1,273 research outputs found

    Article Search Tool and Topic Classifier

    Get PDF
    This thesis focuses on 3 main tasks related to Document Recommendations. The first approach deals with applying existing techniques on Document Recommendations using Doc2Vec. A robust representation of the same is presented to understand how noise induced in the embedding space affects predictions of the recommendations. The next phase focuses on improving the above recommendations using a Topic Classifier. A Hierarchical Attention Network is employed for this purpose. In order to increase the accuracy of prediction, this work establishes a relation to embedding size of the words in the article. In the last phase, model-agnostic Explainable AI (XAI) techniques are implemented to prove the findings in this thesis. XAI techniques are also employed to show how we can fine tune model hyper-parameters for a black-box model

    Advances and Challenges of Multi-task Learning Method in Recommender System: A Survey

    Full text link
    Multi-task learning has been widely applied in computational vision, natural language processing and other fields, which has achieved well performance. In recent years, a lot of work about multi-task learning recommender system has been yielded, but there is no previous literature to summarize these works. To bridge this gap, we provide a systematic literature survey about multi-task recommender systems, aiming to help researchers and practitioners quickly understand the current progress in this direction. In this survey, we first introduce the background and the motivation of the multi-task learning-based recommender systems. Then we provide a taxonomy of multi-task learning-based recommendation methods according to the different stages of multi-task learning techniques, which including task relationship discovery, model architecture and optimization strategy. Finally, we raise discussions on the application and promising future directions in this area

    Improving Deep Reinforcement Learning Using Graph Convolution and Visual Domain Transfer

    Get PDF
    Recent developments in Deep Reinforcement Learning (DRL) have shown tremendous progress in robotics control, Atari games, board games such as Go, etc. However, model free DRL still has limited use cases due to its poor sampling efficiency and generalization on a variety of tasks. In this thesis, two particular drawbacks of DRL are investigated: 1) the poor generalization abilities of model free DRL. More specifically, how to generalize an agent\u27s policy to unseen environments and generalize to task performance on different data representations (e.g. image based or graph based) 2) The reality gap issue in DRL. That is, how to effectively transfer a policy learned in a simulator to the real world. This thesis makes several novel contributions to the field of DRL which are outlined sequentially in the following. Among these contributions is the generalized value iteration network (GVIN) algorithm, which is an end-to-end neural network planning module extending the work of Value Iteration Networks (VIN). GVIN emulates the value iteration algorithm by using a novel graph convolution operator, which enables GVIN to learn and plan on irregular spatial graphs. Additionally, this thesis proposes three novel, differentiable kernels as graph convolution operators and shows that the embedding-based kernel achieves the best performance. Furthermore, an improvement upon traditional nn-step QQ-learning that stabilizes training for VIN and GVIN is demonstrated. Additionally, the equivalence between GVIN and graph neural networks is outlined and shown that GVIN can be further extended to address both control and inference problems. The final subject which falls under the graph domain that is studied in this thesis is graph embeddings. Specifically, this work studies a general graph embedding framework GEM-F that unifies most of the previous graph embedding algorithms. Based on the contributions made during the analysis of GEM-F, a novel algorithm called WarpMap which outperforms DeepWalk and node2vec in the unsupervised learning settings is proposed. The aforementioned reality gap in DRL prohibits a significant portion of research from reaching the real world setting. The latter part of this work studies and analyzes domain transfer techniques in an effort to bridge this gap. Typically, domain transfer in RL consists of representation transfer and policy transfer. In this work, the focus is on representation transfer for vision based applications. More specifically, aligning the feature representation from source domain to target domain in an unsupervised fashion. In this approach, a linear mapping function is considered to fuse modules that are trained in different domains. Proposed are two improved adversarial learning methods to enhance the training quality of the mapping function. Finally, the thesis demonstrates the effectiveness of domain alignment among different weather conditions in the CARLA autonomous driving simulator

    Grid-enabling Non-computer Resources

    Get PDF

    A Deep Unsupervised Learning Approach for Airspace Complexity Evaluation

    Get PDF
    Airspace complexity is a critical metric in current Air Traffic Management systems for indicating the security degree of airspace operations. Airspace complexity can be affected by many coupling factors in a complicated and nonlinear way, making it extremely difficult to be evaluated. In recent years, machine learning has been proved as a promising approach and achieved significant results in evaluating airspace complexity. However, existing machine learning based approaches require a large number of airspace operational data labeled by experts. Due to the high cost in labeling the operational data and the dynamical nature of the airspace operating environment, such data are often limited and may not be suitable for the changing airspace situation. In light of these, we propose a novel unsupervised learning approach for airspace complexity evaluation based on a deep neural network trained by unlabeled samples. We introduce a new loss function to better address the characteristics pertaining to airspace complexity data, including dimension coupling, category imbalance, and overlapped boundaries. Due to these characteristics, the generalization ability of existing unsupervised models is adversely impacted. The proposed approach is validated through extensive experiments based on the real-world data of six sectors in Southwestern China airspace. Experimental results show that our deep unsupervised model outperforms the state-of-the-art methods in terms of airspace complexity evaluation accuracy

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested

    Implementation of SEO on Dusun Nusantara Web-based Application as Tourism Promotion Media

    Get PDF
    This study explores the implementation of SEO on the Dusun Nusantara web-based application as a tourism promotion media. This implementation aims to increase the number of tourist visits to Desa Kota Pari by improving the website's ranking in search engines like Google. The study analyzes the Google Analytics data for the last 90 days to evaluate the effectiveness of SEO implementation. The results show that the implementation of SEO has successfully increased the number of users and sessions on the application, indicating an increase in user interest in visiting the application. However, the high bounce rate of 76.76% needs improvement. Despite this, the average session duration of 1 minute 29 seconds indicates that users are interested in exploring pages in the application. The study concludes that implementing SEO in the DusunNusantara.com application is an effective strategy for promoting tourism in the area. By utilizing a web-based application, managers can provide complete and accurate information about existing tourism in Desa Kota Pari and Pantai Cermin, which can expand the reach of tourism promotion and increase the number of tourists visiting Desa Kota Pari. However, it is essential to improve the application's content to make it more exciting and relevant and to provide a more engaging and interactive experience to the app to increase visitor session duration. Thus, implementing SEO in the Dusun Nusantara application can be an effective strategy for promoting tourism and increasing tourist visits to the area

    Radio Galaxy Zoo: Knowledge Transfer Using Rotationally Invariant Self-Organising Maps

    Full text link
    With the advent of large scale surveys the manual analysis and classification of individual radio source morphologies is rendered impossible as existing approaches do not scale. The analysis of complex morphological features in the spatial domain is a particularly important task. Here we discuss the challenges of transferring crowdsourced labels obtained from the Radio Galaxy Zoo project and introduce a proper transfer mechanism via quantile random forest regression. By using parallelized rotation and flipping invariant Kohonen-maps, image cubes of Radio Galaxy Zoo selected galaxies formed from the FIRST radio continuum and WISE infrared all sky surveys are first projected down to a two-dimensional embedding in an unsupervised way. This embedding can be seen as a discretised space of shapes with the coordinates reflecting morphological features as expressed by the automatically derived prototypes. We find that these prototypes have reconstructed physically meaningful processes across two channel images at radio and infrared wavelengths in an unsupervised manner. In the second step, images are compared with those prototypes to create a heat-map, which is the morphological fingerprint of each object and the basis for transferring the user generated labels. These heat-maps have reduced the feature space by a factor of 248 and are able to be used as the basis for subsequent ML methods. Using an ensemble of decision trees we achieve upwards of 85.7% and 80.7% accuracy when predicting the number of components and peaks in an image, respectively, using these heat-maps. We also question the currently used discrete classification schema and introduce a continuous scale that better reflects the uncertainty in transition between two classes, caused by sensitivity and resolution limits

    Deriving statistical inference from the application of artificial neural networks to clinical metabolomics data

    Get PDF
    Metabolomics data are complex with a high degree of multicollinearity. As such, multivariate linear projection methods, such as partial least squares discriminant analysis (PLS-DA) have become standard. Non-linear projections methods, typified by Artificial Neural Networks (ANNs) may be more appropriate to model potential nonlinear latent covariance; however, they are not widely used due to difficulty in deriving statistical inference, and thus biological interpretation. Herein, we illustrate the utility of ANNs for clinical metabolomics using publicly available data sets and develop an open framework for deriving and visualising statistical inference from ANNs equivalent to standard PLS-DA methods

    Image Processing and Analysis for Preclinical and Clinical Applications

    Get PDF
    Radiomics is one of the most successful branches of research in the field of image processing and analysis, as it provides valuable quantitative information for the personalized medicine. It has the potential to discover features of the disease that cannot be appreciated with the naked eye in both preclinical and clinical studies. In general, all quantitative approaches based on biomedical images, such as positron emission tomography (PET), computed tomography (CT) and magnetic resonance imaging (MRI), have a positive clinical impact in the detection of biological processes and diseases as well as in predicting response to treatment. This Special Issue, “Image Processing and Analysis for Preclinical and Clinical Applications”, addresses some gaps in this field to improve the quality of research in the clinical and preclinical environment. It consists of fourteen peer-reviewed papers covering a range of topics and applications related to biomedical image processing and analysis
    corecore