adapt to the new information brought by the data

samples.
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4.3.3.2 Membership function calculation in exTS

A new way of calculating cluster radii influences the equation for the activation

degree the rule. This is due to the fact that now the radii are different for each

of the input values, therefore the activation degree will be different for each of the

inputs:

µij = e

−‖cij − xk,j‖2

2 (rk,ij)
2

(4.27)

4.3.3.3 Recursive cluster assessment in exTS

The potential is calculated and updated in the same way as in original eTS (Eq.

4.1 and 4.3). The algorithm for accepting, replacing and rejecting the data sample

in exTS as new cluster is presented below:
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Algorithm 11 Decision algorithm for recursive cluster assessment in the
exTS algorithm

1: if Pk(xk) < min
i

[Pk(ci)] OR Pk(xk) > max
i

[Pk(ci)] then

2: if µij > 1/3 then

3: The closest cluster centre ci is replaced by the current data sample xk;

4: Population Nk(ci) increased (4.18);

5: Age agek(ci) modified (4.21);

6: Local scatter Sk(cij) and radius rk,ij updated: (4.25) and (4.24);

7: else

8: New cluster c(R+1) is added;

9: c(R+1) = xk, Pk
(
c(R+1)

)
= Pk (xk);

10: Population initialized: Nk(c(R+1)) = 1;

11: Age agek(c(R+1)) calculated (4.21);

12: Local scatter Sk(c(R+1)j) initialized (4.26);

13: Radius rk,(R+1)j calculated (4.24);

14: end if

15: else

16: The data sample xk is assigned to the nearest cluster i, i :
R

min
i=1
‖xk − ci‖2;

17: Population Nk(ci) increased (4.18);

18: Age agek(ci) modified (4.21);

19: Local scatter Sk(cij) and radius rk,ij updated: (4.25) and (4.24);

20: end if

Additional rules are introduced after that step to further refine the cluster structure

which will affect future rules.

If the cluster has a very low population Nk(ci) (regulated by the pre-set threshold

ε), the rule which is constructed from it can be removed (or rather ignored) by
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allowing it’s firing degree τi to be equal to 0:

IF
Nk(ci)

k
< ε THEN τi = 0 (4.28)

Additionally, the age of the clusters can be used as a decision value to allow for a

replacement of the old rule by other candidate data samples with high potential

value.

The parameters of the consequence linear equations are learned through global

optimization described in Section 4.3.1.

The overall structure of the exTS algorithm is presented below:

Algorithm 12 exTS algorithm

1: Read xk;
2: Normalize xk recursively
3: if k == 1 then {first data sample, initialize the structure}
4: P1(x1) = 1, ϑ1 = 0, α1 = 0, ν1 = 0, β1 =

[
0 0 · · · 0

]
;

5: c1 = x1, N1(c1) = 1, age1(c1) = 1, At1(c1) = 1;
6: r1,1j = 1, S1(c1j) = 1;
7: R = 1; {Initialize first fuzzy rule}
8: Initialize parameters of consequence equation (same as in eTS);
9: else {additional data sample, evolve the structure}

10: Calculate Pk(xk) using (4.1);
11: Update Pk(ci) of each centre using (4.3);
12: Apply Algorithm 11 to update the cluster structure accordingly;
13: Generate rule base from the cluster structure (same as eTS);
14: Apply rule (4.28) to reduce the rule base if necessary;
15: Estimate the parameters of consequent linear equations using global

learning. Same procedure as in eTS (4.4) - (4.9), except (4.27);
16: end if
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4.3.4 Enhanced version of Evolving Takagi-Sugeno

(eTS+) algorithm

The Enhanced version of Evolving Takagi-Sugeno (eTS+) algorithm (Angelov et al.

2010) is the most recent extension to the eTS method which includes most of the

improvements from simpl eTS and exTS and adds some additional features:

� Additional quality monitoring features: utility and local density of the

clusters.

� On-line input variable selection.

Similarly to other eTS algorithms, the eTS+ can be used with both global and local

learning of the consequent parameters. More in depth review of both approaches

has been conducted in (Angelov et al. 2010) for eTS+ algorithm.

4.3.4.1 Cluster quality monitoring features in eTS+

The features introduced in this algorithm aim to constantly monitor the quality of

the existing cluster structure. This is achieved by looking at the different aspects

of the population of the clusters, such as the number of samples associated, how

recent was the last addition of the data sample and the importance of the cluster

(it’s accumulated firing level of the associated fuzzy rule).

The population Nk(ci) of the cluster ci is calculated in the same way as in exTS

and simpl eTS (4.18). It gives indication of how much information is carried in

the cluster.

Local density calculation provides a way of measuring the spread among the

data samples belonging to the cluster (4.29) and gives information about the
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distribution of the data:

Lk(ci) =
1

1 +
∑n+1

j=1 (Sk(cij))2
(4.29)

where Sk(cij) is a local scatter of cluster ci over input at index j during time k

calculated using (4.25).

Both population and local density provide information about the generalization

power of the clusters.

The age of the cluster represents the accumulated time index of the data samples

belonging to that cluster (4.30):

agek(ci) = k −
∑Nk(ci)

l=1 Il
Nk(ci)

(4.30)

where agek(ci) is the age of the cluster i at the time instance k, Il is the time

instance of the associated l data sample belonging to the cluster and Nk(ci) is the

population of the cluster. The fuzzy rule structure can be simplified by looking

at the values of age for each corresponding cluster. The clusters with high age

values (meaning that no new data samples have been in their range of influence

for a while) can be removed. By looking at the age dynamics (by measuring the

change in the age), it may also be possible to discover drifts in the incoming data

(Lughofer & Angelov 2011).

The utility represents a measure of how often the fuzzy rule associated with the

cluster was used (4.31):

Uk(ci) =

∑k
l=1 τl,i
k − Ii

(4.31)

the Uk(ci) is the utility of the cluster i at the time instance k, τl,i is the firing level

of the fuzzy rule associated with the cluster i at time l. Ii is the time index at

which the cluster i has been created. The utility measures how often the fuzzy rule
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has been used. High variability in the utility values indicate that different rules

are activated over time with varying firing levels. The extend to which the rule is

used over time can give some insight into the non-stationarity of the problem; if

the utility value changes often it may indicate that data is non-stationary.

The aforementioned features are used to constantly assess the quality of the clusters

during the clustering process. Therefore several conditions have been introduced

(Angelov et al. 2010) in the eTS+ algorithm to make use of those features:

IF (Uk(ci) < Uk − Ûk) THEN Disable rule i

IF (agek(ci) > agek + ˆaget) THEN Disable rule i

IF (Nk(ci) < 3) AND (t ≥ Ii + 10) THEN Disable rule i

(4.32)

where Uk and Ûk are mean and standard deviation of the utility, agek and ˆagek

are mean and standard deviation of the age, Nk(ci) is the population and Ii is

the time index at which the cluster i has been created. The rules are disabled by

manually setting their firing levels τi to 0.

The cluster radii are updated in the same way as in exTS algorithm (4.24).

The algorithm for recursive cluster assessment for eTS+ is presented below

(Algorithm 13).
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Algorithm 13 Decision algorithm for recursive cluster assessment in the
eTS+ algorithm

1: if Pk(xk) < min
i

[Pk(ci)] OR Pk(xk) > max
i

[Pk(ci)] then

2: if µij > e−1 then

3: The closest cluster centre ci is replaced by the current data sample xk;

4: Population Nk(ci) is increased (4.18);

5: Local scatter Sk(cij) updated (4.25);

6: Local density Lk(ci) modified (4.29);

7: Radius rk,ij updated (4.24);

8: else

9: New cluster c(R+1) is added;

10: c(R+1) = xk, Pk
(
c(R+1)

)
= Pk (xk);

11: Population initialized: Nk(c(R+1)) = 1;

12: Local scatter Sk(c(R+1)j) initialized (4.26);

13: Local density Lk(ci) modified (4.29);

14: Radius rk,(R+1)j calculated (4.24);

15: end if

16: else

17: The data sample xk is assigned to the nearest cluster i, i :
R

min
i=1
‖xk − ci‖2;

18: Population Nk(ci) is increased (4.18);

19: Local scatter Sk(cij) and radius rk,ij updated: (4.25) and (4.24);

20: Local density Lk(ci) modified (4.29);

21: end if

22: Age agek(ci) modified (4.30) for all clusters;

23: Utility Uk(ci) calculated (4.31) for all clusters;
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4.3.4.2 Local and global learning in eTS+

The differences between global and local learning have already been explained in

this chapter. Both methods vary in terms of computational time and give slightly

different results. In general, local learning may produce more locally interpretable

rule structure, whereas global learning, in theory, should give results with smaller

errors due to the compensation effect from assessing the rules globally. Global

learning is more demanding in terms of computational power due to calculations

over one global covariance matrix and the use of global parameter vector. In local

learning the calculation is done for each rule separately, which means that both

parameter vector and covariance matrix are smaller and easier to process. The

reset process, described earlier in the chapter, is more complex for global learning,

with the need to expand the covariance matrix. The comparison of both learning

methods in Angelov et al. (2010) showed that for several problems the local learning

achieved lower RMSE error. The computational time was also significantly faster.

The complexity introduced by the rule reduction in the eTS+ is reduced when

local learning is used, due to the local assessment of the rules. Although the

number of rules was still the same, the local variant was a preferable choice due to

the lower error values, higher speed of computation and simpler implementation.

This will be analysed and compared as well in the following chapters when the

implementation and application of the modified algorithm will be shown.

4.3.4.3 On-line input selection

Very often the number of inputs is known in advance, due to existing knowledge

of the factors influencing the outputs or through data pre-processing steps. This

steps, in classification literature, are referred to as feature selection (Liu & Motoda

1998) and can include Principal Component Analysis (PCA), Genetic Algorithms

(GA) or sensitivity analysis. For dynamic or non-stationary systems it may be
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difficult to obtain a best subset of input variables for all conditions, therefore a

method for on-line input selection has been suggested by Angelov et al. (2010).

The idea is based on the analysis of the value of input parameters. If a parameter

of the input j is consistently small for a range of observed outputs across all of the

rules, that input is not contributing significantly to the value of the output and can

be seen as the candidate for removal. This can be represented as the accumulated

sum of the parameters for the particular input in respect to all existing inputs:

ωj =

∑R
i=1 θij∑h

j=1

∑R
i=1 θij

(4.33)

where θij is a parameter of jth input of ith rule and ωj represents the ratio of

contribution of the input j.

Based on the value of that ratio, a condition can be implemented which compares

the value of ωj to the contribution of all parameters
∑h

j=1

∑R
i=1 θij or to the

contribution of the most influential parameter of input j with highest
∑R

i=1 θij ,

and as a consequence remove that input.

It is worth noting that the removal of an input has an impact on the vector of data

samples x, vector of cluster centres c and it affects the size of covariance matrix

and parameter vector. This leads to the increase in complexity of the algorithm, as

those changes need to be addressed by means of, for example, a reset of covariance

matrix.

The feature of automatic input selection is very important in the domain of

intelligent sensors (Angelov, Kordon & Zhou 2008). As the application to sensors

is not in the scope of this research, this feature will not be discussed in more details

in this thesis, however more information can be found in the papers by Angelov

et al. (2010).

The steps of the eTS+ algorithm are described below:
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Algorithm 14 eTS+ algorithm

1: Read xk;
2: Normalize xk recursively
3: if k == 1 then {first data sample, initialize the structure}
4: P1(x1) = 1, ϑ1 = 0, α1 = 0, ν1 = 0, β1 =

[
0 0 · · · 0

]
;

5: c1 = x1, N1(c1) = 1, age1(c1) = 1, U1(c1) = 1, L1(c1) = 1, ω1 = 1;
6: r1,1j = 1, S1(c1j) = 1;
7: R = 1; {Initialize first fuzzy rule}
8: Initialize parameters of consequence equation (same as in eTS);
9: else {additional data sample, evolve the structure}

10: Calculate Pk(xk) using (4.1);
11: Update Pk(ci) of each centre using (4.3);
12: Apply Algorithm 13 to update the cluster structure accordingly;
13: Generate rule base from the cluster structure (same as eTS);
14: Apply rules from (4.32) to reduce the rule base if necessary;
15: Calculate the activation degree for each input (4.27);
16: if Global learning then
17: Reset the global covariance matrix if necessary (4.5);
18: Estimate the parameters of consequent linear equations (4.9);
19: else if Local learning then
20: Initialize new covariance matrix if necessary (4.4);
21: Estimate the parameters of consequent linear equations (4.10);
22: end if
23: Optionally use on-line input selection (4.33);
24: end if

4.3.5 Comparison of different Evolving Takagi Sugeno

approaches

Although the principles of all of the eTS algorithms are the same, a number of

improvements have been introduced which improve the quality of the fuzzy models.

Those improvements focused around the adaptivity of the cluster structure by

introducing ways of recursive monitoring of the components of the clusters. These

included features such as adaptive radius, age or population of the clusters among

the few. The introduced features and the development of the algorithms can be

seen in Table 4.2:
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Table 4.2: Comparison of different features of eTS algorithms.

Feature eTS Simpl eTS exTS eTS+

radius
r r r r
constant constant adaptive (4.24) adaptive (4.24)

potential
Pk - Gaussian Sk - Cauchy Pk - Gaussian Pk - Gaussian
potential (4.1) scatter (4.15) potential (4.1) potential (4.1)

cluster
-

Nk(ci) Nk(ci) Nk(ci)
population (4.18) (4.18) (4.18)

cluster
-

agek(ci) agek(ci) agek(ci)
age (4.19) (4.21) (4.30)

cluster
- - -

Lk(ci)
density (4.29)

cluster
- - -

Uk(ci)
utility (4.31)

rule
-

1% samples threshold ε conditions
weighting (4.20) (4.28) (4.32)

input
- - -

on-line
selection (4.33)

It becomes obvious that introduction of additional features will have an impact

on the speed of execution of the algorithms. On the other hand, some of the

improvements aim at decreasing the computational burden by disabling some of

the less influential rules. The on-line input selection process can improve the

performance as well, if the initial input choice is too wide. Those approaches

have been applied to a number of physical systems with the aim to predict their

outputs and their performance has been compared, both in terms of accuracy and

efficiency. These will be briefly described at the end of this chapter together with

other on-line fuzzy clustering approaches such as FLEXFIS and DENFIS.
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4.4 FLEXFIS algorithm

4.4.1 Introduction

The FLEXFIS (FLEXible Fuzzy Inference System) family of algorithms has been

developed by Lughofer (2008). It consists of FLEXFIS algorithm for regression

and FLEXFIS-Class algorithm for classification. The principles of the regression

algorithm are the same as for eTS described in the previous section (see Fig. 4.1).

The main difference lays in the way the clusters are generated and updated and

how this relates to the learning part of the consequence parameters of the obtained

rules. This section will briefly describe the way the algorithm is implemented,

outline some of the modifications which were introduced afterwards and compare

it to the eTS family of algorithms. Some new parameters will be introduced, for

which the description can be found in the notation section at the beginning of this

chapter.

4.4.2 Algorithm description

The algorithm has one parameter ρ, which needs to be set in advance. It is used

to assess if the normalized data sample x̃k is close to the normalized cluster centre

c̃i, and as a result, if the new cluster centre should be created or if the existing

centre should be updated.

Depending on the problem, the algorithm can be applied to a fully or partially

trained Takagi-Sugeno model or can start from the first sample. If previous model

is used, the parameter ρ can be set to the optimal value through parameter grid

search, and the ranges (min and max values) of the variables can be estimated

from the available data. If the algorithm is evolving from scratch, ρ can be set

according to the past experience in the range of [0.2 0.3]
√
n+1√
2

(n being the number
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of variables) (Lughofer 2011a).

4.4.2.1 Initialization of the algorithm

If the algorithm starts evolving from the first data sample x1, the cluster structure

is initiated with that sample (c1 = x1, kc1 = 1, R = 1) and the width of the cluster

centre is initiated with 0, σ1 = 0.

The first fuzzy rule R = 1 is also created from the new cluster:

cRj (set) = cRj (cluster) (4.34)

σRj (set) = ε range(xj) (4.35)

where cRj(set) is the focal point of jth fuzzy set of rule R. σRj is the width of the

jth fuzzy set and is initiated with the range maxk[xkj ]−mink[xkj ]. A parameter ε

is used to initiate the range with a small number to avoid instabilities (Lughofer

2008).

The consequence vector of parameters θ1 is initiated with zeros, and local

covariance matrix cov1 with the constant identity matrix QI, Q being a large

number.

Last step is to apply the local learning of parameters, same as in eTS family of

algorithms (4.10), and update the ranges of the variables accordingly.

4.4.2.2 Cluster assessment

When reading the next data sample or when algorithm starts from the model

which has already been developed, the data needs to be normalized. For new data

sample xk, this is done the same way as for the Subtractive clustering algorithm

(3.17). For the identified cluster centres ci, and the variance (widths) of Gaussian

membership functions σi of the cluster centres, the normalization is done in the
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similar fashion:

c̃i =
ci −min

k
[xk−1]

max
k

[xk−1]−min
k

[xk−1]

σ̃i =
σi

max
k

[xk−1]−min
k

[xk−1]

(4.36)

The distance from the data sample x̃k to all the cluster centres c̃i is then calculated

using predefined measure (for example Euclidean distance) and the cluster centre

closest to the data sample is marked as c̃win.

4.4.2.3 Adding new cluster

If the shortest distance is higher or equal the parameter ρ then new cluster is

created. Adding new cluster increases the number of fuzzy rules: R = R+ 1. The

parameter kc is set kc = 1. New cluster is created at the location of the current

data sample c̃R = x̃k. The normalized variance σ̃R of the new cluster is set to

σ̃R = 0 in all dimensions. After that, the centres and variances of all clusters are

transformed back to the original values:

ci = c̃i

(
max
k

[xk−1]−min
k

[xk−1]

)
+ max

k
[xk−1] (4.37)

σi = σ̃i

(
max
k

[xk−1]−min
k

[xk−1]

)
(4.38)

The centres, widths of the new fuzzy sets, the elements of the consequence

parameter vector θR and the covariance matrix covR of the new rule R are initiated

in the same way as for the first fuzzy rule described in Initialization of the

algorithm section.
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4.4.2.4 Updating winning cluster

If the shortest distance is smaller than the parameter ρ then the winning cluster

c̃win is updated by shifting its position towards the data sample x̃k using the

learning gain ηwin:

c̃win = c̃win + ηwin(x̃k − c̃win) (4.39)

ηwin =
ηinit
kcwin

(4.40)

where ηinit is initial learning gain and kcwin is a number of samples belonging to

the winning cluster.

The components of the variance σ̃win of the winning cluster need to be updated

as well:

σ̃2ij =
kci σ̃

2
ij + (kci + 1)∆c̃2ij + (c̃ij − x̃ij)2

kci + 1
(4.41)

where i is the cluster index, j is the data dimension index and ∆c̃2ij is a distance

between the old and new position of the cluster. After those steps, the centres

and variances (widths) of all clusters are transferred back to the original range

as in (4.38). The new cluster centre and the widths are used to update the

antecedent part of the corresponding fuzzy rule. The consequent parameters and

the covariance matrix remain the same as before the update.

4.4.2.5 Update of consequent parameters

After the new data sample has been assessed, the parameters of the consequence

linear equations of all the fuzzy rules are updated using RLS algorithm (Local

Learning from Equation 4.10). The mink[xkj ] and maxk[xkj ] values of the observed

data are updated accordingly, and if new data is still available, the algorithm starts

from Cluster assessment section.
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The steps of the FLEXFIS algorithm are described below:

Algorithm 15 FLEXFIS algorithm (assume evolution from scratch)

1: k == 1, ρ = [0.2 0.3]
√
n+1√
2

;

2: while Data sample xk available do
3: if k == 1 then {first data sample, initialize the structure}
4: c1 = x1, kc1 = 1, σ1 = 0;
5: Create new fuzzy rule R = 1 (4.35);
6: Initiate θ1 with zeros, set cov1 = QI;
7: else {new data sample, evolve the structure}
8: Normalize xk using (3.17), cluster centres and their widths using (4.36);
9: Calculate the distance from x̃k to all of the cluster centres c̃i;

10: Mark closest cluster centre as c̃win;
11: if ‖x̃k − c̃win‖ ≥ ρ then {create new cluster}
12: R = R+ 1, c̃R = x̃k, kcR = 1, σ̃R = 0;
13: Transform centres and variances of all clusters back to the original values

(4.38);
14: Create new fuzzy rule R (4.35);
15: Initiate θR with zeros, set covR = QI;
16: else {update exisitng cluster}
17: Update winning cluster c̃win using (4.40);
18: Update the components of the variance σ̃win using (4.41);
19: Transform all c̃k and σ̃k back to the original values (4.38);
20: Update the antecedent part of the fuzzy rule with cwin and σwin;
21: θwin and covwin remain unchanged;
22: end if
23: end if
24: Estimate the parameters using the Local learning algorithm from (4.10);
25: Update the mink[xkj ] and maxk[xkj ];
26: end while

4.4.3 Extension of FLEXFIS and modifications to the

algorithm

There are number of modifications to the existing FLEXFIS algorithm. In

Lughofer et al. (2011) the focus was put to reduce the complexity of the system

by decreasing the number of rules during training (evolution) of the cluster/rule

structure. This was achieved by adding a step which calculated the similarity
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degree between the rule which has just been updated and the existing rule

structure. The similarity was used to merge rules which resulted in simplified

cluster structure, without sacrificing the accuracy of the prediction. The drawback

of this additional step was that it increased the computational time of the

algorithm, which has an impact when fast, real time updates are required.

Lughofer & Angelov (2011) focused on the problem of handling drifts and shifts in

the data space. An example of data drift could be when the incoming data starts

pointing to a consistently different, new output value or when there is a change

of range of the observed inputs. The drifts were detected by analysing the change

of the age (4.30) of the clusters (the gradient of the ageing curve and the second

derivative of age). When detected, the data drift affects the way the antecedent

and consequent parts of the fuzzy rules are calculated. In antecedent part the

learning gain η (4.40) calculation is modified by resetting the number of samples

belonging to the cluster by using the forgetting factor λ. In the consequent part,

the handling of data drifts is included by adding the forgetting factor λ to the local

learning (4.10). The modified method was used to improve a prediction model of

a steel rolling mill and also applied to a process of detecting errors in CD imprints.

In both cases, when data shifts occurred, the approach improved the accuracy of

the prediction. It is important to note, that the choice of the λ has a big influence

on the results as choosing the value to be too high results in not enough flexibility

(slow forgetting), while having the value too low may destabilize the model and

create local optima (danger of over-fitting).

Finally, Lughofer (2011b) investigated the possibility of including recursive feature

weighting in the classification algorithms based on the FLEXFIS approach.

Features were weighted according to their importance / current usability in order

to decrease the over-fitting of the model. This was achieved by integrating an

incremental feature weighting algorithm (using Dy-Brodley’s separability criterion)

into the FLEXFIS Classifier. Two approaches were considered, one based on
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leave-one-feature-out approach and another on feature-wise approach (Lughofer

2011b). Although inclusion of the feature weighting algorithm had an impact on

the speed of the computation of the algorithm, it proved effective as it was able to

eliminate redundant features and increased overall accuracy of the classification.

4.4.4 Comparison with eTS

The principles of FLEXFIS and eTS are generally the same, and similar

modifications can be applied to both algorithms. However there are some

important differences to consider, particularly the concept of radius in eTS

(FLEXFIS has a radius included in widths of the fuzzy rules). Few more important

difference from my perspective will be briefly described here.

Both approaches explore the RLS algorithm and its variation in case of local

learning. Both algorithms can also recursively evolve the clusters (fuzzy rules) as

new data becomes available. The main difference lays in learning from scratch, i.e.

when no data is available to pre-train the model. In eTS it’s possible to do so due

to the way the potential of clusters can be updated and that no normalisation of

data samples is necessary (although beneficial) as high potential values represent

high data-dense regions and are not dependent on the scale of data. In FLEXFIS

some data is required to establish the ranges for each feature (input). If some

knowledge of data is present, this can be avoided by presetting the ranges based

on that knowledge.

Another difference lays in the choice and role of the parameters. In eTS the initial

value of radius r needs to be pre-set as it controls the area of influence of the

cluster and decides when to replace (evolve) the cluster centre with new data. In

FLEXFIS the parameter ρ controls the way the algorithm adapts cluster centre

to new data. The parameter is selected through parameter grid search on the

available data. Due to the way those two parameters are implemented, there is a
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fundamental difference on how the cluster centres are allowed to change in those

two algorithms. In eTS the cluster centre can shift to another data rich region, but

the position of the centre is limited to the considered data samples. In FLEXFIS

the centres can evolve more smoothly by slowly shifting to the more promising

region.

As in FLEXFIS the clusters evolve whenever a new data sample lays further than

a pre-defined parameter ρ, the algorithm will generate new cluster even though

the considered data sample may be an outlier. In eTS, the potential of the region

around that data sample has to be high (more data samples need to exist in

proximity defined by radius r) for the cluster to be created, making it more robust

to outliers. Additional modifications to the FLEXFIS algorithm are required in

order to improve it’s robustness.

For more detailed comparison, please refer to (Angelov & Lughofer 2008) which in

detail discusses the difference between those two approaches.

4.5 Dynamic evolving neuro-fuzzy inference

system (DENFIS)

4.5.1 Introduction

Dynamic evolving neuro-fuzzy inference system (DENFIS) was introduced by

Kasabov & Song (2002). The principles of this method are very similar to the

approach used in eTS. Takagi-Sugeno models are identified on-line by partitioning

data space using recursive clustering algorithm called Evolving Clustering Method

(ECM). The fuzzy rules are generated and updated constantly from the clusters

and the output is calculated on-line based on the number of most activated fuzzy
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functions.

The main differences lay in the way the clusters are generated (using ECM), the use

of triangular membership functions instead of Gaussian and the use of forgetting

factor in the estimation of parameters of the linear output equations.

4.5.2 Evolving Clustering Method

ECM can be used both in real time applications and when all of the data is

available. In the off-line mode the ECM is applied to the part of the dataset to

establish initial cluster structure. The clusters are then further optimised with

remaining data using the objective function (Kasabov & Song 2002).

The main differences between ECM and the eTS clustering lay in the way the

cluster radii are calculated and updated as well as the way the cluster centres are

moved around the data space. More detailed description is presented below in the

Algorithm 16:
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Algorithm 16 ECM clustering in DENFIS

1: k == 1, set max radius value Dthr;
2: while data sample xk available do
3: if k == 1 then {first data sample, initialize the cluster structure}
4: c1 = x1, r1 = 0;
5: else {new data sample, evolve the structure}
6: Calculate the distance from xk to all of the cluster centres ci ‖xk − ci‖;
7: Mark closest cluster centre as cmin;
8: if ‖xk − cmin‖ ≤ rwin then
9: Sample xk belongs to cmin;

10: else
11: Calculate distmin = min (‖xk − ci‖+ ri);
12: if distmin > 2Dthr then {create new cluster}
13: ck = xk, rk = 0;
14: else if distmin ≤ 2Dthr then {cluster is updated}
15: rmin = distmin/2;
16: Updated cluster centre cnew is positioned on the line between the old centre

cmin and the data sample xk;
17: Distance to the data sample xk equals to the new radius rwin;
18: end if
19: end if
20: end if
21: end while

4.5.3 DENFIS inference system

In DENFIS first order Takagi-Sugeno models are used, with linear functions in

the consequence part. The parameters of those functions are established using

weighted RLS algorithm with a forgetting factor. The forgetting factor is used in

order to speed up the adjustment of the estimated parameters to changing inputs.

Similarly to other algorithms, new rules are created and updated together with

the cluster updates. They inherit the initial parameter values from the fuzzy rule

which are reflected by the closest cluster. The membership functions of the fuzzy

rules in DENFIS are triangular and are described by 3 parameters directly related
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to the properties of the cluster:

µ(xj) = mf(xj , a, b, c) =



0, x ≤ a
xj−a
b−a , a ≤ x ≤ b
c−xj
c−b , b ≤ x ≤ c

0. c ≤ x

(4.42)

where b is the ith cluster centre cij on the jth input dimension, a = b − d · Dthr,

c = b+ d ·Dthr, constant d = 1.2− 2, Dthr is a clustering threshold.

Rules are updated if the distance of the reflecting clusters to the data sample is

higher than 2 times the threshold Dthr. If the position of the centre changes,

the rules are updated accordingly with the triangular membership functions. The

steps of the DENFIS algorithm can be seen below:

Algorithm 17 DENFIS algorithm

1: k == 1, set max radius value Dthr;
2: while data sample xk available do
3: Read data sample xk;
4: Apply ECM clustering algorithm (Alg. 16);
5: Generate/update antecedent parts of fuzzy rules using the triangular

membership functions (4.42);
6: Estimate the parameters of the consequent linear equations using wRLS

with forgetting factor λ;
7: end while

4.6 Applications of Fuzzy Evolving methods

The original eTS algorithm has been tested on a variety of data sets. It has also

been frequently used as a baseline of performance when the results from more

advanced or modified algorithms have been presented. In Angelov (2004b) the

lactose concentration was modelled on-line with eTS by using data for the cell mass

concentration and the dissolved oxygen concentration. Satisfactory RMSE values
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were reported, but the results have not been compared with any other approach

in this paper. In Angelov & Filev (2004) more thorough testing of eTS has been

carried out with the modelling of the fan-coil sub-system of an air conditioning unit

and an artificial time-series generated by the Mackey-Glass (MG) process. The

results obtained from the MG time-series have been compared with DENFIS and a

number of off-line algorithms such as Artificial Neural Networks. The accuracy was

measured using the NDEI (Non-Dimensional Error Index) and resulted in small

number of rules. A number of batch algorithms have had better performance in

terms of accuracy, but generated significantly more rules or nodes. Andreu &

Angelov (2010) applied the eTS to a NN GC1 time-series which was provided for

the forecasting competition. The error measures have not been shared, nor they

have been compared with any other forecasting approach.

In Angelov & Filev (2005) the authors applied both eTS and Simpl eTS algorithms

to Box-Jenkins data set. It is a common benchmarking problem of modelling the

CO2 content in the output of the gas furnace. The simplification from using the

Simpl eTS resulted in a smaller number of clusters and faster computational time.

At the same time similar error values were achieved for Root Mean Squared Error

(RMSE) and NDEI.

The exTS algorithm has been tested on the artificially generated Mackey-Glass

time-series dataset and the real data from the car engine where the NOx emissions

were predicted based on the several existing inputs. The results showed a slight

improvement in terms of the accuracy over the eTS method but higher number

of rules. The authors claimed that although more clusters were generated, the

resulting rule structure is more easily interpretable linguistically; however, this

has not been shown in the paper and can only be assumed.

The most comprehensive comparison of the fuzzy evolving approaches has been

carried out in Angelov et al. (2010). The eTS+ has been compared with other
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Fuzzy Evolving algorithms such as eTS and exTS, FLEXFIS, DENFIS and

Feed-forward Neural Networks. The data-set used for comparison consisted of

data-sensor readings from a car engine test bed (Angelov 2011), which aim was

to automatically evaluate the content of the NOx emissions from the exhaust

and from artificially generated time series using Mackey-Glass function. The

results (Angelov et al. 2010) showed slightly lower RMSE error values and lower

computational time for the eTS+ algorithm. The algorithm used utility-based

rule simplification (4.31) and automatic input selection (it was able to reduce the

number of inputs from 180 to 4, and number of rules from 40 to 4). However, the

conditions such as the size of the training period, number of testing data samples

or the period for which the predictions was carried out have not been described

in the paper and require further clarification. The test on the Mackey-Glass

generated time-series provide more information on the testing environment. The

results showed that, in this case, exTS algorithm outperformed all others. eTS+

generated smaller number of rules and computed faster under the circumstances.

The differences in obtained results suggest that eTS+ perform better for more

complicated cases, however having only two tests one can’t get to meaningful

conclusions. Those methods will be compared with the modified version of the

algorithm in Chapter 7 on a bigger and different dataset of leakage data.

Other applications explored the use of adaptive classifiers (Angelov, Lughofer &

Zhou 2008) or adaptive sensors (Angelov & Kordon 2010). Some less related

work, but still applying the principles of evolving approach, used Expectation

Maximization algorithm, both off-line and the on-line, in time series approach for

stream-flow forecasting (Luna et al. 2007). The modification of that approach

added soil moisture accounting procedure and used subtractive clustering for

initialization and recursive version of Expectation Maximization (Luna et al.

2009). Additional work exploring evolving fuzzy systems for daily forecasting

was considered by Luna & Ballini (2011).
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4.7 Conclusions

The fuzzy evolving methods presented in this chapter show promising results

when applied to problems with non-linear relationships (artificial MG time-series).

However, they have been commonly tested on the same data, such as modelling and

prediction of the physical systems (estimation of gas content of a chemical process

or emissions from a vehicle). Usually the relations between the parameters of

those processes have been well understood. They can be easily compared, but

more thorough analysis is needed. There seems to be a lack of evaluation of those

methods on forecasting problems, when more complex, or unknown, relationships

exist between the variables. The choice of the parameters of the algorithms are

also not well understood as they have been based on the evaluation on the same

group of problems.

In the next chapter a problem of leakage forecasting will be presented. It’s a

complex issue which doesn’t have well defined relationships. In the following

chapters a more top-down approach will be shown, which led to additional

modification to the eTS algorithm. The results of the modified algorithm will be

compared with other fuzzy evolving approaches, but also with other established

forecasting methods to give a better overview on the performance.
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Use case - forecasting leakage

in the water industry

5.1 Introduction

The aim of this chapter is to outline the problem of water leakage forecasting

and the factors which influence it. The current method of leakage forecasting is

described and some issues and open questions are presented along with possible

approach to solve those. The chapter has the following structure: Section 5.2

describes the scope of the water industry sector in the UK, focusing on Severn Trent

Water, the industrial collaborator for this project. In Section 5.3 the importance

of water demand prediction is outlined. The issue of leakage in water systems,

the social aspect and its impact on the economy and different types of detection

methods of leaks will be presented in Section 5.4. Section 5.5 is dedicated to

pointing out the factors, methods and issues with leakage forecasting. It also

describes the current leakage forecasting approach and outlines the existing issues

and possible approach to solving those. Section 5.6 concludes the chapter with
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closing remarks.

5.2 Water Industry - setting the scene

As demand for water increases every year together with an increase in population

and a rise in demand for agriculture and industry (Babovic et al. 2002), water

distribution companies face the problem of maintaining and constantly improving

their water networks. The issue of frequent structural failures, water leakages

and interruption in services is especially visible in countries such as the United

Kingdom, which has many pipelines dating back to 1940s (Savic et al. 1997).

These problems can be addressed by continuous investment in the infrastructure

and appropriate leakage control policy. However, to be able to assign the resources

required to perform those tasks, the company needs to have the estimated leakage

values, which can be delivered through a leakage forecasting process.

This research has been conducted in cooperation with Severn Trent Water, one

of the biggest companies responsible for water management and supply, and

waste water treatment and disposal, in the UK. The company was established in

1973, when numerous small local water companies were merged to create regional

authorities, which were responsible for water supply, sewage treatment and river

protection within their areas (Severn Trent Water 2013). The local authorities were

privatized in 1989 and regulatory body called OFWAT (Office of Water Services)

was established. The changes meant that water companies have to provide not only

a certain level of service to their customers, but also satisfy the requirements of the

company’s board and shareholders. Leakage and demand forecasting procedures

became a crucial part of resource planning and decision making for the water

industry.

To comply with regulations issued by OFWAT, companies are required to provide
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the estimates of the expected leakage and, as a result, the ways to maintain it at

the required annual target level. The task is not straightforward, as leakage is not

constant throughout the year and depends on the leakage control policy applied,

state of the infrastructure, weather, seasonal events and fluctuations in demand

(for example cultural events, such as music festivals).

5.3 Water demand and supply

Demand forecasts are necessary to keep the associated costs of collecting and

keeping the water in the reservoirs to the minimum (Fildes et al. 1997). They

are also very important for environmental planning and sustainable utilization of

water resources (Nasseri et al. 2011).

Water demand is influenced by domestic, commercial and industrial use as well as

agriculture and horticulture. Out of these factors, the domestic use accounts for

over 60% of all water supplied to the network (Market Transformation Programme

2008). Therefore, understanding domestic water use is vital for efficient water

management and planning.

To properly measure household water demand, water consumption is often split

into a number of micro-components or types of water use. These could be the

use of bath or shower, toilet, internal tap, various appliances, such as washing

machine, and water gardening. Three aspects of those micro-components are

usually considered for forecasting (Marshallsay 2005): ownership (who is using the

water), volume and frequency of use. Some of them can be measured (using water

meters) and others can be assessed by various studies (for example demographic

or economic) by carrying on surveys among customers.

As mentioned in Section 2.6 of Chapter 2, the problem of water demand prediction

is complex due to existing non-linearities. Although water demand is a crucial part
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of the strategy of every water supplying company, the scope of this Ph.D. research

was focused on leakage forecasting, which is presented in more details in the next

section.

5.4 Water leakage

Leakage accounts for the majority of water losses in the water network. Not

only does it have an impact on consumers, due to service interruptions, but it

also presents an economic challenge to water supplying companies. Lost water

cannot be billed, and finding and fixing the leaks is a time and resource consuming

process. Companies employ different strategies in order to face this challenge,

from dividing the network into controllable areas, where the water balance can be

measured, to applying Active Leakage Control (ALC) policies. Leakage forecasting

plays a crucial role in this process, as those activities require careful planning and

managing of available resources.

5.4.1 Social impact of leakage

Water scarcity has been recognized as the second most important risk the world

will face in the years ahead at the World Economic Forum in Davos in 2013. It

is affecting people around the globe as a result of the alteration of rain patterns

and the influence of climate change. Supply problems in countries such as the UK

are usually not as dramatic as in other parts of the world. Every now and then,

however, extreme weather events, such as the drought in southern Britain in 2006,

have an impact on society and industries with high water demand profile, such as

agriculture. As little can be done at the moment, at least in the short term, to

overcome the problems caused by the weather, careful leakage management can

be one of the approaches to decrease the impacts of those events on the water

126



Chapter 5.

supply. This is confirmed by the study from Water UK (Hoyle 2010). Since 1995,

due to ongoing investments in the water network and improvements to the leakage

control policies, water leakage in England and Wales has decreased by 30%.

5.4.2 Economic impact of leakage

Although losses of water should be considered unacceptable from a social point

of view, leakage control and related activities can be very expensive. Water

companies have to work with limited budgets and will try to achieve a balance

between the costs related to controlling the leakage, and the financial benefits this

will accrue (Pearson & Trow 2005). Therefore, they often look to maintain what

is called the Economic Level of Leakage or ELL.
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Figure 5.1: Economic Leakage Level.

The key aspect of ELL is the understanding of the relationships between the total

costs to be incurred to keep the leakage at a given level and the leakage itself. Fig.

5.1 shows the relationship between the value of total costs and the water leakage.

In general, as the leakage increases, the cost of the lost water increase as well.

At the same time however, the costs related to the detection and repair effort are

lower. This is due to the fact, that it is easier and cheaper to find and fix large,

visible pipe bursts which usually are a cause of high leakage within the system.

The ELL is found as a trade-off between those two factors. The losses associated
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with water networks may be divided into two groups (Morais & de Almeida 2007):

� Apparent losses (background leakage): these are losses obtained from utility

operation (company own water usage), meter inaccuracies, unexpected

increases in water demand which are recognized as leakage and data errors.

These losses cannot be measured with current technology. Therefore, the

extent to which the background leakage can be discovered increases with

the introduction of new, improved measurement techniques.

� Real losses: connected with physical losses of water from the distribution

network through leakage, storage overflows, unaccounted usage of water and

unauthorized and illegal use. These can be controlled by frequent checks

and proper maintenance.

Table 5.1: Water Balance Table

System
Input

Volume

Authorized
Consumption

Billed
Authorized

Consumption

Billed Metered
Consumption Revenue

WaterBilled Unmetered
Consumption

Unbilled
Authorized

Consumption

Unbilled Metered
Consumption

Non
Revenue
Water

Unbilled Unmetered
Consumption

Water Losses

Apparent
Losses

Unauthorized Consumption
Customer Meter Inaccuracies

Real
Losses

Leakage on Transmission &
Distribution Mains

Leakage and Overflows at
Reservoirs

Leakage on Service Connections
up to metering point

The breakdown of the water balance in the system results in the Revenue and Non

Revenue Water (NRW) (Lalonde 2004). This concept and more detailed overview

of types of losses incurred in the water network are presented in Table 5.1. NRW is
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a measure which accumulates all the water which has been produced but does not

reach the customer or does not bring any profit. This not only includes leakage,

but also apparent losses and unbilled authorized consumption.

The assessment of ELL has a long history in the United Kingdom, with a

major national research programme that finished in 1994, which led to a greater

understanding of the relationships between different factors, like pressure and

leakage. However, the situation in many other countries around the world is

different. Many small water companies exist, which cover limited areas. Although

a lot of properties may be metered, only limited hydraulic data is available, and

very few companies have their networks modelled (Pearson & Trow 2005).

5.4.3 Leakage detection methods

Based on the conversations with the experts from STW, in general, the work-flow

for leakage detection and repair can be summarized by the following sequence of

actions:

1. Consider agreed leakage targets and demand forecasts and assign staff and

resources accordingly between detection and repair groups.

2. Target possible leakage locations and find the leaks.

3. Leaks can also be reported by customers when they become visible.

4. Schedule and plan the work.

5. Carry out the repairs.

6. Report the results.

The extent to which leakage exists in the system depends very much on external

factors, such as weather. The impact of those factors can be minimized by applying
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the Active Leakage Control (ALC) measures. This is defined as an active effort

to locate and repair unreported main leaks (Lalonde 2004). The ALC measures

consist of:

� Sonic & correlation surveys

� Noise logging surveys

� Maintaining temporary or permanent District Metered Areas (DMA)

� Step testing

Sonic & correlation surveys and noise logging take advantage of the acoustic noise

that water generates when leaking under pressure. Sonic (or listening) surveys

employ the use of experienced engineers, who manually work their way listening

at the fittings for the leak noise. That technique can be applied to metallic pipes

but it cannot be used efficiently on plastic or large diameter pipes due to noise

attenuation. Correlation surveys overcome those drawbacks, by measuring pipe

noise from two locations that surround the suspected leak. A simple relation is

then used, which involves time delay, distance and propagation velocity of the

sound, to locate the leak. These methods, although considered essential in order

to prevent the leaks from getting bigger, are very labour intensive and may be

inefficient, especially for large distribution systems.

To overcome the drawbacks of scalability, district metering is used, which allows for

a higher level of control over leakage. A district is defined as an area of distribution

network, which is limited by valves and for which the amount of water entering

and leaving can be measured. The isolation of different regions of water system,

allows for analysis of flow and pressure in those areas and provides means for

leakage experts to calculate the levels of leaks in the district (Hoyle 2010). As a

result, a decision can be made whether work should be undertaken in the area. It
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also allows a company to compare the leakage levels in other DMAs and focus the

resource effort on areas which will have the biggest impact on the leakage.

Figure 5.2: Leakage distribution observed over 2 days of measurement.

A common approach is to measure the flow of water in different areas of the

network during the night, when the demand for water is at its lowest level. Any

difference in the night flows may be considered as a leakage and is investigated

(Fig. 5.2). The drawback of this approach is exposed when a sudden increase

in demand occurs. This activity, referred to as unaccounted night use, leads to

misreading the increase in usage of water as a leakage. Although considerable

investments have been made, lack of metered households is a major cause of errors

in leakage estimation as it is very difficult to distinguish between a sudden increase

in demand and an actual leakage.
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5.5 Leakage forecasting

As mentioned in the previous section, leakage can be decreased by applying ALC

and responding to customers’ reports in a timely manner, which requires the

resources to be allocated in advance. In the UK it is a requirement set by OFWAT,

that water companies present regular leakage forecasts and plan their resource

effort in order to decrease leakage to an acceptable level. Together with a broad,

five year business plan, more detailed forecasts are produced one year ahead, from

April until March.

5.5.1 Factors influencing leakages

5.5.1.1 Seasonal factors

Leakage does not remain constant throughout the year and is subject to the

influence of seasonal factors. Various weather effects can affect the rate and amount

of leakage, such as temperature, rainfall, number of consecutive frost days or soil

moisture deficit.
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Figure 5.3: Example of a real leakage distribution at the company level
throughout the year.

An example of a real leakage distribution at the company level over the period of

one year can be seen in Fig. 5.3. It is common for two distinguished peaks to be

observed during the year.

The smaller peak occurs around the summer period and may be explained by

an unusual increase in demand due to unaccounted night use and an increase in

temperature which causes AC-type (asbestos cement) pipes to expand and results

in displacements, leading to pipe bursts.

The much more significant peak is usually observed in the winter which affects

mainly iron pipes, due to the physical characteristics of the material. The iron has

good contraction properties, but is much worse in expansion. Severn Trent Water

has over 45 000 km of metallic pipes, and although the infrastructure is constantly

upgraded, they still account for almost 90% of the network. More bursts occur
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during winter as the water trapped in the soil freezes, and therefore increases its

volume. Also, the temperature of water in the pipes is a major influence (Almeida

& Ramos 2010), as it can affect the internal corrosion rate.

The seasonal factors have a big influence on the service levels and economic losses

of water companies. It is however difficult to forecast the leakage, especially for

1 year ahead, based only on the weather factors. Research in the related field

of electricity demand forecasting usually uses weather forecasts for up to 10 days

ahead (Taylor & Buizza 2003). Therefore, although in the following chapters of

the thesis the results with the weather factors as one of the inputs will be included,

it is only to show that this can improve the accuracy, but at the moment does not

have a practical application when forecasting for 1 year ahead.

5.5.1.2 Equivalent Service Pipe Bursts

Together with the expected leakage, the company presents the resource effort

expressed in the form of Equivalent Service Pipe Bursts (ESPB). Different types

of pipes have different flow rates and the leakage from these pipes cannot be

compared in a straightforward manner. Therefore, ESPB numbers represent

monthly repair figures recalculated to account for different flow rates.

ESPBtype = leakstype ×
flowRatetype
flowRateCSP

(5.1)

where type is a type of a pipe (Mains, Communication, etc.), leaks is the number

of leaks, flowRate (in m3

hr ) is a flow rate and flowRateCSP is a flow rate of

Communication Service Pipe which is used as a reference value for recalculation.

Two types of ESPB values can be distinguished:

� Detected: number of fixed leakage events found by the service engineers,

recalculated to account for the pipe type
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� Reported: number of fixed leakage events reported by customers,

recalculated to account for the pipe type.

5.5.1.3 Natural Rate of Rise

In addition to ESPB numbers, the Natural Rate of Rise (NRR) is used to

indicate seasonality in the leakage. NRR [Ml/day] relates to the underlying rate

at which leakage increases within a network in the absence of any leak repairs. It

is calculated based on each year’s expected starting leakage, NRR Profile, which

accounts for seasonal factors (peaks in summer and winter periods) and annual

NRR (an overall increase in leakage throughout the year). Similar to ESPB, it

is also created for detected and reported leakages and the sum of both represents

total NRR or NRRt.

5.5.2 Leakage forecasting methods

The company produces forecasts for monthly leakage and resource effort one year

ahead at different organisational levels (company and regional). A lot of decisions

on how to deal with the produced forecasts are based on the experience of the

experts, which is usually not incorporated into the mathematical or forecasting

models. Therefore it is a common practice to adjust the results obtained by those

mathematical models according to the knowledge of some special events or other

factors. This may increase the accuracy of the forecast if applied correctly, but on

the other hand introduces biases and inconsistencies if incorporated incorrectly.

In the particular case of leakage forecasting, first the leakage target at the company

level and related costs for the whole year are obtained based on the economic

factors, required ELL and the constraints set up by OFWAT. Then, the forecasts

for eight WRZ (Water Resource Zones) are generated, so that the leakage can be
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distributed between them and throughout the year. The previous year’s data is

used as a baseline and it is judgementally adjusted to fit the requirements.

The forecasts are updated as time passes with the current data and numerous

parameters, such as:

� Flow Rates of pipes, different for every type of pipe,

� ESPB numbers,

� Hours to detect (HTD): hours/ESPB describes how many hours it takes

to detect, but not fix, the leak,

� Reported Leakage, which is often judgementally set by the expert,

� Estimated and measured demand, very often judgementally adjusted (based

on the population, results obtained from the metered properties, weather

forecasts),

� NRR profile,

� Actual hours of work to fix the leak (estimated); these are only hours spent

on fixing the leak,

� Related costs

Many of these parameters are judgementally adjusted and relations between them

are not fully understood or are not formally described. They can also be weak or

even non-existent, as they have not been properly modelled and evaluated.

5.5.3 Issues with producing leakage forecasts

In general, producing forecasts for a long period ahead, such as 12 months is a

difficult task, especially when one of the crucial factors is weather. One of the
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ways to overcome this problem is to rely on historical data and the assumption

that leakage can be influenced by the number of leaks found and fixed through

detection and customer feedback (ESPB numbers). Relying on the weather

forecasts is not feasible, as 12 month ahead weather forecasts are not sufficiently

accurate. Instead, seasonal factors, such as general decrease of temperature during

the winter, or less rain during the summer, are included in the NRR figures

which increase throughout the year with a high peak in a winter season. Another

issue is the general influence of ESPB numbers (both detected and reported) and

the relationship between them. It is difficult to establish if investment made in

detecting leaks and, therefore, increasing ESPB detected numbers has a great

influence on leakage values or if the change in leakage depends more on other

factors including ESPB reported numbers.

5.5.4 Current leakage forecasting procedure

The company carries out the leakage prediction using the estimated flow rates to

calculate the ESPBs. This is done by calculating the adjustment factor so that

the leakage matches the estimated start leakage and target leakage values. This

gives an estimation of how much work needs to be carried out in order to bring

the leakage down to the target level.

The following inputs used in the estimation model are known or assumed to be

known:

� HTD - hours to detect: constant describing how many hours on average

does it take to detect the leak

� start and target leakage

� annual NRR (detected and reported)
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� number of leaks per type of pipe and the flow rates for each type of pipe in

the past year

� NRR profile (distribution of NRR month to month)

The principal of the system is to adjust the ESPB values in such a way that the

average distribution of the leakage over the course of the year matches the annual

leakage target level. This is done using following procedure:

1. First start leakage is optimized (also known as NRR leakage). This is done

by adjusting the ESPB values by changing the adjustment factor.

2. The adjustment factor is increased from −100% by 10% with every step

(where −100% means that the leakage is set to be without any active leakage

control (ALC) - the number of detected ESPBs = 0).

3. In each step the ESPBs are adjusted using the adjustment factor.

4. This allows to calculate the estimated savings.

5. To obtain the estimated leakage, the difference between start leakage and

the estimated savings is calculated.

6. The optimization is finished when:

� The adjustment factor is >= 100% and the average estimated leakage

is bigger than the average leakage with ESPBs = 0, or

� If the difference between the average estimated leakage and start

leakage is < 0

7. The adjustment factor is then fine tuned by minimizing the objective

function (minimize the total savings), so that the average estimated leakage

equals to start leakage.
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8. The second step is to optimize the target leakage.

9. The algorithm is very similar to the one used to optimize start leakage.

10. The difference which is taken into account during the adjustment is the one

between average estimated leakage and the annual target leakage, instead of

start leakage.

11. This step aims at calculating the additional resource effort (ESPBs) of

bringing down the leakage from the starting point to the target annual value.

The simplified flowchart of the algorithm describe above can be seen on Fig. 5.4.

Set the inputs

Initiate 
adjustment factor 

for NRR

Calculate initial 
average estimated 

leakage for NRR

By changing the 
adjustment factor, 
calculate average 
estimated leakage 
for NRR until it is 
smaller than start 

leakage

Initiate 
adjustment factor 

for leakage

Calculate initial 
average estimated 

leakage

By changing the 
adjustment factor, 
calculate average 
estimated leakage 
until it is smaller 

than target 
leakage

Minimize total detected savings so that 
average estimated leakage for NRR is smaller 

than start leakage and average estimated 
leakage is smaller than target leakage

Calculate ESPBs and estimated 
leakage/month 

Figure 5.4: Flowchart of the leakage estimation algorithm used by the
company
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The accuracy of the predicted leakage using this forecasting method hasn’t been

assessed. The aim of the system was to ensure that the average leakage achieved at

the end of the year meets the target leakage. This was done by varying the ESPBs

across different periods of the year in order to plan the resource to be available

when the big leakage events are most likely to occur. This was carried out through

judgemental adjustments by the company expert.

As the current forecasting system does not use the historical leakage data and

other relevant inputs to establish the predicted leakage for the upcoming year,

a possibility of improving the system has opened. The analysis of the leakage

forecasting system revealed several points:

� The relationship between ESPBs and the leakage was not fully understood

� The impact of ESPBs on leakage in different areas of operation was not

known

� The ability to predict the leakage based on historical data was not

understood

� From conversations with experts from the company, it has been established

that months with highest leakage values also have the highest impact on the

total leakage accumulated throughout the year.

In order to establish the relationships between relevant data, the fuzzy clustering

techniques and evolving fuzzy systems described in previous chapters were

investigated. In the next chapter the modified version of the fuzzy evolving

algorithm will be presented, which was inspired by the problem of leakage

forecasting.
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5.6 Conclusions

In this chapter an overview of the issues related to water supply, management and

distribution have been presented. A focus was placed on the problem of existing

water leakage due to its social and economic impact. Leakage detection methods

have been presented and the concept of a leakage forecasting process has been

introduced. It can be seen that there is a need for a multivariate approach to

forecasting the leakage, due to the necessity of resource planning and the existing

non-linear relationships of leakage and other factors. In the next part of the

thesis, a method based on fuzzy evolving approach (which was already described

in the previous chapters) will be modified and adapted to suit the problem of

leakage forecasting. The application and assessment of that method on the leakage

forecasting, but also on other available datasets, will be presented in following

chapters.
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Modified Evolving

Takagi-Sugeno (Mod eTS)

algorithm for forecasting

6.1 Introduction

In the previous chapter, the issues encountered in leakage forecasting were outlined.

In this chapter a new algorithm, Mod eTS (Birek et al. 2014), will be introduced.

The algorithm was developed in order to increase the accuracy of prediction of

the leakage forecasts, especially for periods and areas with high level of leakage.

Mod eTS is an algorithm belonging to a group of Evolving Takagi-Sugeno Fuzzy

algorithms, described in Chapter 4. It incorporates a dynamic radius adjustment of

each input variable of each cluster. Introducing a radius for each cluster dimension

which is dynamically changing allows for better coverage of the data by clusters,

as radii may differ in different dimensions. It also limits the number of clusters

(and consecutively rules) as it is not necessary to create more clusters when data is
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already well covered by the existing ones. This chapter will introduce the algorithm

in Section 6.2 with more detailed description of how the algorithm can be utilized

in forecasting in Section 6.3. In the last section, Section 6.4, the focus will be put

on the main modification, the dynamic, unique radius of each cluster.

6.2 Mod eTS algorithm

The structure of the Mod eTS algorithm is similar to other eTS based algorithms.

The approach is inspired by various Fuzzy Evolving methods: the normalisation is

done using the maximum and minimum of available data, potential is calculated

and updated using the standard eTS formula and parameters are updated using

RLS algorithm. The difference lays in a way the radius of the clusters is calculated

and updated and how the distance to each of the clusters is obtained. The steps

of the algorithms are described below.

The algorithm can be initiated with a previously generated cluster structure or

it can start from the first observed data sample. The data samples should be

organized in row vectors with inputs followed by resulting output (Eq. 6.1) of the

form:

xk =
[
xk1 xk2 · · · xkj · · · xkh yk

]
(6.1)

where k is the index of the data sample, j = 1, . . . , h is the input index and y is

a resulting output. In addition to this, the initial values of the spread or cluster

radius r1,1j for each input and output needs to be set up in advance. The radii

will be updated dynamically as new clusters are added to a cluster structure.

The radii are updated using the parameter γ which is set in advance empirically.

The investigation of the influence of this parameter will be presented later in the

following chapters.

The proposed Mod eTS algorithm contains the following steps.
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1. Normalise the incoming data sample xk so that the range of all the data samples,

xkj ∈ [0, 1]:

xkj =
xkj −min (x j)

max (x j)−min (x j)
(6.2)

The min (x j) and max (x j) denote the minimum and the maximum of all

previously obtained samples of jth variable (component of data sample xk). As

the variables differ in their maximum and minimum values, it is recommended

that they are normalized (Dovzan et al. 2012). Although the information of the

maximum and minimum values of data may not be available for the user in real

life, it is often possible to estimate the maximum and minimum values from a

subset (training set) of available data or those values can be chosen empirically

based on the expertise. Another approach to the problem has been described

in Dovzan et al. (2012) where the normalization was done through pre-defined

constants for each variable, and in Angelov et al. (2010), where normalization

was done based on the recursive calculation of mean and standard deviation.

2. If the algorithm starts from an empty rule base and the first data sample x1 is

considered, then:

a) Initialize the cluster structure c1 with the first data sample x1 : c1 = x1

b) Set the initial potential P1 (c1) of the first cluster to 1: P1 (c1) = 1.

The formula for the potential Pk (xk) is given by:

Pk (xk) =
k − 1

(k − 1) (ϑk + 1) + σk − 2νk
(6.3)

The description on how to calculate the values in the potential equation

above has already been given through Eq. 4.2 in Chapter 4.

The values used to calculate the potential (Eq. 6.3) of the data sample in

the next steps need to be initialized as well: ϑ1 = 0, σ1 = 0, ν1 = 0,

β1 =
[
0 0 · · · 0

]
, where size of the β1 vector is h (same as xk)
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c) Create the first rule based on the cluster centre c1:

IF x11 is A11 AND x12 is A12 AND . . . AND x1h is A1h (6.4)

THEN y1 = a11x11 + a12x12 + . . .+ a1hx1h + a1h+1

with A1j being a Gaussian membership function calculated using Eq. A.9.

d) Set the number of rules R to 1: R = 1

e) Calculate the variance σ2 (σ measures the width of the Gaussian function)

of the Gaussian membership functions (Eq. A.9) of each fuzzy set in the first

cluster based on the starting cluster radius r1,1j :

σ1j =
r1,1j(max(x j)−min(x j))√

8
.

The initial radius r1,1j for each of the inputs is a tunable parameter which

can be selected based on the results obtained on a subset of data, using a

simple grid search. The influence of the choice of the initial parameter r will

be investigated in the following chapters.

f) Set the parameter vector θ1 of the consequent linear equation of the first rule

to 1: θ1 =
[
1 1 · · · 1

]h+1
, where h+ 1 indicates the number of columns

in the vector (h being a number of inputs)

g) Set the global parameter matrix (if global learning is used) Θ of the

consequent linear equations to θ1, Θ = θ1

h) Set the fuzzy weight λ1 to 1

i) Initialize global/local covariance matrix Cov1 with a high number Q

multiplied by the (h+ 1)× (h+ 1) identity matrix:

Cov1 =


Q 0 · · · 0

0 Q · · · 0
...

...
. . .

...

0 0 · · · Q



h+1×h+1

(6.5)

146



Chapter 6.

j) Initialize a regressor vector ψ1 which will store weighted input values for the

parameter estimation purpose ψ1 =
[
0 0 · · · 0

]h+1
, Ψ1 = ψ1

3. If the cluster and rule structure is already initiated or k > 1:

a) Recursively calculate the value of the potential Pk (xk) of the data point xk

using (Eq. 6.3)

b) Update the potential of all already established clusters. The potentials of

already created centres depend on the distances to all data points, therefore,

it is necessary to update them.

Pk (ci) =
(k − 1)Pk−1 (ci)

k − 2 + Pk−1 (ci) + Pk−1 (ci)
∑h+1

j=1

(
cij−xkj
rk,ij

)2 (6.6)

c) The following steps carry on the process of deciding when to add a new

cluster, change the already existing one or when to leave the cluster structure

unchanged. Angelov et al. (2004) investigated and benchmarked a number

of ways on how to make that choice. The method which resulted in lowest

error involved comparing the potential Pk(xk) to maximum and minimum

value of the potentials of all of the existing clusters and then making the

decision based on the distance to the closest cluster. That method has also

been applied in Mod eTS. The process is based on the values of the potential,

distance between cluster centres and new data vector, centre radii and the

threshold, which has been chosen arbitrary:

1: Compare the potential of the candidate cluster Pk (xk) with the updated

potentials of all previously selected clusters. The reason the potential is

also compared to the minimum value of the potentials from the existing

clusters is that it makes it possible to create clusters in areas with

less information as well. The minimization of the information potential

allows recovering some of the missing details (Ramos & Dourado 2003).
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2: dmin = min
i

(disti), where disti =
∥∥∥ ci−xkri

∥∥∥2, dmin is the minimum

distance disti between the data point xk and the cluster with the

centre ci with respect to ri, ri is the radii of the ith cluster;
3: if Pk (xk) > max (Pk (ci)) or Pk (xk) < min (Pk (ci)) then

4: if dmin < 0.5 then {change the already existing cluster}

5: The closest cluster centre ci is replaced by the current data point

xk (the corresponding rule is also changed);

6: The potential of the changed cluster is replaced by the potential

Pk (xk) of the data point xk;

7: Update the radii rk,ij of the closest cluster:

rk,ij = γr(k−1),ij + (1− γ) cij (6.7)

where rk−1,ij is the jth radius input of the ith cluster ci at previous

time step k − 1 and γ is the weighting factor that is pre-set.

8: The linear parameters of the consequent part of the rule which

was created from the replaced cluster remain the same, as well as

the covariance matrix Covk;
9: else {add new cluster}

10: New cluster is added with the coordinates of data point xk and

the potential Pk (xk);

11: R = R+ 1;

12: The initial vector of linear parameters θR is obtained based on

the weighted average of all vectors from remaining fuzzy rules;

θR =
∑R−1

i=1
λiθi (6.8)
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13: For global learning, the global covariance matrix Covk needs to

be extended and reset (Eq. 6.9) with ρ =
(
R2 + 1

)
/
(
R2
)

being

a resetting factor based on the current number of rules R and cov

representing the elements of the covariance matrix at step k − 1.

Covk =



ρcov11 · · · ρcov1R(n+1) 0 · · · 0

· · · · · · · · · · · · · · · · · ·

ρcovR(n+1)1 · · · ρcovR(n+1)R(n+1) · · · · · · · · ·

0 0 0 Q · · · 0

· · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · Q


(6.9)

If local learning is used, the local covariance matrix is initiated

using Eq. 6.5;

14: end if

15: else if dmin < 0.5 then {ignore the sample}

16: Update the radius of the closest cluster ci (Eq. 6.7) and proceed

further;

17: end if

4. Update the parameters of the consequent part using the global or local RLS

algorithm, as follows.

a) Update the data matrix Ψk using the firing degrees τ1, τ2, . . . , τR calculated

using Eq. 3.26-3.27 and the extended input data vector xek (Eq. 3.29), ψi =[
τixk1 τixk2 · · · τixkh τi

]
, i = 1, . . . , R:

Ψk =
[
ψT1 ψT2 . . . ψTR

]T
(6.10)

b) Apply the global or local RLS algorithm to estimate the parameters of the

149



Chapter 6.

linear consequent part of the fuzzy If-Then rules:

L =
CovkΨk

1 + ΨT
kCovkΨk

(6.11)

ε̂ = yk −ΨT
k Θk−1 (6.12)

Θk = Θk−1 + Lε̂ (6.13)

Covk+1 = Covk − LΨT
kCovk (6.14)

The main difference is that in local learning the parameters are estimated

separately for each rule, using the local covariance matrix covi, local data

matrix ψi and local vector of parameters θi at time instance k.

5. Estimate the output for the next period based on the input values and obtained

parameter estimates given in Eq. 6.14 or in the vector form (for global learning):

ŷk+1 = ΨT
k Θk (6.15)

or in local learning:

ŷk+1 =
R∑
i=1

ψTikθik (6.16)

6. Collect next data vector and go to step 3.
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Figure 6.1: The flow-chart of the Mod eTS algorithm.

Fig. 6.1 illustrates the flow-chart of the Mod eTS. The markings in green show

where main improvements over previous iterations of the algorithm are included.

To summarise, the main differences in the Mod eTS as compared to the previous

methods lays in the way the radius is updated and how it is used. The updated

radius is used in the modified potential update formula (Eq. 6.6) which is a novel

approach as compared to other Evolving Fuzzy methods. The way the radius

is updated itself is also changed. The γ value (the smoothing parameter) is

used to smooth the values of centroids in the considered dimensions (Eq. 6.7).

The reasoning behind this approach is explained in Section 6.4 of this chapter.

Additionally, for the first time, the Evolving algorithm has been tailored to a

forecasting problem, with the approach summarised in the Section below.
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6.3 Application of Mod eTS algorithm to

forecasting

The algorithm can be adapted and used in multivariate forecasting for n-periods

ahead. First, the available historical data should be arranged into data points

forming data vectors. The algorithm can start from the first data point and

the cluster formed by the first data point, and afterwards, the rule structure is

gradually generated through an evolving process until all k data points are assessed.

Assuming that the input values x(k+1)1, x(k+1)2, . . . , x(k+1)h are given, the forecast

for the next period ŷk+1 can be calculated using the generated fuzzy If-Then rules

and the estimated parameters through Takagi-Sugeno inference (Eq. 6.15). In the

next step the vector of data is created using the obtained forecast ŷk+1 in place of

the output, i.e.:

xk+1 =
[
x(k+1)1 x(k+1)2 · · · x(k+1)h ŷk+1

]
(6.17)

The new data point xk+1 is then used to update the rule structure through the

Mod eTS algorithm. The approach is similar to the rolling forecast method where

generated forecasts for period k are used to obtain a forecast for the next period

k+1. The process continues until all desired forecasts ŷk+1, . . . , ŷk+n are obtained.

The flow-chart of the Mod eTS algorithm for forecasting is given in Fig. 6.2.
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Figure 6.2: The flow-chart of the Mod eTS algorithm for forecasting.

6.4 Investigation in dynamic radius

It is worth noting that the idea of dynamic radii has been included in the extensions

of the classic eTS approach in the form of exTS in Angelov & Zhou (2006) and

eTS+ in Angelov et al. (2010). The comparison and difference of the radii updates

introduced in this approach and different fuzzy evolving algorithms is given in

Table 6.1.
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Table 6.1: Comparison of the different radii updates in different fuzzy
evolving algorithms.

Method Characteristic Equation

exTS

rk,ij = γr(k−1),ij + (1− γ) sk,lj ,

use of the l - closest cluster index, γ - parameter, sk,lj - scatter:

scatter sk,ij =
√

1
Nk,i

∑Nk,i
l=1 (cij − xlj)2,

Nk,i - support of the ith cluster

eTS+

rk,ij = γr(k−1),ij + (1− γ) sk,ij ,

use of the γ - parameter, sk,ij - scatter:

scatter sk,ij =
√

1
Nk,i−1

∑Nk,i−1
l=1 (cij − xlj)2,

Nk,i - support of the ith cluster

Mod eTS
use of the rk,ij = γr(k−1),ij + (1− γ) cij ,

cluster centre γ - parameter

The radius in Mod eTS is updated using the following formula:

rk,ij = γr(k−1),ij + (1− γ) cij (6.18)

Radius is a crucial piece of information about the cluster, as data points which are

outside of the radii have little or no influence on the potential of this cluster (Chiu

1994). The update of the radii is conducted at the stage of modifying the existing

cluster. Each dimension (input variable) of the cluster is updated separately. A

similar approach was implemented in Angelov & Zhou (2006) and Angelov et al.

(2010), where the radius was calculated using the local scatter over the input data

which resembles the variance. In the method proposed in this research, the scatter

is not calculated, but instead the value of the centre in the considered dimension is

used. This approach has been dictated by the importance of high values of inputs

and is problem specific. The higher the cluster centre value is, the bigger the radius
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and the higher the impact of that cluster will be. This will promote the clusters

created in the regions with high values which is crucial for some applications, such

as leakage forecasting (described in the previous Chapter). High values of leakage

contribute considerably to the average leakage over a year, even though in the time

series considered they do not occur frequently. It is worth noting that it is also

important to choose appropriate smoothing parameter γ and initial values of the

radii. Those can be established through grid search on a subset of data. Initial

values of radii have been a subject of investigation in a number of papers (see

review in Ramos & Dourado (2003)), therefore the conclusions from those can be

used. It is important to remember that the final choice of parameters depends on

the problem and the characteristics of time-series used.

6.5 Conclusions

In this chapter the principles of a novel Mod eTS were presented. In the next

section, the algorithm will be applied to a leakage forecasting problem. The results

will be analysed and the influence of tunable parameters, such as initial values of

the spread or cluster radius r1,1j will be assessed. Finally the algorithm will be

compared with other forecasting approaches and other Evolving Fuzzy algorithms

in terms of accuracy and the performance (speed of execution and number of rules,

when possible).
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Application of the Mod eTS

algorithm to leakage forecasting

7.1 Introduction

In this chapter the novel Mod eTS fuzzy forecasting algorithm, introduced in

Chapter 6 is applied to leakage forecasting problem described in Chapter 5.

The aim of this chapter is to describe the process of choosing the explanatory

variables and the pre-processing steps on the provided datasets and to prove that

the Mod eTS algorithm can perform better than other forecasting methods on

those datasets. As only 9 datasets will be analysed in this chapter, it is not

possible to generalize the conclusions. However having less data allows for more

in depth analysis which will be carried out here. Also, in order to overcome this

limitation additional analysis will be carried out in the next chapter in order to

verify those findings.

The chapter can be split into two parts. In the first one the problem of the leakage
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forecasting is described in more details and focuses on the provided data, especially

on what pre-processing steps had to be carried out to enable the use of that data

in the algorithm and what explanatory variables were used in the process.

The second part focuses on analysing the results from applying the Mod eTS

algorithm to the leakage forecasting problem. The configurable parameters of the

Mod eTS algorithm will be analysed to determine what the most appropriate

configuration in order to generate the most accurate forecast is. The results

from the application of the method to the leakage forecasting problem will

be compared with the results obtained from using other fuzzy forecasting and

statistical methods. Finally the chapter will conclude with final remarks and

observations.

7.2 Understanding the data

The data that was used to evaluate the algorithm was kindly provided by Severn

Trent Water - one of the biggest water supplying companies in UK. The company

operates across Midlands and Wales and is structured around 8 distribution areas.

The data that was provided was not suitable to be used in the algorithm directly,

so the first step was to understand what it represented and how to pre-process it.

The leakage data was given as a weekly summary of leakage per District Metered

Area (DMA). These are smaller areas (the area of operation is split into over 3200

DMA’s) for which the flow at the isolated entry and at the exit is measured. The

leakage is calculated by measuring the difference between the exit flow and the

entry flow and subtracting that value by the metered and estimated usage of the

water in that area. If the obtained value was high this could indicate the leakage

and the area was being checked. The leakage value provided was an average leakage

per day across a week and was expressed in litres.
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Another important input given was the number of jobs carried out in each DMA

for each type of pipe when the leakage was reported or detected. This value would

later be used to calculate the Equivalent Service Pipe Bursts (ESPB), which is the

normalised value indicating the amount of water lost in the leak and the amount

of work needed to carry out repairs.

Lastly the Natural Rate of Rise (NRR) was provided, which was shown as a profile

for each month summing up to 1. The example of such a profile can be seen on

Fig. 7.1:

Figure 7.1: NRR profiles.

Profiles for both NRR reported (NRRr) and detected (NRRd) were provided. This

profile is used by the company in conjunction with initial (start) leakage (SL) and

the annual NRR (aNRR) to derive the value of the NRR for each month of the

year. This is the approach documented in UKWIR (2005) and is also used in this

research.
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The data spanned from March 2007 until February 2012 (5 years) - this was limited

by how much data was provided by the company.

7.3 Data pre-processing

7.3.1 Leakage data pre-processing

First, the leakage data and number of jobs had to be mapped to 8 water

distribution areas. As the data was provided on DMA level, the mapping was

used to collate and assign each data point to its distribution area. The leakage

data was cleaned up from any empty or incorrect readings (obtained as a result

of the meter errors). The direction on how to identify those was given after the

conversation with the company expert - the values were either empty (value of 0)

or negative.

The leakage data and data on number of jobs were provided on a week by week

basis. As the aim of the forecast was to generate a monthly prediction, the data

from each week for each of the DMA assigned to the distribution area was summed

up, generating monthly leakage and job summaries for each water distribution area.

The normalised sum of the leakage data (detected and reported) for each of the 8

regions can be seen on Fig. 7.2.
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Figure 7.2: Leakage for all regions presented separately.

In order to generate a generic forecast at the company level, the leakage from each

of the region was added. This resulted in the overall leakage at company level and

is plotted on Fig. 7.3.
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Figure 7.3: Combined company leakage.

The leakage at the company level will be used during the experiment establishing

the influence of the weather factors on leakage.

7.3.2 ESPB data pre-processing

In order to obtain the ESPBs, each type of pipe fixed during the repair job had

a weighting factor assigned. This indicated an impact on the leakage associated

with the size (diameter) of the pipe. The weighting factor was higher for bigger

pipes as the impact on leakage was also considered higher. The number of jobs per

pipe were multiplied by the weighting factor on monthly basis and split between

detected and reported leaks. This resulted in obtaining ESPBs (both detected

and reported) for each distribution area per month.
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7.3.3 NRR data pre-processing

The Natural Rate of Rise (NRR) was calculated using monthly NRRp profiles for

each year (the company determines those profiles on year by year basis), initial

leakage values for each year (start leakage SL) and the annual aNRR values that

were provided by the company. The NRR was calculated separately for detected

and reported leaks and then summed up to obtain overall annual NRR profile.

The NRR for first month of the year is calculated using the SL value:

NRRR(1, y) = SL(y) + aNRRR(y)NRRpR(1, y)

NRRD(1, y) = SL(y) + aNRRD(y)NRRpD(1, y)

NRRA(1, y) = NRRD(1, y) +NRRR(1, y)

(7.1)

where y is the particular year the NRR is calculated for, NRRR is reported NRR,

NRRD is detected NRR and NRRA is an overall NRR.

Each subsequent month is then calculated using the following set of formulas for

each year:

NRRR(m, y) = NRRR(m− 1, y) + aNRRR(y)NRRpR(m, y)

NRRD(m, y) = NRRD(m− 1, y) + aNRRD(y)NRRpD(m, y)

NRRA(m, y) = NRRD(m, y) +NRRR(m, y)

(7.2)

where m is the month of the year for which the NRR is calculated for.

7.3.4 Weather data pre-processing

The weather data was obtained from the Met Office UK (2015) website which

contains the historically recorded min. temperature, frost days and rainfall data

for many weather stations in the UK. The data used in this study was taken from
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the Wales - Midland region which corresponds to the STW operation area. It was

used at the company level due to lack of weather variation across regions. Weather

data is used in one of the experiments to establish if the knowledge of some of the

weather aspects could increase the accuracy of the forecast. The data used in that

experiment can be seen on Fig. 7.4.
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Figure 7.4: Weather conditions in West Midlands and Wales.

7.4 Data preparation for the use in the

algorithm

The complete dataset consisted of 60 data points for each of the 8 regions. The

datasets were divided into two parts: 4 years (48 months) of data was used as a

training period and 1 year (12 months) for out of sample testing. As these are

seasonal time-series it was necessary to include at least one full year (12 months) in
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the out-of sample period and in order to cover as much data as possible in building

the model the remaining data was used for training.

For algorithms which can utilize multiple inputs, the data vectors xk : k =

2, . . . , 48, were created from each dataset and consisted of four input values: yk−1

- previously obtained leakage, u1k - ESPB detected numbers, u2k - ESPB reported

numbers and u3k - NRR values. The output value yk is observed leakage. The

choice of the parameters to include as inputs was dictated by the availability of

the data and the discussion we had with the company experts.

xk =
[
yk−1 u1k u2k u3k yk

]
, k = 2, . . . , 48 (7.3)

Previous leakage value was used due to the longer lasting influence that it usually

has on the next month of leakage. The ESPB values were used as the amount

of work carried out in the previous month on fixing the leaks usually corresponds

to the drop of leakage in the following month. The NRR values were used due

to the fact that they normally incorporate the seasonal factor of leakage (higher

leakage during the summer and winter). The additional input u4k was added for

one of the experiments which corresponded to the weather factor (temperature,

rainfall or number of air frost days). This input was used in order to determine if

including the weather factors could increase the accuracy of the leakage forecast.

For time-series methods which use one input the leakage values were utilised.

For fuzzy clustering methods, the cluster structure was built using training data

of 48 months separately for each of 8 datasets representing 8 regions of operation.

The forecasting process was carried out using the last 12 months of data for a

12 month ahead period on a monthly basis. The forecast for testing data was

calculated 1 period ahead and then the model evolved after each step based on

that forecast (i.e forecast for period 49 was calculated using data 1-48, forecast

for period 50 was calculated using data 1-48 + forecast of 49). The explanatory
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variables were considered a known factor as they are set 12 months ahead.

7.5 Error measures

In order to report and compare the performance of the algorithm with other

methods a set of standard error measures commonly used in forecasting

applications will be used. These include: Mean Absolute Percentage Error

(MAPE ), Mean Absolute Scaled Error (MASE ), Root Mean Squared Error

(RMSE ) and Non-dimensional Error Index (NDEI ) and will be described below.

MAPE and RMSE are amongst the most used error measures. The lower the

values of the MAPE and RMSE (the lower the forecasting error) the better:

MAPE =
100%

n

n∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣ (7.4)

RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)2 (7.5)

where yt is actual output value and ŷt is predicted output at time (index) t. MAPE

error measure is used due to its ability to express the result regardless of the scale

at which the measure is computed as the result is presented in percentage. Also,

the considered time-series have no zero values, which makes the use of MAPE

possible.

As for RMSE, since the errors are squared before they are averaged, this gives a

relatively high weight to large errors. This means that the RMSE is useful when

large errors are particularly undesirable.

NDEI is the ratio of the RMSE to the overall standard deviation of the real output

data and is being commonly used to compare a variety of Fuzzy Evolving methods
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(simply due to the convenience in comparing the results).

NDEI =
RMSE

std(Y )
(7.6)

where std(Y ) is a standard deviation of the actual output data Y .

Finally the Mean Absolute Scaled Error (MASE ) is also used. It is an error

measure proposed by Hyndman & Koehler (2006). It mitigates some issues present

in the previous error measures. In case of MAPE, the disadvantage is that the

error is not symmetric (interchanging yt and ŷt does not yield the same result), for

RMSE measure it is its sensitivity to outliers. The scaled error is a measure which

scales the relative error based on the in-sample (training sample) Mean Average

Error (MAE ) of the naive forecast.

qt =
et

1

n− 1

n∑
i=2
|yi − yi−1|

(7.7)

where et is a relative forecast error (yt − ŷt) at time t and denominator is the

average forecast error of the naive method (which takes the previous actual value

as the forecasted value).

The MASE measure is the mean over all of the absolute values of the scaled errors:

MASE =
1

n

n∑
t=1

(|qt|) (7.8)

As data was split between training and testing periods, the errors for both were

calculated. For methods that utilised all of the inputs, the accuracy on training

data was calculated based on the final choice of parameters obtained after the

training period. The errors were calculated starting from the 2nd sample until the

last (48th) sample. In some cases, especially for time-series methods, the training
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error had to be calculated on a different sample size. For example for Seasonal

Naive method, the training error had to be calculated from the 13th sample as the

seasonality was established to be 12 months (or 12 samples).

For testing period (out-of-sample data), the forecast was calculated using the

parameters obtained from the training period, except for the evolving methods,

which evolve the set of parameters over time as soon as data becomes available.

As the ESPBs and NRR is planned a year in advance, real values of those inputs

were used in generating the test results. However no real values of leakage were

used during that period of testing, as the aim was to predict the leakage 12 months

ahead. When previous leakage value was required as an input, the forecasted value

of leakage for the previous period was used.

7.6 Analysis of the results for Mod eTS

In this section the results of applying the Mod eTS algorithm to the leakage

forecasting problem will be analysed. The performance of the algorithm will be

measured using 4 error measure techniques described in Section 7.5.

Two tables below (Table 7.1 and Table 7.2) show the results of applying the

algorithm to the data from each of the 8 regions as well as to the sum of data from

all regions (reg all). The standard deviation and the mean of the error measures

from all of the regions is also calculated. The tables also indicate what values of

parameters have been used (initial radius r and radius change rate γ) to obtain

those results. Those parameters are used in the formula that updates the radii of

clusters, therefore impacting the final cluster (and rule structure). As a reminder

the update formula is presented below:

rk,ij = γr(k−1),ij + (1− γ) cij (7.9)
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Table 7.1 shows the results from training period (48 months of data for each of the

regions). The table represents how well the created model fits the training data.

In order to obtain the results presented in that table, the Mod eTS algorithm was

applied to the training data using the combination of parameters from columns r

and γ for each region separately. This combination of parameters was obtained

through grid search (the resolution was 0.01) and the combination that resulted

with the lowest MASE error was recorded. The regions with lowest (region 8) and

highest (region 7) MASE error are highlighted in the table using green and red

colours respectively. The mean and standard deviation of errors from all regions

is also calculated.

Table 7.1: Training period results of Mod eTS for parameters minimizing
MASE

region code MASE MAPE RMSE NDEI r γ

reg all 1.063 5.387 42.551 1.101 0.95 0.65

reg 1 1.081 5.688 5.899 0.726 0.80 0.70

reg 2 0.807 4.830 4.557 0.774 0.70 0.95

reg 3 1.035 5.494 5.299 0.919 1.00 0.35

reg 4 0.766 4.197 3.002 0.596 0.60 0.25

reg 5 0.802 4.212 3.475 0.576 0.90 0.80

reg 6 0.886 4.954 3.667 0.807 0.85 0.70

reg 7 1.425 8.021 7.302 1.630 0.60 0.40

reg 8 0.478 2.385 1.158 0.397 0.50 0.95

std 0.265 1.505 12.875 0.361 0.18 0.25

mean 0.927 5.019 8.545 0.836 0.77 0.64

Table 7.2 shows the results from testing (out-of-sample) period (12 months of data

for each of the regions).
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Table 7.2: Testing period results of Mod eTS for parameters minimizing
MASE

region code MASE MAPE RMSE NDEI

reg all 0.5 2.734 12.688 1.007

reg 1 0.627 3.282 3.878 1.039

reg 2 0.499 3.431 1.615 0.892

reg 3 0.826 4.719 2.954 1.428

reg 4 0.733 4.629 2.297 1.381

reg 5 1.145 6.554 4.179 1.278

reg 6 0.469 3.297 1.541 1.262

reg 7 0.486 3.329 1.614 1.49

reg 8 0.852 4.561 1.894 1.223

std 0.229 1.178 3.538 0.204

avg 0.682 4.059 3.629 1.222

In this case the model obtained for the training data was applied to previously

unseen testing data. The model was constantly evolving after each data sample

was becoming available (after each forecast). The parameters used to obtain the

results for each of the regions for that table were the same as in Table 7.1. The

red and green colour represent the highest (region 5) and lowest (region 6) MASE

errors. The high MASE error in region 5 (over 1, which means that it is worse

than simple Naive method) indicate a lack of correlation with the explanatory

variables. This can be explained by the unusual increase in reported leaks during

test period even though leakage was actually decreasing, which was not the case

during the training period when usually the increase in leakage sparked the increase

in reported leaks. Fig. 7.5 shows data for region 5 and Fig. 7.6 for region 6 for

reference.
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Leakage
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Figure 7.5: Data for region 5.
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Figure 7.6: Data for region 6.
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The results for both training and testing periods indicate that the forecast error

is lower than the error of the simple Naive method (the average error of MASE is

lower than 1 in both cases).

The MAPE has a value of 5% for training and 4% for testing periods on average,

with the smallest error of 2.38% for training (region 8) and 3.28% for testing

(region 1). The error was highest for region 7 (MAPE of 8.02%) for training

period, and region 5 (MAPE of 6.55%) for testing period. In terms of error for

both training and testing, it was easiest to predict for region 8 (average MAPE

of 3.47%) and hardest for region 7 - with the highest average training and testing

MAPE of 5.67%. The results also show the discrepancy between different error

measures. While RMSE is the highest for reg all dataset, the other error measures

do not confirm that. This is due to the fact that RMSE measure penalizes the

outliers much more than other methods, which focus more on the average error.

Based on the investigation above, in order to obtain best results the values of

initial radius r and the rate of change γ should be set high. In most cases when

initial value of r was higher than 0.65 (average of 0.77) and γ was set to value

above 0.60 (average of 0.64) the accuracy of the forecast for most of the regions

was highest. This aspect (sensitivity to change of parameters) is investigated in

more details in the next subsection.

7.6.1 Parameter sensitivity analysis

The results obtained in the previous subsection indicate that the best performance

is achieved when values of r and γ are set high. Fig. 7.7 shows the heat-map of

the average MASE for the test period for all of the combinations of r and γ:
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Figure 7.7: Average out-of-sample MASE error across all regions for varying
values of r and γ.

It can be seen that the lowest errors are obtained when the model had values of

r higher than 0.7 and values of γ higher than 0.5, which corresponds to findings

from the previous subsection.

The reason for those thresholds can be explained by looking at the Eq. 7.9. The

initial value of r has a big impact on the radius of newly generated clusters. When

the value is low, there is a higher chance that when new data sample arrives at the

next time step, the new cluster will be generated (the radius has an impact on the

decision if a new cluster should be generated or if the existing cluster structure

should be updated, see Section 6.2), which may lead to overfitting.

Likewise, values of γ play similar role, when the radii are updated. As an example,

if the value of γ was set to 1, the radius would not update at all. By decreasing it’s

value, the radius updates are more weighted towards taking into account the values

of the centroid and less the current radius, which increases the rate of change. By

keeping the update rates (γ) of the cluster around 0.5 to 0.9, the radii updates at
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moderate pace, but can still adapt to high values of leakage (where the values of

c are high).

The number of rules created has direct impact on the speed of the algorithm, as

more rules require more computational power to evaluate them at each step. The

flexibility of algorithm suffers, when a lot of rules are generated during training

period - the algorithm tends to over-fit the data and the predictive model becomes

less flexible - see further results of Subtractive clustering algorithm in Section 7.7.1

where almost 40 rules were generated on average during training period).

The progress of creating clusters at each step of the algorithm is illustrated on Fig.

7.8:
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Figure 7.8: Number of clusters

The plot shows the number of clusters at each time instance averaged over all of the

data regions. The average number of clusters created at the end of the forecasting

process comes to 7.5. During the clustering process most of the clusters were
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generated between 10-12 sample, 24 - 25 sample, 36 - 37 sample and 48 - 49

sample which corresponds to spikes in the leakage for all of the regions. This is

in-line with the design of the algorithm which encourages clusters to be generated

when leakage spikes up, so that those events can be recognized easier in the future.

7.6.2 Influence of weather factors

It is a known fact (see Chapter 5) that weather factors, such as temperature, frost

days and rainfall, influence the amount of leakage in the water system. In this

section the impact of using those factors on leakage forecast will be assessed. This

will be achieved by adding one more input to the vector of explanatory variables.

The specific weather data for each of the company regions of operation was not

available at the time of this investigation. Nonetheless, data obtained from the

UK Met Office for the region of Wales and Midlands allowed the use of the overall

company leakage data to perform a basic assessment of the influence of the weather

factors on the leakage forecast.

First, the influence of the weather factors on the choice of most appropriate

parameters in order to obtain the most accurate forecast has been checked.

Previously, the lowest forecasting error was obtained when the value of the

parameters was higher than 0.7 for r and higher than 0.5 for γ.
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Figure 7.9: Out-of-sample MASE error for all regions combined with
temperature data for varying values of r and γ.

Fig. 7.9 shows that the same applies if weather factors are added. The only

difference being that the value of γ should be higher than 0.7.

To assess the influence of the additional inputs, 3 additional weather factors: min.

temperature, number of air frost days and rainfall; were added to the input vector.

The weather factors were added one at a time in order to assess the influence of

each one of them on the forecast accuracy. Table 7.3 shows the results of the

addition of those factors to the existing input vector.
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Table 7.3: Comparison of results for data with and without the weather
factors based on best testing MASE

No weather Temp Frost Rain

Error Train Test Train Test Train Test Train Test

MASE 1.063 0.500 0.763 0.744 1.710 0.670 0.653 0.847

MAPE 5.387 2.734 3.853 4.167 9.138 3.753 3.131 4.768

RMSE 42.551 12.688 23.245 23.259 48.456 20.101 22.995 25.016

NDEI 1.101 1.007 0.601 1.846 1.254 1.595 0.595 1.985

r 0.95 0.65 0.65 1

γ 0.65 0.9 0.9 0.95

clusters 7 6 7 6 7 7 7 6

It can be seen that in most cases adding the weather factors decreased the training

error. However the error for the testing period was still lower for dataset without

weather factors included. Adding the information about the rainfall to the input

vector decreased the training error, but increased the error during the testing

period. This still resulted in the lowest combined testing and training error

(average MAPE of 3.95), however use of data without any additional weather

information still resulted in the lowest testing MASE. The lower forecasting

accuracy during the out-of-sample period indicate that forecasting with weather

for longer forecasting horizons may be unreliable, which is in line with the general

characteristics of weather forecasts, where the ability to accurately predict the

weather for such a long forecast horizon is quite low (Taylor & Buizza 2003).

The values of parameters used to obtain the best results were still high, with initial

radius r being 6.5 or 1 and radius change γ of 0.9.

The cluster progression and the final number of clusters were almost the same,

with the exception of the frost, where 7 clusters were created in the end. This
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means that the addition of inputs was not important enough to generate more

clusters. One of the reasons for lack of cluster progression or increase in accuracy,

is that the NRR values already incorporate the expected increase of leakage during

certain times of the year, which makes additional incorporation of weather factors

not having such a big influence on the forecast.

7.7 Comparison with other forecasting

methods.

In this section the results obtained from the Mod eTS algorithm will be compared

to the results from a number of fuzzy clustering and statistical forecasting methods.

As the aim of this section is to determine if the Mod eTS algorithm can perform

better than other methods on the considered dataset, only MASE error measure

will be used. This approach is supported by the research by Hyndman & Koehler

(2006), who suggest that measures based on scaled errors should become the

standard approach in comparing forecast accuracy.

This section is split into two subsections. The first one compares the method

to 4 other fuzzy forecasting and clustering methods. In the second subsection

the algorithm will be compared to a number of simple, but effective and well

established statistical methods. The performance on both training and testing

parts of the dataset will be compared using parameters of each forecasting method

optimised for both training and testing error. The number of clusters (rules) that

were created while building the predictive model for fuzzy methods and an example

plot of the forecasts for chosen regions will also be shown.
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7.7.1 Fuzzy and clustering algorithms

In this subsection the performance of the Mod eTS will be compared to results

obtained from a number of fuzzy clustering algorithms. 4 algorithms have been

chosen for this comparison:

� eTS

� eTS+

� Subtractive clustering

� C-means fuzzy forecasting

eTS is used in the comparison, as it is a standard fuzzy evolving algorithm used as a

foundation to develop Mod eTS. eTS+ is used as it is more advanced version of eTS

with additional ways of handling cluster changes. Both methods were described

in more detail in Chapter 4. The exTS was not included in this comparison as it

is a version of the algorithm that includes some of the improvement from eTS+

(it was developed between eTS and eTS+). Two non-evolving fuzzy methods are

also included. The subtractive clustering method and c-means fuzzy forecasting

algorithm described in Chapter 3.

The tables below present the results of application of the Mod eTS algorithm

and the other 4 fuzzy forecasting algorithms. Table 7.4 shows the results based

on the parameters optimised on the training MASE, Table 7.5 on the training

MAPE, Table 7.6 on the training RMSE and Table 7.7 on the training NDEI. The

use of training error to optimise the parameters simulates the real life scenario

(optimising parameters on the historical data). The combination of parameters r

and γ is determined using grid search with the step of 0.01. The results for all

regions are shown, for both training and testing periods, together with the average

and the standard deviation of error. The average cluster numbers generated during
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the forecasting process are also presented. The green and red colour show the

lowest and highest error for each region across all methods for both training and

testing data.
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Table 7.4: Comparison of Mod eTS MASE accuracy results with other fuzzy forecasting methods - parameters
determined to optimise the training MASE

Mod eTS eTS eTS+ c-means Sub. clust.

train. test. train. test. train. test. train. test. train. test.

reg all 0.631 0.704 0.756 1.903 0.547 2.066 0.574 1.399 0.000 2.518

reg 1 0.778 2.182 1.081 1.172 0.852 0.623 0.628 0.868 0.000 3.479

reg 2 0.464 1.002 5.279 18.344 0.832 1.538 0.494 0.614 0.000 1.090

reg 3 0.583 1.044 0.812 1.376 0.640 1.915 0.471 1.864 0.000 2.451

reg 4 0.553 1.580 5.248 5.535 0.725 2.860 0.571 2.216 0.000 2.921

reg 5 0.802 1.145 1.945 10.459 0.839 1.808 0.829 1.348 0.000 2.226

reg 6 0.630 0.796 0.707 0.989 0.833 0.966 0.663 1.632 0.000 1.470

reg 7 0.598 2.060 0.795 1.568 0.694 1.230 0.521 2.057 0.000 1.632

reg 8 0.478 0.852 0.764 2.366 0.772 1.827 0.495 1.114 0.000 2.291

std 0.116 0.549 1.927 5.917 0.106 0.659 0.112 0.539 0.000 0.742

avg 0.613 1.263 1.932 4.857 0.748 1.648 0.583 1.457 0.000 2.231

avg clust. 6.889 3.000 1.778 28.111 39.778
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Table 7.5: Comparison of Mod eTS MAPE accuracy results with other fuzzy forecasting methods - parameters
determined to optimise the training MAPE

Mod eTS eTS eTS+ c-means Sub. clust.

train. test. train. test. train. test. train. test. train. test.

reg all 3.128 3.976 3.864 10.609 2.696 11.578 2.799 7.871 0.000 13.917

reg 1 4.128 11.876 5.908 6.328 4.397 3.293 3.332 4.690 0.000 18.571

reg 2 3.160 6.906 33.454 125.088 5.391 10.810 3.005 4.421 0.000 7.809

reg 3 2.915 5.920 4.183 7.787 3.245 10.792 2.412 10.635 0.000 13.800

reg 4 2.777 10.044 29.331 35.251 3.848 18.402 2.983 14.170 0.000 18.832

reg 5 4.212 6.554 10.822 60.771 4.255 10.640 4.183 7.959 0.000 12.853

reg 6 3.758 5.623 4.023 6.997 4.829 6.865 3.536 11.492 0.000 10.153

reg 7 3.511 13.900 4.581 10.631 4.012 8.406 3.065 14.018 0.000 11.126

reg 8 2.385 4.561 3.835 12.595 3.788 9.789 2.338 6.044 0.000 12.073

std 0.620 3.437 11.751 39.764 0.803 4.064 0.568 3.732 0.000 3.631

avg 3.331 7.707 11.111 30.673 4.051 10.064 3.073 9.033 0.000 13.237

avg clust. 6.889 3.667 1.778 28.111 39.778
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Table 7.6: Comparison of Mod eTS RMSE accuracy results with other fuzzy forecasting methods - parameters
determined to optimise the training RMSE

Mod eTS eTS eTS+ c-means Sub. clust.

train. test. train. test. train. test. train. test. train. test.

reg all 19.681 17.933 23.263 44.787 19.615 54.809 18.197 33.281 0.000 55.185

reg 1 4.864 9.681 6.443 5.612 5.550 4.430 3.899 4.140 0.000 16.643

reg 2 1.781 4.192 26.895 72.578 3.167 4.602 1.985 2.052 0.000 4.308

reg 3 2.855 3.869 3.467 5.242 3.192 8.123 1.990 6.452 0.000 11.840

reg 4 3.175 4.461 19.315 16.477 3.322 9.384 2.516 6.206 0.000 9.417

reg 5 3.475 4.179 10.577 35.599 3.778 6.355 3.675 4.830 0.000 7.922

reg 6 1.944 2.211 2.481 2.782 2.746 3.023 3.179 3.914 0.000 4.833

reg 7 2.232 6.074 3.071 4.920 2.418 3.601 1.852 5.586 0.000 5.010

reg 8 1.158 1.894 1.921 4.800 1.899 4.028 1.713 2.541 0.000 6.398

std 5.770 5.008 9.794 24.485 5.547 16.593 5.262 9.724 0.000 16.125

avg 4.574 6.055 10.826 21.422 5.076 10.928 4.334 7.667 0.000 13.506

avg clust. 6.889 3.667 1.778 28.111 39.778
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Table 7.7: Comparison of Mod eTS NDEI accuracy results with other fuzzy forecasting methods - parameters
determined to optimise the training NDEI

Mod eTS eTS eTS+ c-means Sub. clust.

train. test. train. test. train. test. train. test. train. test.

reg all 0.509 1.423 0.602 3.554 0.507 4.350 0.487 2.641 0.000 4.380

reg 1 0.598 2.594 0.792 1.504 0.683 1.187 0.496 1.109 0.000 4.459

reg 2 0.302 2.315 4.568 40.073 0.538 2.541 0.347 1.133 0.000 2.378

reg 3 0.495 1.870 0.601 2.534 0.554 3.928 0.353 3.119 0.000 5.724

reg 4 0.630 2.682 3.834 9.905 0.659 5.642 0.516 3.731 0.000 5.661

reg 5 0.576 1.278 1.753 10.885 0.626 1.943 0.628 1.477 0.000 2.422

reg 6 0.428 1.811 0.546 2.278 0.604 2.476 0.722 3.205 0.000 3.958

reg 7 0.498 5.610 0.686 4.544 0.540 3.326 0.421 5.159 0.000 4.627

reg 8 0.397 1.223 0.659 3.101 0.652 2.602 0.607 1.642 0.000 4.133

std 0.104 1.350 1.553 12.230 0.063 1.356 0.127 1.370 0.000 1.188

avg 0.493 2.312 1.560 8.709 0.596 3.110 0.509 2.580 0.000 4.194

avg clust. 6.889 3.667 1.778 28.111 39.778
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The best average results for the testing period are achieved by the Mod eTS

for all 4 error measures. The method also has the lowest standard deviation of

error, which proves consistency in the obtained results. Low standard deviation

means that method consistently performs better on average, which is one of the

most important measures in forecasting (Hyndman & Athanasopoulos 2014). The

c-means algorithm was the second best with eTS being the least accurate for

both the training and the testing period. In terms of the training error, the

subtractive clustering has the lowest training error, however this is because it

generates a new cluster for each data sample in the training period, which leads

to a considerable over-fitting of data for the testing period (Tables 7.4, 7.5, 7.6,

7.7,). When subtractive clustering is taken out of the picture for training period,

c-means clustering beats other methods when training period is considered for 3

out of 4 error measures. The Mod eTS is close behind the c-means algorithm, with

training MASE of 0.613, MAPE of 3.331, RMSE 4.574 and beating it with NDEI

of 0.493 (c-means clustering in this case has NDEI of 0.509). The slight variation

in the results among various error measures and regions is normal. As described in

Section 7.5 and indicated in Hyndman & Koehler (2006), various error measures

suffer from a bias depending on how they are calculated.

An additional Table B.1 in the Appendix shows results with the parameters

optimised on the testing MASE.

When looking at the number of clusters generated during the forecasting process,

it can be seen that c-means needs to generate a considerable amount of clusters to

achieve high accuracy. Another algorithm with higher than usual cluster count is

the subtractive clustering algorithm, which generated over 39 clusters on average

(Table 7.4). eTS+ generated the least number of rules on average due to the

more advanced method of keeping control over the size of the rule base through

the mechanism of disabling some of the obsolete rules. The Mod eTS algorithm

generated about 7 clusters on average.
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Fig. 7.10 presents the evolution of the rule base averaged over all datasets.
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Figure 7.10: Rule evolution of Mod eTS, eTS, eTS+ averaged over all
datasets.

The plot does not contain the cluster counts for c-means and subtractive clustering

as they have a fixed cluster structure for all samples. The average number of

clusters was 28.11 for c-means and 39.78 for subtractive clustering. For evolving

methods, it can be seen that the Mod eTS generates more clusters on average than

the other methods. With eTS+ having more strict rules around rule generation it

comes with no surprise that it generates the least amount of clusters. As mentioned

in the previous section, Mod eTS generates new clusters around areas of data-space

with higher than usual leakage values, which corresponds to the overall higher

number of generated rules.
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Figure 7.11: Leakage and combined forecast plot (training and testing forecast) of 5 years of data for one of the
regions of operation.186
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In order to visualise the forecasts from different methods, Fig. 7.11 shows the

leakage and forecast plots for one of the regions of operation. The forecast

presented here is the combined training and testing forecast. For the first 48

samples the forecast was calculated using the model build on those samples. For the

last 12 samples the forecast was calculated 1 step ahead (the model was evolving

after each forecast, however no real leakage values were used - the forecasted

values were used to evolve the model in order to simulate 12 step ahead real-world

scenario). It can be seen that Mod eTS usually over-forecasts slightly, but in most

cases is able to predict the more significant spikes in leakage, which other methods

struggle to do.

7.7.2 Statistical forecasting methods

In this subsection the Mod eTS algorithm is compared with 3 statistical methods:

� Multiple linear regression (MLR)

� Seasonal Naive (S-Naive)

� Holt-Winters method (HWM)

The chosen methods are established and effective forecasting algorithms which, in

a lot of cases, are difficult to be outperformed. All of them, apart from MLR, are

time-series methods (they are not utilizing the additional inputs) but only use the

past values of the leakage.

The MLR method is the only one utilizing the explanatory variables. It is a simple

method utilizing multiple inputs, which tries to model a relationship between two

or more explanatory variables by fitting a linear equation. It is a good benchmark

for problems using explanatory variables, as the method itself is simple and only

uses the Least Squares algorithm to estimate the parameters of linear equation.
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The Seasonal Naive method is used rather than Naive to account for seasonality

of the time series. The S-Naive method is a modification of the Naive method,

which takes into account the seasonality of the time-series. Instead of using the

previous value of the output as a forecast it will take into account the last 12 month

values of leakage and simply apply it as a forecast for the next period. In this case

the seasonality was established as 12 (due to the fact that year has 12 months),

meaning the predicted value for March 2008 is simply a value from March 2007.

In general, Naive methods should be used in benchmarks, as they are frequently

difficult to beat (Hyndman & Athanasopoulos 2014). If the new method does not

perform better, the it is generally not worth considering.

Finally the Holt-Winters method (HWM) is used as it’s very popular in business

setting (Goodwin 2010). HWM comprises of forecast equation which takes into

account the level, trend and the seasonality of the data. Many companies use it,

because it is simple, has low data-storage requirements, and is easily automated. It

has the advantage of being able to adapt to changes in trends and seasonal patterns

when they occur. This means that changes in usage or demand (for example for

water) can all be accommodated.

All of those methods are well established, standard statistical forecasting methods

which serve as appropriate benchmark to a Mod eTS method.

Below, the tables show the results of the comparison. As previously, the MASE

(Table 7.8), MAPE (Table 7.9), RMSE (Table 7.10) and NDEI (Table 7.11) error

measures are used to compare the algorithms. Both training and testing periods

are assessed for all regions and an average and standard deviation of the accuracy is

calculated. The tables shows the results obtained from optimizing the algorithm

parameters based on training period. The green and red colours highlight the

methods which achieved the highest and lowest accuracy for each of the regions.
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An additional Table B.2 in the Appendix shows the results when parameters are

optimised on testing period.
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Table 7.8: Comparison of Mod eTS accuracy results with other statistical forecasting methods - parameters
determined to achieve best training MASE

Mod eTS S-Naive MLR HWM

train. test. train. test. train. test. train. test.

reg all 0.631 0.704 0.911 1.693 0.734 1.364 0.716 3.490

reg 1 0.778 2.182 1.334 1.647 0.911 0.633 0.659 3.742

reg 2 0.464 1.002 0.839 1.895 0.838 0.618 0.733 2.114

reg 3 0.583 1.044 0.643 1.622 0.724 1.532 0.622 1.776

reg 4 0.553 1.580 1.012 2.431 0.744 2.169 0.770 3.782

reg 5 0.802 1.145 1.413 2.739 0.838 1.808 0.825 4.817

reg 6 0.630 0.796 1.154 1.643 0.833 0.965 0.711 2.728

reg 7 0.598 2.060 1.329 0.964 0.695 1.228 0.764 0.717

reg 8 0.478 0.852 0.815 1.599 0.772 1.827 0.708 2.828

std 0.116 0.549 0.271 0.515 0.071 0.542 0.060 1.234

avg 0.613 1.263 1.050 1.804 0.788 1.349 0.723 2.888

avg both 0.938 1.427 1.069 1.806
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Table 7.9: Comparison of Mod eTS accuracy results with other statistical forecasting methods - parameters
determined to achieve best training MAPE

Mod eTS S-Naive MLR HWM

train. test. train. test. train. test. train. test.

reg all 3.128 3.976 5.217 11.017 3.597 7.684 4.761 27.736

reg 1 4.128 11.876 8.268 10.605 4.668 3.348 4.616 29.583

reg 2 3.160 6.906 5.522 14.835 5.405 4.396 6.276 21.513

reg 3 2.915 5.920 3.540 10.581 3.670 8.682 4.172 14.188

reg 4 2.777 10.044 5.947 17.276 3.944 13.913 5.816 35.972

reg 5 4.212 6.554 8.570 18.190 4.252 10.638 5.586 37.788

reg 6 3.758 5.623 7.931 13.569 4.829 6.863 5.536 27.203

reg 7 3.511 13.900 9.559 7.700 4.022 8.399 6.119 6.629

reg 8 2.385 4.561 4.446 9.550 3.787 9.791 4.064 18.171

std 0.620 3.437 2.082 3.587 0.609 3.191 0.831 10.162

avg 3.331 7.707 6.556 12.592 4.242 8.191 5.216 24.309

avg both 5.519 9.574 6.216 14.763
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7.
Table 7.10: Comparison of Mod eTS accuracy results with other statistical forecasting methods - parameters
determined to achieve best training RMSE

Mod eTS S-Nave MLR HWM

train. test. train. test. train. test. train. test.

reg all 19.681 17.933 30.080 68.746 23.833 35.091 37.383 112.484

reg 1 4.864 9.681 7.769 12.065 5.747 3.986 6.588 23.269

reg 2 1.781 4.192 4.521 9.178 3.137 2.637 4.915 11.496

reg 3 2.855 3.869 4.319 10.158 3.412 5.792 5.111 10.564

reg 4 3.175 4.461 4.541 10.870 3.297 6.535 5.240 16.900

reg 5 3.475 4.179 5.397 11.570 3.778 6.354 5.153 20.244

reg 6 1.944 2.211 3.712 7.021 2.746 3.027 3.947 9.993

reg 7 2.232 6.074 5.074 4.661 2.417 3.600 4.282 3.012

reg 8 1.158 1.894 2.321 5.002 1.899 4.029 2.865 7.330

std 5.770 5.008 8.582 20.161 6.927 10.297 10.921 33.812

avg 4.574 6.055 7.526 15.475 5.585 7.895 8.387 23.921

avg both 5.314 11.500 6.740 16.154
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Table 7.11: Comparison of Mod eTS accuracy results with other statistical forecasting methods - parameters
determined to achieve best training NDEI

Mod eTS S-Naive MLR HWM

train. test. train. test. train. test. train. test.

reg all 0.509 1.423 0.709 5.456 0.617 2.785 0.774 8.927

reg 1 0.598 2.594 0.891 3.232 0.707 1.068 0.762 6.234

reg 2 0.302 2.315 0.719 5.068 0.533 1.456 0.658 6.347

reg 3 0.495 1.870 0.687 4.911 0.592 2.800 0.702 5.107

reg 4 0.630 2.682 0.835 6.535 0.654 3.929 0.816 10.160

reg 5 0.576 1.278 0.817 3.538 0.626 1.943 0.713 6.190

reg 6 0.428 1.811 0.753 5.750 0.604 2.479 0.707 8.184

reg 7 0.498 5.610 1.079 4.305 0.540 3.325 0.817 2.782

reg 8 0.397 1.223 0.733 3.232 0.652 2.603 0.800 4.735

std 0.104 1.350 0.123 1.174 0.055 0.891 0.057 2.269

avg 0.493 2.312 0.803 4.670 0.614 2.488 0.750 6.519

avg both 1.402 2.736 1.551 3.634
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The 2 methods: Seasonal Naive and MLR do not have any specific configurable

parameters (such as r and γ for Mod eTS, or the level, trend and seasonality

parameters for HWM) that need to be fixed before the forecast can be calculated

(MLR has parameters that can be estimated based on the characteristic of

time-series using, for example, Least Squares method).

The results presented in Tables 7.8 - 7.11 show that Mod eTS achieves the lowest

overall MASE, MAPE, RMSE and NDEI errors when looking at average training

and average testing error across all of the regions, as well as the accumulative

average of both. With MASE value of 0.938, it is the only method to beat the

simple Naive forecast (as the MASE error is lower than 1). HWM is not coping

well, and with the average MASE of 1.806 it has the highest error out of all of

the considered statistical methods, due to high testing error (2.89). This is also

confirmed when looking at other error measures. MLR method achieves second

highest accuracy, with good balance between training and testing error. That

method also performs most consistently with lowest standard deviation across

MAPE and NDEI error measures. Seasonal Naive has the least accurate forecast

for training period across 3 out of 4 methods and was only been able to beat the

HWM in terms of the average accuracy (MASE of 1.427, MAPE of 9.574, RMSE

of 11.5 and NDEI of 2.736). Again, small discrepancies across different error

measures are normal, but consistent results across most of the regions and error

measures prove that the Mod eTS performs best out of the considered algorithms.
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Figure 7.12: Normalized leakage and forecast of 5 years of data for one of the regions of operation.
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Similar to when assessment of the fuzzy forecasting algorithms was carried out,

Fig. 7.12 shows a plot of the real leakage and the forecasts for Mod eTS and all

other 4 statistical methods for one of the regions of operation. It can be seen that

Seasonal Naive method is not performing too well due to differences in leakage

in the consecutive years. Even though HWM predicts the peak of leakage at

the sample 33, it overshoots the prediction for the peak of leakage at sample 45,

which in turn decreases the overall accuracy of the forecast and explains the lower

accuracy of the predictions. The Mod eTS is able to more accurately predict the

peaks and the size of them. The higher accuracy of prediction is due to the fact

that those statistical methods do not make use of the explanatory variables, and

for the one that makes use of them (MLR) it assumes that the relationship between

those variables is linear.

7.8 Conclusions

In the first part of this chapter the detailed description of the data that was

provided for this project and the data pre-processing steps were explained.

Considerable amount of work had to be carried out in order to pre-process data to

be suitable for use in the algorithms, which only proves that data pre-processing

plays a very important role in the overall process of forecasting. As it has been

shown later in this chapter, adding new explanatory variables does not always

increase the accuracy, but may actually decrease it due to increase in noise

and unnecessary complexity. Therefore carefully choosing the inputs and the

explanatory variables may considerably increase the accuracy of the forecast.

In the second part of the chapter a number of fuzzy algorithms and some widely

accepted statistical methods were compared with the novel Mod eTS algorithm

and applied to the leakage forecasting problem. The results showed that the

use of the Mod eTS algorithm resulted in smaller errors as compared to other
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fuzzy forecasting and statistical methods. The algorithm can be used effectively in

forecasting and performs well on the tested datasets. Results obtained by applying

the method to real-world leakage data indicate that the proposed method generally

performs better than other methods for testing (out-of-sample) data. This proves

that the model built on the training data-set can be reliably applied to the unseen

testing data, and the confidence that this model will produce accurate forecast is

higher as compared to other methods.

In terms of the fuzzy rules, when compared with other standard fuzzy clustering

forecasting methods, the Mod eTS generates less rules, which yielded (in this case)

better results for test data. The comparison with other fuzzy evolving algorithms,

which also utilize radii update, showed lower values of error for testing period but

generated more rules. This is caused by the lack of more complex rule management

in Mod eTS. However, decreasing the number of rules was not the aim when the

Mod eTS algorithm was being developed, as usually deceasing number of rules

improves the speed of the execution of the algorithm, which was not an issue in

this case.

It is worth noting though, that the Mod eTS method is sensitive to the choice

of the configurable parameters (r and γ), which can be seen when looking at the

accuracy heat-map (Fig. 7.7). The recommendation on what range of parameters

should be considered in order to obtain the best results was made, but it may

require confirmation on other datasets.

The forecasting accuracy achieved by applying Mod eTS needs to be verified

on other datasets as well, to assess a problem specific approach to rule update

algorithm. In the next chapter the Mod eTS algorithm will be applied to the

artificial Mackey-Glass time-series in order to verify the conclusions from this

chapter.

197



Chapter 8

Evaluation of the Mod eTS

algorithm on an additional data

set

8.1 Introduction

In the previous chapter the Mod eTS algorithm has been applied and evaluated

on the leakage forecasting problem. In this chapter the Mod eTS algorithm will be

tested on an additional dataset in order to establish if the conclusions and results

from the previous chapter are still applicable to other data sets. The data used

in this chapter is a well known non-linear time-series which is generated by the

Mackey-Glass process. In addition to the Mod eTS three other algorithms will

be evaluated and the accuracy results will be compared. This will be achieved by

using the same error measures as in Chapter 7: MASE, MAPE, RMSE and NDEI.

The evaluation of the algorithms will also include sensitivity to parameters change

and the analysis of the number of generated clusters (fuzzy If-then rules).
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The chapter is structured as follows. In Section 8.2, the generation process of the

test time-series will be explained. The major part of this chapter is included in

Section 8.3, where analysis of the application of the algorithms to the Mackey-Glass

time-series will be carried out. The last Section 8.4 will conclude the chapter.

8.2 Testing environment

8.2.1 Mackey-Glass time series

To perform the further assessment and the comparison of the algorithms,

the time series generated from the Mackey-Glass equation (Mackey & Glass

1977) will be used. Mackey-Glass equation generates a chaotic, non-periodic

and non-convergence time series, which has been commonly used to asses the

performance and compare various fuzzy evolving algorithms. The time series is

generated using the following equation (8.1):

dx

dt
= β

xt−τ
1 + xt−τ n

− γxt, γ, β, n > 0, (8.1)

where β, γ, τ , n are real numbers, and xt−τ represents the value of the variable x

at step (t− τ). Depending on the values of the parameters, this equation displays

a range of periodic and chaotic dynamics.

The parameters to generate the time-series in this chapter are pre-set to the

same parameters as in other publications (Angelov 2004b, Angelov & Zhou 2006,

Vrbanek & Wang 2009): β = 0.2, γ = 0.1, τ = 17, n = 10 with the initial value of

x0 = 1.2 (Eq. 8.2).
dx

dt
= 0.2

xt−17
1 + xt−1710

− 0.1xt (8.2)

In this benchmark the value of the time series 85 steps ahead (xt+85) will be
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predicted based on the values at the current moment, 6, 12 and 18 steps back.

Those values and the parameters mentioned above were used to allow consistency

and ability to compare the results from this thesis to the results reported in other

research so far, as the same values were picked when this time series was used

previously (Angelov et al. 2004).

The data vector is represented as Eq. 8.3.

y = xt+85, X = [xt−18 xt−12 xt−6 xt]
T (8.3)

The training data consists of 3000 data samples and the validation (testing) dataset

consists of 500 previously unseen data samples. The integration step (resolution)

has been chosen as 0.1. The resulting time series plot can be seen below, with the

training dataset in blue and testing period marked in red (Fig. 8.1).
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Figure 8.1: Mackey-Glass time series plot.
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8.3 Accuracy results on Mackey-Glass time

series

8.3.1 Introduction

In this section the results on the Mackey-Glass time series described at the

beginning of this chapter will be presented. The aim of this exercise is to investigate

the influence of various parameters of the algorithms and also to compare the

results obtained from the application of the Mod eTS algorithm to the results

from other fuzzy forecasting methods, mainly c-means fuzzy forecasting algorithm,

eTS and eTS+. For each error measure, the set of parameters that resulted in

achieving the lowest error will be presented. This was achieved by evaluating the

combinations of parameters for each algorithm. The lowest training error has been

selected for each of the error measures. The parameters which led to obtaining that

lowest error for each measure have been recorded and are presented in the Tables

with the results, along with the corresponding out of sample error. The mean

accuracy and standard deviation of all of the results obtained from all combination

of parameters were also calculated, in order to indicate the sensitivity to parameter

change. The standard deviation also gives information on the robustness of the

methods to mis-specification in the parameters.

8.3.2 Analysis of the results from the application of

the Mod eTS forecasting algorithm

In Mod eTS the main configurable parameters are the initial value of radius r and

the smoothing parameter γ. The parameters will be chosen through grid search,

using following values (Table 8.1):
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Table 8.1: Parameters used in the assessment of the Mod eTS forecasting
algorithm.

r 0.15 to 1 with 0.05 step

γ 0.15 to 0.95 with 0.05 step

This gives 306 combinations of parameters. For each combination, 4 error

measures are calculated for in sample (training) and out of sample (testing) data.

Additionally, as the clusters are not set in advance, their number is calculated for

each error metric. The results are summarised in Table 8.2. The table has three

sections. The top section presents the results and parameters that were obtained

to achieve the lowest MASE error for the training data. Both training and testing

errors are presented. The middle section presents the results and parameters that

were obtained to achieve the lowest testing error. And finally, the bottom section

of the table shows average values across all combination of parameters.
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Table 8.2: Accuracy results of the application of the Mod eTS algorithm to
the Mackey-Glass time series forecasting problem.

MASE MAPE RMSE NDEI

r train. 0.25 0.25 0.25 0.25

γ train. 0.15 0.15 0.15 0.15

c train. 18 18 18 18

train. error 0.367 9.427 0.102 0.403

test. error 0.542 14.473 0.141 0.695

r test. 0.25 0.15 0.25 0.25

γ test. 0.50 0.70 0.35 0.35

c test. 17 24 18 18

test. error 0.536 14.111 0.141 0.692

mean train. 0.420 11.013 0.116 0.458

std. train. 0.0030 0.0912 0.0007 0.0027

mean test. 0.608 16.443 0.167 0.820

std. test. 0.0025 0.1002 0.0013 0.0063

The best results for training data are obtained for lower values of both the initial r

(r = 0.25) and the update rate γ (γ = 0.15). Low values of initial r limit the size of

the clusters which results in a higher number of the clusters required to cover the

data space (18 in this case). The results obtained when parameters are determined

based on the lowest testing error are not aligned with the results obtained when
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parameters are determined based on the lowest error on training dataset. This

is a result of much shorter testing period (500 samples), however the difference

is not substantial (MASE of 0.542 for training and 0.536 for testing). The initial

value of radius r stays consistent (r = 0.25), however the γ is higher (γ = 0.5)

which results in a smaller number of clusters (17). The standard deviation of the

obtained results is also low, which suggests consistent performance regardless of

the set of used parameters.

Fig. 8.2 and 8.3 show the distribution of training and testing error. The colours

represent the scale of the error, with dark blue being the lowest error and dark red

being the highest. It is obvious that the best results are obtained for low values

(0.15 - 0.25) of r and low values (up to 0.5) of γ. This has an impact on the

number of clusters (Fig. 8.4), which increase with the smaller value of r (again,

red colour represents the highest number of clusters with blue being the lowest).
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Figure 8.2: Training MASE distribution of Mod eTS forecasting algorithm
applied to a Mackey-Glass time series forecasting problem.
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Out of sample
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Figure 8.3: Testing MASE distribution of Mod eTS forecasting algorithm
applied to a Mackey-Glass time series forecasting problem.
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Figure 8.4: Final number of clusters for different values of r and γ of Mod
eTS forecasting algorithm applied to a Mackey-Glass time series forecasting
problem.
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8.3.3 Comparison with other fuzzy clustering methods

In this section the results obtained from Mod eTS methods will be compared with

other fuzzy evolving methods. The methods chosen are the same as the ones

selected in the previous chapter: c-means forecasting algorithm, eTS and eTS+.

The choice has been dictated by the similarity to the Mod eTS method, which is

important as it gives the idea if the modification to the algorithm is effective.

8.3.3.1 Analysis of the results from the application of the c-means

forecasting algorithm

C-means algorithm needs to be configured before the first run by setting the value

of m (fuziness factor) and the number of clusters c the data is going to be split into.

The parameters are selected using the grid search over the following combination

of parameters (Table 8.3):

Table 8.3: Parameters used in the assessment of the c-means forecasting
algorithm.

m 1.1 to 2 with 0.1 step 2.2 to 3 with 0.2 step 3.5 to 10 with 0.5 step

c 2 to 10 with 1 step 15 to 25 with 5 step 50, 75 and 100

which results in 29 values of m and 15 values of number of clusters c.

The accuracy is reported using the 4 error measures used in the previous chapter

(MASE, MAPE, RMSE and NDEI ) across all combinations of the parameters.

The results are summarised in Table 8.4. This includes best training and

testing results (together with corresponding combination of parameters), mean

and standard deviation of accuracy.
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Table 8.4: Accuracy results of the application of the c-means algorithm to
the Mackey-Glass time series forecasting problem.

MASE MAPE RMSE NDEI

m train. 1.7 1.7 1.9 1.9

c train. 100 100 100 100

train. error 0.384 11.255 0.112 0.441

test. error 0.550 12.901 0.142 0.700

m test. 1.9 2 2 2

c test. 75 100 50 50

test. error 0.452 10.225 0.125 0.613

mean training 0.840 25.842 0.219 0.861

std. training 0.089 2.725 0.021 0.081

mean testing 0.783 18.616 0.192 0.942

std. testing 0.054 1.271 0.011 0.053

It can be seen that there is a slight difference as to which parameters should be

chosen in order to obtain the lowest error. This is due to the fact that those error

measures are calculated in a slightly different way. There is a slight difference

of parameter m: 1.7 for MAPE and MASE, and 1.9 for RMSE and NDEI. The

number of pre-set clusters is the same for all error measures (c = 100). However,

selecting such a high number of clusters has an impact on the testing data accuracy,

as the best results for that metric have been obtained using lower cluster counts

for MASE, RMSE and NDEI : c = 50− 75.
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To investigate the impact of change in those parameters, Fig. 8.5 and 8.6 presents

the distribution of errors across the whole range of the parameter grid for both

training and testing data.
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Figure 8.5: Training MASE distribution of c-means forecasting algorithm
applied to a Mackey-Glass time series forecasting problem.
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Out of sample
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Figure 8.6: Testing MASE distribution of c-means forecasting algorithm
applied to a Mackey-Glass time series forecasting problem.

The best results are obtained for small values of m (between 1.5 - 2.5) and higher

values of c (above 30). Analysing further, the number of clusters seems to have a

smaller impact on the accuracy, as it can be seen that for values of m higher than

3, the performance is consistently low, even with an increase in number of clusters.

The lowest accuracy is observed for high values of m and high number of clusters

c. The findings are consistent with other research (Chiu 1994), where the value of

m = 2 has been suggested. The number of clusters are more problem dependent

and will vary with the amount of available data and its structure. In this case

setting the number of clusters above 40 yields good results. One has to be careful

not to set the number too high as the resulting structure can cause over-fitting

and will not be flexible enough to accommodate new, unseen data.
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8.3.3.2 Analysis of the results from the application of the eTS

algorithm

For eTS, the radius r has to be pre-set before the algorithm is initiated. The

investigation included a range of r between 0.1 to 1. The results are summarised

in Table 8.5:

Table 8.5: Accuracy results of the application of the eTS algorithm to the
Mackey-Glass time series forecasting problem.

MASE MAPE RMSE NDEI

r train. 1 1 1 1

c train. 12 12 12 12

train. error 0.356 9.392 0.099 0.391

test. error 0.721 18.925 0.187 0.919

r test. 0.10 0.10 0.10 0.10

c test. 45 45 45 45

test. error 0.485 11.344 0.136 0.668

mean training 0.380 10.076 0.106 0.417

std. training 0.011 0.397 0.003 0.013

mean testing 0.588 15.566 0.158 0.775

std. testing 0.068 2.021 0.016 0.078

The best results have been obtained by setting the value of r to 1, which resulted

in 12 clusters. This is however not consistent with the results obtained from the

testing data, where the value of 0.1 gave the best results, but generated high
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number of clusters (45). Fig. 8.7 shows the distribution of the MASE errors

for both training and testing, as well as the final number of clusters based on

the chosen values of r. It can be seen that, as expected, the number of clusters

increases with the decrease in the chosen radius value.
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Figure 8.7: MASE distribution and final number of clusters of eTS forecasting
algorithm for different values of r.

8.3.3.3 Analysis of the results from the application of the eTS+

algorithm

In case of eTS+, similarly to Mod eTS both initial radius r and the value of γ

needed to be pre set. The range of the parameters is the same as in Mod eTS

(Table. 8.1). The results for all of the error measures can be seen in Table 8.6.
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Table 8.6: Accuracy results of the application of the eTS+ algorithm to the
Mackey-Glass time series forecasting problem.

MASE MAPE RMSE NDEI

r train. 0.25 0.25 0.25 0.25

γ train. 0.9 0.9 0.9 0.9

c train. 1 1 1 1

train. error 0.525 13.323 0.135 0.531

test. error 0.368 8.944 0.099 0.486

r test. 0.25 0.25 0.25 0.25

γ test. 0.9 0.9 0.9 0.9

c test. 1 1 1 1

test. error 0.368 8.944 0.099 0.486

mean training 0.862 22.818 0.249 0.983

std. training 0.112 3.140 0.038 0.150

mean testing 1.477 35.742 0.354 1.739

std. testing 0.370 8.946 0.085 0.417

In eTS+ the best results are obtained by pre setting the r to a low value of 0.25

and γ set to high 0.9. This is consistent for both training and testing data sets. For

both settings the final number of clusters is equal to 1 due to strict cluster removal

and modification rules in eTS+. The mean values are not as good as in the case of

other algorithms, and standard deviation is particularly high, which can indicate

a big discrepancy between the accuracy for different values of parameters. This
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can be seen on Fig. 8.8, where there is a big difference between the values from

γ = 0.5.

In sample

γ

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

r

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

1.1

Figure 8.8: Training MASE distribution of eTS+ forecasting algorithm
applied to a Mackey-Glass time series forecasting problem.

8.3.3.4 Comparison of the results from Mod eTS and other fuzzy

forecasting algorithms

The resulting MASE from all of the algorithms are summarised in Table 8.7.
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Table 8.7: Comparison of MASE for all considered algorithms applied to
Mackey-Glass time series forecasting problem.

c-means Mod eTS eTS eTS+

r train. - 0.25 1 0.25

γ train. - 0.15 - 0.9

c train. 100 18 12 1

train. error 0.384 0.367 0.356 0.525

test. error 0.550 0.542 0.721 0.368

r test. - 0.25 0.1 0.25

γ test. - 0.5 - 0.9

c test. 75 17 45 1

test. error 0.452 0.536 0.485 0.368

mean training 0.840 0.420 0.380 0.862

std. training 0.089 0.003 0.011 0.112

mean testing 0.783 0.608 0.588 1.477

std. testing 0.054 0.003 0.068 0.370

For the MASE assessed over training period the best results have been achieved

by the eTS algorithm, followed by Mod eTS and c-means, with eTS+ having the

poorest performance. eTS+, however, had the lowest error on the testing period.

Overall, Mod eTS shows promising results here, as it balances high training and

testing accuracy with low number of clusters. c-means algorithm has high accuracy

on the training period, but requires high number of clusters in order to achieve

it. eTS+ has the lowest error for the testing period and achieves it only with 1
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cluster, but has the worst performance over the training period. eTS has the best

training accuracy, but high MASE in the testing period.

When averaging over all of the results, Mod eTS has the lowest values of standard

deviation and satisfactory values of mean accuracy. This can suggest that this

method is much more resistant to mis-specification of the input parameters for

this particular problem, however the parameter tuning still has to be carried out

on an initial data-set in order to ensure best possible accuracy. The eTS algorithm

has the highest accuracy for both mean training MASE and the testing MASE.

8.4 Conclusions

In this chapter Mod eTS algorithm has been assessed in detail on the common

benchmarking problem of predicting future values of the Mackey-Glass time series

using 4 different error metrics. The performance has been compared with c-means,

eTS and eTS+ fuzzy evolving algorithms. Although the modification introduced

in the Mod eTS algorithm was inspired by the problem of leakage forecasting,

it is important to assess its performance on a common benchmarking problem.

The results showed a promise, as the algorithm was well balanced in terms of the

number of clusters and the accuracy over both training and testing period.

When comparing the results from leakage forecasting and from the application to

the Mackey-Glass time-series, it can be seen that the optimal parameters used to

achieve the best accuracy were different for both problems. For leakage forecasting,

the highest performance was achieved for high numbers of both r and γ (r > 0.8

and γ > 0.6), whereas for Mackey-Glass time-series the highest performance was

achieved for low values of r and γ (r < 0.25 and γ < 0.5). This proves that the

algorithm is flexible, but the parameters need to be carefully tuned based on the

problem and the characteristic of data to which the algorithm is applied.
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In terms of clusters, the Mackey-Glass time-series has considerably more samples

than the leakage forecasting problem, which results in higher number of rules

created to cover the whole data space, which is also a result of smaller optimal

radii r and radii update rate γ.

The MASE results for the Mackey-Glass time-series are much lower which indicate

that it was much easier to beat the Naive prediction for this problem than in the

case of leakage forecasting. However when looking at the MAPE, the error is much

lower in case of leakage forecasting (average of 5.019), which can indicate that the

method is more suitable for problems with seasonal time series with supporting

explanatory variables.

It can also be seen that, in general, the training MASE is lower than the testing

MASE. This is due to the fact that the parameters are optimised based on the error

calculated over the training period and the cluster structure is also evolving during

the training. This will mean that the error calculated over the testing period will

almost always be higher, as the algorithm is applied to previously unseen data.

In the next chapter the conclusions and summary from the work outlined in this

thesis will be presented. The directions and suggestions on what can be improved

in the method and what additional research can be carried out in this area will

also be depicted.
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Conclusions and Further Work

9.1 Conclusions

In this thesis developing and applying the evolving fuzzy system to forecasting

problems have been explored. Evolving fuzzy systems overcome the drawback of

the off-line fuzzy identification methods where in order to make a prediction all

data needs to be available for the model to be created. Therefore, when the off-line

identification methods are applied, the conditions under which the system operates

need to be constant for the generated model to keep its validity. If the conditions

change, and the behaviour has not been captured by the data before, the whole

model needs to be generated from scratch.

The review of the fuzzy evolving methods showed promising results when applied

to problems described with non-linear relationships. However, those methods have

often been tested on the data generated by physical systems where the relations

between the input variables have been well understood. There seems to be a lack

of evaluation of those methods on forecasting problems, when more complex, or

unknown, relationships exist between the problem variables. The choice of the
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parameters of the algorithms are also not well understood as they have been based

on the evaluation on the same group of problems.

In order to evaluate the idea of fuzzy evolving methods on forecasting problems,

two different sets of data were used: a use case of leakage forecasting and the

artificially generated periodic Mackey-Glass time series.

Existing leakage detection methods have been presented and the concept of

a leakage forecasting process has been introduced. In leakage forecasting the

forecasts are made for a long period ahead, such as 12 months, and for a number

of regions of operations, each having its own, unique structure (type of pipes,

soil, weather conditions, urban or rural environments, etc.). This increases

the complexity of the problem, as it becomes difficult to establish the general

influence and relationships between various explanatory variables on the leakage.

Those variables were thoroughly investigated, and after the data analysis and

the conversations with the company experts, it was determined that a number of

factors have an influence on the leakage. First factor was Natural Rate of Rise

(NRR), which relates to the underlying rate at which leakage increases within a

network in the absence of any leak repairs. The value of NRR depends on the

type of pipes used in the network but also on the month of the year and forecasted

weather conditions. The second and third variable were Equivalent Service Pipe

Bursts (ESPBs), which are split into two parts: detected and reported. They

represent the resource effort from both an active search for leaks (detected) and

when the engineering team responds to customers (reported) and depend on the

expected leakage, the structure of the network and the amount of resources that

are available for each region. The last factor was the previous value of leakage, as

very often the effects of leaks carry over to the next periods.

The number of factors included meant that the forecasting model had to be

tailored to the area of operation that it was applied to. It was discovered that
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the relationship between the explanatory variables and the impact on leakage in

different areas of operation was not fully understood, the ability to predict the

leakage based on historical data was not measured and that months with highest

leakage values also have the highest impact on the total leakage accumulated

throughout the year. The necessity for the automatic way of building the

forecasting model based on the historical data arose, due to the need of forecasting

for different areas of operation and the existing non-linear relationships of leakage

and other factors. The research focused on using evolving fuzzy systems. This

approach combined the ability to express non-linear relations among variables

through the use of fuzzy sets, with the automatic rule creation and adaptation of

the rule structure to changing conditions based on the historical data.

A novel method (Mod eTS) based on fuzzy evolving algorithms was developed

in order to increase the accuracy of prediction of the leakage forecasts, especially

for periods and areas with a high level of increase in leakage. The algorithm

incorporates a dynamic radius adjustment of each input variable of each cluster.

Introducing a radius for each cluster dimension which is dynamically changing

allows for better coverage of the data by clusters, as radii may differ in different

dimensions. It also limits the number of clusters (and consecutively rules) as it

is not necessary to create more clusters when data is already well covered by the

existing ones.

The novel algorithm was then applied to leakage data set and the data generated by

the Mackey-Glass process and the results from both were compared with a number

of fuzzy and statistical forecasting methods. In real world applications, carefully

choosing the inputs and the explanatory variables can considerably increase the

accuracy of the forecast. Therefore a considerable amount of work had to be

carried out in order to pre-process data to be suitable for use in the algorithms.

Results obtained by applying the Mod eTS algorithm to real-world leakage
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data indicated that the proposed method generally performed better than other

methods for testing (out-of-sample) data. This proves that the model built on

the training data set can be reliably applied to the unseen testing data, and the

confidence that this model will produce accurate forecasts is higher as compared

to other methods for this application. The Mod eTS had lower values of error for

testing period but generated more rules when applied to the leakage forecasting

problem as compared to other fuzzy algorithms. This was caused by the lack of

more complex rule management in Mod eTS.

The Mackey-Glass time-series had considerably more samples than the leakage

data set, which resulted in even higher number of rules created to cover the whole

data space. The method is sensitive to the choice of the configurable parameters

and it was seen that the optimal parameters used to achieve the best accuracy

were different for both problems. This proved that the algorithm is flexible, but

the parameters need to be carefully tuned based on the problem to which the

algorithm is applied.

The MASE results for the Mackey-Glass time-series were much lower than those

obtained from the application to the leakage problem, which indicated that it was

much easier to beat the Naive prediction. However when looking at the MAPE,

the error was much lower in case of leakage forecasting. Conflicting results like this

occur often when various methods and data sets are used, as it is unlikely that one

method will be the best for all applications. Hyndman & Athanasopoulos (2014)

wrote that ”what is required from a forecasting method are consistently sensible

forecasts, and these should be frequently evaluated against the task at hand”.

The fact that the method performed well on both datasets is a good start, however

more research needs to be carried out in order to generalize that statement for Mod

eTS.
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9.2 Future work

While working on this thesis a number of possible areas for further research

were identified, which could potentially be used to further expand on the method

developed during this study.

9.2.1 Use of linguistic variables to describe the fuzzy

rules automatically generated through clustering

Forecasting support systems are used to aid the forecasters in choosing the right

method to generate the best forecasts. Very often however, the experts have

no knowledge on how the particular method works and they cannot understand

the generated forecasting model. The possibility of using linguistic variables

to interpret the fuzzy rules could mean that the fuzzy model may be easier to

understand for the experts, and therefore, could be used more effectively, even by

experts not familiar with the theoretical concepts of the evolving fuzzy methods.

9.2.2 Forecast adjustments

One of the interesting extensions of algorithm could be the incorporation of the

automatic forecast adjustments. It can be interesting from both research and

business perspectives, as in the case of leakage forecasting, the company was

required to produce the forecast in accordance to their average leakage targets.

This means that the outcome of the forecast could be influenced by varying the

predictor variables, so that the average leakage target is met. The embedding of

the forecasting adjustments into the method can be carried out as a future work.

One possible extension could be the use of the judgemental adjustments that could

be automatically included in the forecast.

221



Chapter 9.

9.2.3 Better handling of cluster creation

In terms of the improvements of the algorithm, more research should be carried out

on how and when the new clusters are created. The eTS+ algorithm incorporates

several heuristics which aim at decreasing the number of clusters, which do not

always improve the accuracy of the prediction. More research needs to be carried

out in this area, as smaller number of clusters improve the computational speed

and simplify the model structure, making it easier to understand.

9.2.4 Evaluation on more datasets

Finally, the evaluation of the algorithm should be carried out on more real-world

forecasting problems. Even though the algorithm has been evaluated on several

leakage datasets and one benchmarking dataset, it is necessary to include more

data in order to generalize the conclusions. The research included in this thesis

laid the foundations for this work to be carried out.
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Appendix A

Equations and theory

A.1 Exponential smoothing

There are several forms of exponential smoothing which are applicable to

time-series with different characteristics.

Simple exponential smoothing can be effectively used only on time-series without

trend or seasonality (Eq. A.1):

Ft+1 = lt

lt = αyt + (1− α)lt−1

(A.1)

where Ft+1 is the forecast at time t + 1, lt is level (smoothed value) of previous

observations, 0 < α 6 1 is a smoothing parameter (weight of the previous

observations) and yt is the actual observation at time t.

The simple exponential smoothing was extended by Holt (2004) by adding the

224



Chapter A.

trend component (and allowing to forecast data with trend):

Ft+h = lt + hbt

lt = αyt + (1− α)(lt−1 + bt−1)

bt = β(lt − lt−1) + (1− β)bt−1

(A.2)

where bt is an estimate of the trend of the series at time t and 0 6 β 6 1 is

the smoothing parameter for the trend. h is a linear parameter which is used for

h-step ahead forecast (as forecast will no longer be flat). A number of modifications

to Eq. A.2 have also been introduced to accommodate time-series with various

trend patterns, such as Exponential, Additive Damped and Multiplicative Damped

trend.

Winters (1960) further extended the method by adding the seasonal component.

The forecast was now obtained by calculating 3 components: level lt, trend bt and

seasonality st (Eq. A.3):

Ft+h = lt + hbt + st−m+h

lt = α(yt − st−m) + (1− α)(lt−1 + bt−1)

bt = β(lt − lt−1) + (1− β)bt−1

st = γ(yt − lt−1 − bt−1) + (1− γ)st−m

(A.3)

where m is seasonality factor (for example, m = 12 for yearly data), st is

smoothed seasonality and γ is the seasonality smoothing factor. Similarly to

Holt’s trend exponential smoothing, seasonal smoothing also includes variants to

handle additive, multiplicative and damped seasonality. This can give an overall

15 exponential methods, when considering all combinations (Taylor 2003).
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A.2 ARIMA models

Autoregressive (AR) models are models that estimate the next observation as a

function of previous observations. The number of p previous observations define

the class of AR(p) model:

yt = c+ φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + et (A.4)

where c is a constant, φ1, . . . , φp are parameters defining the time-series pattern,

et is an error term and yt−p is the p lagged value.

Instead of lagged past observations, q lagged forecasting errors can be used. This

model is called Moving Average - MA(q):

yt = c+ et + θ1et−1 + θ2et−2 + . . .+ θqet−q (A.5)

When both AR and MA models are combined, the ARIMA model is obtained.

ARIMA stands for Auto Regressive Integrated Moving Average:

y′t = c+ φ1y
′
t−1 + . . .+ φpy

′
t−p + θ1et−1 + · · ·+ θqet−q + et (A.6)

The y′t term is differenced, in order to obtain the non-differenced term it has to

be integrated (hence the Integrated term in the ARIMA). ARIMA(p,d,q), like AR

and MA models, is also defined by different orders of its parts, where p is the order

of the AR, d is the degree of differencing and q is the order of the MA part. ARIMA

models can be used to model non-seasonal data. In order to model seasonal data,

additional seasonal terms (P,D,Q) are needed.
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A.3 Fuzzy Sets
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Figure A.1: Triangular fuzzy set.

The triangular fuzzy set (Fig. A.1) is characterized by three points: a and b are the

leftmost and rightmost points on the triangle and c is its centre. The membership

value of an input x belonging to a triangular fuzzy set characterized by a, b and c

points is calculated using following set of equations:

µ(x) = f(x, a, b, c) =


x− a
b− a

: a < x ≤ b
c− x
c− b

: b < x < c

0 : otherwise

(A.7)

If the value of x = 0.4 the membership degree of the triangular fuzzy set µ(x) =

0.67.

Another popular type of fuzzy sets are described using trapezoid function (Fig.

A.2).
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Figure A.2: Trapezoid fuzzy set.

The trapezoid is characterized by four points: a and d being the leftmost and

rightmost points of the trapezium and b and c are corners of a shorter base. In

principal, the trapezoid fuzzy sets are an extension of triangular sets and are

described by following set of equations:

µ(x) = f(x, a, b, c, d) =



x− a
b− a

: a < x ≤ b

1 : b < x < c

d− x
d− c

: c ≤ x < d

0 : otherwise

(A.8)

Similarly to previous example, if x = 0.4 in this case the output of the membership

function will equal to µ(x) = 1.

The 3rd most commonly used type of fuzzy set is Gaussian (Fig. A.3).
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Figure A.3: Gaussian fuzzy set.

The Gaussian fuzzy set is defined by two values: c - the peak of the Gaussian

curve and σ, standard deviation, also called spread, which controls the width of

the Gaussian. The fuzzy set is described by the Gaussian equation:

µ(x) = f(x, c, σ2) = e
−

(x− c)2

2σ2 (A.9)

For x = 0.4 the membership function equals µ(x) = 0.8007.

A.4 Fuzzy operators

The intersection operator (equivalent to AND operation) takes the minimum of

the membership functions of two fuzzy sets:

x1 is A1 AND x2 is A2 : min(µ1(x1), µ2(x2)) (A.10)
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The union operator (equivalent to OR operation) takes the maximum of the

membership functions:

x1 is A1 OR x2 is A2 : max(µ1(x1), µ2(x2)) (A.11)

The complement operator (equivalent to NOT operation) of a fuzzy set is defined

as a negation of the membership degree:

x1 is NOT A1 : (1− µ1(x1)) (A.12)

A.5 Mamdani inference example

The inputs x1 (temperature) and x2 (month of the year) can be expressed using

the combination of fuzzy sets presented on Fig. A.4.
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Figure A.4: Fuzzy inputs of leakage detection system.

The output y of the system can be expressed as 3 fuzzy sets describing the number
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of engineers (Fig. A.5).
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Figure A.5: Fuzzy output of leakage detection system.

The set of rules which define this fuzzy inference system are presented below. For

simplification the rules don’t cover all possible combinations of inputs:

R1: IF x1 is FREEZING AND x2 is WINTER1 THEN y = MANY

R2: IF x1 is COLD AND x2 is WINTER1 THEN y = MANY

R3: IF x1 is WARM AND x2 is WINTER1 THEN y = SEV ERAL

R4: IF x1 is FREEZING AND x2 is SPRING THEN y = MANY

R5: IF x1 is COLD AND x2 is SPRING THEN y = SEV ERAL

R6: IF x1 is WARM AND x2 is SPRING THEN y = FEW

R7: IF x1 is HOT AND x2 is SPRING THEN y = FEW

(A.13)
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To demonstrate how Mamdani inference works in practice, let us assume that the

inputs to the fuzzy inference system are the temperature x1 = 0 and the month

of February x2 = 2. In order to obtain the output of the systems, all of the rules

are evaluated against the inputs (Fig. A.6), meaning that all membership degrees

for each rule for both inputs are calculated and then evaluated using the fuzzy

operators (AND in this case) in order to obtain firing strengths.
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Figure A.6: Evaluating the inputs against the fuzzy rules.

Using the AND operator, to calculate the firing strength of each rule, the

minimum of both membership functions is calculated. Due to the fact that

Gaussian membership functions are used, the firing strength for each rule can

be obtained (Eq. A.14).
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R1: τ1 = min(µ11(x1) = 0.044, µ21(x2) = 0.607) = 0.044

R2: τ2 = min(µ12(x1) = 0.707, µ21(x2) = 0.607) = 0.607

R3: τ3 = min(µ13(x1) ≈ 0, µ21(x2) = 0.607) ≈ 0

R4: τ4 = min(µ11(x1) = 0.044, µ22(x2) = 0.216) = 0.044

R5: τ5 = min(µ12(x1) = 0.707, µ22(x2) = 0.216) = 0.216

R6: τ6 = min(µ13(x1) ≈ 0, µ22(x2) = 0.216) ≈ 0

R7: τ7 = min(µ14(x1) ≈ 0, µ22(x2) = 0.216) ≈ 0

(A.14)

where τi is the firing strength of each rule Ri.

The next step is to calculate the consequent value based on the firing strength of

each rule. This process is illustrated below (Fig. A.7). Rules 6 and 7 were omitted

as the firing strength is close to 0:

Figure A.7: Obtaining the consequent value of each rule.

The fuzzy set for the output of each rule is cut according to the firing strength

calculated from the antecedent part of the rule using fuzzy partitions. The outputs
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for each rule are then joined using the maximum criteria for each value of the

output, i.e. for each y the maximum value of τi from each rule is taken. The result

is then combined into an output surface (Fig. A.8).

Figure A.8: Combined output surface.

Last step is to defuzzify the surface to obtain numerical output value. This can be

achieved using various maximum methods (mean, largest or smallest maximum)

or centre of gravity (COG - calculates the point which divides the area into two

regions having the same area). The choice of the defuzzification techniques is

extremely important because it can alter the result significantly. The choice

depends on the problem, but it is generally accepted to use COG method as a

starting point. The results of various defuzzification methods can be seen on Fig.

A.9.
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Figure A.9: Defuzzified outputs using severl defuzzification methods; COG =
65, Smallest Maximum SoM = 80, Mean of Maximum MoM = 90.
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Data plots and additional

results

B.1 Additional tables with results
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Table B.1: Comparison of Mod eTS accuracy results with the other fuzzy forecasting methods - parameters
determined to optimise the testing MASE

Mod eTS eTS eTS+ c-means Sub. clust.

train. test. train. test. train. test. train. test. train. test.

reg all 1.063 0.500 0.813 1.510 0.547 2.066 0.836 0.995 0.549 0.558

reg 1 1.081 0.627 1.104 0.871 0.852 0.623 1.594 0.610 0.911 0.633

reg 2 0.807 0.499 7.017 17.804 0.838 0.618 1.312 0.507 0.412 0.551

reg 3 1.035 0.826 1.123 1.302 0.724 1.651 0.605 1.155 0.483 0.789

reg 4 0.766 0.733 6.518 3.297 0.804 2.776 0.693 1.777 0.568 1.662

reg 5 0.802 1.145 6.059 6.862 0.839 1.808 1.025 1.050 0.838 1.808

reg 6 0.886 0.469 0.734 0.869 0.833 0.966 0.832 1.293 0.613 0.745

reg 7 1.425 0.486 0.920 1.438 0.694 1.230 0.824 1.598 0.545 0.503

reg 8 0.478 0.852 0.895 2.273 0.772 1.827 0.819 0.876 0.534 1.195

std 0.265 0.229 2.813 5.498 0.099 0.714 0.315 0.419 0.163 0.498

avg 0.927 0.682 2.798 4.025 0.767 1.507 0.949 1.096 0.606 0.938

avg clust. 7.444 3.000 1.667 43.889 2.444
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Table B.2: Comparison of Mod eTS accuracy results with other statistical forecasting methods - parameters
determined to achieve lowest testing MASE

Mod eTS Seasonal Naive MLR AR(1) HWM

train. test. train. test. train. test. train. test. train. test.

reg all 1.063 0.500 0.911 1.693 0.734 1.364 0.853 1.461 1.054 0.530

reg 1 1.081 0.627 1.334 1.647 0.911 0.633 0.865 0.842 1.127 0.886

reg 2 0.807 0.499 0.839 1.895 0.838 0.618 0.889 0.990 1.049 0.718

reg 3 1.035 0.826 0.643 1.622 0.724 1.532 0.849 1.536 1.217 0.437

reg 4 0.766 0.733 1.012 2.431 0.744 2.169 0.877 2.278 1.224 0.427

reg 5 0.802 1.145 1.413 2.739 0.838 1.808 0.908 1.138 0.965 0.636

reg 6 0.886 0.469 1.154 1.643 0.833 0.965 0.946 1.963 0.849 0.550

reg 7 1.425 0.486 1.329 0.964 0.695 1.228 0.922 2.352 0.898 0.305

reg 8 0.478 0.852 0.815 1.599 0.772 1.827 0.845 1.135 1.026 0.819

std 0.265 0.229 0.271 0.515 0.071 0.542 0.035 0.559 0.130 0.192

avg 0.927 0.682 1.050 1.804 0.788 1.349 0.884 1.522 1.045 0.590

avg both 0.805 1.427 1.069 1.203 0.818
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B.2 Data plots for each region of company

operation
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Figure B.1: Data for region 1.
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Figure B.2: Data for region 2.
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Figure B.3: Data for region 3.
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Figure B.4: Data for region 4.
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Figure B.5: Data for region 5.
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Figure B.6: Data for region 6.
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Figure B.7: Data for region 7.
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Figure B.8: Data for region 8.
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Figure B.9: Data for all regions combined.
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