

Information 2020, 11, 446; doi:10.3390/info11090446 www.mdpi.com/journal/information

Article

A Fast Algorithm to Initialize Cluster Centroids in
Fuzzy Clustering Applications

Zeynel Cebeci 1,* and Cagatay Cebeci 2

1 Çukurova University, Division of Biometry & Genetics, 01330 Adana, Turkey
2 Department of Electronics & Electrical Engineering, University of Strathclyde, Glasgow G1 1WQ, UK;

cagatay.cebeci@strath.ac.uk

* Correspondence: zcebeci@cu.edu.tr

Received: 7 July 2020; Accepted: 10 September 2020; Published: 15 September 2020

Abstract: The goal of partitioning clustering analysis is to divide a dataset into a predetermined

number of homogeneous clusters. The quality of final clusters from a prototype-based partitioning

algorithm is highly affected by the initially chosen centroids. In this paper, we propose the InoFrep,

a novel data-dependent initialization algorithm for improving computational efficiency and

robustness in prototype-based hard and fuzzy clustering. The InoFrep is a single-pass algorithm

using the frequency polygon data of the feature with the highest peaks count in a dataset. By using

the Fuzzy C-means (FCM) clustering algorithm, we empirically compare the performance of the

InoFrep on one synthetic and six real datasets to those of two common initialization methods:

Random sampling of data points and K-means++. Our results show that the InoFrep algorithm

significantly reduces the number of iterations and the computing time required by the FCM

algorithm. Additionally, it can be applied to multidimensional large datasets because of its shorter

initialization time and independence from dimensionality due to working with only one feature

with the highest number of peaks.

Keywords: prototype-based clustering; partitioning; fuzzy clustering; soft clustering; initialization

of centroids; fcm

1. Introduction

Cluster analysis is one of the main tools of exploratory data analysis in many fields of research

and industrial applications requiring image segmentation, computer vision and pattern analysis. The

partitioning-based algorithms (a.k.a non-hierarchical or flat algorithms) are probably the most

popular among the existing clustering algorithms. A major part of the partitioning algorithms are

based on iterative optimization techniques [1]. An iterative optimization task is started with an initial

partition of data and then the partitions are iteratively updated by applying a local search algorithm

until a convergence criterion is satisfied. Iterations are made by relocating data points between the

clusters until a locally optimal partition is found. Since the number of data points in any dataset is

always finite, the number of distinct partitions is also finite. The local minima problem could be

defeated by using a globally optimal partitioning method [2]. But such exhaustive search methods

are ineffective in practice because they require too much of computation time for the globally optimal

result. Therefore, a more practical approach is to apply the iterative algorithms which can be divided

into two categories such as prototype-based and distribution-based algorithms. The prototype-based

algorithms assume that the characteristics of the instances in a cluster can be represented by using a

cluster prototype which is a point in the data space. Such algorithms use c prototypes and assign the

n instances into the clusters according to their proximity to the prototypes. The objective is to find the

clusters that are compact and well-separated from each other.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/334414173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Information 2020, 11, 446 2 of 15

Although the prototypes of clusters can be centroids or medoids, the former is generally used in

most of the applications. The validity of clustering results is closely related to the accurate choice of

initial cluster centroids even though an algorithm itself overcomes the coincident clusters problem

and is relatively faster than the others. A partitioning algorithm cannot guarantee the convergence to

an optimum result because the performance of partitioning depends upon the chosen initial cluster

centroids. Thus, the initialization of a prototype-based clustering algorithm is an important step since

different choices of the initial cluster centroids can potentially lead to different local optima or

different partitions [3]. To get better results, the clustering algorithm, that is, K-means or Fuzzy C-

Means (FCM), is run for several times and in each of these runs the algorithm is started with a

different set of initial cluster centroids [4]. But this is a highly time-consuming approach especially

for high dimensional data. For this reason, the initialization of the partition-based clustering

algorithms is a matter of interest [2]. Consequently, faster algorithms estimating the initial cluster

centroids are needed in partitioning cluster analyses. The InoFrep (Initialization on Frequency

Polygons) algorithm proposed in this paper is a simple data-dependent initialization algorithm

which is based on the frequency polygons of features in datasets. The algorithm assumes that the

peaks (or the modes) in frequency polygons are the estimates of central tendency locations or the

centers of different dense regions, namely the clusters in an examined dataset. Thus, the peaks in

frequency polygons can be used for determining the initial cluster centroids in prototype-based

cluster analyses.

2. Materials and Methods

2.1. Fuzzy C-means Clustering and Fuzzy Validity Indices

In a comprehensive survey [5], it is concluded that the clustering algorithm EM and FCM show

excellent performance with respect to the quality of the clustering outputs but suffer from high

computational time requirements. Hence, the authors of Reference [4] addressed possible solutions

relying on programming which may allow such algorithms to be executed more efficiently for big data.

In this study, because of its high performance and popularity in the literature we use the original Fuzzy

C-means Clustering (FCM) algorithm [6] as the representative of prototype-based clustering algorithms.

As a soft clustering algorithm, the FCM differs from the hard K-means algorithm with the use of weighted

squared errors instead of using squared errors only. Let � = {��, ��, … , ��} be a dataset to be analyzed

and � = {��, ��, … , ��} be a set of the centroids of clusters in the dataset � in � dimensional space (ℝ�),

where n is the number of instances, � is the number of features and c is the number of partitions or

clusters. For the dataset X, the FCM minimizes the objective function in Equation (1).

 ����(�; �, �) = ∑ ∑ ���
��

���
�
��� ����

� . (1)

In Equation (1), � of � × � dimension is the membership degrees matrix for a fuzzy partition of �.

� = [���] ∈ ����. (2)

The element ��� is the membership value of kth instance to the ith cluster. Thus, the ith column of

� matrix consists of the membership values of n instances to the ith cluster. � is a cluster prototypes

matrix defined in Equation (3):

� = [��, ��, … , ��], �� ∈ ℝ�. (3)

In Equation (1), ����
� is the distance between kth data point and the centroid of the ith cluster. It is

computed using a squared inner-product distance norm as in Equation (4):

����
� = ‖�� − ��‖�

� = (�� − ��)
��(�� − ��) (4)

� is a positive and symmetric norm matrix in Equation (4). The inner product with � is a

measure of distances between data points and cluster prototypes. When � is equal to �, ����
� is

obtained in squared Euclidean norm. In Equation (1), � is a fuzzifier parameter (or weighting

exponent) whose value is chosen as a real number greater than 1 (� ∈ [1, ∞)). While m approaches

to 1, clustering tends to become crisp but when it approaches to the infinity clustering becomes more

Information 2020, 11, 446 3 of 15

fuzzified. The value of m is usually set to 2 in most of the applications. The objective function JFCM is

minimized with the constraints given in Equations (5)–(7):

��� ∈ [0,1]; 1 ≤ � ≤ �, 1 ≤ � ≤ � (5)

� ��� = 1; 1 ≤ � ≤ �

�

���

 (6)

0 < ∑ ��� < �; 1 ≤ � ≤ ��
��� . (7)

The FCM stops when the number of iterations has reached a predefined maximum number of

iterations or when the difference between the sums of membership values in �, obtains two consecutive

iterations that are less than a predefined convergence value (�). The steps involved in the FCM are:

1. Initialize the membership matrix � and the prototype matrix �.

2. Update the cluster prototypes:

�� =
∑ ���

���
�
���

∑ ���
��

���
; 1 ≤ � ≤ �. (8)

1. Update the membership values with:

���
(�)

=
�

∑ �����/�����
�/(���)�

���

 ; 1 ≤ � ≤ � , 1 ≤ � ≤ �. (9)

2. If ��(�) − �(���)� < � then stop else go to the step 2, where � is the iteration number.

For evaluating the effect of initialization algorithms on the clustering results of the FCM, we use

the fuzzy clustering validation indices listed in Table 1. The indices of Partition Entropy and Modified

Partition Coefficient use partition matrix � only, whereas the indices of Xie-Beni, Kwon and PBMF

use �, � and � as shown in the formulas in Table 1. Therefore, even if the latter ones require more

execution time, it is expected that they may give more accurate validation of partitioning by using

the dataset itself and centroids matrix in addition to the fuzzy membership matrix.

Table 1. Internal validity indices for validation of fuzzy clustering results.

Index Index Formula

Partition Entropy [7] ���(�) =
1

�
�� � ��� ����(���)

�

���

�

���

�

Modified Partition Coefficient [8] ����(�) = 1 −
1

� − 1
�1 −

1

�
�� � ���

�

�

���

�

���

��

Xie-Beni Index [9] ���(�, �, �) =
∑ ∑ ���

�‖�� − ��‖��
���

�
���

�(
min
� ≠ � ���� − ���

�
�)

Kwon Index [10] �����(�, �, �) =
∑ ∑ ���

���� − ���
�

+
1
�

∑ ‖�� − �̅‖��
���

�
���

�
���

min
� ≠ � ���� − ���

�
�

PBMF Index [11] �����(�, �, �) = �
1

�

∑ ‖�� − �̅‖�
���

∑ ∑ ���
� ‖�� − ��‖�

���
�
���

max
�,���,...,�

��� − ����

�

2.2. Related Works on Initialization of Cluster Centroids

To generate the initial cluster centroids matrix V, in the first step of prototype-based algorithms, the

principal rule is to find the data points that are close enough to the final centers of the clusters and they

should be reasonably far from each other for different clusters. In this case, convergence will be quicker to

return a good clustering result. For this goal, we could iterate over all the points to determine where the

distances are the maximum between them. However, such an iterative approach can be seen as ineffective

Information 2020, 11, 446 4 of 15

and already done by the partitioning algorithms themselves. Hence, we need computationally effective

methods and many of them are already present in the literature. In a comprehensive review [1], the

initialization methods are broadly categorized into three groups as the data-independent, the simple and

the sophisticated data-dependent methods. The data-independent methods completely ignore the data

points. On the other hand, the simple data-dependent methods use the data points in initialization by

random sampling them whereas the sophisticated data-dependent methods use data points in more

complicated fashions. Despite their simplicity, the data-independent methods have many disadvantages

and hence, not preferred in the clustering applications.

The initialization by random sampling process on datasets (so-called Irand in this paper) is the

simplest data-dependent method in which the random samples are drawn from the dataset without

replacement for using the prototypes of each cluster. The Irand has been applied in many clustering

implementations due to its simplicity and computational efficiency. The grid block method [12]

divides the data space into the blocks and searches for the dense regions. A grid block is considered

as the indicator of a cluster center if the number of data points in it is greater than a given threshold

value. Although this method works well for two-dimensional datasets, it has some disadvantages for

multidimensional data and also presents difficulties in selection of the thresholds.

Although there are several sophisticated data-dependent approaches, for example, Particle

Swarm Optimization [13], the most interesting representatives of these methods are Mountain

clustering [14] and, Subtractive clustering [15]. Mountain clustering [14] is a method for approximate

estimation of cluster centers on the basis of density measures. Despite the relative simplicity and

effectiveness of this method, its computational cost increases exponentially when the dimensions of

the patterns grow since the method must evaluate the mountain function over all grid points [3]. In

Subtractive clustering as an alternative one-pass algorithm [15], instead of grids points, the data

points are processed as the candidates of cluster centroids in the dataset. By using this method, the

computational cost is simply proportional to the number of data points and free from the dimension

problem that arises with the Mountain method. Applying these methods is difficult because they

require the input parameters which should be configured by the users [3]. The K-means++ [16] is

another approximation algorithm overcoming the poor clustering problem, which sometimes

happens with the classical K-means algorithm. K-means++ (called 'kmpp' in this paper) initializes the

cluster centers by selecting the data points that are farther away from each other in a probabilistic

manner. The kmpp is a recommended method in the clustering applications because of its several

advantages versus the methods above discussed.

The first two methods above discussed are deterministic, giving the same cluster centroids for every

run on the same dataset while the kmpp is non-deterministic. In some of the studies the deterministic

methods are recommended because of lower computational complexity but some others suggest to use

the non-deterministic ones because of their empirically proven effectiveness on the real datasets [17]. For

this reason, we have selected the Irand as the representative of simple data-dependent methods and the

kmpp as the representative of sophisticated data-dependent methods. As shown in the following sections,

the InoFrep is a data-dependent algorithm that uses the peaks on the frequency polygon of the feature

with the highest number of peaks. Using the values of these peaks as the initial values of the cluster

centers, the algorithm InoFrep enables the clustering algorithms approach to the final clustering results

faster. This significantly reduces the number of iterations and the computation time required by the

clustering algorithms. Since the cluster initial values are determined with only a single-pass of the

algorithm, it also provides the advantage of using the same initial values in the repetitive runs of the

clustering algorithms. In the following sections, we introduce the InoFrep and compare its effectiveness

with those of the Irand and the kmpp.

2.3. Proposed Algorithm: Initialization on Frequency Polygons

To explain the logic behind the proposed algorithm, a small numerical data of 10 observations

of the two features (p1 and p2) is given as following:

p1 = {5, 8, 7, 4, 8, 4, 3, 8, 9, 4}

p2 = {5, 6, 5, 4, 5, 6, 5, 4, 5, 5}

Information 2020, 11, 446 5 of 15

As it is seen from the scatter plot p1 vs p2 in Figure 1a, two well-separated clusters do exist in

this two dimensional simple dataset. As demonstrated in the figure, the center points of these two

clusters are v1 = (4, 5) and v2 = (8, 5). If the cluster centroids are initialized with the values close to these

central points (v1 and v2), clustering algorithms will approach to the actual cluster centers with a few

iterations. Thus, starting the clustering algorithms with initial values which are close to the real

cluster centers can remarkably reduce the computing time required in clustering analysis. In the

descriptive statistics, histograms and frequency polygons are used as visual tools for understanding

and comparing the shapes of distributions of features in a dataset [18]. In a frequency polygon, the x-

axis represents the values of c classes of features and the y-axis indicates the frequency of each class.

Therefore, frequency polygons also serve structural information about the data. The values of peaks

of a feature are the modes of data representing the most repeated instances [18], and, thus, they can

be used as the prototypes of cluster centers in datasets. The histograms and frequency polygons of

the features p1 and p2 in our simple example data are shown in Figure 1b,c, respectively. The values

(pv1 and pv2) and frequencies (pc1 and pc2) of these peaks are given below:

1. pv1 = {3.75, 4.75, 6.75, 7.75, 8.75}; pc1 = {3, 1, 1, 2, 1}

2. pv2 = {4.75, 5.75}; pc2 = {6, 2}

As shown in the frequency polygon mid values above, there are five peaks for the feature p1 and

there are two peaks for the feature p2. Since the peaks indicate the presence of subgroups or clusters

in the studied data, we can assume that there are 5 clusters according to the first feature and 2 clusters

according to the second feature. The value of the peak with the highest frequency can be used as the

center coordinates of the first cluster, which in our example is 3.75. Then the value of the peak with

the second high frequency will be used as the initial value of the first cluster, which is 7.75 in our

example. These initial values are very close to the values of actual center of the first cluster for p1.

When the same operations are done for p2, the peak values 4.75 and 5.75 are assigned as the initial

values of the first and second clusters. If the number of peaks determined for a feature is less than

the number of clusters (parameter c) given as the input argument in the cluster analysis, the other

clusters can be initialized with random sampling.

(a)

(b)

Information 2020, 11, 446 6 of 15

(c)

Figure 1. (a) Scatter plot for the features p1 and p2 in the example data (b) Histogram and frequency

polygon of the feature p1 (c) Histogram and frequency polygon of the feature p2.

For finding the peaks and obtaining the values of peaks to be used as the initial centroids, we

have developed the findpolypeaks algorithm (Algorithm 1). The input arguments of this algorithm

are the frequencies and middle values of the classes of frequency polygon of the analyzed feature (xc

and xm respectively), a threshold counts value (tc) for filtering purposes. The output returned by the

algorithm is a peaks matrix PM. At the beginning of the findpolypeaks, the frequencies and middle

values of the frequency polygon are filtered and the frequencies below a threshold value, tc are

removed from xc. The default value of tc is 1 that means that all 0’s and 1’s are removed from xc

because they are not needed or might be noises (Line 1 in Algorithm 1). In this way, the valleys and

possible noises in the frequency vector of frequency polygons are eliminated from xc and xm for

making the process faster and more robust. Then, the number of classes in xc is computed (nc) and

an index for the peaks (pidx) is started at 1.

Algorithm 1 findpolypeaks

Input:

xc, vector for the frequencies of classes (or bins) of a frequency polygon

xm, vector for the middle values of classes (or bins) of a frequency polygon

tc, threshold frequency value for filtering frequency polygon data, default value is 1

Output:

PM: Peaks matrix for a feature

Init:

1: xc  xc [xc >= tc]; xm  xm [xc >= tc] //Filter xm and xc for the class frequencies >= tc

2: pfreqs  {} //Atomic vector for the frequencies of peaks

3: pvalues  {} // Atomic vector for the values of peaks

4: nc  length of xc //Number of classes (or number of bins)

5: pidx  1 //Index of the first peak

Run:

6: IF nc > 1 THEN

7: IF xc [1] > xc [2] THEN

8: pvalues [1] xm [1]; pfreqs [1] xc [1]

9: pidx  2

10: ENDIF

11: FOR i = 2 to nc-1 DO

12: IF xc [i] not equal to xc [i-1] THEN

13: IF xc [i] > xc [i-1] AND xc [i] >= xc [i+1] THEN

14: pvalues [pidx]  xm [i]

15: pfreqs [pidx]  xc [i]

16: pidx  pidx + 1

Information 2020, 11, 446 7 of 15

17: ENDIF

18: ENDIF

19: ENDFOR

20: IF xc [nc] > xc [nc-1] THEN

21: pvalues [pidx] xm [nc]; pfreqs [pidx] xc [nc]

22: ENDIF

23: ELSE

24: pvalues [pidx]  xm [1]; pfreqs [pidx] xc [1]

25: ENDIF

26: np  length of pvalues

27: PMnpx2  0 //Create peaks matrix

28: PM [1]  pvalues; PM [2]  pfreqs

29: RETURN PM, np

If xc contains only one element (one frequency value), it is returned as the peak of the analyzed

feature (Line 24 in Algorithm 1). Otherwise, the frequencies in xc are examined to find the peaks of

analyzed feature (Lines 6-22 in Algorithm 1). If the first frequency value in xc is greater than the

second value, it is assigned as the first peak value; and pidx, which the index for peaks is increased

by 1 (Lines 7-10 in Algorithm 1). Then a loop is performed on the remaining frequency values for

finding the other peaks (Lines 11-19 in Algorithm 1). If the ith frequency value is greater than previous

(i-1th) and next (i+1th) frequency values in xc, it is flagged as a peak and the pidx is increased one (14-

16 in Algorithm1). One last control is performed whether a last peak does exist or not (Lines 20-22 in

Algorithm 1). Finally, the peaks matrix PM consists of np rows and 2 columns is generated and

returned by the findpolypeaks. The values and the frequencies of the peaks found by the algorithm

are stored in the first and second columns of PM respectively (Line 28 in Algorithm 1).

The InoFrep algorithm (Algorithm 2) uses three input arguments: Xnxp, dataset as a matrix (n: number

of instances, p: number of features), c, number of clusters and nc, number of classes for generating

frequency polygons. Here, nc is determined heuristically. If a number greater than the actual number of

clusters in the dataset has been chosen for the nc, the algorithm will remove the gaps between the bins

thus it will not become a major problem for finding the peaks. For instance, in our experiments with the

synthetic dataset in the next section where nc is chosen as 20 while the actual number of clusters is 4, the

algorithm does not struggle to determine the peaks counts. The output of the algorithm is the initial

centroids matrix of c rows and p columns. In the initialization phase of the algorithm, all elements of V

matrix are set to 0 and an atomic vector peakcounts is generated to store the frequencies of peaks in the

analyzed frequency polygon (Lines 1–2 in Algorithm 2).

The frequency polygon of feature j is generated and the mid values and the frequencies of the

classes are stored in two atomic vectors (jmids and jcounts in Algorithm 2 respectively; see Lines 4–5

in Table 2 for the examined dataset). The algorithm findpolypeaks with these input arguments and

the number of peak frequencies for the feature j is stored as the jth value of the vector peakcounts (Lines

7–8 in Algorithm 2). Then, the feature index with the highest peak counts is determined as maxj and

its frequency polygon is generated (Lines 10–11 in Algorithm 2). Next, findpolypeaks is called with

the middle values and the frequencies of the classes of frequency polygon for the feature maxj, the

feature with maximum peak counts. The returned peaks matrix PM is ordered on the peak

frequencies in descending order and PMS matrix is obtained (Lines 12–18 in Algorithm 2). The peak

values in the first column of PMS are used to find the closest points to them in the dataset. The found

data point of the feature maxj is assigned as the centroid of the ith cluster (Line 21 in Algorithm 2). If

the number of peaks is less than the number of clusters to be used by the clustering algorithm, the

centroids of the remaining clusters (c-np clusters) are generated with randomly sampled data points

of the feature maxj (Line 25 in Algorithm 2). The randomly sampled points are checked for duplicates

to prevent coincided cluster centroids (Lines 26–32 in Algorithm 2). The above-described processes

are repeated until the number of clusters and finally the initial centroids matrix V is returned to the

clustering algorithm.

Information 2020, 11, 446 8 of 15

Algorithm 2 InoFrep

Input:

Xnxp, dataset as matrix (n: number of instances, p: number of features)

c, Number of clusters used by the partitioning algorithm

nc, Number of classes to generate frequency polygons

Output:

Vnxc, Initial centroids matrix

Init:

1: V [i,j]  0 //Set 0 to V matrix; i = 1,…,c; j = 1,...,p

2: peakcounts  { } //Atomic vector to store the peak counts

Run:

3: FOR each feature j DO

4: COMPUTE the middle values and frequencies from the frequency polygon of

 the feature j using nc

5: jmids  {Middle values of the classes of frequency polygon of feature j}

6: jcounts  {Frequencies of the classes of frequency polygon of feature j}

7: CALL findpolypeaks with jmids and jcounts

8: peakcounts [j]  number of rows of PM //number of peaks for the feature j from findpolypeaks

9: ENDFOR

10: maxj  index of max{peakcounts}

11: COMPUTE the middle values and frequencies from the frequency polygon of

 the feature maxj using nc

12: midsmaxj  {Middle values of the classes of frequency polygon of the feature maxj}

13: countmaxj  {Frequencies of the classes of frequency polygon of the feature maxj}

14: CALL findpolypeaks with midsmaxj and countmaxj

15: np  number of peak counts for the feature maxj from the findpolypeaks algorithm

16: PM [1]  {Peak values of the feature maxj}

17: PM [2]  {Peak frequencies of the feature maxj}

18: PMS  SORT PM on the 2nd column in descending order and store in PMS

19: i  1

20: WHILE i <= c DO

21: IF i ≤ np THEN

22: //Find the nearest data point of the feature maxj to the ith peak value

23: idx  argmin{|X [,maxj]–PMS [i,1]|}

24: ELSE

25: REPEAT

26: duplicatedcenters  false

27: idx  rand(X [,maxj]) // One random sample on the feature maxj

28: FOR k = 1 to i-1

29: IF X [idx, maxj] = V [k,maxj] THEN

30: duplicatedcenters  true

31: ENDIF

32: ENDFOR

33: UNTIL not duplicatedcenters

34: ENDIF

35: FOR each feature j DO

36: V [i,j]  X [idx, j]

37: ENDFOR

38: INCREMENT i

39: ENDWHILE

40: RETURN V

Information 2020, 11, 446 9 of 15

3. Results and Discussions

3.1. Experiment on a Synthetic Dataset

In this study, the findpolypeaks and the InoFrep algorithms have been implemented in R [19]

and tested on a computer with i7–6700HQ CPU (2.60 GHz) and 16GB RAM. For comparison of the

InoFrep to the others, we have also coded the R functions for the kmpp and the Irand algorithms (See

Supplementary Materials). To evaluate the performance of the compared algorithms, we have

generated a synthetic dataset (3P_4C) by using the rnorm function of base stats library of R. The

dataset consisted of three mixture Gaussian features with the descriptive statistics shown in Table 2.

The first feature (p1) is unimodal, the second feature (p2) is four modal and third feature (p3) is three

modal as seen in Figure 2(a). Although the number of instances in the created example synthetic

dataset is arbitrarily chosen as 400 to easily monitor the distribution and scattering of the points in

the graphics, working with a smaller and larger number of instances does not affect the relative

success of the proposed algorithm because it only uses the modes to initialize the cluster centers.

Table 2. Descriptive statistics and frequency polygon data of the features in 3P_4C dataset.

Features p1 p2 p3

Number of

instances
400 400 400

Mean 12.29 70.02 133.94

Standard

deviation
2.86 22.69 22.02

Frequencies

of classes

2 4 19 25 41 51 52 51

48 37 27 18 12 8 4 0 1

2 7 33 46 13 8 43 42 7 15

40 38 6 13 30 47 9 1

1 15 32 32 16 4 0 11 40 37 12

10 46 86 40 14 3 1

Mid values of

classes

5.5 6.5 7.5 8.5 9.5 10.5

11.5 12.5 13.5 14.5

15.5 16.5 17.5 18.5

19.5 20.5 21.5

27.5 32.5 37.5 42.5 47.5

52.5 57.5 62.5 67.5 72.5

77.5 82.5 87.5 92.5 97.5

102.5 107.5 112.5

87.5 92.5 97.5 102.5 107.5

112.5 117.5 122.5 127.5 132.5

137.5 142.5 147.5 152.5 157.5

162.5 167.5 172.5

Number of

peaks
1 4 3

Values of

peaks
11.5 42.5 57.5 77.5 102.5 97.5 127.5 152.5

Frequencies

of peaks
52 46 43 40 47 32 40 86

Information 2020, 11, 446 10 of 15

(a) (b)

Figure 2. (a) Histograms and frequency polygons of the features in 3P_4C dataset (b) Pairwise scatter

plots of the features in 3P_4C dataset.

In our experiment, we run the FCM for six levels of the number of clusters (c = 2,…,7) with each

of the three initialization algorithms (InoFrep, kmpp and Irand). In each level of the number of

clusters, the FCM is started for ten times because the Irand and the kmpp algorithms determine

different centroids in different runs due to the non-deterministic nature of these algorithms. In order

to prevent the possible biases due to different membership matrix U initialization, we used the same

U matrix for each level of the number of clusters in repeated runs of the FCM.

The results obtained from the FCM runs on the 3P_4C dataset are shown in Table 3. In this table,

imin, iavg, imax and isum, respectively, stand for the minimum number of iterations, the average

number of iterations, the maximum number of iterations and the total number of iterations in ten

runs of the FCM. As another performance criterion, ctime in Table 3 shows the total computing time

(milliseconds) for ten runs of the FCM. In the last row of Table 3, itime stands for the average

computing time of the initialization algorithms for evaluating their initialization performances. As

seen in Table 3, the InoFrep requires a smaller number of iterations and computing time when

compared to the kmpp and the Irand (the best results are shown in bold in the table). The kmpp is in

the middle and the Irand is the worst (Chi-Sq. = 26.503, df = 10, p = 0.00312). As clearly seen from

Figure 3(a) and 3(b), the performances of all of the algorithms converges to each other when c is 7. If

the number of clusters processed by the FCM is greater than the maximum peak counts found by the

InoFrep, the centroids for the last c-np clusters are generated with random sampling technique (see

Line 25 in Algorithm 2). In this case, although the performance of the InoFrep becomes similar to the

performances of the kmpp and the Irand although this is a rare occasion for most of the data,

however, running the FCM for larger c values will not be reasonable.

Table 3. Iteration counts and execution time required by the compared initialization algorithms

 c = 2 c = 3 c = 4

 Kmpp InoFrep Irand Kmpp InoFrep Irand Kmpp InoFrep Irand

imin 34 29 34 29 29 29 17 14 14

iavg 35 29 35 34 29 32 22 14 24

imax 35 29 36 34 29 32 23 14 25

isum 351 290 352 341 290 319 273 140 245

Information 2020, 11, 446 11 of 15

ctime 402.05 345.06 383.43 508.24 435.01 426.15 477.79 325.88 462.42

itime 35.24 33.70 33.97 35.96 33.95 33.88 36.70 33.70 33.81

 c = 5 c = 6 c = 7

 Kmpp InoFrep Irand Kmpp InoFrep Irand Kmpp InoFrep Irand

imin 48 47 43 57 80 83 77 80 78

iavg 104 47 229 142 80 146 120 131 131

imax 132 47 250 193 80 150 132 147 136

isum 1038 470 2292 1423 800 1457 1205 1311 1660

ctime 1934.24 909.68 3970.68 3051.58 1722.15 3007.69 3060.21 3147.02 3194.27

itime 37.59 33.63 34.01 38.36 33.84 33.98 39.39 33.97 35.82

(a) (b)

Figure 3. (a) Iteration counts by the number of clusters (b) Computing time (ms) required in the

number of clusters.

In parallel to the number of iterations, the computing times required by the FCM are also

significantly different between the compared initialization algorithms (Chi-sq = 279.58, df = 10, p <

2.210-16). According to the results in Table 3, the InoFrep requires less computing time when

compared to those required by the kmpp and the Irand. The InoFrep is especially better than the

kmpp and the Irand when the number of clusters approached to the number of actual clusters in the

analyzed datasets. Moreover, another superiority of the InoFrep is due to its stability between

different runs of the FCM. While the kmpp and the Irand do not ensure the same initialization values

from one run to another, the InoFrep presents the same values between runs of clustering algorithms

below the number of peaks (np). Because, the InoFrep is considered as a semi-deterministic algorithm

and it does not need the repeated runs for testing of a better initialization. In other words, just one

run of the InoFrep guarantees the same initialization results if np for the selected feature is less than

the number of clusters (c) passed to the FCM. Consequently, the number of iterations required by the

FCM with the initial centroids generated by the InoFrep are significantly less than those of the

compared algorithms. Thus it indicates that the InoFrep has higher computational efficiency. At the

same time, since the algorithm uses the modes of features it takes the present structure of the dataset

into account and hence reinforces the noise robustness.

In our study, the fuzzy index values computed from membership matrices returned by all the

FCM runs are the same. As seen in Table 4, the indices of XB and Kwon suggests three clusters while

PBMF, MPC and PE suggests four clusters. As visible in Figure 2b above, three or four natural

groupings might be obtained for 3P_4C synthetic dataset. Therefore, although both of these results

Information 2020, 11, 446 12 of 15

are acceptable, we could conclude that PMBF, MPC and PE suggests an accurate number of clusters

for the examined dataset.

Table 4. Index values computed from membership matrix of 3P_4C dataset.

 IXB IKwon IPBMF IMPC IPE

c = 2 0.06398359 25.84344 1.112161  104 0.6855225 0.1996096

c = 3 0.05879530 24.19019 4.466028  105 0.7490964 0.1941429

c = 4 0.07750218 33.07070 7.096132  101 0.7850980 0.1768860

c = 5 0.65254444 279.28554 1.284663  106 0.6786742 0.2800888

c = 6 0.70858359 306.77753 8.637914  106 0.6237016 0.3345075

c = 7 0.79080017 345.13123 7.018537  106 0.5474565 0.4175081

In the literature, performance evaluation of the algorithms focuses mostly on the comparison of

the number of iterations and computing time required by the clustering algorithms as done above. In

this study, we have also investigated the performances in initialization step itself. As seen in Figure

4 and the last row of Table 3, the time required by three initialization algorithms (itime) differs

significantly. The InoFrep required less initialization time at all levels of the number of clusters. The

initialization time of the kmpp increases linearly and is longer than those of the Irand and the InoFrep.

However, the initialization time required by the InoFrep and the Irand is more or less close to each

other, although it is longer for the Irand for the clustering at c = 7.

Figure 4. Initialization time (ms) by the compared initialization algorithms.

3.2. Experimental Results on Real Datasets

In order to compare the performances of the tested initialization algorithms we used six real

datasets from UCI Machine Learning Repository [20]. The definitions of these datasets are given in

Table 5. In this table, p, c, ec and sp respectively stand for the number of features, the number of

clusters, the estimated number of clusters by the fuzzy indices in Table 1 and the index of selected

feature with large number of peaks in the related datasets.

Table 5. The real datasets used to compare the performances of compared algorithms.

Dataset n p c ec sp

Iris 150 4 2–3 2 2

Forest 198 27 4 4–5 5

Wine 178 13 3 2 8

Information 2020, 11, 446 13 of 15

Glass 214 9 6 2–3 7

Vaweform 5000 21 3 2–3 8

Wilt train 4889 6 2 2 1

The results obtained with the InoFrep, the kmpp and the Irand on the real datasets are given in

Tables 6–8 respectively. In regard of average number of iterations (iters) and computing time (ctime)

required by the FCM, the InoFrep performs relatively better than the kmpp and the Irand for most of

the real datasets. The InoFrep outperforms in the clustering sessions done with the cluster numbers

which are equal and close to the actual cluster numbers in the examined real datasets. The Irand is

also good in some clustering sessions for Iris, Forest and Wine datasets especially in the clustering

sessions done with large number of clusters. The InoFrep algorithm uses the same technique with the

Irand for the clustering done with larger clusters above the actual number of clusters in an examined

dataset, its performance becomes similar to the Irand. On the other hand, since the Irand produces

different results in different runs, the InoFrep could be preferred due to its deterministic nature and

single-pass efficiency for initialization of cluster centroids for high-dimensional datasets in data

mining applications.

Table 6. Performance of the InoFrep algorithm on the real datasets.

 c = 2 c = 3 c = 4 c = 5 c = 6

Dataset iters ctime
ite

rs
ctime iters ctime iters ctime iters ctime

Iris 16 117.81 37 223.11 69 442.58 55 453.90 157 1368.10

Forest 46. 253.65 57 397.24 32 317.61 105 1073.27 146 1729.45

Wine 24 146.06 70 407.61 57 417.63 93 784.84 256 2428.10

Glass 28 174.91 43 315.07 55 465.42 175 1661.62 94 1099.79

Vaweform 32 3164.89 50 7146.28 210 38958.49 433 107249.2 233 67886.63

Wilt train 39 3133.99 94 10993.57 116 17744.25 316 60230.48 258 59319.35

Table 7. Performance of the kmpp algorithm on the real datasets.

 c = 2 c = 3 c = 4 c = 5 c = 6

Dataset iters ctime iters ctime iters ctime iters ctime iters ctime

Iris 17 122.07 40 238.38 68 455.57 78 614.10 98 938.85

Forest 43 250.92 63 460.88 33 343.51 98 1072.61 123 1589.85

Wine 26 157.96 69 414.39 57 442.89 199 1684.91 107 1128.61

Glass 27 175.51 91 609.56 59 518.89 75 792.68 95 1156.62

Vaweform 33 3466.88 57 8480.23 231 44947.23 443 108892.3 234 69624.66

Wilt train 43 3584.90 105 12644.0 179 28135.95 303 59471.17 197 46778.42

Table 8. Performance of the Irand algorithm on the real datasets.

 c = 2 c = 3 c = 4 c = 5 c = 6

Dataset iters ctime iters ctime iters ctime iters ctime iters ctime

Iris 16 112.61 42 245.35 66 434.33 69 547.09 107 948.51

Forest 44 245.36 63 440.27 34 332.64 104 1063.77 113 1378.91

Wine 26 150.71 65 381.95 58 428.45 172 1384.01 96 963.75

Glass 28 179.42 183 1104.22 58 502.50 105 1031.04 95 1116.48

Vawefom 32 3197.51 52 7467.45 214 40291.86 447 103733.3 234 65361.30

Wilt train 40 3210.52 100 11734.20 167 25997.59 258 48890.90 294 67168.03

4. Conclusions

In this paper, we have proposed a new algorithm to initialize cluster centroids for the prototype-

based clustering algorithms. The InoFrep finds the data points close to the peaks of frequency

polygon of the feature with the highest peak counts and assigns them as the initial centroids. Since

the peaks are the modes of central tendency of data points, the selected initial prototypes become

Information 2020, 11, 446 14 of 15

close to the actual centers of clusters. Due to this proximity, the number of iterations and computing

time required by the clustering algorithms are significantly reduced. Therefore, the InoFrep

algorithm may produce better initialization values when compared to the Irand and the kmpp for

clustering sessions done with cluster numbers which are equal and close to the actual cluster numbers

in examined datasets. Since the kmpp selects the first centroid and minimum probable distance that

separates the centroids at random, different results can be obtained in different runs of it. For getting

a better result, the kmpp has to be run several times [21]. On the other hand, the InoFrep produces

the same results in only one pass of it. The InoFrep also reduces the risk of selection of outliers in the

datasets and thereby reinforces more robustness because it always selects the central tendency points.

The InoFrep algorithm is easy to implement and proves to be an alternative method to determine

initial centroids which can be used in prototype-based partitioning such as probabilistic and

possibilistic fuzzy clustering as well as hard clustering algorithms. Besides providing speed-up the

InoFrep is also applicable to high dimensional datasets because of its deterministic nature.

Supplementary Materials: The implementations of the algorithms compared in this study are available online

at https://cran.r-project.org/web/packages/inaparc/inaparc.pdf. Package ‘inaparc’- CRAN-R Project.

Author Contributions: Conceptualization, Z.C. and C.C.; methodology, Z.C.; software, Z.C. and C.C.; validation,

C.C.; formal analysis, C.C.; resources, Z.C.; data curation, Z.C.; writing—original draft preparation, Z.C. and C.C.;

visualization, C.C.; supervision, Z.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Borgelt, C. Prototype-based Classification and Clustering; Habilitationsschrift zur Erlangung der Venia

Legendi für Informatik, vorgelegt der Fakultaet für Informatik der Otto-von-Guericke-Universitaet

Magdeburg: Magdeburg, Germany, 22 June 2005.

2. Äyrämö, S.; Kärkkäinen, L. Introduction to Partitioning-based Clustering Methods with a Robust Example.

Reports of the Department of Mathematical Information Technology (University of Jyväskylä) Series C: Software and

Computational Engineering C1; University of Jyväskylä: Jyväskylän, Finland, 2006; pp.1–36.

3. Kim, D.-W.; Lee, K.H.; Lee, D. A novel initialization scheme for the fuzzy c-means algorithm for color

clustering. Pattern Recognit. Lett. 2004, 25, 227–237.

4. Moertini, V.S. Introduction to five clustering algorithms. Integral 2002, 7, 87–96.

5. Fahad, A.; Alshatri, Ni; Tari, Z.; Alamri, A.; Khalil, I.; Zomaya, A.; Foufou, S.; Bouras, A. A survey of

clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Trans. Emerg. Top. Comp. 2014,

2, 267–279.

6. Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum Press: New York, USA,

1981.

7. Bezdek, J.C. Cluster validity with fuzzy sets. J. Cybern. 1973, 3, 58–73.

8. Dave, R.N. Validating fuzzy partitions obtained through c-shells clustering. Pattern Recognit. Lett. 1996, 17,

613–623.

9. Xie, X.L.; Beni, G. A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13,

841–847.

10. Kwon, S.H. Cluster validity index for fuzzy clustering. Electron. Lett. 1998, 3, 2176–2178.

11. Pakhira, M.K.; Bandyopadhyay, S.; Maulik, U. Validity index for crisp and fuzzy clusters. Pattern Recognit.

2004, 37, 487–501.

12. Zou, K.; Wang, Z.; Hu, M. A new initialization method for fuzzy c-means algorithm. Fuzzy Optim. Decis.

Mak. 2008, 7, 409–416.

13. Xianfeng, Y.; Pengfei, L. Tailoring fuzzy c-means clustering algorithm for big data using random sampling

and particle swarm optimization. Int. J. Database Theory Appl. 2015, 8, 191–202.

14. Yager, R.R.; Filev, D.P. Generation of fuzzy rules by mountain clustering. J. Intell. Fuzzy Syst. 1994, 2, 209–

219.

15. Chiu, S. Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 1994, 2, 267–278.

Information 2020, 11, 446 15 of 15

16. Arthur, D.; Vassilvitskii, S. K-means++: The Advantages of Careful Seeding. In Proceedings of the 18th

Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007;

Gabow, H. Ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2007; pp. 1027–

1035.

17. Stetco, A.; Zeng, X.-J.; Keane, J. Fuzzy c-means++: Fuzzy c-means with effective seeding initialization. Expert

Syst. Appl. 2015, 42, 7541–7548.

18. Aitnouri, E.M.; Wang, S.; Ziou, D.; Vaillancourt, J.; Gagnon, L. An Algorithm for Determination of the

Number of Modes for Pdf Estimation of Multi-modal Histograms. In Proceedings of Vision Interface 99,

Trois-Rivieres, QC, Canada, 18–21 May 1999, pp. 368–374.

19. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria. Available online https://www.R-project.org (accessed on 28 December 2019).

20. UCI Machine Learning Repository. Available online http://archive.ics.uci.edu/ml (accessed on 28

December 2019).

21. Pavan, K.K.; Rao, A.P.; Rao, A.V.D.; Sridhar, G.R. Robust seed selection algorithm for k-means type

algorithms. Int. J. Comput. Sci. Inf. Technol. 2011, 3, 147–163.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

