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Preclinical and clinical imaging aims to characterize and measure biological processes
and diseases in animals [1] and humans [2]. In recent years, there has been growing interest
in the quantitative analysis of clinical images using techniques such as positron emission
tomography (PET) [3], computerized tomography (CT) [4], and magnetic resonance imag-
ing (MRI) [5], mainly applied to texture analysis and radiomics. Various image processing
and analysis algorithms based on pattern recognition, artificial intelligence, and computer
graphics methods have been proposed to extract features from biomedical images. These
quantitative approaches are expected to have a positive clinical impact on quantitatively
analyzing images, to reveal biological processes and diseases, and to predict response
to treatment.

This Special Issue presents a collection of high-quality studies covering state-of-the-art
and innovative approaches focusing on image processing and analysis across a variety
of imaging modalities as well as the expected clinical applicability of these innovative
approaches for personalized patient-tailored medicine.

The topics/keywords covered by this Special Issue includes the following:

• In vivo imaging;
• Therapy response prediction;
• Medical diagnosis support systems;
• Detection, segmentation, and classification of tissues;
• Biomedical image analysis and processing;
• Personalized medicine;
• Artificial intelligence;
• Texture analysis;
• Radiomics.

In response to the call for papers, nineteen papers were submitted to this Special Issue,
of which fourteen were accepted for publication. These papers address several research
challenges related to image processing and analysis in both preclinical and clinical applications.

Among the published research papers, five of them focus on segmentation and de-
tection applications, including prostate gland segmentation [6,7], retroperitoneal sarcoma
segmentation [8], basal cell carcinoma detection [9], and fracture detection in patients with
maxillofacial trauma [10].

In one of these papers, the authors estimated prostate volume using ultrasound imag-
ing, which offers many advantages such as portability, low cost, lack of ionizing radiations,
and suitability for real-time operation [6]. Since experts usually consider automatic end-to-
end volume-estimation procedures as non-transparent and uninterpretable systems, the
authors proposed a system that directly estimated the diameter parameters of the standard
ellipsoid formula to produce the prostate volume in a dataset of 305 patients. The proposed
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system detects four diameter endpoints from the transverse images and two diameter
endpoints from the sagittal images, as defined by the classical procedure. These endpoints
are estimated using a new image-patch voting method to address characteristic problems
of ultrasound images. Furthermore, the dataset included 75 MRI images of the initial
305 patients. The results showed optimal performance, confirming that this system can be
used in clinical practice.

Another prostate gland segmentation method based on T2-weighted MRI was pro-
posed by Comelli et al. [7]. The authors presented the efficient neural network (ENet) to
tackle the fully automated, real-time, and 3D delineation process of the prostate. ENet is
mainly applied in self-driving cars to compensate for limited hardware availability while
still achieving accurate segmentation. The authors applied this network to a limited set
of 85 manual prostate segmentations using the k-fold validation strategy and the Tversky
loss function [11] and compared the results with UNet and ERFNet (efficient residual
factorized convNet). The results showed that ENet and UNet were more accurate than
ERFNet, with ENet much faster than UNet. Specifically, ENet obtains a dice similarity
coefficient of 90.89% and a segmentation time of about 6 s using central processing unit
(CPU) hardware to simulate real clinical conditions where the graphics processing unit
(GPU) is not always available.

In a similar study, Salvaggio et al. [8] used ENet and ERFNet for the automatic segmen-
tation of retroperitoneal sarcoma (RPS) in 94 CT examinations. The volume estimation of
RPS is often difficult due to its huge dimensions and irregular shape; thus, it often requires
manual segmentation, which is time-consuming and operator-dependent. For this reason,
the authors assessed the existence of significant differences between manual segmentation
performed by two radiologists and automatic segmentation based on ENet and ERFNet
using analysis of variance (ANOVA). A set of performance indicators for the shape compari-
son were calculated, namely sensitivity, positive predictive value, dice similarity coefficient,
volume overlap error, and volumetric differences. There were no significant differences
found between the RPS volumes obtained using manual segmentation and deep learning
methods. Furthermore, all performance indicators were optimal for both ENet and ERFNet.
Finally, ENet took around 15 s for segmentation versus 13 s for ERFNet by using GPU. In
the case of CPU, ENet took around 2 min versus 1 min for ERFNet. The manual approach
required approximately one hour per segmentation. In conclusion, fully automatic deep
learning networks were reliable methods for RPS volume assessment.

Vélez et al. [9] proposed a tool for the detection of basal cell carcinoma (BCC) to
provide a prioritization in the tele-dermatology consultation. BCC is the most frequent skin
cancer, and its increasing incidence is producing a high overload in dermatology services.
The authors analyzed if pre-segmentation of the lesion improved the classification of the
lesion. After that, they analyzed three deep neural networks to distinguish between BCC
and nevus, or other skin lesions. The best segmentation results were obtained with SegNet
with accuracies of 98% and 95% for distinguishing BCC from nevus and other skin lesions,
respectively. This method outperformed the winner of the challenge International Skin
Imaging Collaboration (ISIC) 2019. Furthermore, the authors concluded that when deep
neural networks are used to classify, a pre-segmentation of the lesion does not improve the
classification results.

Finally, a novel maxillofacial fracture detection system (MFDS), based on convolutional
neural networks and transfer learning, was proposed by Amodeo et al. [10] to detect
traumatic fractures in patients. A convolutional neural network pre-trained on non-medical
images was re-trained and fine-tuned using 148 CT images to produce a model for the
classification of future CTs as fracture or not fracture. The validation and test datasets
were characterized by 30 patients: both datasets contained 5 patients without fractures and
25 with fractures. The results showed an accuracy of 80% in classifying the maxillofacial
fractures. Consequently, the proposed model can be used as a care support, reducing
the risk of human error, preventing patient harm by minimizing diagnostic delays, and
reducing the incongruous burden of hospitalization.
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Among the other research papers, three of them focus on radiomics applications,
including restaging in metastatic colorectal cancer [12], evaluating the robustness of PET
radiomics features after MRI co-registration [13], and predicting pathologic complete
response after neoadjuvant chemoradiation therapy for rectal cancer [14].

Alongi et al. [12] investigated the application of [18F]FDG PET/CT image-based
textural features analysis to early predict disease progression and survival outcome in
52 metastatic colorectal cancer (MCC) patients after first adjuvant therapy. For this pur-
pose, radiomics features from PET and low-dose CT images were extracted. The hybrid
descriptive-inferential method [15] was used for feature selection while the discriminant
analysis [16] was used for the predictive model implementation. The prediction perfor-
mance was evaluated for per-lesion analysis, per-patient analysis, and per liver lesions
analysis. All results showed that the proposed radiomics model was feasible and potentially
useful in the predictive evaluation of disease progression in MCC.

Stefano et al. [13] studied the variability in PET radiomics features under the impact of
co-registration with MRI using the difference percentage coefficient and the Spearman’s cor-
relation coefficient for three groups of images: (i) original PET, (ii) PET after co-registration
with T1-weighted MRI, and (iii) PET after co-registration with FLAIR MRI. For this pur-
pose, 77 patients with brain cancers undergoing [11C]-Methionine PET were considered.
Successively, PET images were co-registered with MRI sequences and 107 features were
extracted for each mentioned group of images. The variability analysis revealed that shape
features, first-order features, and two subgroups of higher-order features possessed a good
robustness, unlike the remaining groups of features, which showed large differences in the
difference percentage coefficient. Furthermore, using Spearman’s correlation coefficient,
approximately 40% of the selected features differed from the three mentioned groups of
images. This is an important consideration for users conducting radiomics studies with
image co-registration constraints to avoid errors in cancer diagnosis, prognosis, and clinical
outcome prediction.

Lee et al. [14] evaluated the MRI assessment after neoadjuvant chemoradiotherapy
(nCRT) in 912 patients with rectal cancer for staging and treatment planning purposes.
They proposed a pathologic complete response (pCR) prediction method based on a novel
multi-parametric MRI embedding technique. Specifically, multiple MRI sequences were
encapsulated into multi-sequence fusion images (MSFI). Subsequently, radiomics features
were extracted and used to predict pCR through a random forest classifier. The results
demonstrated that the use of all given MRI sequences is the most effective method regard-
less of the dimension reduction method. Furthermore, it outperformed four competing
baselines in terms of the area under the receiver operating characteristic curve (AUC)
and F1-score.

Among the other research papers, four of them focus on biomedical image quantifica-
tion, including the early monitoring response to therapy in patients with brain lesions [17],
the quantification of cancer cell mass evolution in zebrafish [18], the clinical comparison of
the glomerular filtration rate calculated from different renal depths and formulae [19], and
the assessment of the left atrial flow stasis in patients undergoing pulmonary vein isolation
for paroxysmal atrial fibrillation [20].

Stefano et al. [17] evaluated new PET prognostic indices for the early assessment of
response to Gamma Knife (GK) treatment. GK is an alternative to traditional brain surgery
and whole-brain radiation therapy for the treatment of tumors inaccessible through con-
ventional treatments [21]. Semi-quantitative PET parameters currently used in the clinical
setting can be affected by statistical fluctuation errors and/or cannot provide information
on tumor extent and heterogeneity. To overcome these limitations, the cumulative standard-
ized uptake value histogram (CSH) and AUC were considered as additional information
on the response to GK treatment. Specifically, the absolute level of [11C]-Methionine (MET)
uptake was measured and its heterogeneity distribution within PET lesions was evalu-
ated by calculating the CSH and AUC. The results showed good agreement with patient
outcomes, and since no relevant correlations were found between CSH and AUC and the
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indices usually used in PET imaging, these innovative parameters could be a useful tool
for assessing patient responses to therapy.

In [18], the authors considered zebrafish as it is a model organism for the study of
human cancer and, compared with the murine model, it has several properties that are ideal
for personalized therapies. The transparency of the zebrafish embryos and the development
of the pigment-deficient “casper” zebrafish line give the capacity to directly observe cancer
formation and progression in the living animal. Nevertheless, the automatic quantification
of cellular proliferation in vivo is still critical. For this reason, the authors proposed a new
tool, namely ZFTool, to automatically quantify the cancer cellular evolution. ZFTool is
capable of establishing a base threshold that eliminates the embryo autofluorescence, to
automatically measure the area and intensity of green-fluorescent protein marked cells,
and to define a proliferation index. As result, the proliferation index computed on different
targets demonstrated the efficiency of ZFTool in providing a good automatic quantification
of cancer mass evolution in zebrafish, eliminating the influence of its autofluorescence.

In the study proposed by Hsu et al. [19], the authors aimed to compare the differences
in renal depths in a camera-based method using Technetium-99 m diethylenetriaminepen-
taacetic acid (Tc-99 m DTPA). This method is commonly used to calculate the glomerular
filtration rate (GFR) as it can easily calculate split renal function. Renal depth is the main
factor affecting the measurement of GFR accuracy. For this reason, the difference in renal
depths between three formulae (Tonnesen’s, Itoh K’s, and Taylor’s) and a CT scan were
compared and used to calculate the GFRs using four methods. For this purpose, 51 patients
underwent a laboratory test within one month and a CT scan within two months. The
results showed that the renal depths measured using the three formulae were smaller than
those measured using the CT scan, and the right renal depth was always larger than the left.

In [20], the authors aimed to demonstrate that left atrial (LA) stasis, derived from
4D-flow, is a useful biomarker of LA recovery in patients with atrial fibrillation (AF). AF
is associated with systemic thrombo-embolism and stroke events, which do not appear
significantly reduced following successful pulmonary vein (PV) ablation. The authors’
hypothesis was that LA recovery was associated with a reduction in LA stasis. For this
purpose, 148 subjects with paroxysmal AF and 24 controls were recruited and underwent a
cardiac MRI, inclusive of 4D-flow. LA was isolated within the 4D-flow dataset to constrain
stasis maps. The results showed that the mean LA stasis in the control was lower than that
in the pre-ablation cohort and that the mean LA stasis was reduced in the post-ablation
cohort compared with in the pre-ablation cohort. The study demonstrated that 4D flow-
derived LA stasis mapping was clinically relevant and revealed stasis changes in the LA
body pre- and post-pulmonary vein ablation.

Finally, the last two published studies concern an image registration technique based
on local feature of retinal vessels [22], and the hardware optimizations of the X-ray pre-
processing using the field programmable gate array (FPGA) [23].

In the first of these two studies [22], an innovative method, namely CURVE, is pre-
sented to accurately extract feature points on retinal vessels and throughout the fundus
image. The CURVE performance was tested on different datasets and compared with six
state-of-the-art feature extraction methods. The results showed that the feature extraction
accuracy of CURVE significantly outperformed the existing feature extraction methods.
Then, CURVE was paired with a scale-invariant feature transform (SIFT) descriptor to test
its registration capability on the fundus image registration (FIRE) dataset. CURVE-SIFT
successfully registered 44% of the image pairs while existing feature-based techniques
registered less than 27% of the image pairs.

The last study [23] proposed the optimization of the X-ray pre-processing in CT imag-
ing to compute total attenuation projections by avoiding the intermediate step of converting
detector data to intensity images. Furthermore, a configurable hardware architecture for
data acquisition systems on FPGAs was proposed to fulfill the real-time requirements and
with the aim of achieving “on-the-fly” pre-processing of 2D projections. Finally, this archi-
tecture was configured for exploring and analyzing different arithmetic representations,
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such as floating-point and fixed-point data formats. In this way, the best representation
and data format that minimized execution time and hardware costs was found without
affecting image quality. By comparing the proposed solution with the state-of-the-art
pre-processing algorithm, the latency decreased by 4.125× and the resource utilization
decreased by ∼6.5×. By using fixed-point representation in the different data precisions,
the latency and the resource utilization were further decreased.

In conclusion, this Special Issue covers recent trends in biomedical imaging applica-
tions, such as quantification, detection, radiomics, registration, and optimization, constitut-
ing a good sample of the current state-of-the-art results in this field.
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Featured Application: The study demonstrates that high-speed deep learning networks could per-

form accurate prostate delineation facilitating the adoption of novel imaging parameters, through

radiomics analyses, for prostatic oncologic diseases.

Abstract: Magnetic Resonance Imaging-based prostate segmentation is an essential task for adaptive
radiotherapy and for radiomics studies whose purpose is to identify associations between imaging
features and patient outcomes. Because manual delineation is a time-consuming task, we present
three deep-learning (DL) approaches, namely UNet, efficient neural network (ENet), and efficient
residual factorized convNet (ERFNet), whose aim is to tackle the fully-automated, real-time, and 3D
delineation process of the prostate gland on T2-weighted MRI. While UNet is used in many biomed-
ical image delineation applications, ENet and ERFNet are mainly applied in self-driving cars to
compensate for limited hardware availability while still achieving accurate segmentation. We apply
these models to a limited set of 85 manual prostate segmentations using the k-fold validation strategy
and the Tversky loss function and we compare their results. We find that ENet and UNet are more
accurate than ERFNet, with ENet much faster than UNet. Specifically, ENet obtains a dice similarity
coefficient of 90.89% and a segmentation time of about 6 s using central processing unit (CPU)
hardware to simulate real clinical conditions where graphics processing unit (GPU) is not always
available. In conclusion, ENet could be efficiently applied for prostate delineation even in small
image training datasets with potential benefit for patient management personalization.

Keywords: deep learning; segmentation; prostate; MRI; ENet; UNet; ERFNet; radiomics

1. Introduction

In the biomedical imaging field, target delineation is routinely used as the first step
in any automatized disease diagnosis system (i.e., radiotherapy system) and, in the last
few years, in radiomics studies [1,2] to obtain a multitude of quantitative parameters from
biomedical images [3,4]. These parameters are then used as imaging biomarkers to identify
any possible associations with patient outcome. The first task of a radiomics analysis is
the automatic and user-independent target (e.g., tumor or organ) delineation to avoid any
distortion during the feature extraction process [5]. Manual segmentation might seem
like the simplest solution to obtain target boundaries, but it is a time-consuming and user-
dependent process that affects the radiomics signature [6]. For this reason, an automatic
and operator-independent target delineation method is mandatory. Nevertheless, the seg-
mentation process remains a challenging field of research. Over the years many different
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types of segmentation techniques have been developed, for example, [7–9]. Some of the
previous techniques include thresholding [10], k-means clustering [11], watersheds [12], fol-
lowed by more advanced algorithms such as active contour methods [8,13], graph cuts [14],
random walks [15], conditional and Markov random fields [16] to name a few. In recent
years, particularly the last decade, the field of Machine Learning (ML) and Deep Learning
(DL) has seen exponential growth and has produced models that have shown remarkable
performance across many benchmark datasets and many different problem domains [17,18].
In general, an artificial intelligence method learns from examples and makes predictions
without prior specific programming [19]. In the case of DL, these models implement net-
worked structures to mimic the human brain transforming imaging data in feature vectors.
Briefly, between the input and output, a variable number of hidden layers is implemented
and the various nodes are connected to others with different weights.

The initial development of DL models was towards image classification problems,
followed by object detection and finally, image segmentation, which is seen as a pixel
level classification problem where each pixel is classified with one of many possible label
classes. For example, in tumor segmentation, every voxel can be classified as either
belonging to the class label of the object of interest (target) or the background. Since it
is a very common task across many different problem domains, hundreds of different
DL based models have been presented for the delineation task over the past several
years: fully convolutional [20], encoder-decoder [21], multi-scale and pyramid [22–24],
attention [25], recurrent neural [26], generative and adversarial training [27,28] based
networks. Even during the current pandemic, DL networks have been widely used to
help clinicians diagnose COVID-19 [29,30]. It is beyond the scope of this paper to discuss
and describe all these different types of models. Interested readers are directed to recent
comprehensive reviews [31,32] of DL based methods/models for image segmentation.

In this study, we deal with the issue of prostate region delineation on magnetic reso-
nance imaging (MRI) studies. Prostatic volume extraction helps in the planning of biopsies,
surgeries, focal ablative, radiation, and minimally invasive (e.g., intensity focused ultra-
sound [33]) treatments. In addition, benign prostatic hyperplasia, also called prostate
enlargement, is one of the most common conditions affecting men [34]. A correlation
between prostatic volume, and the incidence of prostate cancer, where early tumor identi-
fication is crucial to reduce mortality, has been shown in [35]. Since only part of prostate
cancer is clinically significant, risk stratification is mandatory to avoid over-diagnosis and
over-treatment [36,37]. For this reason, radiomics in MRI has acquired a crucial role in
the risk stratification process [19,36]. MRI allows calculating prostatic volume consid-
ering the prostate as an ellipsoid. Unfortunately, the shape of the prostate varies and
the determination of its volume based on the ellipsoid formula is often incorrect [38].
The presence of prostate cancer may alter the prostate volume as reported, for example,
in the study of [39]: the authors reported that shape differences in the prostate gland
were consistently observed between patients with or without prostate cancer maybe as the
result of cancer localized in the peripheral zone. For this reason, the manual delineation
is more accurate than the previously described method but takes time, requires experi-
ence, and is highly operator-dependent as noted above. Consequently, several automatic
algorithms have been proposed, for example, [40–42]. Due to the lack of large amounts of
labeled data for the training process, DL is still far from a widespread application in the
biomedical environment. So, there is a need to develop DL networks to obtain accurate
delineations with fewer training examples. Then, we explore the efficacy of Efficient Neural
Network (ENet) [43] and Efficient Residual Factorized ConvNet (ERFNet) [44] that are
mainly applied in self-driving cars to compensate for limited hardware availability while
still achieving accurate segmentation, and UNet that is used in many biomedical image
delineation applications [45]. Using a limited set of 85 manual prostate segmentation
training data, we show that ENet model can be used to obtain accurate, fast and clinically
acceptable prostate segmentations.
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2. Materials and Methods

2.1. Experimental Setup

To test DL based methods for prostate segmentation, we used prostate studies of
patients who underwent MRI examinations using the Achieva scanner (Philips Healthcare,
Best, The Netherlands) with a pelvic phased-array coil (8 channel HD Torso XL). Specifically,
from September 2019 to May 2020, 202 consecutive patients were referred to our Radiology
Department to perform a prostate MRI examination. We excluded patients from the
study for (a) incomplete MRI examination due to intolerance, discomfort, or claustrophobia
(n = 11); (b) patients with radical prostatectomy (n = 18), subjected to transurethral resection
of the prostate (TURP) (n = 20), or radiotherapy (n = 17); (c) lack of median lobe enlargement
defined as intra-vesical prostatic protrusion characterized by overgrowth of the prostatic
median lobe into the bladder for at least 1 cm (n = 51). So, our final study population
consisted of 85 patients (age range 43–75 years, mean age 59 ± 8.4 years) with median
lobe enlargement. By reviewing radiological reports, no pathological MRI findings were
found in 35 patients (except for median lobe enlargement), while 50 prostate lesions (42 in
peripheral zone and 8 in transitional zone) suspected for prostate cancer classified using the
Prostate imaging reporting and data system (PI-RADS) 2.1 [46] were found: 18 PI-RADS 3
score, 28 PI-RADS 4 score, and 4 PI-RADS 5 score lesions with size ranged between 0.6 and
1.9 cm (mean 1.052 ± 0.28). In addition, in our study population, by evaluating capsular
involvement, 18 patients had capsular abutment and 3 patients had capsular irregularity.
It means that the presence of suspected prostate cancer lesions, in our study population,
can at least distend the gland boundaries. Consequently, the determination of prostate
volume using the above mentioned ellipsoid formula [38] is not suitable, while manual
and automatic segmentations are not (or less) affected by this issue.

In this study, axial T2-weighted images with parameters shown in Table 1 were used.
However, due to MRI protocol routine update during the study time, datasets had different
resolution (2 studies with a matrix resolution of 720 × 720; 45 studies with a matrix resolu-
tion of 672 × 672; 23 studies with a matrix resolution of 576 × 576; 15 studies with a matrix
resolution of 320 × 320). Consequently, the datasets had different resolutions and sizes.
Since DL networks require inputs of the same size for the training process, MRI images
were resampled to the isotropic voxel size of 1 × 1 × 1 mm3 with a matrix resolution of
512 × 512 (matrix resolution in the middle between 720 and 320) using linear interpolation.
A set of trained clinical experts (FV, MP, GC, and GS authors) hand segmented the prostate
region. The simultaneous ground truth estimation STAPLE tool [47] was used to combine
the different segmentations from the clinical experts in a consolidated reference. Finally,
manual delineations were resampled using nearest neighbor interpolation and converted
to masks with 0 for the background and 1 for the prostate area.

Table 1. Parameter of MRI protocol.

Parameter
Repetition Time

(ms)
Echo Time

(ms)
Flip Angle
(Degrees)

Signal
Averages

Signal-to-Noise
Ratio

T2w TSE 3091 100 90 3 1

2.2. Deep Learning Models

Three different deep learning models including UNet [45], ENet [43], and ERFNet [44]
were investigated to account for accurate prostate segmentation, fast training time, low hard-
ware requirements for inference, and low training data requirements. Specifically, UNet was
modified to improve segmentation accuracy, as reported in [48,49]. Briefly, (i) 3 × 3 con-
volutions were replaced by 5 × 5 convolutions, (ii) zero padding was used to ensure that
the size of the output feature maps was the same as the input size, and (iii) an input size
of 512 × 512 with 32 filters was used on the first contraction path layer, with doubling of
feature maps after each max pool and stopping at 256 feature maps and 2D size of 64 × 64.
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Concerning ENet and ERFNet (see Table 1 in [43] and Table 2 in [44] for the descrip-
tion of their architecture), they were mainly applied in self-driving cars to compensate
for limited hardware availability maintaining high accuracy and successfully used in
two biomedical segmentation issues [48,49], that is, in the segmentation of high resolution
computed tomography (HRCT) images characterized by a slice thickness much lower than
that of the T2 weighted images of the prostate studies. This means that the number of slices
of each patients’ study was much greater than in this study.

Table 2. The model parameters and shape output after the first hidden layer in the ENet model for a
given provided input image (Patient #7 slice #20).

Layer (Type) Output Shape Parameters Number

input_1 (InputLayer) (None, 512, 512, 1) 0

conv2d_1 (Conv2D) (None, 256, 256, 15) 150

2.3. Training Methodology

Due to a limited amount of data, the k-fold cross-validation strategy was applied by
randomly dividing the dataset into k sub-datasets of equal size (17 patients, k = 5). For each
network, we trained k models by combining k-1 folds into the training set and keeping the
remaining fold as a holdout test set. Despite the fact that 2D models were considered, slices
from the same study were never used for both training and testing purposes. So, there was
no cross-contamination between training and test sets.

Moreover, the data augmentation technique was applied in six different modalities to
increase the statistic. Additionally, data standardization and normalization were adopted
to prevent the weights from becoming too large, to make the model converge faster, and to
avoid numerical instability. Regarding loss function, prostate segmentation suffers from
the imbalanced data problem because there are very few examples of the positive class
compared to the background or negative class. In terms of image segmentation, the target
(i.e., the prostatic region) is small compared to the background, which may be composed
of many different organs or types of tissue exhibiting a wide range of intensity values.
Some slices may have a very small target area compared to the background. This makes it
hard for the DL to learn a reliable feature representation of the foreground class. In such
cases, the networks tend to simply predict most voxels as belonging to the background
class. To deal with this problem, various loss functions have been proposed over the years.
These loss functions typically aim to solve the class imbalance problem by providing a
larger weight to foreground voxels. This translates to a higher penalty in the loss function
for foreground voxels that are misclassified by the network leading to the network being
able to learn the foreground object representation more effectively. One such loss function
which the authors of this paper have experimentally determined to be better suited for
the biomedical image delineation process is the Tversky loss function [50]. Specifically,
the Dice similarity coefficient (DSC) between P and G is defined as:

DSC =
2|P ∩ G|
|P|+ |G| (1)

where P and G are the predicted and ground truth labels. DSC measures the overlap
between P and G and is used as a loss function in many DL approaches. Nevertheless,
DSC is the harmonic mean of false positives and false negatives and weighs both equally.
To modify their weights, the Tversky index [51] was proposed as:

S(P, G; α β) =
|P ∩ G|

|P ∩ G|+ α|P\G|+ β|G\P| (2)
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α and β control the penalty magnitude of false positives and false negatives. Using this
index, the Tversky loss [50] is defined as:

T(α β) =
∑N

i=1 p0i g0i

∑N
i=1 p0i g0i + α ∑N

i=1 p0i g1i + β ∑N
i=1 p1i g0i

(3)

Additional information about the study design is shown in Figure 1.

 
Figure 1. Workflow of the proposed segmentation method.

Starting from 16 patients, the best learning rates for each network were determined
experimentally. We used a learning rate of 0.0001 for ENet, 0.00001 for ERFNet, and UNet
with Adam optimizer [52]. A batch size of eight slices, α and β of 0.3 and 0.7, respectively
for the Tversky loss function, were identified. All the models were allowed to train for a
maximum of 100 epochs with an automatic stopping criteria of ending training when the
loss did not decrease for 10 epochs continuously. The GEFORCE RTX 2080 Ti with 11GB of
RAM (NVIDIA) was used to train DL models and run inference. Table 2 and Figure 2 show
the feature representation learned from the first hidden layer in the ENet model.

 

Figure 2. Feature maps (None, 256, 256, 15) extracted from the first hidden layer in the ENet Model
for Patient #7 slice #20.
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3. Results

Sensitivity, positive predictive value (PPV), DSC, volume overlap error (VOE), and vol-
umetric difference (VD) were used for performance evaluation:

Sensitivity =
TP

TN + FN
(4)

PPV =
TP

TP + FN
(5)

DSC =
2TP

2TP + FP + FN
(6)

VOE = 1 − TP
TP + FP + FN

(7)

DSC =
2TP

2TP + FP + FN
DSC =

2|P ∩ G|
|P|+ |G| (8)

Table 3 shows the performance obtained using ENet, UNet, and ERFNet meth-
ods. In particular, ENet showed a mean DSC of 90.89 ± 3.87%, UNet of 90.14 ± 4.69%,
and ERFNet of 87.18 ± 6.44%.

Table 3. Performance segmentation using the ENet, UNet, and ERFNet methods.

Sensitivity PPV DSC VOE VD

ENet

Mean 93.06% 89.25% 90.89% 16.50% 4.53%

±std 6.37% 3.94% 3.87% 5.86% 9.43%

±CI (95%) 1.36% 0.84% 0.82% 1.24% 2.00%

UNet

Mean 88.89% 91.89% 90.14% 17.66% 3.16%

± std 7.61% 3.31% 4.69% 6.91% 9.36%

±CI (95%) 1.62% 0.70% 1.00% 1.47% 1.99%

ERFNet

Mean 89.93% 85.44% 87.18% 22.18% 5.70%

±std 10.92% 5.43% 6.44% 9.61% 14.72%

±CI (95%) 2.32% 1.16% 1.37% 2.04% 3.13%

Analysis of variance (ANOVA) based on DSC was calculated to test statistical differ-
ences (a p-value < 0.05 indicates a significant difference) between methods considering
all patients (n = 85). Table 4 shows how though ENet and UNet minimized the difference
between manual and automated segmentation.

Table 4. ANOVA on the DSC showed statistical differences between segmentation methods.

ANOVA F Value F Critic Value p-Value

ENet vs. ERFNet 20.70407668 3.897407169 0.000010236

ERFNet vs. UNet 11.69135829 3.897407169 0.000788084

ENet vs. UNet 1.301554482 3.897407169 0.255553164

Despite the fact that they were statistically identical, they were computationally
different. ENet is much faster than UNet. Specifically, Table 5 shows the comparison
of computational complexity and performance of the three models. As both ENet and
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ERFNet were developed for real-time applications, these are relatively smaller and faster
than UNet. As shown in the table, the ENet model has an order of magnitude with fewer
parameters than both ERFNet, and UNet while ERFNet has less than half the number
of parameters compared to UNet. Consequently, the size of trained ENet is only 6 MB
compared to 65 MB for the UNet model. To estimate the delineation time, we considered
one of the trained models during the k-fold strategy for all three architectures and then
computed the average. Using a fairly advanced GPU device (GEFORCE RTX 2080 Ti,
11 GB VRAM, 4352 CUDA Cores, NVIDIA), it takes only 1 s for ENet and about 1.5 s for
UNet to generate segmentation on a 3D dataset (average 40 slices of 512 × 512). However,
when GPU hardware is not available then computation needs to be done on the CPU.
In such a scenario, the size of a model can play a big role. On an AMD Ryzen 2950x
processor, ENet only takes about 6 s while UNet takes about 40 s to delineate a study.
Soon, this computational advantage of ENet may make it possible to use this model to
segment cases on simple hardware like IPads or smartphones for faster clinical workflow.
Finally, only the ENet model makes use of batch normalization layers, which have some
parameters which are not trained, that is, gradients are not back-propagated during the
training process.

Table 5. Computational complexity of the three models.

Model Name Number of Parameters Size on Disk Inference Times/Dataset

Trainable Non-Trainable CPU GPU

ENet 362,992 8352 5.8 MB 6.17 s 1.07 s

ERFNet 2,056,440 0 25.3 MB 8.59 s 1.03 s

UNet 5,403,874 0 65.0 MB 42.02 s 1.57 s

In Figure 3, we plot the training DSC and Tversky loss function for each DL network
for one fold. DSC and Tversky loss plots indicate that the ENet model converges much
faster than both ERFNet and UNet. ENet model reaches a DSC = 0.85 in less than 15 epochs.
Consequently, it is much faster to train a new ENet model compared to the other two if
more training data become available in the future. Another noticeable feature is that the
UNet training loss is much less compared to ENet and ERFNet, indicating the presence of
overfitting. It can be concluded that even though ENet and UNet models are not statistically
different, it may be advantageous to prefer ENet over UNet. Finally, 2D and 3D segmentation
examples of three patient studies are shown in Figures 4 and 5, respectively.

  
(a) (b) 

Figure 3. (a) Training DSC and (b) loss function Tversky loss plots for each of the three models for one fold.
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Figure 4. Comparison of segmentation performance for the three Net architectures in #7, #74, and #84
patients (four different slices for each patient). The manual segmentation (yellow), ENet (red),
ERFNet (blue), and U-Net (green) are superimposed.
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Figure 5. Comparison of 3D segmentation of prostate (patients #7, #74, and #84) for each column using the three Net
architectures. The manual segmentation (yellow), ENet (red), ERFNet (blue), and U-Net (green) are superimposed.

4. Discussion

In this paper, we investigate the prostatic region segmentation in MRI studies using
three different DL networks (namely UNet, ENet, and ERFNet). The aim is to reduce patient
mortality being only a part of prostate cancer that is clinically significant. An accurate and
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operator-independent segmentation process is needed to obtain a relevant texture-based
prediction model. So, the aim of this work was not only just to test the segmentation results
of the proposed models, but to evaluate if these models can yield a practical benefit in
obtaining accurate and reproducible results. The inclusion of DL models in radiomics
analyses will be reserved for a forthcoming paper. The first model considered in this study
was UNet, which has been adopted in several image delineation processes [45]. ENet [43],
and ERFNet [44] have been implemented for the segmentation process in self-driving cars,
and successfully used in lung and aorta segmentation tasks [48,49]. Specifically, they were
used for the segmentation of HRCT images characterized by a very high number of slices for
each study (about 600 and 450 slices for the lung and aorta studies, respectively). Authors
used 32 patients’ studies for the parenchyma extraction process [49], and 72 studies for
the aorta segmentation process [48]. In this study, only 85 studies were used considering
that each patients’ image dataset consists of about 40 slices. In addition, to our knowledge,
these DL models have never been applied to prostate segmentation before.

In general, a DL approach requires a multitude of labeled data for training and
validation purposes. For this reason, DL models are not widely used in clinical practice.
As already reported in the Introduction section, there is a need to develop DL networks
capable of obtaining accurate segmentations with few training examples. This issue is
addressed in some studies, that is, the one-shot learning approach [53], which eliminates the
need for iterative sample selection and annotation and the contrastive learning method [29]
for the automated diagnosis of COVID-19 with few samples for training. In our study,
we applied all three DL models to a small dataset of 85 studies provided with manual
prostate segmentation adopting (i) a data augmentation strategy to reduce overfitting,
(ii) a data standardization and normalization to prevent too large weights, to make the
model converge faster, and to avoid numerical instability, (iii) the five-fold cross-validation
strategy to obtain good results despite the few training examples, and (iv) the Tversky loss
function [50] to avoid to predict most voxels as belonging to the background class. In the
last case, starting from the consideration that DL methods suffer from the imbalanced data
problem because the target (i.e., the prostate) is very small compared to the background,
we provided a larger weight to target voxels to learn the foreground object representation
more effectively. Finally, we compared the obtained performances showing that accurate
and clinically acceptable prostate segmentations with few training examples were obtained
using indifferently the three DL models (DSC > 87%).

Specifically, results showed that ENet and UNet had better performance in minimizing
the difference between automated and manual segmentations than ERFNet. Substantially,
ENet and UNet were statistically identical but computationally different; ENet was much
faster than UNet (see Figure 3). Also, the training Tversky loss of the UNet was much
less compared to ENet. For these reasons, though UNet and ENet were not statistically
different, ENet seems to be the best solution. This could justify the time required to in-
clude DL networks in radiomics analyses by removing the user-dependence and achieving
accurate prostate segmentations (DSC = 90.89%) using a few training examples. In this
way, our model can be used to improve prognosis evaluation and prediction of patient
outcomes, allowing the personalization of patient management. However, the results
presented in this study derive from the performance of DL networks on proprietary imag-
ing datasets; for routine clinical application, it should be mandatory to test and validate
the proposed methods in multicenter studies and/or on a large set of publicly released
representative training data, such as PROMISE12 [42]. Moreover, in the present study,
we test DL networks for the whole prostate gland segmentation, with ENet demonstrating
the best performance; however, a main clinical goal is the segmentation of related prostatic
structures or substructures such as the prostatic zones (transition, central and peripheral),
neurovascular bundles or seminal vesicles. The performance of DL networks, especially
ENet, on this topic should play an essential role in many medical imaging and image anal-
ysis tasks such as cancer detection, patient management, and treatment planning including
surgical planning, and should be analyzed in future works. Automatic segmentation of
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the whole prostate gland and prostatic zone (transition, central and peripheral) without
inter-user variability will lead, in the future, to a correct localization of prostate cancer.
This result will increase the reliability of computer-aided design (CAD) algorithms which
will help automatically create PI-RADS zone maps to reduce inter-user variability among
clinicians when interpreting prostate MRI images. In this scenario, radiomics analysis
should be performed automatically providing information that can lead clinicians on the
management of patients with prostate cancer.

5. Conclusions

Our study demonstrates that faster and less computationally expensive DL networks
can perform accurate prostate delineation and could facilitate the adoption of novel imag-
ing parameters, through radiomics analyses, for prostatic oncologic diseases. Specifically,
we assessed the performance of three DL networks using data augmentation, standard-
ization, and normalization, and the five-fold cross-validation strategies, and the Tversky
loss function in a small dataset of 85 studies. All DL networks achieved accurate prostate
segmentations with a DSC > 87%. Nevertheless, differences related to training time and
data requirements were highlighted. ENet and ERFNet, developed for self-driving cars,
were much faster than UNet. In addition, ENet had better performance (DSC = 90.89%)
than ERFNet (DSC = 87.18%). Future studies with more patients could improve the results.
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Abstract: Estimation of the prostate volume with ultrasound offers many advantages such as porta-
bility, low cost, harmlessness, and suitability for real-time operation. Abdominal Ultrasound (AUS)
is a practical procedure that deserves more attention in automated prostate-volume-estimation
studies. As the experts usually consider automatic end-to-end volume-estimation procedures as
non-transparent and uninterpretable systems, we proposed an expert-in-the-loop automatic system
that follows the classical prostate-volume-estimation procedures. Our system directly estimates the
diameter parameters of the standard ellipsoid formula to produce the prostate volume. To obtain
the diameters, our system detects four diameter endpoints from the transverse and two diameter
endpoints from the sagittal AUS images as defined by the classical procedure. These endpoints are
estimated using a new image-patch voting method to address characteristic problems of AUS images.
We formed a novel prostate AUS data set from 305 patients with both transverse and sagittal planes.
The data set includes MRI images for 75 of these patients. At least one expert manually marked all
the data. Extensive experiments performed on this data set showed that the proposed system results
ranged among experts’ volume estimations, and our system can be used in clinical practice.

Keywords: computer-aided diagnosis; medical-image analysis; automated prostate-volume estimation;
abdominal ultrasound images; image-patch voting

1. Introduction

Prostate volume is a crucial parameter in many clinical practices. It plays an essential
role in the diagnosis of benign prostatic hyperplasia (BPH) [1]. BPH is a widespread
prostatic disease that affects most aged men [2]. Clinicians use prostate volume while
managing lower urinary tract symptoms (LUTS) [3]. Another critical area for prostate
volume is the calculation of the Prostate-Specific Antigen Density (PSAD) value to detect
and manage prostate cancer (PCa) [4]. PCa was the second most prevalent cancer for the
year 2020 and the most prevalent cancer for the last five years among men [5]. PSAD plays a
role as one of the criteria for active surveillance decisions in clinical practice [6]. Combining
PSAD with other scores may help to decide biopsies [7].

There are many medical-imaging technologies to estimate prostate volume. Widely
used technologies are Magnetic Resonance Imaging (MRI), Computed Tomography (CT),
and Ultrasound (US) [8]. US technology differs from others with its portability, low-
cost, and harmlessness, and it allows experts to scan the prostate in real-time [9]. Trans
Rectal Ultrasound (TRUS) and Abdominal Ultrasound (AUS) technologies are frequently
used in prostate applications. As shown in Figure 1, despite its better imaging quality
with a higher Signal-to-Noise Ratio (SNR) and a larger view of the prostate with no
other anatomic structures, TRUS technology is difficult to use regularly during successive
radiotherapy sequences [10] due to patient discomfort [11]. The AUS technique is an easy-
to-use alternative US imaging technology and is often used where TRUS is not practical.

Conventionally, a prostate-volume measurement is done manually on medical images
by experts. Manual volume estimation results in high intra-expert and inter-expert differ-
ence due to factors caused by imaging quality, personal experience, and human error [12],
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which suggests that the guidance of experts by automatic systems would be beneficial.
Automated prostate-volume-estimation systems are also essential to reduce the time spent
while measuring the prostate volume.

Figure 1. Comparison of AUS and TRUS images of the prostate from transverse plane. While AUS
images have lower SNR and contain other anatomical structures, TRUS images have higher SNR,
and the prostate is the only anatomical structure contained.

Segmentation and contour extraction methods are used in many studies to infer the
prostate volume. However, when AUS images are considered in problems such as low
SNR, artifacts and incomplete contours challenge even the state-of-the-art deep-learning
techniques. That makes AUS imaging a rarely studied method for automatic prostate-
volume measurement systems. This study aimed to demonstrate that an AUS-based
automated system for measuring the prostate volume can be an alternative to TRUS, MRI,
or CT-based systems.

In our study, we developed a method for estimating prostate volume by following the
steps of the standard ellipsoid volume formula, which is not easily applicable in an end-to-
end automated system. Our system gives both intermediate and final results, allowing both
manual intervention and fully automated employment. To measure prostate volume, we
estimated the three major diameters of the ellipsoid representing the prostate. Estimation of
diameters was made by detecting four points from transverse and two points from sagittal
AUS images. We call these points diameter endpoints. To overcome the characteristic
problems of AUS images, we developed a voting-based method to detect points where
various locations vote for distance and orientation values relative to each diameter endpoint.
We designed a novel network model to carry out the voting process.

We were unable to compare our volume-estimation results with other studies as almost
no other studies are available to estimate prostate volume from AUS images. Instead, we
evaluated the difference in intra- and inter-expert volume estimates on AUS images and
compared these values with our system estimates. Due to the higher SNR values and better
image quality compared (Figure 2) to both AUS and TRUS images (Figure 1), MR image
annotations are considered the gold standard [13] in prostate applications. Accordingly, we
also evaluated the intra- and inter-expert volume estimation difference in MR images and
compared these values with our system’s volume estimations and expert estimations on
AUS images. The results show that our system achieved the volume estimate difference
values of human experts.

Our novel data set consists of both transverse and sagittal AUS samples from 305 pa-
tients. Of these patients, 75 had corresponding MR images from both the transverse and
sagittal planes. These AUS and MR images were annotated by several experts during medi-
cal treatments. Two experts marked 251 AUS and 73 MR samples at two marking sessions
in our experiments. As one of the contributions of our work, this data set is opened to the
academic community. We expect this data set to be particularly useful, as, to our knowledge,
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there is no AUS data set with corresponding MR markings. Supplementary material for
this study is added to https://github.com/nurbalbayrak/prostate_volume_estimation
(accessed on 23 January 2022).

Figure 2. The prostate contours in transverse and sagittal MR images. Due to its high SNR values,
MR is accepted as the gold standard in medical image-analysis studies of the prostate.

The rest of this article is organized as follows: Previous work on prostate-segmentation
methods on US images is briefly given in Section 2. The proposed method on prostate
volume estimation is explained in Section 3. Experiments and results are given in Section 4.
The final conclusions and discussions are presented in Section 5.

2. Previous Work

We first briefly review prostate-segmentation methods on US images, as automated
prostate volume estimation is primarily performed using segmentation methods. In general,
almost all prostate-segmentation studies in the US modality have been performed on TRUS
images. To our knowledge, there had been only one study available [10] on AUS images
apart from our previous work [14,15]. Therefore, this section will also be a review of
prostate segmentation on TRUS images.

Early work on prostate segmentation began with edge-based methods, which often
use filters to extract edges from medical images. However, low SNR values in US images
caused broken edges, and these algorithms needed to be supported by texture information.
Liu et al. [16] used the Radial Bas-Relief (RBR) technique to outline the prostate border.
Kwoh et al. [17] used the harmonic method, which eliminates noise and encodes a smooth
boundary. Aarnink et al. [18] used the local standard deviation to determine varying homo-
geneous regions to detect edges. A three-stage method was applied by Pathak et al. [19].
To reduce speckle noise, they first applied a stick filter, then the image was smoothed using
an anisotropic diffusion filter, and in the third step, preliminary information such as the
shape and the echo model were used. A final step was the manual attachment of the edges,
integrating patient-specific anatomical information.

Deformable models were also used in US prostate-segmentation studies and overcame
the broken boundary problems in edge-based methods. Deformable models provide a com-
plete contour of the prostate and try to preserve the shape information by internal forces while
being placed in the best position representing the prostate border of the image by external
forces. Knoll et al. [20] suggested using localized multiscale contour parameterization based
on 1D dyadic wavelet transform for elastic deformation constraint to particular object shapes.
Ladak et al. [21] required manual initialization of four points from the contour. The estimated
contour was then automatically deformed to fit the image better. Ghanei et al. [22] used
a 3D deformable model where internal forces were based on local curvature and external
forces were based on volumetric data by applying an appropriate edge filter. Shen et al. [23]
represented the prostate border using Gabor filter banks to characterize it in a multiscale and
multi-orientation fashion. A 3D deformable model was proposed by Hu et al. [24] initialized
by considering six manually selected points.
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A texture matching-based deformable model for 3D TRUS images was proposed by
Zhan et al. [25]. This method used Gabor Support Vector Machines (G-SVMS) on the model
surface to capture texture priors for prostate and non-prostate tissues differentiation.

Region-based methods focused on the intensity distributions of the prostate region.
Graph-partition algorithms and region-based level sets were used in prostate-segmentation
algorithms to overcome the absence of the strong edges problem. A region-based level-set
method was used by Fan et al. [26] after a fast-discriminative approach. Zougi et al. [27]
used a graph partition scheme where the graph was built with nodes and edges. Nodes
were the pixels, and horizontal edges that connect these nodes represented edge-discontinuity
penalties.

In classifier-based methods, a feature vector was created for each object (pixels, regions,
etc.). A training set was built by assigning each object a class label with supervision.
The classifier was trained with the training set and learned to assign a class label to
an unseen object. Yang et al. [28] used Gabor filter banks to extract texture features
from registered longitudinal images of the same subject. Patient-specific Gabor features
were used to train kernel support vector machines and segment newly acquired TRUS
images. Akbari et al. [29] trained a set of wavelet support vector machines to adaptively
capture features of the US images to differentiate the prostate and non-prostate tissue.
The intensity profiles around the boundary were compared to the prostate model. The
segmented prostate was updated and compared to the shape model until convergence.
Ghose et al. [30] built multiple mean parametric models derived from principal component
analysis of shape and posterior probabilities in a multi-resolution framework.

With the development of deep-learning methods, feature-extraction tasks moved from
the human side to the algorithm side. This allowed experts in many areas to use deep
learning for their studies. Yang et al. [31] formulated the prostate boundary sequentially
and explored sequential clues using RNNs to learn the shape knowledge. Lei et al. [32]
used a 3D deeply supervised V-Net to deal with the optimization difficulties when training
a deep network with limited training data. Karimi et al. [33] trained a CNN ensemble
that uses the disagreement among this ensemble to identify uncertain segmentations to
estimate a segmentation-uncertainty map. Then uncertain segmentations were improved
by utilizing the prior shape information. Wang et al. [34] used attention modules to exploit
the complementary information encoded in different layers of CNN. This mechanism
suppressed the non-prostate noise at shallow layers and increased more prostate details
into features at deep layers of the CNN. Orlando et al. [35] modified the expansion section
of the standard U-Net to reduce over-fitting and improve performance.

In our previous work, [14], we implemented a part-based approach to detect the
prostate and its bounding box. The system was built on a deformable model of the prostate
and adjacent structures. In another previous work, [15], we used concatenated image
patches at different scales and trained a model with a single network. There was a voting
process for the whole prostate boundary and layers parallel to the boundary. In this
study, we extended our previous work to use a new patch mechanism with a new model.
Additionally, we have MR annotations corresponding to AUS samples in our experiments,
which will be used for comparison with golden volume standard.

Fully automated radiology measurement systems are a topic of discussion in health-
care. Most of these systems are designed in an end-to-end fashion [36,37] that complicates
the expert-in-the-loop solutions that are more compatible with experts’ normal workflow.
Clinicians often need to know how outputs are produced to trust the system [38]. It is
not easy to examine the results of end-to-end systems because they are too complex to
be understood and explained by many [39]. The operation of these systems should be
transparent so that they can be explained and interpreted by experts [40]. The combination
of artificial and human intelligence in medical analysis would outperform the analysis of
fully automated systems or humans [41], while being faster than traditional systems [42].
Our model addresses these issues by following the classical prostate-volume-estimation

24



Appl. Sci. 2022, 12, 1390

process. The resulting system yields intermediate results that allow manual intervention
and are explainable for experts. It also produces final results allowing fully automatic use.

3. Proposed Method

Our study aimed to automate the widely used manual prostate-volume-approximation
method that uses the standard ellipsoid volume formula,

V(W, H, L) = W.H.L.π/6, (1)

where W, H, and L are the width, the height, and the length of the ellipsoid, respectively.
The proposed system detects four diameter endpoints from transverse and two from sagittal
planes. These locations provide the ellipsoid diameters to obtain W, H, and L values to
estimate the prostate volume. We propose an image-patch voting method in which image
patches from different locations vote for diameter endpoints.

In this section, we will first talk about the patching process, then we will explain the
learning model and the training phase. Finally, we will explain prostate volume inference
by patch voting.

3.1. Patch Extraction

To overcome the characteristic problems of AUS images, we developed an image-patch
voting system. Patch-based voting is also useful for augmenting training data. Image-patch
voting makes our system robust to noise and prevents it from being affected by unrelated
anatomical structures such as the bladder (see Figure 1) by generating a joint solution to the
decisions made for patches of many different locations and scales. However, a patch-based
system can only extract local information, which may be insufficient for AUS images due
to their low SNR values. Therefore, we propose to create multiple patches of different sizes
with matching centers to extract information from different scales. As shown in Figure 3,
we decided to use four concentric patches, which we call quadruplet patches. The sizes
of the patches in our system were 64 × 64, 128 × 128, 256 × 256 and 512 × 512 pixels. All
patches were downsized to 64 × 64 pixels, except for the smallest scale, which was already
64× 64 pixels. The resulting quadruplet patches cast votes for the endpoints of the ellipsoid
diameters. For the voting process, we trained a novel neural model explained in Section 3.2.

Figure 3. Patch-extraction process. For a given image location Tj(x, y) of patient j, patches from
four different scales centering (x, y) were extracted. All of them were downsized to the smallest scale,
and the quadruplet patch PQ(Tj(x, y)) was obtained.

The locations of the training patches were chosen randomly from a normal distribution
around diameter endpoints, while evenly spaced patches were created from test images in a
sliding window manner with a stride of 10 pixels. The system extracts 200 patches from each
transverse and sagittal image of the training set, which can be considered as an augmentation
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method that increases size of the training data set. The number of patches extracted from test
images changes according to the image size. Sample training patch locations are represented
on Figure 4a,b, and test patch locations are represented on Figure 4c,d.

Figure 4. Patch centers are represented on AUS images. Expert marks are shown in green, while
patch centers are shown in red. (a) Random sample training patch centers on a transverse image.
(b) Random sample training patch centers on a sagittal image. (c) Sample test patch centers on a
transverse image. (d) Sample test patch centers on a sagittal image.

3.2. Quadruplet Network

The quadruplet patches described in the previous section vote to estimate diameter
endpoints through a network we refer to as Quadruplet Deep Convolutional Neural
Network (QDCNN), whose structure is shown in Figure 5. QDCNN comprises four ResNet-
18 DCNNs with a joint classification layer and a joint loss. Other types of quadruplet
networks are very popular in re-identification or similarity learning studies [43], which are
trained with four images where two of them are from the same class, and the others are
from different classes. Pairs are learned as positive or negative depending on whether they
are in the same or different classes. A quadruplet loss is calculated in this way to achieve
greater inter-class and less intra-class variation while identifying images. Differently, in
our study, each quadruplet patch obtained at different scales is the input of each of the
quadruplet networks with a joint classification layer and a joint loss. The first 16 shared
layers of these networks were taken as pretrained from the PyTorch/vision library [44] and
frozen, and only the last two layers were fine-tuned during the training process. Thanks to
this design, QDCNN can retrieve scale-specific information from each scale.

Figure 5. The QDCNN structure is composed of 4 DCNNs with a joint classification layer and a joint
loss. The number of outputs k is 8 for transverse and 4 for sagittal images.
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Our quadruplet network is actually a multi-task classifier that learns to predict the
distance and orientation classes relative to each diameter endpoint for a given quadruplet
patch of a location. Figure 6 shows the calculation of distance and orientation class values.
The distance values between 0 and 1000 pixels are quantized into 10 classes, and the 11th
class is for values greater than 1000. The intervals for distance classes are smaller for small
distance values, and they get larger for larger distances. Orientation values [0, 2Π] were
quantized into eight equal classes.

Consider the jth patient with a transverse image Tj with diameter endpoints e1, e2, e3, e4 and
a sagittal image Sj with diameter endpoints e5 and e6, where ei ∈ R2. For a given point Tj(x, y)
on the transverse image of the patient j, four equal-size patches P1(Tj(x, y)), P2(Tj(x, y)),
P3(Tj(x, y)), and P4(Tj(x, y)) of different scales were created that composed a quadruplet
patch PQ(Tj(x, y)) of the transverse image. Quadruplet patch PQ(Sj(x, y)) was created
similarly for the sagittal image.

Figure 6. Measurement of the distance (a) and the orientation (b) class values for a given quadruplet
patch PQ(Tj(x, y)). For a sample point Tj(x, y) on a transverse image where four diameter end
points (e1, e2, e3, e4) exist, classes for eight different tasks are predicted.

Due to the different structures of transverse and sagittal planes, our system trains
two different QDCNN classifiers with a different number of outputs. We defined two
functions cd and co to obtain distance (cd) and orientation (co) classes, respectively. For
a given point Tj(x, y) on a given transverse image Tj, cdj

i(x, y) = cd(Tj(x, y), ei), and

coj
i(x, y) = co(Tj(x, y), ei) where i = 1, . . . , 4. Similarly, for a given point Sj(x, y) on a

given sagittal image Sj, cdj
i(x, y) = cd(Sj(x, y), ei), and coj

i(x, y) = co(Sj(x, y), ei) where
i = 5, 6. In other words, the QDCNN classifier for the transverse plane (QDCNNT) has
eight classification tasks, and the QDCNN classifier for the sagittal plane (QDCNNS) has
four classification tasks.

In the training phase, for each AUS image from transverse or sagittal planes, quadru-
plet patches are extracted from normally distributed random locations around diameter
endpoints. Figure 7 demonstrates this process for transverse training images where n
quadruplet patches PQ(Tj(x1, y1)), . . . , PQ(Tj(xn, yn)) were extracted from each of the
m transverse training images T1, . . . , Tm. Then, these quadruplet patches were fed to the
QDCNNT for the training process. A similar procedure was followed for the training of
the QDCNNS classifier.
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Figure 7. The training process on m transverse images T1, . . . , Tm. Around the diameter endpoints
of each m training image, n quadruplet patches (PQ(T1(x1, y1))), . . . , (PQ(Tm(xmxn, ymxn))) were
extracted randomly. The transverse model QDCNNT was trained to predict eight classes where eight
is the number_o f _tasks × number_o f _diameter_end_points.

3.3. Prostate Volume Inference through Patch Voting

Each quadruplet patch votes for each of the ellipsoid diameter endpoints at the voting
space that has the same resolution as the input image. Each quadruplet patch goes through
QDCNNT or QDCNNS classifier networks (depending on whether it is extracted from
a transverse or sagittal image) to produce cd and co values. The actual voting happens
along a circular arc where the arc center is the patch center. The arc radius is given by cd
and the arc center angle by co. The arc thickness and length are determined by the median
and range of the distance and orientation class intervals. This way, a voting map for each
diameter endpoint of a given sample is created whose peak gives the location estimation of
the diameter endpoint.

Figure 8 shows an example for the voting maps, arcs, and detected diameter endpoints.
In Figure 8a, the arcs are drawn in red with the detected diameter endpoints in green. This
sample image does not show the thickness to represent the locations of the arcs better.
Figure 8b shows the detected points with red dots, while the manually annotated points
are shown with green dots. Figure 8c shows the voting maps of each diameter endpoint. A
Gaussian smoothing filter convolves these maps to suppress the noise in these images.

In the test phase, for the transverse Tj and the sagittal Sj images of a given unseen
patient j, evenly spaced locations vote for the distance and the orientation class values in a
sliding window manner. A quadruplet patch was extracted for each voting location where
the quadruplet patch centers the location. The voting process proceeds by the classification
of the quadruplet patches by the corresponding QDCNN. Figure 9 exemplifies the voting
mechanism on an unseen transverse image Tj. For each location (x, y), a quadruplet patch
PQ(Tj(x, y)) was extracted and given as input to the trained QDCNNT classifier to produce
eight outputs, which are interpreted as cd–co pairs for each of the four endpoints. The final
locations of the diameter endpoints were determined as the peaks of the corresponding
voting maps. After obtaining the endpoints for the sagittal image Sj similarly, the standard
ellipsoid formula was used to estimate the volume.
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Figure 8. For a given transverse image, (a) shows the voting arcs (without thickness); (b) shows
the detected points (reds are expert marked locations, while greens are the detected locations of the
diameter end points); and (c) shows the voting maps for e1, e2, e3, and e4 endpoints.

Figure 9. Creation of the voting maps for a given location Tj(x, y) on a transverse image Tj.

4. Experiments and Results

In this section, firstly, we will talk about our data set, then we will explain our
experiments and give results.

4.1. Data Set and Manual Annotations on AUS and MR Images

Our data set consisted of 305 AUS patient samples with transverse and sagittal images.
Of these samples, 75 also had corresponding MR images from transverse and sagittal planes.
Manual annotations of these AUS and MR images were done during medical treatments
by several experts. The AUS annotations were used to train and test our system, and MR
annotations were used as the gold standard.

Of these 305 AUS and 75 MR images, 251 AUS and 73 MR images were annotated
by two different experts (exp1 and exp2) at two different marking sessions (mark1 and
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mark2) within our experiments. These annotations were used to obtain intra-expert and
inter-expert volume-estimation differences and to compare expert estimations with our
system’s estimations. We defined functions DW(M(Tj)), DH(M(Tj)), and DL(M(Sj)) as
the diameters of the width, the height, and the length of the ellipsoid, respectively. M
represents the measurement by the experts or the computer. Tj represents transverse and
Sj represents sagittal images for the patient j. We calculated the Mean Absolute Value
Difference (MAVD) between two different measurements M1 and M2 as

MAVD(M1, M2) =
1
N

N

∑
j=1

∣∣∣Vj
1 − Vj

2

∣∣∣, (2)

where

Vj
k=1,2 = V(DW(Mk(Tj)), DH(Mk(Tj)), DL(Mk(Sj)))

and V is defined in Equation (1). N = 251 when both of the measurements are from AUS
images, and N = 73 when at least one of the measurements is from a MR image. The
top eight rows of Table 1 show intra-expert and inter-expert MAVD values of manual
prostate-volume-estimations from AUS and MR images. The respective standard deviation
values are shown in Table 2. The column and the row headings of the top part are defined
as ITk

e and represent the modality or the image type (IT = AUS, MR), the expert ID
(e = exp1, exp2), and the annotation session ID (k = mark1, mark2).

Table 1. Top part shows intra-expert and inter-expert MAVD values in cm3 for AUS and MR
modalities and is symmetrical. The MAVD values between experts, our QDCNN system, and the
baseline is shown in the bottom part. Green shows the smallest (best), and red shows the highest
MAVD. See the text for the explanation of the column and row headings.

MEAN AUSmark1
exp1 AUSmark2

exp1 AUSmark1
exp2 AUSmark2

exp2 MRmark1
exp1 MRmark2

exp1 MRmark1
exp2 MRmark2

exp2

AUSmark1
exp1 3.46 5.19 5.44 7.70 7.20 6.36 7.12

AUSmark2
exp1 3.46 4.76 4.89 8.67 7.96 6.43 7.06

AUSmark1
exp2 5.19 4.76 4.01 9.53 9.08 7.15 8.05

AUSmark2
exp2 5.44 4.89 4.01 9.68 9.26 6.93 7.38

MRmark1
exp1 7.70 8.67 9.53 9.68 2.63 4.96 5.48

MRmark2
exp1 7.20 7.96 9.08 9.26 2.63 4.79 4.92

MRmark1
exp2 6.36 6.43 7.15 6.93 4.96 4.79 3.00

MRmark2
exp2 7.12 7.06 8.05 7.38 5.48 4.92 3.00

AUSQN 4.86 4.52 5.08 5.37 7.10 6.55 5.37 5.86
AUSBL 6.62 6.13 5.79 6.46 7.92 7.27 5.97 5.77

Table 2. The corresponding SDAVD values of Table 1.

MEAN AUSmark1
exp1 AUSmark2

exp1 AUSmark1
exp2 AUSmark2

exp2 MRmark1
exp1 MRmark2

exp1 MRmark1
exp2 MRmark2

exp2

AUSmark1
exp1 3.67 5.38 8.35 6.97 6.29 5.32 5.33

AUSmark2
exp1 3.67 5.03 7.70 8.05 7.21 5.88 5.75

AUSmark1
exp2 5.38 5.03 7.56 10.51 9.68 7.49 6.73

AUSmark2
exp2 8.35 7.70 7.56 10.68 9.71 6.92 6.50

MRmark1
exp1 6.97 8.05 10.51 10.68 2.63 6.01 5.92

MRmark2
exp1 6.29 7.21 9.68 9.71 2.63 4.83 5.16

MRmark1
exp2 5.32 5.88 7.49 6.92 6.01 4.83 2.60

MRmark2
exp2 5.33 5.75 6.73 6.50 5.92 5.16 2.60

AUSQN 5.70 5.05 5.46 8.12 9.15 7.88 6.51 5.25
AUSBL 7.46 7.12 5.98 8.90 11.17 10.07 7.36 7.09
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Table 1 shows that the average intra-expert MAVD values for MR images was 2.81
( 2.63+3.00

2 ) cm3, while it was 3.73 ( 3.46+4.01
2 ) cm3 for AUS images. These results show that

human experts’ volume estimations can vary at different marking sessions, even for the
MR modality, which is the gold standard. It is expectedly normal that there is a greater
intra-expert MAVD for the AUS modality due to lower SNR values and other image-
quality problems.

The average intra-expert MAVD was 7.63 ( 7.70+7.20+8.67+7.96+7.15+8.05+6.93+7.38
8 ) cm3

between the modalities MR and AUS. Considering MR annotations as the gold standard,
we can see that manual AUS annotations cause greater MAVD values.

When examining inter-expert MAVD values, we encountered greater values for both
intra-modality and inter-modality comparisons. As shown in Table 1, we obtained aver-
age values of 5.03 (4.96+5.48+4.79+4.92

4 ) and 5.07 (5.19+5.44+4.76+4.89
4 ) cm3 inter-expert MAVD

for MR-MR and AUS-AUS comparisons, respectively. That shows us that manual annota-
tions by different experts cause greater MAVD for both MR and AUS modalities. When
we considered different modalities for inter-expert MAVD, we obtained an average of 8.06
( 6.36+7.12+6.43+7.06+9.53+9.08+9.68+9.26

8 ) cm3 value from which we inferred that manual annota-
tions have a high MAVD between AUS images and the gold standard.

The comparison of the manually marked images shows that there is always a difference
between different experts. Similarly, the same expert will mark different positions at
different marking sessions. As a result, besides other benefits mentioned before, the
guidance of the automated system is expected to enhance the consistency and the stability
of the volume-estimation results by the experts. The following section shows our system’s
guidance ability, comparing the system and the expert volume estimations.

4.2. Comparison of the Experts, Baseline, and the QDCNN Results

We evaluated our system by 10-fold cross-validation on our data of 305 AUS images. To
eliminate any scale differences between images, we re-sampled each image to a 40 pixel/cm
scale using the pixel sizes that are always available from the US device.

The second row from the bottom of Table 1 (AUSQN) shows the MAVD values be-
tween our QDCNN system and the experts. Comparing our system volume estimations
with expert volume estimations on AUS images, we obtained a 4.95 ( 4.86+4.52+5.08+5.37

4 )
cm3 average MAVD value, which is smaller than the average inter-expert MAVD value
(5.09 cm3) on AUS images. Overall, we can see that our system’s volume estimations rank
among inter-expert comparisons on AUS images. Table 2 shows the Standard Deviation of
Absolute Value Difference (SDAVD) values, respectively. We observe from this table that
generally for small absolute-value differences, we see smaller standard deviation values for
both manual and automated measurements. In other words, our system’s estimations can
be considered as stable as the manual estimations.

To evaluate our system’s volume estimations with respect to the gold standard, we
compared our system’s volume estimations with expert volume estimations on MR images
and obtained 6.22 ( 7.10+6.55+5.37+5.86

4 ) cm3 average MAVD, which is less than both the intra-
expert (7.63 cm3) and inter-expert (8.06 cm3) average MAVD between different modalities
(AUS versus MR). We can conclude that experts could possibly produce more consistent
and accurate volume estimations under the guidance of our system than the complete
manual-annotation method.

In order to compare our system’s performance against the more traditional deep-
learning systems, we implemented a baseline system that accepts 300 × 600 pixels AUS
images as input and produces the diameter endpoint location estimations as the output. We
modified state-of-the-art DenseNet121 [45] to produce the endpoint locations. The baseline
system differs from our QDCNN with its single-network non-voting structure. The training
data set for the baseline system was augmented by random cropping. The comparison
between our system and the baseline model shows the advantages of our image-patch
voting numerically, which is demonstrated by Table 1’s last row (AUSBL). We obtained an
average of 6.73 ( 7.92+7.27+5.97+5.77

4 ) cm3 MAVD between the baseline system and experts
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on MR images. Similarly, an average of 6.25 ( 6.62+6.13+5.79+6.46
4 ) cm3 MAVD was observed

between the baseline system and experts on AUS images. Comparing these MAVD values
with the values of our system, one can conclude that the image-patch voting technique
improves the overall results.

4.3. Ablation Study

We performed an ablation experiment with a subset of our data set. Instead of using all
four patch scales, we used patches with pixel sizes (64× 64) and (128× 128). For each patch
size, we trained a ResNet-18 network for the transverse and another one for the sagittal
plane. In addition, we trained a Twin Deep Convolutional Neural Network (TDCNN) for
the transverse and another one for the sagittal plane. A TDCNN is similar to the QDCNN
but contains two DCNNs and gets two patches as inputs with sizes (64× 64) and (128× 128)
pixels. The model outputs were the cd and the co values for each endpoint.

The patch sizes we used for the ablation study were smaller than the prostate sizes in
our data set. Thus, these patch sizes allow us to observe the effect of the quadruplet patch
structure, which consists of patches both smaller and larger than the prostate.

We compared the volume estimations of these individual ResNet-18 networks and
TDCNN with the volume estimations of experts on AUS images. The average MAVD
between experts and these models were 13.5 cm3 for the 64 × 64 ResNet-18 network,
11.4 cm3 for the 128 × 128 ResNet-18 network, and 8.92 cm3 for the TDCNN. Figure 10
shows a bar chart where each group of bars show MAVD values between two different
markings of two experts and a model. The first three models are the models of the ablation
study. The fourth model is the baseline model, and the last model is the model of the
proposed system. The proposed system, QDCNN, has the best MAVD values, which shows
the effect of the quadruplet patches and the quadruplet model. TDCNN has better MAVD
values than single networks, but it cannot achieve the MAVD values of the baseline system.
These MAVD values of the TDCNN show us that using patches only smaller than the
prostate is not enough to obtain results ranging among experts.

Figure 10. MAVD values between five models and the markings of two experts on AUS images at
two different times.

Feature extraction is one of the usage areas of convolutional neural networks [46]. It is
known that good deep classifiers can also be used as good feature extractors because good
classification results can only come from good features. Thus, we examined the feature-
extraction ability of the proposed QDCNN by visualizing the outputs of the last layer before
the classification layer of our network as a feature vector. We visualized the feature vectors
of the distance tasks for the QDCNN, the individual 64 × 64 ResNet-18, and the individual
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128 × 128 ResNet-18. We used t-SNE graphs [47] for 2D visualization, and Figure 11 shows
two examples of distance tasks for each network. Each color represents a distance class,
and each colored point represents a feature vector. The color charts in each graph shows
colors associated with class numbers. Smaller numbers show shorter distances, while larger
numbers show longer distances. We observed that the class values, especially for the small
distances, are nicely separated and grouped together for the quadruplet network. The same
grouping cannot be observed for the single-scale networks. These visual results indicate
the quality of the features extracted by our network.

Figure 11. Examples of t-SNE graphs of the feature vectors from the QDCNN, the 64 × 64 pixels
ResNet-18, and the 128 × 128 pixels ResNet-18 for the distance tasks.

5. Conclusions

Radiologists often desire computerized radiology systems with an expert-in-the-loop
structure in their everyday workflow, but the popular end-to-end systems are difficult to
adapt for such employment. We proposed an image-patch voting system to automate the
commonly used ellipsoid formula-based prostate-volume-estimation method. Experts can
see the detected endpoints of the ellipsoid diameters and change the endpoint positions if
necessary, providing explainability and confidence in the final measurement results. We
verified the effectiveness of the image-patch voting method against a common baseline model.

Since some of our sample patients had both AUS and MR images, we had the chance
to compare our system’s AUS volume estimations with the gold standard. By comparing
both our system and experts to the gold standard, we showed that our system’s volume
estimations fall within the expert estimations. The markings made by two experts in two
different marking sessions showed unignorable intra-expert and inter-expert MAVD values
in the estimations made on both the same and different modalities. On the other hand,
the MAVD values of our system, which were less than inter-expert MAVD values on AUS
images and intra- and inter-expert MAVD values on different modalities, indicate the good
level of guidance ability of the proposed method. Our system can help to enhance expert
volume estimations’ stability and consistency.

The new data set we created is valuable for further work on AUS images in automated
medical-image analysis. To our knowledge, the data set is the first to include expert
markings on both AUS and MR images of sample patients in two different marking sessions.
Supplementary material, including the data set, the expert markings, and the project code, is

33



Appl. Sci. 2022, 12, 1390

available for public use at https://github.com/nurbalbayrak/prostate_volume_estimation
(accessed on 23 January 2022).

Future work might apply the proposed model and patch structure to other modalities.
Hybrid modalities [48] might be a good supply of data for a multi-patch system like the
proposed one. Statistical analysis might be done to test statistical MAVD differences among
different groups.
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Featured Application: This study proposes fast and innovative deep learning networks for auto-

matic retroperitoneal sarcoma segmentation in computerized tomography images.

Abstract: The volume estimation of retroperitoneal sarcoma (RPS) is often difficult due to its huge di-
mensions and irregular shape; thus, it often requires manual segmentation, which is time-consuming
and operator-dependent. This study aimed to evaluate two fully automated deep learning networks
(ENet and ERFNet) for RPS segmentation. This retrospective study included 20 patients with RPS
who received an abdominal computed tomography (CT) examination. Forty-nine CT examinations,
with a total of 72 lesions, were included. Manual segmentation was performed by two radiologists
in consensus, and automatic segmentation was performed using ENet and ERFNet. Significant
differences between manual and automatic segmentation were tested using the analysis of variance
(ANOVA). A set of performance indicators for the shape comparison (namely sensitivity), positive
predictive value (PPV), dice similarity coefficient (DSC), volume overlap error (VOE), and volumetric
differences (VD) were calculated. There were no significant differences found between the RPS
volumes obtained using manual segmentation and ENet (p-value = 0.935), manual segmentation and
ERFNet (p-value = 0.544), or ENet and ERFNet (p-value = 0.119). The sensitivity, PPV, DSC, VOE, and
VD for ENet and ERFNet were 91.54% and 72.21%, 89.85% and 87.00%, 90.52% and 74.85%, 16.87%
and 36.85%, and 2.11% and −14.80%, respectively. By using a dedicated GPU, ENet took around
15 s for segmentation versus 13 s for ERFNet. In the case of CPU, ENet took around 2 min versus
1 min for ERFNet. The manual approach required approximately one hour per segmentation. In
conclusion, fully automatic deep learning networks are reliable methods for RPS volume assessment.
ENet performs better than ERFNet for automatic segmentation, though it requires more time.

Keywords: deep learning; soft tissue sarcoma; volume estimation; segmentation; artificial intelligence
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1. Introduction

Soft tissue sarcomas are rare, malignant mesenchymal neoplasms that account for
less than 1% of all malignant tumors. Of all sarcomas, the majority occur outside of the
retroperitoneum, while around 10% of all sarcomas occur in the retroperitoneum [1], with a
mean annual incidence of 2.7 per million [2]. The prognosis for patients with retroperitoneal
sarcoma (RPS) is relatively poor, with a 36% to 58% overall 5-year survival rate and a natural
history characterized by late recurrence [3]. RPS are frequently underdiagnosed at the early
stage, and symptoms appear late, as they are associated with the displacement of adjacent
organs and obstructive phenomena. When present, symptoms include abdominal pain,
back pain, bowel obstruction, or palpable abdominal mass [1].

A variety of imaging techniques, including computed tomography (CT), positron
emission tomography-computed tomography (PET/CT), and magnetic resonance imaging
(MRI), may be used to assess RPS. Among them, CT is the most commonly used modality
for the identification, localization, and staging of RPS [4]. CT examination allows for tissue
components characterization and offers multiplanar reconstructions to easily depict the
anatomic site of the origin of a mass, as well as its relationship to adjacent organs and
vasculature [5].

RPS is one of the largest tumors of the human body [6]: lesions with a measure of <5 cm
are considered rare, while a measure of >20 cm is found in 20 to 50% of masses at the time
of resection [7]. Despite RPS’s large dimension, the impact of tumor size on the patient’s
survival remains controversial. Several previous studies have failed to demonstrate any
association of tumor size [8–16], while others have found that a size threshold of 10 cm is
significant for survival [17,18]. However, these previous studies analyzed just the largest
lesion’s diameter instead of the volume. RPSs have an irregular shape, and the largest
diameter cannot reflect the real tumor volume.

Manual segmentation based on imaging sections could be used for a volume esti-
mation, and it is considered the gold standard for segmentation methods; however it is
time-consuming, requires experience, and is strongly operator-dependent. Recently, deep
learning methods, especially supervised classification methods based on convolutional
neural networks, have been successful in the field of medical imaging for segmenting the
anatomy of interest [19,20]. To our knowledge, no prior studies explored deep learning
methods for RPS automatic segmentation.

Therefore, the aim of this study is to evaluate fully automated deep learning networks,
namely the Efficient Neural Network (ENet) and the Efficient Residual Factorized ConvNet
(ERFNet), for RPS segmentation and to compare their results with manual segmentation
performed in contrast-enhanced CT examinations of the abdomen.

2. Materials and Methods

The present study is a retrospective study and written informed consent was waived
by our ethical committee. All of the patients who underwent CT examination provided
written informed consent for the use of their anonymized CT studies for research purposes.

2.1. Population Selection

The tumor registry database of the Department of Oncology of our hospital was
queried for patients with RPS between 2013 and 2021. Patients with sarcomas that orig-
inated in the gastrointestinal tract (namely gastrointestinal stroma tumors) or in other
abdominal visceral organs were excluded from the study due to the different imaging ap-
pearances and tumor shapes. The search retrieved 56 patients with histological diagnoses
of RPS. From these patients, we identified 20 who underwent contrast-enhanced CT at
our hospital. Thirteen of these patients had only CT examinations performed at the time
of the diagnosis, while seven patients had CT examinations at the time of diagnosis and
after treatments (one patient had three post-treatment CT examinations, two patients had
four CTs, two patients had five, one patient had six, and one patient had eight). All CT
examinations’ images were reviewed by a radiologist (G.S.) with 20 years of experience in
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abdominal radiology on a Pictures Archiving and Communication System (PACS—Impax,
Agfa-Gevaert, Mortsel, Belgium), confirming the presence of RPS and, eventually, the
recurrence in post-treatment CT scan examinations. When recurrence was found, post-
treatment CT examinations were also included in the present study. Six post-treatment CT
examinations were excluded for the lack of recurrence.

2.2. CT Imaging

All patients included in this study performed a standard protocol CT scan at the
radiology department of our hospital. Patients underwent an abdominal contrast-enhanced
computed tomography scan on a 16-slice CT scanner (General Electric BrightSpeed, Mil-
waukee, WI, USA). The scanning parameters were a tube current of 100 mAs, a peak tube
voltage of 120 KV, a rotation time of 0.6 s, a detector collimation of 16 × 0.625 mm, a field
of view of 350 mm × 350 mm, and a matrix of 512 × 512. Contrast-enhanced CT was
performed by injecting about 1.5 mL/kg of iodinated contrast agent (400 mg/mL Iomeprol,
Iomeron 400, Bracco Imaging, Milan, Italy; 370 mg/dl Iopromide, Ultravist 370, Bayer
Pharma, Berlin, Germany; or 350 mg/dL Iobitidrol, Xenetix 350, Guerbet, Roissy, France,
depending on the clinical availability) at a flow of 3 mL/s, followed by the infusion of
20 mL of saline solution with a pump injector (Ulrich CT Plus 150, Ulrich Medical, Ulm,
Germany). Images were acquired in the non-enhanced scan and portal-venous phase.
Portal venous phase was obtained after 70 s of delay after intravenous injection of the
contrast agent.

All CT examinations were performed with the patient in a supine position during a
single inspiratory breath-hold whenever possible.

2.3. Manual Segmentation

Manual RPS segmentations were performed in consensus by two radiologists (A.G.
and M.P.), both with 3 years of experience in abdominal CT. CT portal-venous phase
images were used for manual segmentation. Each CT portal-venous examination was
anonymized and imported into an open-source DICOM (Digital Imaging and Communica-
tion in Medicine), viewer equipped with Horos (LGPL license at Horosproject.org [21]) in
order to obtain volume lesion by manual segmentation. Lesion boundaries were manually
traced with a contouring tool (pencil), slice by slice. Afterward, the “compute volume” tool
was used to obtain the volume rendering of the entire RPS with the volume measurement.
The time required by the entire process was dependent on the lesion’s dimension. Manual
RPS segmentation volumes were used as a reference standard.

2.4. Automatic and User-Independent Segmentation

Deep learning enables automated identification and delineation of regions of interest
in biomedical images, and consequently, it is of great interest in radiology. Nevertheless, it
requires high computational power and long training times. In order to overcome this issue,
ENet [22] and ERFNet [23] have been proposed as fast and lightweight networks capable
of obtaining accurate segmentation with low training time and hardware requirements.
Indeed, it was developed for fast inference and high accuracy in augmented reality and
automotive scenarios where hardware availability is limited.

Specifically, ENet is based on building blocks of residual networks, with each block
consisting of 3 convolutional layers. These are a 1 × 1 projection that reduces dimensionality,
a regular convolutional layer, and a 1 × 1 expansion with batch normalization. ENet has
asymmetric convolutions characterized by separable convolutions with sequences of 5 × 1
and 1 × 5 convolutions. The 5 × 5 convolution has 25 parameters, while the corresponding
asymmetric convolution has only 10 parameters to reduce the network size. Finally, ENet
uses a single starting block in addition to several variations of the bottleneck layer. The
bottleneck layer is used to force the network to learn the most salient features present in
the input and, consequently, to ignore the irrelevant parts.
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ERFNet is optimized over ENet to improve accuracy and efficiency. The basic building
block module is a non-bottleneck 1D layer comprised of two sets of factorized (separable or
asymmetric) convolutions of a size of 3 × 1 followed by the 1 × 3 with rectified linear unit
non-linearity. The input feature map of the main convolution path is added element-wise
to the output of the convolution path, which represents the input of the next layer after
applying the rectified linear unit non-linearity. The size of input is 512 × 512, while the
down-sampler block is similar to that of ENet architecture.

Furthermore, both ENet and ERFNet can be used as an alternative to transfer learning,
usually used to compensate for the lack of labeled biomedical images. ENET and ERFNet
can learn a lot of information, even from small datasets, as demonstrated in several biomed-
ical segmentation studies [24–27], in which they outperformed other state-of-the-art deep
learning approaches, such as UNet.

2.5. Experimental Detail

In the current study, to further overcome the issue related to a limited amount of data,
the five-fold cross-validation strategy was adopted by randomly dividing the whole dataset
into five folds (9 or 13 studies). Consequently, we trained five models by combining four of
the five folds into a training set and by keeping the remaining fold as the validation fold.
In our experiments, to avoid including slices from the same patient into the training and
validation sets, the patients were firstly split randomly into a training set and validation set
and then the slices corresponding to the patients were used to construct the training and
validation sets. Therefore, the issue of potential overlap between the training and validation
sets does not exist. We used an initial set of 20 lesions to determine the best learning rates
experimentally. Specifically, for the training task, the following parameters were used:
(i) a learning rate of 0.0001 and 0.00001 with Adam optimizer [28] for ENet and ERFNet,
respectively; (ii) a batch size of 8 slices for all studies; (iii) a maximum of 100 epochs with an
automatic stopping criterion (if the loss did not decrease for 10 consecutive epochs); and (iv)
the Tversky loss function [29] with α = 0.3 and β = 0.7. Data augmentation was obtained
by randomly rotating; translating in both the x and y directions; and applying shearing,
horizontal flip, and zooming to the input training slices. Consequently, six different types of
data augmentation techniques were used to reduce overfitting, while data standardization
and normalization were used to help the models converge faster and to avoid numerical
instability. A graphics processing unit (GPU), i.e., NVIDIA QUADRO P4000 with 8 GB
VRAM and 1792 CUDA Cores, was adopted to train and run inference.

2.6. Evaluation Analyses

Analysis of variance (ANOVA) on the manual and automatic segmentation was used
to test the differences (a p-value < 0.05 indicates a significant difference) between the
manual and automatic approaches. Specifically, the F-value was calculated to assess if
the means between the two populations were significantly different. The F critical value
was calculated to compare it with the F-value; if the F-value is larger than the F critical
value, the null hypothesis can be rejected. In addition, RPS volumes calculated from the
manual and automatic approaches were compared using a correlation graph and Bland
Altman plot.

Finally, a set of performance indicators routinely used in the literature for shape com-
parison [30] were calculated, namely the dice similarity coefficient (DSC), sensitivity, volume
overlap error (VOE), volumetric difference (VD), and positive predictive value (PPV):

DSC =
2 ∗ TP

2 ∗ TP + FP + FN
∗ 100% (1)

Sensitivity =
TP

TN + FN
∗ 100% (2)

VOE =
1 − TP

TP + FP + FN
∗ 100% (3)
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VD =
FN − FP

2 ∗ TP + FP + FN
∗ 100% (4)

PPV =
TP

TP + FN
∗ 100% (5)

where TP, FP, TN, and FN are the number of true positives, false positives, true negatives,
and false negatives, respectively.

3. Results

3.1. Population

The final population consisted of 20 patients (n = 11 women; n = 9 men; mean age,
64 years old; age range, from 40 to 86 years old) with 49 CT examinations and 72 RPS
lesions (one lesion in 40 CT examinations, two lesions in eight, three lesions in one, four
lesions in one, and nine lesions in one). The most frequent histological subtype of sarcoma
was liposarcoma (n = 14), while the remaining patients had leiomyosarcoma (n = 6). All of
the liposarcomas and 4 leiomyosarcomas were poorly differentiated (G3; n = 18), while 2
leiomyosarcomas were moderately differentiated (G2).

3.2. ANOVA Analysis

The mean RPS volumes obtained using manual and automatic segmentations were
2697.57 cubic centimeters (cc) (SD = 4075.73 cc) for the manual approach, 2539.88
(SD = ±3464.10 cc) for ENet, and 1701.48 cc (SD = ±1996.71 cc) for ERFNet. Table 1
shows the minimum, 25th percentile, median, 75th percentile, and maximum RPS volume
obtained using manual and automatic segmentation.

Table 1. Reference values of manually and automatically segmented RPS volumes from CT examina-
tions in cubic centimeters (cc).

Minimum
25th

Percentile
Median

75th
Percentile

Maximum

Manual 227.20 cc 515.30 cc 1108.00 cc 2836.00 cc 13,820.00 cc

ENet 205.90 cc 550.00 cc 1173.00 cc 3024.00 cc 11,780.00 cc

ERFNet 163.10 cc 519.50 cc 605.70 cc 1577.00 cc 6196.00 cc

Table 2 reports no significant difference between the RPS volumes obtained using the
manual approach and ENet (p = 0.935), the manual approach and ERFNet (p = 0.544), or
ENet and ERFNet (p = 0.119).

Table 2. Analysis of variance (ANOVA) on retroperitoneal sarcoma volumes showed no significant
difference between manual and automatic segmentations.

F-Value F Critic Value p-Value

ENet vs. Manual 0.0069 4.494 0.935

ERFNet vs. Manual 0.3854 4.494 0.544

ENet vs. ERFNet 2.3263 4.494 0.119
ENet, Efficient Neural Network; ERFNet, efficient residual factorized ConvNet.

The correlation graph showed a high positive correlation between manual and ENet
segmentation [r2 = 0.99] and a moderate correlation between manual and ERFNet segmen-
tation [r2 = 0.79], as shown in Figure 1a,c. In the same way, the Bland–Altman plots showed
a high consistency between manual and ENet segmentation and a reproducibility coeffi-
cient (RPC) of ≤ 1400 cc or ≤16% of values; values of 0% or 100% indicate a high or low
consistency, respectively, and a low consistency between manual and ERFNet segmentation
(RPC of ≤5200 cc, or ≤100% of values), as shown in Figure 1b,d.
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Figure 1. (a) Correlation graph, (b) Bland–Altman plot between manual and Efficient Neural Network
(ENet) volumetric segmentation, (c) correlation graph, and (d) Bland–Altman plot between manual
and Efficient Residual Factorized ConvNet (ERFNet) segmentation. RPC, reproducibility coefficient;
SSE, sum of squared error; n, number of data points; p-value, Pearson correlation p-value; r2, Pearson
r-value squared; cc, cubic centimeters; KS, Kolmogorov–Smirnov test; SD, standard deviation.

3.3. Performance Analysis

Table 3 illustrates the performance metrics obtained by comparing the automatic and
manual delineations by averaging the results of the five validation folds during the fivefold
cross-validation process. A DSC greater than 90% for ENet indicates excellent performances
that justify the use of an automatic and independent operator method rather than the
manual method, which, although more precise, is very time-consuming, as reported below.

Table 3. Performance results using ENet and ERFNet (fivefold cross-validation strategy).

Sensitivity PPV DSC VOE VD

ENet

Mean ± SD 91.54 ± 7.49% 89.85 ± 5.66% 90.52 ± 5.49% 16.87 ± 8.81% 2.11 ± 8.53%

±CI (95%) 4.89% 3.70% 3.59% 5.76% 5.58%

ERFNet

Mean ± SD 72.21 ± 26.11% 87.00 ± 8.00% 74.85 ± 19.28% 36.85 ± 21.87% −14.80 ± 33.32%

±CI (95%) 17.06% 5.23% 12.60% 14.29% 21.77%
ENet, Efficient Neural Network; ERFNet, efficient residual factorized ConvNet; PPV, positive predictive value;
DSC, dice similarity coefficient; VOE, volume overlap error; VD, volumetric difference; SD, standard deviation;
CI, confidence interval.
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Figure 2 shows the training DSC and the loss function plots for one fold: a DSC > 90%
was achieved in just ~20 iterations for ENet. ERFNet always turns out to be worse than
ENet, except for the segmentation speed, as can be seen in Table 4.

Figure 2. (a) Dice similarity coefficient and (b) loss function; Tversky loss plots for Efficient Neural
Network (ENet) in red lines and Efficient Residual Factorized ConvNet (ERFNet) in blue lines during
the training process for one fold.

Table 4. Comparison of computational complexity and performance between the two deep learning
models.

Number of Parameters Size on Disk Inference Times (s)/Sataset
Training Times
(Days)/Dataset

Trainable Non-Trainable CPU GPU GPU

ENet 363,069 8354 5.8 MB 113.10 15.64 5.31

ERFNet 2,056,440 0 25.3 MB 58.08 13.49 4.16

ENet, Efficient Neural Network; ERFNet, efficient residual factorized ConvNet; MB, megabyte; CPU, central
processing unit; GPU, graphics processing unit; sec, seconds.

Specifically, using GPU hardware (NVIDIA QUADRO P4000 with 8 GB VRAM and
1792 CUDA Cores), ENet takes about 15 s for a whole segmentation versus 13 s of ERFNet.
In the case of a CPU (Intel(R) Xeon(R) W-2125 CPU 4.00GHz processor), ENet takes
about 2 min versus 1 min of ERFNet. The manual approach required an average time
of 3887 ± 1600 s (approximately one hour per segmentation). Examples of the obtained
segmentations are shown in Figure 3 for two patients with abdominal soft tissue sarcomas.
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Figure 3. Comparison of segmentation performance in three different slices for (a) patient #005, and
(b) patient #033. Manual (yellow), ENet (red), and ERFNet (green) segmentations are superimposed.
In the first study, ENET and ERFNet obtained optimal DSCs (96.69% and 93%, respectively). In
the second study, ERFNet showed poor DSC (30.55%) while ENET maintained similar performance
compared to the first study (95%).

4. Discussion

4.1. Volume Estimation of Retroperitoneal Sarcoma

Due to the nonspecific presentation of their initial symptoms, RPSs are often seen
during an initial evaluation on a CT scan as part of a general abdominal survey [31]. A
contrast- enhanced CT allows for confirmation of the site and origin of the mass, and often
the tissue composition [32], with the additional benefit of wide availability. An MRI is
reserved for patients with an allergy to iodinated contrast agents or problem-solving when
some finding is equivocal on a CT scan. It has been reported that different histotypes of RPS
can differ widely in terms of both histologic features and clinical behavior; these different
histopathologic characteristics may influence glucose metabolism and thus the 18F-FDG
uptake in PET examination [33]. Moreover, the difference observed in the maximum
standardized uptake value (SUVmax) of RPS might be explained by the distinctions in
cellularity and necrosis percentage in distinctive histotypes [34]. This different behavior
may influence segmentation results. For example, Neabauer et al. [35] reported that the
same tumor segmentation yields different results in MRI and PET scans: in an MRI scan,
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necrosis is considered part of the tumor, but it is not visible on the PET scan, as the necrosis
is no longer metabolically active.

The size of the RPS is an important prognostic criterion included in TNM staging
(AJCC). Panda et al. [36] reported that size, as measured for the greatest tumor length, was
significant in predicting an early relapse. Moreover, in Cox’s proportional hazard model,
the time-to-event analysis and large size and weight (together with other variables, such as
higher age, male sex, incomplete resection, and high grade) become significant, predicting
an early recurrence. There is also increasing evidence for the benefits of radiotherapy
for RPS to improve local relapse-free survival. Ecker et al. [37] identified size as the only
tumor-related variable associated with the use of neoadjuvant radiotherapy. However,
all previous studies based their results on tumor size, as measured for the greatest tumor
length. An RPS often has a highly irregular shape; therefore, tumors with the same axis
length may have a different volume. Further studies are necessary to evaluate whether an
overall volume greater than the maximum diameter changes the prognosis and therapy in
the era of precision medicine.

4.2. Deep Learning Network and Volume Estimation

This study shows that automatic segmentations with deep learning networks and
using portal-venous CT images are reliable methods for the automatic tumor volumetric
measurements of RPS. The best performance for automatic segmentation was reached by
ENet, with the VD between the automatic and manual segmentation at 2.11% for ENet
and at −14.80% for ERFNet. Furthermore, we observed a VOE value of 16.87% for ENet
and of 36.85% for ERFNet. These results indicate a low volumetric overlap error between
the segmentation results and the manual segmentation, using ENet. To our knowledge,
no other studies investigated the role of a deep learning network for RPS segmentation.
Our results are concordant with prior investigations exploring the ENet for automatic
segmentation in other organs. In a prior study, Lieman-Sifry et al. [38] presented the
FastVentricle, an ENet variation, with skip connections for cardiac segmentation. They
compared their results to that of the DeepVentricle, the architecture previously cleared
by the FDA for clinical use. Both automatic segmentation methods had a median relative
absolute error between 5% and 7%. A study involving 103 patients imaged with a prostate
MRI [39] used ENet and UNet for the prostate gland segmentation, in comparison with
the manual segmentation, which reported a VD of 6.85% and −3.11%. Comelli et al. [40]
tested the ENet, UNet, and ERFNet for prostate gland segmentation, which reported mean
VDs of 4.53%, 3.16%, and 5.70%, respectively. They obtained the best VOE value with ENet
(16.50%), which is similar to the UNet and ERFNet (17.66% and 22.18%, respectively). The
DSC is a widely used measure for evaluating medical image segmentation algorithms. It
offers a standardized measure of segmentation accuracy, which has proven useful [41]. In
the current study, the obtained DCS was 90.52% for ENet and 74.85% for ERFNet. The
higher DSC value obtained in our dataset, using ENet, demonstrates a greater similarity to
the manual segmentation contour and high-segmentation accuracy.

4.3. Timing Delineation

Our study showed that automatic and user-independent segmentation was much
faster than manual segmentation for RPS volumetric analysis. Manual segmentation re-
quired an average time of 3887 s, while automatic segmentation required a few seconds.
This would suggest good viability for the use of automatic segmentation in clinical prac-
tice, where time constraints may restrict which methods are used. ERFNet had better
performance than ENet in terms of training times (4.16 days vs. 5.31 days) and in terms of
inference times (58.08 s vs. 113.10 s, using a dedicated GPU, and 13.49 s vs. 14.64 s, using
CPU). On the other hand, ENet had fewer order-of-magnitude parameters than ERFNet
(363,069 vs. 2,056,440, respectively), requiring lower disk space (5.8 MB vs. 25.3 MB, respec-
tively). However, in our experience, both algorithms can be used in a PC equipped with
simple hardware and in portable devices, such as a tablet or smartphone.
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4.4. Limitations of the Study

Our study has some limitations that need to be reported. We did not consider different
tissue components of lesions. RPS are often highly heterogeneous, with variable tissue
components that include cellular tumor, macroscopic fat, necrosis, and cystic change
depending on the histopathological tumor subtype. These different components have
different density values on CT images, which could influence automatic segmentation
performances. Further studies with a larger population should be proposed. Moreover,
the inter-observer variability for manual segmentation of CT images was not evaluated, as
this was beyond the purpose of the current study. Segmentation from radiologists with
different experience levels may provide different performances.

5. Conclusions

This study describes two deep learning automatic segmentation methods for RPS
volume assessment without the need for user interaction. Starting from the ANOVA test, the
results show that ENet and ERFNet obtained automatic segmentations similar to the manual
segmentations, with no significant difference found between the two automatic volume
estimations. However, ENet seems to perform much better than ERFNet considering
the correlation graph and the Bland–Altman plot (Figure 1), the performance scores in
Table 3, and the examples in Figure 3. The lack of significant difference is most likely due
to the small sample size and high variance in volume size. Furthermore, although ERFNet
was faster in the segmentation process using a CPU, ENET and ERFNet obtained similar
segmentation times using a GPU. In the future, it would be desirable for the integration
of deep learning networks with PACS systems to obtain fast and accurate RPS volume
measurements.
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Abstract: Basal Cell Carcinoma (BCC) is the most frequent skin cancer and its increasing incidence is
producing a high overload in dermatology services. In this sense, it is convenient to aid physicians
in detecting it soon. Thus, in this paper, we propose a tool for the detection of BCC to provide a
prioritization in the teledermatology consultation. Firstly, we analyze if a previous segmentation of
the lesion improves the ulterior classification of the lesion. Secondly, we analyze three deep neural
networks and ensemble architectures to distinguish between BCC and nevus, and BCC and other
skin lesions. The best segmentation results are obtained with a SegNet deep neural network. A 98%
accuracy for distinguishing BCC from nevus and a 95% accuracy classifying BCC vs. all lesions
have been obtained. The proposed algorithm outperforms the winner of the challenge ISIC 2019
in almost all the metrics. Finally, we can conclude that when deep neural networks are used to
classify, a previous segmentation of the lesion does not improve the classification results. Likewise,
the ensemble of different neural network configurations improves the classification performance
compared with individual neural network classifiers. Regarding the segmentation step, supervised
deep learning-based methods outperform unsupervised ones.

Keywords: Basal Cell Carcinoma; deep learning; convolutional neural network; skin lesion;
segmentation; classification

1. Introduction

Skin cancer is the most common cancer in the United States and worldwide [1].
Although the majority of the works in the literature are focused on melanoma detection,
the most common malign skin lesion is the non-melanoma skin cancer (NMSC). Over 95%
of NMSC cases are Basal Cell Carcinoma (BCC) and cutaneous squamous cell carcinoma
(SCC) [2]. Specifically, BCC has an incidence higher than 70% [3] among all skin cancer,
it has the best validated clinical criteria for its diagnosis [4], and it presents the higher
variability in the presence of these dermoscopic criteria.

The detection of NMSC can be performed by visual inspection by a skilled derma-
tologist, but there are many benign lesions that can be confused with NMSC, leading to
unnecessary biopsies, in a proportion of five biopsies versus one actual cancer case [5].

The increase in the incidence of BCC is provoking an overload for dermatologists. In the
Andalusian Health System, teledermatology is being implanted. Nowadays, 315 demands of
teledermatology consultation per month are received and 210 receive diagnostic criteria
of BCC. Thus, a Computer Aided Diagnosis (CAD) tool that assists general practitioner
physicians and provides a prioritization in the teledermatology consultation would have
great utility.

Different kinds of images have been traditionally used in order to classify NMSC
automatically (spectroscopy, optical coherence tomography, etc.). However, the simplest
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one and most used is the digital dermoscopy, that is, a digital color photograph, enhanced
by a dermoscope.

Lately, and due to the availability of databases due to the challenges proposed by
ISIC [6], the use of artificial intelligence methods, and in particular, the use of deep learning
neural networks, have become very popular in dermatology. In this sense, this paper
is focused on machine learning algorithms, in particular, deep learning ones, and using
dermatoscopic images from ISIC challenges [6].

Most of the works published have been focused on melanoma segmentation and
classification [7,8]. On the contrary, much less work has been devoted to NMSC detection.
Marka et al. performed a systematic analysis of existing methods for automatic detection
of NMSC in 2019. They came to the conclusion that, although most of the methods
attain an accuracy similar to the reported diagnostic accuracy of a dermatologist, all the
methods require a clinical study to assess the validity of the methods in a real clinical
scenario [9]. There are three methods that attain the best classification metrics according
to this study. Wahba et al., in 2017, reached 100% in all the metrics but the test set was
only 10 images [10]. The same authors, in 2018, tested their methods with an extended
database, obtaining the same results [11]. Møllersen et al. also achieved 100% sensitivity,
but their specificity was 12% [12]. Sarkar et al. applied deep neural networks to differentiate
between BCC, SCC and benign lesions. They achieved an AUROC score of 0.997, 1 and
0.998, respectively [13]. Pangti et al. analyzed the performance of a deep learning-based
application for the diagnosis of BCC, as compared to dermatologist and non-dermatologist
physicians [14].

In Han et al., 12 skin diseases were classified, employing a deep learning algorithm.
They used three databases and concluded that the tested algorithm performance is com-
parable to that obtained by 16 dermatologists. One of these skin diseases is BCC [15].
Following this comparison, Carcagni et al. [16] and Zhou et al. [17] also proposed methods
based on deep learning to perform a multiclassification of skin diseases. Carcagni et al.
proposed an ensemble approach and compared it with the original Densenet-121, obtaining
a better performance.

Sies et al. [18] tested two market-approved tools, one employed a Machine Learning
(ML) technique and one is based on Convolutional Neural Networks (CNN). Although
they tested 1981 skin lesions, only 28 lesions were BCC. The ML algorithm detected only
5 in 28 BCC lesions, whereas the CNN-based algorithm detected 27 in 28 [18]. Dorj et al.
use a pre-trained AlexNet convolutional network to extract the features that feed an SVM
classifier, in order to classify among four kinds of cancers, including BCC [19].

Recent advances in the field of histopathological and microscopic image analysis,
dedicated to the BCC detection, can be found at [20–22], where the authors use deep
learning techniques to detect, classify and identify its patterns. However, our approach
covers BCC classification, focusing on distinguishing BCC from Nevus, and employing
dermoscopic images. From a clinical point of view, it is very interesting to differentiate BCC
from nevus, because both represent the most frequent skin lesions appearing at primary
health centers, and a good detection of these types of lesions could lead to a more efficient
clinical management, performing a first prioritization of the images that arrive from the
Primary Health Center by teledermatology.

The main contribution of the paper is that it performs a thorough analysis of deep
learning techniques, applied to BCC segmentation and classification.

In addition, to the best of our knowledge, there are no previous works that evaluate
the influence of a previous segmentation in the classification of skin lesions with a deep
neural network.

2. Materials and Methods

In order to segment and classify the lesion, several experiments have been conducted
that try to evaluate how important the segmentation is for an ulterior classification. A com-
parison between deep learning methods and classical segmentation algorithms is presented.
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Regarding the classification task, different deep learning architectures in the following
two different classification scenarios are tested: BCC vs. Nevus, BCC vs. All lesions.

2.1. Lesion Segmentation

Skin lesion segmentation becomes a challenging task due to the presence of hair, bub-
bles, different illumination conditions, blurry boundaries, blood vessels, scars or different
skin colors, thus, the segmentation step turns into a very delicate and complex process.

Over the years, many techniques that successfully overcome the segmentation chal-
lenges have been developed. Unsupervised segmentation methods, such as thresholding,
edge-based, region-based or energy minimization-based ones, and supervised methods,
such as support vector machines (SVM), Bayes-based, or deep learning-based segmentation
methods (DLBSM) have been successfully tested over any kind of images [23,24].

Lately, regarding dermoscopic images, many works have been focused on deep
learning-based methodologies [25]. This kind of segmentation technique combines low-
level feature information with high-level semantic information [26] and takes the advantage
of its learning capacities, focusing on its learning properties to identify structures that allow
us to segment the image. DLBSM allow us to segment images with low contrast, different
intensity distribution or images with artifacts [27].

In this paper, we compare unsupervised with supervised segmentation techniques. In
fact, we compare the performance of one unsupervised method based on energy minimiza-
tion, and two segmentation methods based on deep learning. More specifically, the two
supervised methods consist of the following: (1) A CNN as feature extractor combined with
a classic segmentation method (thresholding), and (2) Semantic neural network (SegNet).
These three methods were tested over ISIC-2017 database [28].

2.1.1. Unsupervised Method: Energy Minimization Based Algorithm

Unsupervised methods do not require a labelled training dataset. One of the main
advantages they have is the low computational cost [29]. Another one is that they do not
need a large database as no training is performed. In contrast, its performance could not
be robust for low quality images, or some interaction with the user is needed to achieve a
good performance.

There are many state-of-the-art unsupervised algorithms in the literature and some
of them have been explored in this paper (edge-based active contour, region-based active
contours, segmentation based on convex optimization). However, for the final analysis an
energy minimization method was chosen because it is less dependent on the parameter
setting. In this kind of algorithm, an energy measure, which includes region and boundary
information, is minimized to solve the segmentation problem. Over recent years, energy
minimization algorithms based on convex relaxation have been developed [29,30]. This
paper presents an algorithm using convex relaxation based on a previous work by the
authors [31,32]. The original idea was proposed by Papadakis and Rabin [33]. It consists
of posing the problem of segmentation as a problem of minimization of a convex energy
function. In this energy function, the distance between the histograms of each region within
the image and histogram models is minimized.

Two histogram models were defined for each dermoscopic image, one for the fore-
ground (the lesion) and the other for the background (the skin). To generate these two
histogram models, the algorithm requires a manual selection of a partial part of each region
(Figure 1).
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(a) (b) (c) 

Figure 1. Selected areas of dermoscopic images for calculating the histograms. (a) Original image;
(b) Selected region inside the lesion; (c) Selected region in the healthy skin.

2.1.2. Supervised Methods

Supervised methods need a training data set in order to fix the parameters of the
classifier. Some of these segmentation methods are based on SVMs, Bayes classifier, decision
trees (DTs) or artificial neural networks (ANN) [34].

As supervised algorithms, two different methods were chosen. The first method has
been chosen because it segments by employing the information provided by the deep
features of a CNN. This fact has the advantage that a small training database is required
and even a pre-trained CNN may be utilized. The second supervised segmentation is a
fully convolutional neural network, which has been demonstrated to be effective in medical
image segmentation. More specifically, SegNet has been chosen because it is state of the art
in the field.

Segmentation from Feature Images of a CNN

A CNN possesses convolutional layers that provide a wide information about global
and local features of an image. Hence, the deepest convolutional layers contain information
of the global, abstract and conceptual features, whereas the lower convolutional layers give
information about the local structure, which is relevant for the segmentation process [35].
Likewise, convolutional layers can be used to obtain the image features [36].

We used a VGG-16 pre-trained with ImageNet database. A set of images from the
fourth convolutional layer of VGG-16 network was extracted. These images were normal-
ized and filtered by applying a Gaussian filter with standard deviation equal to 2, before
being added. Finally, a threshold using Otsu’s method and morphological operations
(dilation and hole filling) was applied to obtain the final segmentation result. A scheme of
this segmentation algorithm is presented in Figure 2.

Semantic Segmentation with SegNet Deep Neural Network

Semantic Segmentation allows us to identify an object in an image by classifying
each pixel into a labeled class, which is called pixel-wise labeling. As is described by
Badrinarayanan et al. [37], SegNet is a Fully Convolutional Network (FCN) architecture
whose encoder is topologically similar to the convolutional layers from VGG-16, but
without its fully connected layers. The convolutions are performed with a filter bank.
The last layer of the decoder works as a soft-max classifier, which allows us to obtain the
predicted segmentation labels for each pixel as output, where each label is associated with
an existing class. SegNet admits as input a map of features or an image.
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Figure 2. Scheme of this segmentation algorithm from feature images of a CNN.

2.2. Lesion Classification

The classification part of the paper will try to differentiate between different types of
skin lesions, being the motivation of the paper, the detection of BCC.

We present the following two types of classifications:

1. BCC vs. Nevus;
2. BCC vs. All, where the term “All” groups the following skin lesions: nevus, benign

keratosis, dermatofibroma, melanoma, SCC, actinic keratosis and vascular lesion.

From a clinical point of view, it is very interesting to differentiate BCC from nevus, be-
cause both represent the most frequent skin lesions appearing at primary health centers, and
a good detection of these types of lesions could lead to a more efficient clinical management.

In the two classification experiments, we have tested how the introduction of previ-
ously segmented images could affect the classification.

A wide number of experiments are conducted in order to check which configura-
tion could be better to solve this difficult problem. To this purpose several classification
approaches have been proposed, as follows:

1. The use of a VGG-16 neural network. VGG-16 consists of 16 convolutional layers and
is very appealing because of its very uniform architecture [38].

2. The use of a ResNet50 neural network. It is a convolutional neural network with
50 layers. It is a type of Residual Network and it first introduced the concept of skip
connection [39].

3. The use of an InceptionV3 neural network. InceptionV3 is another type of CNN
developed by Google. It is 48 layers deep [40].

4. The use of an ensemble of the three neural networks using the maximum argument.
The ArgMax ensemble calculates, for each image, the probability of each class from
each neural network, and it selects as the output class the one with highest probability
among all the neural networks.

5. The use of an ensemble of the three neural networks using the mean. In this case the
average of the three probabilities for each class belonging to each neural network is
calculated. The output class selected is the one with the maximum average value.
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In Figure 3, the ArgMax ensemble configuration is shown. After training the three
DNNs mentioned above, a vector with the probabilities belonging to each class for each
DNN is obtained (Vi, i = 1,2,3). Each in this vector has dimension m × 1, where m is the
number of classes. Finally, a new vector is formed V = [V1,V2,V3] of dimensions 3m × 1.
The class with the highest probability, denoted by n, is chosen as the predicted class of
the lesion.

Figure 3. ArgMax ensemble configuration for the skin lesion classification.

3. Results

3.1. Segmentation Results
3.1.1. Database

To perform the comparison among the different segmentation algorithms, the ISIC
2017 database has been used [6,26]. This database provides 2000 images for training
and 600 images for testing, with their corresponding ground truth masks. The ISIC 2018
database for the task “Lesion segmentation” does not provide the ground truth masks for
the test set, that is why ISIC 2017 database has been chosen for the part of segmentation.
The ISIC 2019 challenge [6] does not include a “Lesion segmentation” task.

For the segmentation algorithms based on convolutional neural networks, a data aug-
mentation process was applied. The data augmentation step consists of random rotations be-
tween −30 and 30 degrees; random translations on axes x and y within −10 and 10 interval;
random horizontal and vertical reflections; scaling with a random scale factor between
0.9 and 1.1. Finally, all images were randomly sheared in horizontal and vertical angles,
specified between 0 and 45 degrees. All these operations picked their random values from
a continuous uniform distribution.

After data augmentation, the number of training images was 18,000.

3.1.2. Implementation Details

The three methodologies were implemented on a system with an Intel Core I9-3.6 GHz
processor, 32 GB of RAM, and NVIDIA TITAN RTX card.

The SegNet neural network was pre-initialized with layers and weights from a VGG-16
pretrained network, with an ImageNet database from the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC). The stochastic gradient descent with momentum (SGDM)
optimizer was applied and the training parameters were set as follows: momentum of 0.9,
mini-batch size of 5, initial learning rate of 0.001, and weight decay (L2Regularization) of
0.005. The model was trained for 200 epochs.

3.1.3. Results

In Figure 4, the results applying the three segmentation methods for four example
images are shown.
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Figure 4. Segmented Images. For images (a–d): first row shows the original image with its ground
truth mask and its corresponding segmentation result; second row shows the results of applying
semantic segmentation with SegNet; third row shows the result of energy minimization algorithm via
convex optimization; fourth row shows the result of segmentation based on VGG16 feature images.

Table 1 presents the performance parameters for each method, as follows: Dice coeffi-
cient (DICE), Jaccard index (JACC), Sensitivity (Se), Specificity (Sp) and Accuracy (Acc).
This table presents the results of applying the three methods to the test set of the database,
ISIC 2017 (600 images). The best performance is achieved by the SegNet neural network in
four out of five parameters.
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Table 1. Segmentation results of the tested methods over the Test set (600 images). Numbers
represent the average values of the different segmentation performance parameters calculated over
the 600 test images.

Methodology DICE JACC Se Sp ACC

SegNet 0.8548 0.7730 0.8533 0.9632 0.9357
Energy minimization 0.5937 0.4927 0.6020 0.9131 0.8647
Feature images from VGG16 0.5853 0.4700 0.8627 0.8690 0.8170

Beyond the evaluation parameters, it is relevant to discuss the advantages and draw-
backs of each methodology. Although the SegNet neural network obtains the highest
performance, the accuracy obtained by the energy minimization algorithm is acceptable,
taking into account the resources needed. Nevertheless, SegNet requires a high computa-
tional effort for the training but, once the training process has been done, the computational
cost of the segmentation process is comparable to the cost required by the other two
methods. On the other hand, semantic segmentation via SegNet is an automatic process,
which allows us to obtain the segmented lesion without human supervision, as well as
the segmentation based on feature images from VGG16. In contrast, energy minimization
segmentation requires human intervention, slowing down the segmentation process or
making it difficult to use, in the case of large databases.

In Table 2, a comparison with other methods published in the literature is presented.
This table shows that the segmentation with SegNet attains competitive results. This
justifies that this technique can be chosen as a good segmentation method, in order to
evaluate the convenience of including a segmentation step before the classification of
the lesions.

Table 2. Segmentation results of benchmark methods over the Test set (600 images). The results
obtained with the SegNet neural network have also been included to facilitate the comparison.

Ref. Methodology DICE JACC Se Sp ACC

[41] FCDN- First Place at Challenge
ISBI-2017 0.8490 0.7650 0.8250 0.9750 0.9340

[27] Separable-UNet model with
stochastic weight averaging scheme 0.8693 0.7926 0.8953 0.9632 0.9431

[42] LinkNet152 model 0.8530 0.7700 − − −
[43] GAN-based model 0.9063 0.8198 0.8781 0.9992 0.9761
[26] Deep class-specific learning 0.8566 0.7773 0.8620 0.9671 0.9408

SegNet 0.8548 0.7730 0.8533 0.9632 0.9357

3.2. Classification Results
3.2.1. Database

For the classification step, the ISIC-2019 database has been used [44,45], which con-
tains 25,331 dermoscopic images. This database consists of the following lesions: actinic
keratosis (867 images), Basal Cell Carcinoma (3323 images), benign keratosis (2624 im-
ages), dermatofibroma (239 images), melanoma (4522 images), nevus (12,875 images),
squamous cell carcinoma (628 images), and vascular lesion (253 images). An example of
these dermoscopic images is shown in Figure 5.
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Figure 5. Dermoscopic images from ISIC-2019 database. (a) Squamous cell carcinoma; (b) Nevus;
(c) Melanoma; (d) Dermofibroma; (e) Benign keratosis; (f) Basal Cell Carcinoma; (g) Actinic keratosis;
(h) Vascular lesion.

In order to train the convolutional neural networks used to classify the lesions, the
database was balanced by a data augmentation process. Data augmentation was carried
out by mirror operations and rotations of 36 degrees over each image. The test images were
not modified.

As mentioned above, two different experiments were carried out, hence, the database
was balanced in two different ways.

For the classification of BCC vs. Nevus, after data augmentation, the following number
of images were obtained: 8982 images for training and 1287 for validation, for each class. In
this sense, for all the classes, except nevus, the number of images was artificially augmented
by the data augmentation process described above. For the nevus class, a downsampling
process has been carried out, randomly selecting 10,269 images in total (8982 training +
1287 validation) out of the 12,875 nevus images that the ISIC provides.

For BCC vs. All lesions, the balanced dataset is constituted as follows: 15,419 training
images and 2199 validation images, for each of the two classes (BCC and the rest of the
types). In this case, data augmentation was applied for the BCC class, increasing the
number of nevus images up to 17,618 in total (training and validation set). For each class
belonging to the remaining seven classes, the number of images was fixed to 2517 images
in total for each class.

3.2.2. Classification Results of BCC vs. Nevus

The database consists of 23,780 images in total, after the data augmentation. The
training set consists of 17,964 images, the validation set consists of 2574 images and there
are 3242 images for the test process. The results are described in Tables 3 and 4.

Table 3. Performance parameters for the different classifiers without the previous segmentation of
the image when classifying BCC vs. Nevus. Se: Sensitivity, Sp: Specificity, Pre: Precision, FPR: False
Positive Rate, Acc: Accuracy. The highest values are shown in bold numbers.

Method Se Sp Pre FPR Acc

VGG16 0.95 0.97 0.88 0.99 0.97
ResNet50 0.95 0.97 0.88 0.99 0.96
InceptionV3 0.95 0.97 0.87 0.96 0.94
Ensemble ArgMax 0.97 0.98 0.92 0.99 0.98
Ensemble Mean 0.97 0.97 0.90 0.99 0.97
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Table 4. Performance parameters for the different classifiers with the previous segmentation of
the image by using a SegNet neural network when classifying BCC vs. Nevus. Se: Sensitivity, Sp:
Specificity, Pre: Precision, FPR: False Positive Rate, Acc: Accuracy. The highest values are shown in
bold numbers.

Method Se Sp Pre FPR Acc

VGG16 0.87 0.97 0.87 0.97 0.95
ResNet50 0.88 0.96 0.86 0.97 0.95
InceptionV3 0.85 0.97 0.87 0.96 0.94
Ensemble ArgMax 0.90 0.97 0.88 0.97 0.95
Ensemble Mean 0.89 0.97 0.88 0.97 0.95

Transfer learning has been applied to the pre-trained neural network configurations.
If we denote true positives as TP, true negatives as TN, false positives as FP and

false negatives as FN, the classification performance parameters we have used are defined
as follows:

Sensitivity, which represents the proportion of people who test positive among all
those who actually have the disease: Se = TP/(TP + FN).

Specificity, which is the proportion of people who test negative among all those who
actually do not have that disease: Sp = TN/(TN + FP).

Precision, which represents the probability that following a positive test result, that
individual will truly have that specific disease: Pre = TP/(TP + FP).

False positive rate, which is calculated as the ratio between the number of negative
events wrongly categorized as positive (false positives) and the total number of actual
negative events: FPR = FP/(FP + TN).

Accuracy, which represents the proportion of true positive results (both true positive
and true negative) in the selected population: Acc = (TN + TP)/(TN + TP + FN + FP).

As shown in Tables 3 and 4, the best configuration is the ensemble ArgMax, without
previous segmentation of the image. For this case, the confusion matrix is shown in Figure 6.
The confusion matrix shows the classification performed by the specialists (named True),
versus the predicted classification performed by the ensemble ArgMax classification tool.
The larger the numbers in the diagonal are, the better the classification results are.

Figure 6. Confusion matrix for the classification of BCC vs. Nevus using the ensemble ArgMax and
without previous segmentation.
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3.2.3. Classification Results of BCC vs. All Lesions

The total number of images of the database, after data augmentation, was 40,302. The
training set was composed of 30,838 images, the validation set, 4398 images, and the test
set, 5066 images. The different classes were balanced after applying the data augmentation
step. Results are summarized in Tables 5 and 6.

Table 5. Performance metrics for the different classifiers without the previous segmentation of the
image when classifying BCC vs. All lesions. Se: Sensitivity, Sp: Specificity, Pre: Precision, FPR: False
Positive Rate, Acc: Accuracy. The highest values are shown in bold numbers.

Method Se Sp Pre FPR Acc

VGG16 0.84 0.96 0.75 0.97 0.94
ResNet50 0.81 0.95 0.72 0.97 0.93
InceptionV3 0.78 0.95 0.70 0.97 0.93
Ensemble ArgMax 0.84 0.96 0.78 0.98 0.95
Ensemble Mean 0.83 0.96 0.78 0.97 0.95

Table 6. Performance parameters for the different classifiers with the previous segmentation of
the image with a SegNet when classifying BCC vs. All lesions. Se: Sensitivity, Sp: Specificity, Pre:
Precision, FPR: False Positive Rate, Acc: Accuracy. The highest values are shown in bold numbers.

Method Se Sp Pre FPR Acc

VGG16 0.68 0.96 0.74 0.95 0.94
ResNet50 0.65 0.96 0.70 0.95 0.93
InceptionV3 0.60 0.96 0.67 0.94 0.93
Ensemble ArgMax 0.68 0.97 0.77 0.95 0.95
Ensemble Mean 0.68 0.97 0.78 0.95 0.95

The best result is obtained for the ensemble ArgMax without previous segmentation;
the confusion matrix for this case is shown in Figure 7.

Figure 7. Confusion matrix for the classification BCC vs. All lesions using the ensemble ArgMax
without previous segmentation of the lesion.

To the best of our knowledge, there are no published works devoted to classifying
BCC vs. non-BCC lesions or BCC vs. nevus. Thus, in order to compare the proposed
method with the state of the art, we have performed the classification proposed in the ISIC
2019 Challenge, where eight different lesions are classified. Results are shown in Table 7.
We have used as a benchmark algorithm, the winner of the ISIC 2019 Challenge [6,46]. As
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can be observed, the proposed method outperforms the benchmark algorithm in almost all
the metrics.

The reason for these good results may be found in different factors. First of all, the
three networks chosen for the ensemble are networks of proven effectiveness (VGG16,
ResNet and Inceptionv3 were the winners in the ILSVRC 2014 or ILSVRC 2015 challenges).
On the other hand, these networks do not have an excessive number of parameters, which
would require a large training database to obtain good classification results. Finally, the
ensemble of these three winning networks leads to the obtaining of better results.

Table 7. Performance parameters for the winner of the ISIC Challenge 2019 [46] and for the proposed
method (Argmax ensemble without previous segmentation) when classifying into eight types of
lesions. Se: Sensitivity, Sp: Specificity, Acc: Accuracy.

Winner Challenge 2019 [46] Proposed Method

Se Sp Se Sp Acc

AK 0.48 0.97 0.48 1.00 0.96
BCC 0.72 0.94 0.83 0.98 0.96
BKL 0.39 0.99 0.50 0.99 0.94
DF 0.58 0.98 0.48 1.00 0.99
MEL 0.59 0.96 0.61 0.97 0.91
NEVUS 0.71 0.98 0.97 0.71 0.84
SCC 0.44 0.99 0.43 1.00 0.98
VASC 0.64 0.99 0.79 1.00 1.00

4. Discussion

There are few papers devoted to the detection of BCC in the literature [10–13], and
less that apply deep neural networks to solve this problem. One of the main reasons is
the lack of public databases with BCC lesions, with contours delineation or with labelled
dermoscopic criteria.

From a clinical point of view, it is very convenient to distinguish between BCC and
nevus, due to the high incidence of these two types of lesions. Specifically, in primary health
centers, it would be desirable to have an automatic tool, in order to help the non-specialist
in the diagnosis and to establish a good priority in the attendance at the dermatology
services. To the best of our knowledge this is the first time that a classification between
BCC and nevus has been performed.

Most works devoted to segment skin lesions claim that an accurate segmentation
is necessary to achieve a proper extraction of features and consequent lesion character-
ization [47]. However, in this paper, we demonstrated that, when using deep learning
methods, it is not advantageous to include a segmentation before classifying the lesion.
Actually, we get worse results when segmenting the lesion previously to the classification
step, showing that, when using a large database, the previous segmentation of the lesion
does not improve the classification results. This suggests that the healthy skin surrounding
the lesion may contain information significant for the classification. In this sense, other
works, such as the one by Teixeira et al., support this statement [48].

The main limitation of our method is the lack of explainability of the classification.
An explanation of the classification, by providing the automatic detection of dermoscopic
criteria of BCC, would considerably improve the utility of the method for physicians. To
this purpose, we are working on developing a database with the dermoscopic criteria of
BCC and a system for the automatic detection of these dermoscopic criteria.

As future research, a clinical study to assess the validity of the methods in a real
clinical scenario would be desirable.

5. Conclusions

In this paper, two analyses have been performed. Firstly, a comparison between an
unsupervised segmentation method and two supervised segmentation methods, based
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on deep learning, has been carried out. Secondly, the identification of BCC amongst other
types of skin lesions has been performed in the following two different scenarios: with a
previous segmentation of the lesion and without segmenting the lesion. To this second task,
different deep neural networks have been tested.

Experiments to compare the different segmentation methods show that SegNet archi-
tecture has attained the best behavior, obtaining 94% accuracy.

The ISIC 2019 public database [6] has been used to carry out the classification task. A
98% accuracy, 0.84% sensitivity and 0.96% specificity, for distinguishing BCC from nevus,
and a 95% accuracy, 0.68% sensitivity and 0.97% specificity, classifying BCC vs. all lesions,
have been obtained. Furthermore, the proposed algorithm outperforms the winner of the
ISIC 2019 challenge in almost all the metrics, when lesions are classified into eight classes.

In summary, this paper adds important comparison studies, applied to the analysis of
BCC, that have not been performed previously. These studies are of interest, because BCC is
the skin cancer of highest incidence. First, an analysis of the utility of BCC segmentation to
improve classification is carried out, driving to the conclusion that previous segmentation
does not improve the classification. Secondly, a tool for the discrimination between BCC
and nevus, which is the most common pigmented lesion, is provided. Finally, we have
demonstrated that an ensemble of well-known CNN can attain results that can compete
with the best methods in the ISIC challenge.
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Abbreviation

The following abbreviations are used in this manuscript:
Acc Accuracy
AK Actinic Keratosis
ANN Artificial Neural Networks
AUROC Area Under the Receiver Operating Characteristic
BCC Basal Cell Carcinoma
BKL Bening Keratosis
CAD Computer Aid Diagnosis
CNN Convolutional Neural Network
DF Dermatofibroma
DICE Dice Coefficient
DLBSM Deep Learning-Based Segmentation Methods
DNN Deep Neural Network
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DT Decision Trees
FCN Fully Convolutional Network
FPR False Positive Rate
ILSVRC ImageNet Large Scale Visual Recognition Challenge
ISIC International Skin Imaging Collaboration
JACC Jaccard Index
MEL Melanoma
ML Machine Learning
NMSC Non-Melanoma Skin Cancer
Pre Precision
RAM Random Access Memory
ResNet Residual Networks
SCC Squamous Cell Carcinoma
Se Sensitivity
SegNet Semantic Neural Network
SGDM Stochastic Gradient Descent with Momentum
Sp Specificity
SVM Support Vector Machine
VASC Vascular
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Abstract: An original maxillofacial fracture detection system (MFDS), based on convolutional neural
networks and transfer learning, is proposed to detect traumatic fractures in patients. A convolutional
neural network pre-trained on non-medical images was re-trained and fine-tuned using computed
tomography (CT) scans to produce a model for the classification of future CTs as either “fracture”
or “noFracture”. The model was trained on a total of 148 CTs (120 patients labeled with “fracture”
and 28 patients labeled with “noFracture”). The validation dataset, used for statistical analysis, was
characterized by 30 patients (5 with “noFracture” and 25 with “fracture”). An additional 30 CT
scans, comprising 25 “fracture” and 5 “noFracture” images, were used as the test dataset for final
testing. Tests were carried out both by considering the single slices and by grouping the slices
for patients. A patient was categorized as fractured if two consecutive slices were classified with a
fracture probability higher than 0.99. The patients’ results show that the model accuracy in classifying
the maxillofacial fractures is 80%. Even if the MFDS model cannot replace the radiologist’s work, it
can provide valuable assistive support, reducing the risk of human error, preventing patient harm by
minimizing diagnostic delays, and reducing the incongruous burden of hospitalization.

Keywords: convolutional neural network; transfer learning; maxillofacial fractures; computed
tomography images; radiography

1. Introduction

In recent years, the number of requests for computed tomography (CT), magnetic
resonance imaging (MRI), and, in general, radiology services has grown dramatically [1].
Nevertheless, there is a lack of radiologists due to recruitment challenges and many
retirements. In this scenario, artificial intelligence (AI) can help radiologists in the time-
consuming and challenging medical image analysis task. In any case, the AI-based tools
do not replace medical staff, but assistive technologies prioritize, confirm, or validate
radiologists’ decisions and doubts.

Deep learning, a branch of AI, has recently made substantial progress in analyzing
images with a consequent better representation and interpretation of complex data. In

Appl. Sci. 2021, 11, 6293. https://doi.org/10.3390/app11146293 https://www.mdpi.com/journal/applsci65
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particular, various works [2–6] deal with deep learning in orthopedic traumatology. How-
ever, the number of studies regarding deep learning on CT scans for fracture detection
is low. Furthermore, building and training a neural architecture from scratch requires
a huge amount of data. Image classification networks are trained on billions of data in
the literature, using multiple servers running for several weeks [7]. This procedure is not
feasible for most medical researchers. One way to overcome this obstacle is to use the
so-called transfer learning. This process consists of adopting the highly refined charac-
teristics of convolutional neural networks trained on millions of data and using them as
a starting point for a new model. For example, to verify the extent of fracture detection
on wrist radiographs, Kim and MacKinnon [8] focus on transfer learning from a deep
convolutional neural network (CNNs), pre-trained on non-medical images. Using the
inception V3 CNN [9], they obtained an area under the receiver operating characteristic
curve (AUC-ROC) of 0.95 on the test dataset. This result shows that a CNN pre-trained on
non-medical images can be used for medical radiographs successfully. Another study was
carried out by Chung et al. [10], based on a CNN to detect and classify proximal humerus
fractures using plain anteroposterior shoulder radiographs. The deep neural network
showed a similar performance to that of shoulder-specialized orthopedic surgeons, but
better than that of the general physicians and the non-shoulder specialized orthopedic
surgeons. This result denotes the possibility to diagnose fractures accurately by using plain
radiographs automatically. Another study in this field was carried out by Tomita et al. [11],
where they focused on detecting osteoporotic vertebral fractures on CT exams. Their
system consisted of two blocks: (i) a CNN to extract radiological features from CTs; and (ii)
a recurrent neural network (RNN) module to aggregate the previously extracted elements
for the final diagnosis. The performance of the proposed system matched the ability of
radiologist practitioners. Thus, the system could be used for screening and prioritizing
potential fracture cases.

Therefore, although several authors have already described some AI applications in
the orthopedic field, the possibility to detect maxillofacial fractures in 3D images (CT scans)
of injured patients using artificial neural networks, and in particular a transfer learning
approach, has not been explored yet [12–15]. This area’s anatomical complexity and the
specificity of this type of fracture make radiological diagnosis very often complex with
a consistent risk of incongruous hospitalizations. A fracture detection system based on
AI able to detect the presence of maxillofacial fractures would be of great use in clinical
practice by reducing the costs of treatment and discomfort for patients.

This research aims to develop a fracture detection system, based on the transfer
learning approach, able to predict the presence of maxillofacial fractures. The inputs for
this system are the CT images of a patient after a trauma. The output of the system indicates
the existence or not of a fracture. The block diagram of the system is shown in Figure 1.

 
Figure 1. Block diagram of the system for patients with maxillofacial trauma. The fracture detection system assists the
radiologist in evaluating the CT images of an injured patient.
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The paper is organized as follows. In Section 2, the material and methods are presented,
including the description of the dataset and the architecture used. In Section 3, the results
are presented in terms of slices and patients. In Section 4, we discuss the results achieved,
while in Section 5 the conclusions of the study are presented.

2. Materials and Methods

2.1. Dataset

This retrospective study uses images from CT exams after anonymizing patient per-
sonal data. The study was approved by the Ethics Committee of “Federico II” University,
Naples, Italy (approval number 81/20). The CT scans were obtained from the internal
database of the U.O.C. of Maxillofacial Surgery of the University Hospital “Federico II”,
which collects examinations conducted from 2000 to 2020. We performed CT investiga-
tions of the facial mass on different devices (TC 16–64 slice) with thickness volumetric
acquisition (0.5–2 mm) and variable in-plane resolution (0.5 × 0.5–1 × 1 mm). For the
analysis, we selected only the images we obtained with the bone reconstruction algorithm.
Two radiologists (R.C., L.U.) consensually examined, interpreted, and classified each CT
image according to fracture rhymes’ presence/absence. We also included control CT
investigations from patients with the non-traumatic facial mass disorder.

The number of CT scans corresponds to the number of patients (a CT scan for each
patient). The total dataset consisted of 208 patients: 170 patients (11,260 slices of CT scans)
labeled as with “fracture” and 38 patients (49,762 slices of CT scans) labeled as “noFracture”.
The total dataset was divided into training, validation, and test datasets. In particular,
the training dataset consisted of 148 CT images (120 patients labeled as with “fracture”
and 28 patients labeled as with “noFracture”). The validation dataset, used for statistical
analysis, was characterized by 30 patients (5 with “noFracture” and 25 with “fracture”), and
an additional 30 CT scans, comprising 25 “fracture” and 5 “noFracture” images, were used
as a test dataset for final testing. It is worth noting that the total dataset was imbalanced on
a patient level with the majority being fractured patients; while on a slice level, the dataset
is imbalanced in favor of the slices labeled as “noFracture”. Therefore, the dataset overall
is not as imbalanced in favor of “fracture” images as can be assumed by only evaluating
the patient-level data.

2.2. Experimental Setup Description

The system implementation was carried out through a predictive algorithm written in
Python v.3.7.6 (available for different Operating Systems) [16], using PyTorch v.1.4.0 [17]
and Fastai v.1.0.60 [18]. We used scikit-learn v.0.22.1 [19] for the neural architecture and
Pydicom v.1.4.2 [20] to treat CT images in Dicom format. The implementation of the system
is schematized in Figure 2.

 
Figure 2. Block diagram of the system’s implementation for detecting fractures in patients with maxillofacial trauma.
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All the steps can be summarized as follows:

1. K-fold cross validation to identify the hyperparameters (learning rate, weight decay,
and drop out) that allow the network to have the highest performance in terms
of accuracy;

2. Fine-tuning of the network with the hyperparameters chosen in the previous step:

2.1 Training only of the last layer;
2.2 Unfreezing and training the whole model;

3. Evaluation of the network’s performance.

All the steps are described in detail in the next paragraphs.

2.2.1. K-Fold Cross Validation

For the implementation of the architecture shown in Figure 2, the first step consists
of defining the training dataset for the k-fold cross validation, comprising two classes:
“fracture” and “noFracture”. In particular, to keep the two classes balanced and reduce
the computational times, we considered a reduced dataset, which is a subset of the total
dataset described in Section 2.1. In particular, the training dataset used for the k-fold
cross validation consists of 359 slices with fracture, belonging to 57 different patients, and
362 slices without fracture, belonging to 59 additional patients. In order to avoid class
imbalance in patient-level, from some patients with fractures, we selected only a subset of
the “noFracture” slices. Therefore, these patients will become patients with “noFracture”
in this phase.

In our case study, we adopted the transfer learning technique to reduce the develop-
ment burden of the CNN. The pre-trained architecture we used was ResNet50. ResNet is the
deep convolutional neural network that won the 2015 ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) [21]. ResNet architecture has many variants: the difference
between them is not only a different number of layers, but also a novel architecture, such as
ResNeXt [22], or densely connected CNN [23]. ResNet50 is trained on more than a million
images from the ImageNet database [24]. The network is 50 layers deep and can classify
images into 1000 object categories, such as pizza, umbrella, castle, and many animals (tiger,
camel, frog, etc.). As a result, the network has learned rich feature representations for a
wide range of images. The network has an image input size of 224-by-224.

The architecture of ResNet50 has 4 stages:

1. Initial convolution (kernel size of 7 × 7) and max-pooling (kernel size of 3 × 3);
2. Nine convolutional layers: kernel size of 1 × 1 and 64 different kernels, followed by

kernel size of 3 × 3 and 64 different kernels, followed by kernel size of 1 × 1 and
256 different kernels. These three layers are repeated 3 times;

3. Twelve convolutional layers: kernel size of 1 × 1 and 128 different kernels, followed
by kernel size of 3 × 3 and 128 different kernels, followed by kernel size of 1 × 1 and
512 different kernels. These three layers are repeated 4 times;

4. Eighteen convolutional layers: kernel size of 1 × 1 and 256 different kernels, followed
by kernel size of 3 × 3 and 256 different kernels, followed by kernel size of 1 × 1 and
1024 different kernels. These three layers are repeated 6 times;

5. Nine convolutional layers: kernel size of 1 × 1 and 512 different kernels, followed by
kernel size of 3 × 3 and 512 different kernels, followed by kernel size of 1 × 1 and
2048 different kernels. These three layers are repeated 3 times;

6. Average pooling layer followed by a fully connected layer with 1000 neurons and a
softmax function at the end.

In order to choose the most suitable set of hyperparameters for our case, we used the
stratified k-fold cross validation [25] with k = 5. The hyperparameters of interest were
the following: learning rate, weight decay, and dropout; we chose them in the following
ranges (0.000001; 0.005), (0.0001; 0.0005), (0.1; 0.5). We set the batch size at 50. Specifically,
20 combinations (N = 20 in Figure 2) of the hyperparameters were tested. We used a
random search for hyperparameters’ optimization. We also chose to adopt a random search
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compared to a grid search. When there are many hyperparameters, as in our case, the
first is more effective from the computational time point of view, while maintaining good
performance [26]. Figure 3 describes the procedure of the k-fold cross-validation.

Figure 3. Five-fold cross validation procedure scheme.

Early stopping criteria can be used during the training as a trade-off between general-
ization ability and computational costs. In our case, we used as early stopping the following
criteria: if after three attempts the accuracy does not improve by at least 0.01, the training
cycle ends. The number of epochs set for each fold was 6. The images were normalized
according to the ImageNet format and resized from 512 × 512 to 224 × 224 pixels. An
example of Dicom images is shown in Figure 4.

Figure 4. Example of Dicom images (8 × 8 inches) for both classes (fracture and noFracture).
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After carrying out the tests for the 20 configurations, we chose the set of hyperpa-
rameters that guaranteed the network to have the highest average accuracy (0.86) and the
smallest standard deviation that is the index of little variability (0.05). This set has the
following hyperparameters: learning rate of 0.005, weight decay of 0.0005, and drop out
of 0.5.

2.2.2. Fine-Tuning of the CNN

Pre-trained networks can be exploited to recognize classes the system is not (initially)
trained on, thanks to the fine-tuning process.

The convolutional layers had already learned discriminative filters. After choosing
the hyperparameters, described in the previous section (Section 2.2.1), we replaced the
final set of fully connected layers of the pre-trained CNN. We introduced a new set of
fully-connected layers using random weights. By doing so, the fully connected layers could
act entirely randomly. If the gradient backpropagates from these random values and the
whole network, the pre-trained network’s powerful features risked being destroyed. To
avoid this problem, we re-trained the CNN performing the following steps (Figure 5):

1. Training of the last layer: we started with the pre-trained model’s weights (pre-trained
on ImageNet), freezing all layers in the network’s body except the last layer. In this
step, we trained only the last layer.

2. Unfreezing and training the whole model: in this step, after the last layer had started
to learn patterns of our medical dataset, we unfroze all the weights and trained
the entire model with a very small learning rate. We wanted to avoid altering the
convolutional filters dramatically.

 
Figure 5. ResNet50 was used as a pre-trained network and, after loading the network, the fine-tuning process was started.
We froze all the layers in the network except the fully-connected layers, useful for capturing high-level features on the
current dataset. After the fully-connected layers have had a chance to learn patterns from our dataset, we then unfroze all
the architecture layers; even the convolutional layers that had initially learned discriminative filters. We allowed each layer
to be fine-tuned by performing two training steps and using differential learning rates.

For the fine-tuning of the network, we used the total dataset described in Section 2.1.
In particular, the training dataset consisted of 8023 slices labeled as “fracture” and 34,962 la-
beled as “noFracture”, for a total of 148 patients. The training and validation datasets
used in the k-fold cross validation were a subset of this total training dataset. Since the
two classes were no longer balanced, we used the CrossEntropyLoss as loss function with
different weights for the “fracture” and “noFracture” classes (wf and wnf, respectively):

[wf, wnf] = [
|noFracture|
|fracture| ,

|noFracture|
|fracture| ] = [

34, 962
8023

,
34, 962
34, 962

] = [4.36, 1.0] (1)

The validation dataset, used for the error evaluation, consisted of 1660 slices labeled
as “fracture” and 7910 labeled as “noFracture”, for a total of 30 patients.

During the second step, we performed an additional fine-tuning, re-training the model
twice by changing the learning rate to improve the model’s performance. Before each
re-train of the model, we loaded the network’s weights that gave us the best performance
in terms of accuracy. In particular, we used the learning rate finder [27,28] of the Fastai
library to choose the learning rate at each step. Since some features remain unchanged
(such as the edges and the corners of an image learned in the first layers of the network),

70



Appl. Sci. 2021, 11, 6293

we applied the concept of differential learning rates implemented by the Fastai library.
Using this approach, we could assign different learning rates to the various layers of our
network. In particular, we passed a slice function inside the fit method and: (a) assigned a
lower learning rate to the first layer, (b) assigned a higher learning rate to the last layer,
and (c) distributed the values for the learning rate among all the other layers in between.

3. Results

The results presented in this section are obtained on the validation dataset and on
the test dataset that consists of 1577 slices labeled as “fracture” and 6890 slices labeled as
“noFracture”, for a total of 30 patients. The partition of the dataset into training, validation,
and test dataset was done randomly at level-patient, this means that all the slices for a single
patient were considered in one of the three sets (training, validation, and test). Nevertheless,
the validation and test datasets were not similar to each other. First, the CT scans were
performed on different devices and, therefore, we have substantial differences among them;
then, the fracture can affect any part of the splanchnocranium and, since the latter is a
very large and complex region, the CT images can be very different from each other. The
confusion matrix of the validation and test datasets is shown in Figure 6a,b, respectively;
the AUC-ROC for both validation and test datasets is shown in Figure 6c,d, respectively.

Figure 6. Results in terms of the confusion matrix for the validation (a) and test (b) datasets and ROC curve for the validation
(c) and test (d) datasets. The corresponding AUC for the validation dataset is 0.83 (0.82, 0.84), while for the test dataset is
0.82 (0.81, 0.83). The 95% confidence intervals for the values of the AUC were calculated with the analytic method of Hanley
and McNeil [29], such as described in Ref. [30].

For the evaluation of the performance, we considered the following metrics:

• Accuracy = TP+TN
P+N

• Recall (or sensitivity) = TP
TP+FN

• Precision (or positive predictive value) = TP
TP+FP

The corresponding values for the validation and test datasets are shown in Table 1.
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Table 1. Accuracy, recall (sensitivity), and precision (positive predictive value) with the exact
(Clopper–Pearson) 95% confidence intervals for the validation and test dataset.

Metric Validation Dataset Test Dataset

Accuracy 0.83 (0.82, 0.84) 0.81 (0.81, 0.82)
Recall 0.55 (0.52, 0.57) 0.51 (0.49, 0.54)

Precision 0.52 (0.49, 0.54) 0.50 (0.48, 0.53)

The actual width of the confidence interval is the same for both recall and precision in
both validation and test datasets, while it is much smaller for the accuracy in both datasets.

In order to make a prediction in terms of a patient’s injury rather than single slices,
we performed an evaluation of the neural network. To this aim, the slices were grouped by
referring to a single patient according to the following assumption: if two consecutive slices,
belonging to the same patient, are classified as “fracture” by the CNN with a probability
greater than 0.99, then classify the patient as a patient with a fracture. The confusion matrix
we obtained for the test dataset is shown in Figure 7.

Figure 7. Confusion matrix for the test dataset in terms of patients’ fractures.

The measures of diagnostic accuracy (accuracy, recall (sensitivity), and precision
(positive predictive value)) with 95% confidence intervals for the test dataset in terms of
patients are shown in Table 2.

Table 2. Accuracy, recall (sensitivity), and precision (positive predictive value) with the exact
(Clopper–Pearson) 95% confidence intervals for the test dataset in terms of patients.

Metric Test Dataset

Accuracy 0.80 (0.61, 0.92)
Recall 0.76 (0.55, 0.91)

Precision 1.0 (0.82, 1.00)

4. Discussion

4.1. Statement of Principal Findings

The proposed approach shows the feasibility of using transfer learning techniques to
detect maxillofacial fractures in CT images effectively. The results achieved by using the
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validation and test datasets are of the same order of magnitude. Our trained ResNet50 neu-
ral network can distinguish between the fractured and normal bone in CT scans of injured
patients with a relatively high accuracy (80%). This result is particularly promising, given
the anatomical complexity and thinness of bones in the splanchnocranium, and proves that
transfer learning from CNN, pre-trained on non-medical images, can be efficiently applied
to the problem of maxillofacial fracture detection on CT images.

4.2. Strengths and Weaknesses of the Study

Although a computer-aided decision system with an AUC of 0.83 (0.82, 0.84) cannot
replace human interpretation, this accuracy level may be very useful in assisting radiolo-
gists with prompt a diagnosis and treatment. An automated detection system based on our
proposed model has the advantages of analyzing the CT image’s entire region with equal
importance. This reflects in reducing the human errors related to missed readings on the
whole region of the 3D image. Furthermore, small fractures are often hardly visible on CT
images, and require multiple checks by the radiologists: an automated detection system
can also be useful in this context.

4.3. Strengths and Weaknesses in Relation to Other Studies, Discussing Particularly Any
Differences in Results

Although several authors have already investigated AI applications in the orthopedic
field, the possibility to detect maxillofacial fractures in 3D images of injured patients using
deep learning algorithms has not been explored yet. Even if in other studies we can find
better results, for example, in terms of AUC-ROC (0.95 [8]), it must be taken into account
the complexity of the region of interest, such as the splanchnocranium and the enormous
variability of the fracture types that may be present in this anatomically complex district. It
is important to remark that the algorithm should be intended as an aid to the radiologist in
recognizing facial fractures, more as a second opinion, rather than an independent one.

4.4. Meaning of the Study: Possible Mechanisms and Implications for Clinicians or Policymakers

The assessment of CT images in trauma patients is fundamental to select the appro-
priate treatment and direct them towards highly specialized units if necessary. When a
patient’s trauma occurs in an anatomically complex district such as the splanchnocranium,
two main difficulties arise from the current clinical practice. The first one is the possible
failure to recognize the presence of a bone fracture, and the second is the incorrect clas-
sification of normal anatomical structures (i.e., sutures, vascular, and nerve channels) as
traumatic injuries. These diagnostic difficulties frequently translate into increased costs
for the health system and a burden for the patient due to unnecessary hospitalizations in
specialized clinical wards. For example, once the need for urgent treatment is excluded in
a craniofacial district trauma, patients are transferred from the emergency room (of first
access) to the closest regional reference center specialized in maxillofacial trauma. Here,
the clinical case reassessment in specialist settings frequently (about 20% of cases) high-
lights the incongruity of hospitalization and often the absence of indications for surgical
treatment. These patients require only home medical therapy. Although there are several
AI applications in the literature of the orthopedic field, they remain still unexplored in the
maxillofacial district. An AI-based radiological diagnosis system would allow diagnostic
errors to be minimized by providing the radiologist with a support tool to guide thera-
peutic choices. However, an innovative AI-based radiological system should not replace
the radiologist’s work but become a valuable assistive technology to reduce medical error
risks, unnecessary transportation, hospitalization, and socio-economic burden for society
and the public health governance [31].

4.5. Unanswered Questions and Future Research

Future studies can focus on automated fracture detection with tiny fractures, improv-
ing the algorithm to detect, for example, the corners of fractured bones to improve the
detection sensitivity of the system. Furthermore, to enhance the network’s performance,
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a stage of preprocessing of the CT images could be introduced to remove the region of
no interest for the prediction. Another interesting approach could be the investigation of
the combination of deep learning models with radiomics [32]. In fact, radiomics [33] is a
method for extracting a large amount of advanced quantitative imaging features from radio-
graphic medical images obtained with computed tomography, using data-characterization
algorithms. Radiomic data could be integrated into predictive models to hedge against the
risk of overfitting the deep learning approach. Another possibility is to use a local feature
detector as the speeded-up robust features (SURF) to improve the system’s performance.
In their work [34], the authors propose a computer-assisted method for automated classifi-
cation and detection of calcaneus fracture locations in CT images using a deep learning
algorithm. In particular, they compared two types of CNNs, a Residual network (ResNet)
and a visual geometry group (VGG). Furthermore, the speeded-up robust features (SURF)
method was used to determine the exact location and the type of fracture in calcaneal
CT scans.

5. Conclusions

This study represents a proof of concept for using transfer learning from CNN, pre-
trained on non-medical images, for maxillofacial fracture detection on CT images. In the
literature, the use of transfer learning applied to CT scans to detect maxillofacial fractures of
injured patients has not yet been explored. Our system proved to be capable of predicting
maxillofacial fractures in patients with an accuracy of 80%. MFDC can become a valuable
technology in assisting radiologists with prompt diagnosis and treatment that could reduce
medical error risks and prevent patient harm and stress by minimizing maxillofacial
trauma’s diagnostic delays. An AI-based system assisting radiological investigation in
non-specialized clinical wards can reduce incongruous hospitalization’s socio-economic
burden for the patient, society, and health system.
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Featured Application: Based on results defined in this study, new investigations might propose

morpho-functional-based radiomics algorithms for risk stratification with possible impact on

treatment management in colorectal cancer.

Abstract: The aim of this study was to investigate the application of [18F]FDG PET/CT images-based
textural features analysis to propose radiomics models able to early predict disease progression (PD)
and survival outcome in metastatic colorectal cancer (MCC) patients after first adjuvant therapy.
For this purpose, 52 MCC patients who underwent [18F]FDGPET/CT during the disease restaging
process after the first adjuvant therapy were analyzed. Follow-up data were recorded for a minimum
of 12 months after PET/CT. Radiomics features from each avid lesion in PET and low-dose CT images
were extracted. A hybrid descriptive-inferential method and the discriminant analysis (DA) were
used for feature selection and for predictive model implementation, respectively. The performance
of the features in predicting PD was performed for per-lesion analysis, per-patient analysis, and
liver lesions analysis. All lesions were again considered to assess the diagnostic performance of the
features in discriminating liver lesions. In predicting PD in the whole group of patients, on PET
features radiomics analysis, among per-lesion analysis, only the GLZLM_GLNU feature was selected,
while three features were selected from PET/CT images data set. The same features resulted more
accurately by associating CT features with PET features (AUROC 65.22%). In per-patient analysis,
three features for stand-alone PET images and one feature (i.e., HUKurtosis) for the PET/CT data set
were selected. Focusing on liver metastasis, in per-lesion analysis, the same analysis recognized one
PET feature (GLZLM_GLNU) from PET images and three features from PET/CT data set. Similarly,
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in liver lesions per-patient analysis, we found three PET features and a PET/CT feature (HUKurtosis).
In discrimination of liver metastasis from the rest of the other lesions, optimal results of stand-alone
PET imaging were found for one feature (SUVbwmin; AUROC 88.91%) and two features for merged
PET/CT features analysis (AUROC 95.33%). In conclusion, our machine learning model on restaging
[18F]FDGPET/CT was demonstrated to be feasible and potentially useful in the predictive evaluation
of disease progression in MCC.

Keywords: colon; cancer; radiomics; artificial intelligence; positron emission tomography-computed
tomography; nuclear medicine

1. Introduction

Colorectal cancer (CRC) is the third most common cancer and the second leading cause
of death worldwide. Almost 20% of such patients will develop metastatic disease, about
one-third of patients already present with liver metastases at the time of diagnosis [1,2].
Alongside traditional imaging (e.g., ultrasonography, CT, MRI), [18F]FDG PET/CT is
routinely used as a tool for accurate staging and restaging after therapy in patients with
colorectal metastatic disease, and it represents a valuable ally for risk assessment, prognosis
evaluation, and treatment strategy decisions making.

Radiomics is that part of artificial intelligence (AI) that aims to provide quantitative
characteristics (features) from biomedical images of different nature that cannot be assessed
by the human eye, assuming that any smallest image’s constituent (i.e., voxel and/or
pixel) may encompass features of tumor’s phenotypes that may be potentially related
to tumor’s outcome and patients’ response to therapy, reflecting the pathophysiological
process and supporting medical decisions. The workflow of radiomics’ processes can be
simply resumed in five main steps starting with the acquisition of images, pre-processing
tasks (registration, deconvolution, denoizing, and so on) and VOI delineation, features
extraction, reduction, and selection, and finally, the selection of the predictive model
using AI-based classifiers [3]. In the last decade, the use of radiomics in the study of
medical images has aroused increasing interest [4,5]. Several studies have demonstrated
the correlation between the heterogeneity of the tissues and the radiomics features, which
would allow obtaining relevant information through the analysis of the images alone [6].

[18F]FDG PET/CT could be a useful modality for assessing tumor viability and dif-
ferential diagnosis also for colorectal metastatic cancer and may provide important data
regarding the appropriate treatment strategy [7,8]. The further integration of [18F]FDG
PET/CT data with radiomics features could reach the provision of new insightful informa-
tion also regarding tumor biology. In other words, the statistical analysis of the features
using methods of increasing complexity (first order, second order, or higher) can be useful
in the prognostic evaluation, in therapeutic management, and in characterizing tumor
phenotypes [9]. Radiomics’ literature in colorectal cancer is highly limited in PET imaging,
but it nonetheless holds promise for genetic mutation status assessment [10,11] and the
prediction of outcomes.

The present study aimed to investigate the potential application of texture analysis on
restaging [18F]FDG PET/CT images in metastatic colorectal patients, proposing a radiomics
model able to select PET and CT imaging features for global disease status prediction, liver
metastasis evaluation, and survival outcomes.

2. Materials and Methods

Sixty-three metastatic lesions from fifty-two colorectal patients were retrospectively
considered. Patients underwent restaging [18F]FDG PET/CT after first adjuvant therapy
between November 2008 and December 2018 following these inclusion criteria: (a) pathol-
ogy confirmed diagnosis of primary colorectal adenocarcinoma; (b) clinical-instrumental
(ceCT, MR, histopathology, and/or clinical report) confirmed metastatic disease status;
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(c) [18F]FDG PET/CT performed at restaging after first adjuvant therapy (at least 15 days
from the last cycle of chemotherapy and three months after RT); (d) [18F]FDG PET/CT
positive for lymph-nodal/metastatic disease; (e) minimum follow-up (FU) duration of
12 months after [18F]FDG PET/CT; (f) complete clinical (clinical case notes and multidis-
ciplinary meeting reports), laboratory, pathological and imaging data available (contrast-
enhanced CT, MRI); (g) [18F]FDG PET/CT findings retrospectively confirmed at clinical
follow-up with biopsy and/or through other imaging modalities. The study was approved
by the institutional review board. The internal procedures provide informed consent also
regarding the potential scientific use of all nuclear medicine examinations performed at
the Fondazione Istituto G.Giglio of Cefalù (Palermo, Italy). Therefore, written informed
consent was available for each patient.

2.1. [18F]FDG PET/CT Imaging

According to the standard [18F]FDG PET/CT protocol in use at our institution, the
scans were performed following the international clinical recommendations [12]. After six
hours of fasting, patients underwent examination on Discovery STE GE Healthcare. The
clinical protocol included a full-body PET scan (6–8 beds, 2–3 min per bed position) after
60 min the i.v. administration of 3.7 MBq/kg of [18F]FDG and a co-registered low-dose CT
scan (120 kV, 80–120 mA) without contrast enhancement. PET images (256 × 256 voxel
size) were reconstructed with CT-based attenuation correction. The 3D reconstruction was
based on the ordered subset expectation maximization (OSEM) algorithm with the two
iterative processes. Two nuclear medicine physicians (over 5 years’ experience, PA and
RL) qualitatively analyze the examinations, being aware of the results of other imaging
modalities and clinical data. Following inclusion criteria, [18F]FDG PET/CT positivity
was confirmed by the raters after consensus reading if a non-physiological [18F]FDG
uptake was moderately (tracer uptake superior to the background at visual assessment)
or markedly (tracer uptake superior to physiological liver uptake at visual assessment)
increased to the background activity; in case of multiple [18F]FDG uptake foci, the higher
qualitative assessed uptake was selected among multiple lesions for each disease location
(N and/or M). CT imaging was used to assist the physician in delineating the tumor for
local recurrence or lymph node/metastatic disease. Following clinical, laboratory, and CT,
MRI, [18F]FDG PET/CT data were recorded. According to such information, the terms
disease progression (PD) and stable disease (SD) were used to define the disease status
during the follow-up.

2.2. Radiomics Analysis

The volumetric segmentations were performed with the freely available texture analy-
sis LIFEx platform [13] that is the most widely used IBSI (Image Biomarker Standardization
Initiative) compliant software in PET imaging to obtain reproducible and robust radiomics
features. Specifically, two board-certified nuclear physicians evaluated and segmented
PET/CT lesions by consensus and blinded to the purpose of the study and to the pathology
information. Signal intensity on PET images was judged as hyperintense when the signal
intensity of the tumor was higher than the signal intensity of non-tumoral tissue. SUVmax
was used as a PET parameter to select the most avid lesion for the global evaluation of
disease status and for the most avid liver lesion in every patient. The same volume was
transposed in the same region on CT images for extraction of morphological features.
Successively, 105 and 66 features were automatically extracted using LifeX starting from the
above-mentioned volumes of interest (VOI) from each lesion in PET and CT images, respec-
tively. The extracted features were classified into two categories based on their information
type: (I) shape features, which consider the geometric aspects of the VOI, such as shape
and volume, (II) statistical features including first-order statistic (histogram-based) features
describing intensity values within the target and higher-order statistics (texture) features
that are designed to quantify the perceived texture of an image and to provide spatial
information of intensities in a VOI. In the last case, five texture classes were considered:
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(i) gray-level cooccurrence matrix (GLCM), (ii) gray-level run-length matrix (GLRLM),
(iii) gray-level dependence matrix (GLDM), (iv) gray-level zone length matrix (GLZLM),
and (v) neigh-boring gray-level dependence matrix (NGLDM). Specifically, (i) GLCM eval-
uates the incidence of voxels with the same intensities at a predetermined distance along a
fixed direction; (ii) GLRLM assesses consecutive voxels with the same intensity along fixed
directions; (iii) GLDM counts the number of voxel segments having the same intensity in a
given direction; (iv) GLZLM is defined as the number of connected voxels that have equal
gray-level intensity; (v) NGTDM assesses the spatial interrelationships between 3 or more
voxels [14]. In the work of [13], there is an extensive description of each extracted feature.
Successively, the mixed descriptive-inferential sequential approach, as described in two
complementary studies [15,16], was used to identify a small set of radiomics features with
valuable association with patients’ outcomes for better predictive performance, leading to
the exclusion of non-reproducible, redundant, and nonrelevant features from the initial
feature data set.

After the selection and reduction process, the predictive model was implemented
using the discriminant analysis (DA) [17]. The training step was performed only once, and
when completed, the DA was capable of classifying new PET lesions. Using the k-fold cross-
validation strategy, data were divided into training and validation sets using a random
partition. Specifically, data were divided into k-folds: one-fold was used as the validation
set while the others folds were used as the training set. The folds were created in such a way
that the training and validation sets maintained the same percentage of patient status as
the original data set. After applying the trial-and-error methodology, k = 5 was determined
as the best value for our analyses (k range: 5–15, step size of 5). Consequently, this process
was repeated 5 times, and the mean error was calculated (i) to avoid the over-fitting and
asymmetrical sampling by increasing the accuracy of the final results, (ii) to test different
models, and (iii) to obtain more robust results [18–22].

The steps between the reduction and selection of features and the implementation of
the model were repeated ten times to evaluate different aspects, listed below:

• Four predictive models per-lesion and -patient analysis: Performances of radiomics
features extracted from PET and PET/CT, respectively, in assessing the treatment
response for each lesion (without considering the patient treatment response) and in
assessing the patient treatment response;

• Four models per-patient and -lesion analysis considering the only subset of liver lesions;
• Two models to evaluate the performances of PET and PET/CT radiomics features in

discriminating liver metastasis from the rest of the other lesions.

2.3. Diagnostic Performance Evaluation

Sensitivity, specificity, positive predictive value (PPV), accuracy, and receiver operating
characteristics (ROC) with 95% confidence intervals (C.I.) and areas under the ROC curve
(AUROC; 95% C.I.) were calculated to assess the diagnostic performance on prediction of
disease progression (dichotomized evaluation = 1) versus stable disease or partial response
or complete response (dichotomized evaluation = 0).

3. Results

Fifty-two patients (mean age 62,28 years ± 11.23) who underwent [18F]FDG PET/CT
between November 2008 and December 2018 met the inclusions criteria. The main charac-
teristics are summarized in Table 1. Tumor grading was distributed as follows: G1 in 2/52
(3.85%); G2 in 23/52 (44.23%); G2-3 in 2/52 (3.85%); G3 in 10/52 (19.23%); unknown in
15/52 (28.84%). TNM staging was distributed as follows: Stage I in 4/52 patients (7.69%);
Stage II in 9/52 (17.03%); Stage III in 13/52 (25%); Stage IV in 10/52 (19.23%), unknown in
16/52 (30.76%). As first adjuvant therapy, 1 patient (1.92%) was treated by radiotherapy,
49 patients (94.2%) by chemotherapy, and 2 patients (3.85%) by chemotherapy associated
with radiotherapy.
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Table 1. Patients’ main characteristics.

All Patients (n = 52)

Age (Mean ± SD) 62.28 ± 11.23 y

Sex

Male 41 (77.35%)

Female 11 (22.65%)

Grading

G1 2 (3.85%)

G2 23 (44.23%)

G2–G3 2 (3.85%)

G3 10 (19.23%)

Unknown 15 (28.84%)

First Adjuvant Therapy

Radiotherapy 1 (1.92%)

Chemotherapy 49 (94.2%)

Cht+RT 2 (3.85%)

PET Lesions

Liver 23 (36.51%)

Lymph nodes 13 (19.05%)

Lungs 8 (12.7%)

Presacral 7 (11.11%)

Peritoneum 4 (6.35%)

Rectum 3 (4.76%)

Spleen 2 (3.17%)

Bones 2 (3.17%)

Thorax 1 (1.59%)

Stages At Diagnosis

Stage I 4 (7.69%)

Stage II 9 (17.30%)

Stage III 13 (25%)

Stage IV 10 (19.23%)

Unknown 16 (30.76%)

3.1. [18F]FDG PET/CT Findings

At the first [18F]FDG PET/CT scan, 43 patients (82.7%) were PET-positive for a single
lesion and 9 (17.3%) for 2 or more lesions. Sites of metastasis were distributed as follows:
23 liver (36.51%), 12 lymph nodes (19.05%), 8 lungs (12.7%), 7 presacral lymph nodes
(11.11%), 4 peritoneum (6.35%), 3 rectum (4.76%), 2 spleen (3.17%), 2 bones (3.17%), 1 thorax
(1.59%), and 1 anastomosis tissue (1.59%).

3.2. Follow-Up

FU lasted a mean of 22 months (range 13–48 months). We calculated a median
progression-free survival (PFS) of 17 months (range 1–105) and a median overall survival
of 45 months (range 4–117). At the last FU, 32 (62%) patients showed progression of the
disease, 9 (17%) stable disease, and 11 (21%) responded to therapy with a regression of
the disease.
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3.3. Radiomics Features Analysis

A total of 63 lesions out of 52 patients included in the study were selected. The
analysis of the classification model has been divided into three parts, as explained in the
“Radiomics features extraction and Machine-learning features classification” section, for a total of
10 different radiomics models (Figure 1). In the first case, the prediction disease outcome for
each lesion was analyzed (per-lesion analysis) considering the features extracted from PET
and PET/CT images, respectively; then, the same analysis was developed of considering
each patient (per-patient analysis) considering all the features extracted from the same
images for a total of four different radiomics models.

Figure 1. Radiomics flow chart applied in this study.

The results were as follow:

• For lesion analysis, GLRLM-based feature gray-level non-uniformity (GLZLM_GLNU)
was selected [15,16] considering the only PET data set obtaining a Sensitivity 90.11%,
Specificity 36.78%, Accuracy 66.72%, and AUROC 56.52% for the predictive DA classi-
fier, while three features (GLZLM_ Zone Length Non-Uniformity—GLZLM_ ZLNU,
and GLRLM_Short Run High Gray-Level Emphasis—GLRLM_SRHGE—between the
CT features and GLZLM_GLNU between the PET features) were selected considering
the PET/CT data set with Sensitivity 78.22%, Specificity 51.75%, Accuracy 66.63%, and
AUROC 65.22%;

• For patient analysis, three features (GLZLM_ZLNU, GLZLM_High Gray-level Zone
-GLZLM_HGZ-, Conventional Radial Intensity Mean Standardized Uptake Value body
weight standard deviation squared -CONVENTIONAL_RIM_SUVbwstdev2-) were
selected considering the PET-only data set with Sensitivity 32.07%, Specificity 92.11%,
Accuracy 73.95% and AUROC 47.97%, and one feature (Conventional Hounsfield Unit
Kurtosis -CONVENTIONAL_HUKurtosis-) was selected considering the PET/CT data
set with Sensitivity 33.81%, Specificity 83.76%, Accuracy 68.70%, and AUROC 61%.

Figure 2 shows the ROCs for the four implemented models, while Table 2 shows all
obtained performances.
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Figure 2. ROCs for the four radiomics models obtained per lesion (first row) and per-patient analyses
(second row) for PET-only (first column) and PET/CT images (second column), with an AUROC of
56.52%, 65.22%, 47.97%, and 61%, respectively.

Table 2. Performances of radiomics features in prediction of progression of disease in all lesions,
per-patient, and per-lesion analysis.

Sensitivity Specificity Accuracy AUROC Features Selected

PET
per-lesion 90.11% 36.78% 66.72% 56.52% GLZLM_G

LNU

PET/CT
per-lesion 78.22% 51.75% 66.63% 65.22% GLZLM_ZL

NU (CT)

GLRLM_
SRHGE

(CT)

GLZLM_G
LNU
(PET)

PET
per-patient 32.07% 92.11% 73.95% 47.97% GLZLM_ZL

NU
GLZLM_

HGZ

CONVEN
TIONAL_
RIM_SUV
bwstdev2

PET/CT
per-patient 33.81% 83.76% 68.70% 61.00%

CONVENT
IONAL_H
UKurtosis
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In addition, the study was similarly repeated, focusing only on liver lesions, for a total
of two different radiomics models, with the following results:

• For lesion analysis, one PET feature (GLZLM_GLNU) with Sensitivity 70.15%, Speci-
ficity 23.48%, Accuracy 54.21%, and AUROC 39.94%, and three PET/CT features
(GLZLM_ZLNU, and GLRLM_SRHGE between the CT features and GLZLM_GLNU
between the PET features) with Sensitivity 64.39%, Specificity 76.71%, Accuracy 68.69%,
and AUROC 55.26%;

• For patient analysis, three PET features (GLZLM_ZLNU, GLZLM_HGZ, CONVEN-
TIONAL_RIM_SUVbwstdev2) with Sensitivity 44.42%, Specificity 84.37%, Accuracy
59.03%, and AUROC 60.11%, and one PET/CT feature (CONVENTIONAL_HUKurtosis)
with Sensitivity 33.12%, Specificity 73.74%, Accuracy 47.88%, and AUROC 43.48%.

Figure 3 shows the ROCs for the four implemented models, while Table 3 shows all
obtained performances.

Figure 3. Liver subset: ROCs for the four radiomics models obtained per lesion (first row) and
per-patient analyses (second row) for PET (first column) and PET/CT images (second column), with
an AUROC of 39.94%, 55.26%, 60.11%, and 43.48%, respectively.
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Table 3. Radiomics features performance for liver lesions in prediction of disease progression per-
patient and per-lesion analysis.

Sensitivity Specificity Accuracy AUROC Features Selected

PET
per-lesion 70.15% 23.48% 54.21% 39.94% GLZLM_G

LNU

PET/CT
per-lesion 64.39% 76.71% 68.69% 55.26% GLZLM_Z

LNU (CT)

GLRLM
_SRHGE

(CT)

GLZLM_G
LNU
(PET)

PET
per-patient 44.42% 84.37% 59.03% 60.11% GLZLM_ZL

NU
GLZLM_

HGZ

CONVEN
TIONAL_
RIM_SUV
bwstdev2

PET/CT
per-patient 33.12% 73.74% 47.88% 43.48%

CONVENT
IONAL_H
UKurtosis

Finally, all lesions were again considered to assess the diagnostic performance of the
features in discriminating liver metastasis:

• For PET images, one feature (Discretized SUVbw minimum—DISCRETIZED_SUV
bwmin-) was extracted with Sensitivity 73.78%, Specificity 83.02%, Accuracy 76.91%,
and AUROC 88.91%;

• For PET/CT images, two features (Discretized histogram energy—DISCRETIZED_
HISTO_Energy—between the CT features and DISCRETIZED_SUVbwmin between
the PET features) were extracted with Sensitivity 89.46%, Specificity 93.63%, Accuracy
91.02%, and AUROC 95.33%.

Figure 4 shows the ROCs for the two implemented models, while Table 4 shows all
obtained performances.

 

Figure 4. ROCs for the radiomics models implemented for discrimination of liver metastasis using
PET and PET/CT images with an AUROC of 88.91% and 95.33%, respectively.

Table 4. Radiomics features performance for liver metastasis discrimination.

Sensitivity Specificity Accuracy AUROC Features Selected

PET liver 73.38% 83.02% 76.91% 88.91% DISCRETIZED_
SUVbwmin

PET/CT
liver 89.46% 93.63% 91.02% 95.33%

DISCRETIZED_
HISTO_Energy

(CT)

DISCRETIZED_
SUVbwmin

(PET)
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4. Discussion

To the best of our knowledge, the present study is one of the first to explore [18F]FDG
PET/CT textural features analysis after first adjuvant therapy to potentially predict disease
progression and survival outcome as an indirect predictive parameter of second-line therapy
responses in metastatic colon cancer patients, using an innovative mixed descriptive-
inferential sequential approach for features reduction and selection, and by using DA as a
predictive model [17].

Radiomics literature in CRC is highly heterogeneous, but it holds promise for the
prediction of outcomes. Most evidence is available for MRI-based radiomics in rectal
cancer [23]. A few studies on textural features derived from [18F]FDG PET images at
baseline for locally advanced colorectal cancer and before or after starting any neoadjuvant
treatments may enable detailed stratification of prognosis in patients with CRC [24–27].

Our study focused on the potential usefulness to extract PET radiomics features and
also low-dose CT radiomic features for a “hybrid” textural PET/CT analysis mimicking
the qualitative assessment in the clinical routine evaluation of PET/CT images. The scope
of this design study was to confirm the feasibility of our ML methods and to analyze
how all the information related to restaging PET/CT imaging after first-line treatments
might be able to predict the disease status outcomes after further treatments. Radiomics
features were extracted from each lesion (including all the sites of metastasis), divided into
three feature subsets: 105 features from PET images, 66 features from CT, and 171 features
from both PET and CT. Features were automatically extracted using the well-known IBSI
compliant LifeX software to perform a totally objective and reproducible study. Prediction
of outcome in patients with CRC is challenging because of the lack of a robust biomarker
and heterogeneity between and within tumors to modulate treatment strategies. In this
scenario, a study conducted on third-line treatment patients with metastatic colorectal
cancer showed that high tumor heterogeneity, volume, and low sphericity on baseline
[18F]FDG PET were related to reduced survival [28]. Similarly, textural parameters as the
coefficient of variation, kurtosis of the absolute gradient (GrKurtosis), and other features
on [18F]FDG PET images have been proposed in other papers as predictive and prognostic
factors in the assessment of therapy response and survival outcomes in patients with rectal
cancer [29,30].

Our study results, differently from others studies for study design and ML models
adopted, demonstrate the potential predictive value of radiomics features derived from an
innovative machine learning model adapted by using the disease status at follow-up as
the gold standard for the performances analysis. This approach was proposed, as in other
studies conducted by our group [31,32], to define the real value of PET/CT as a predictive
tool for the stratification of patients with different diseases (prostate and primary brain
tumors) that for specific characteristics are more susceptible to have a scarce sensitivity to
therapies and a poor disease outcome. For this reason, the apparent sub-optimal results
obtained in the present study need to be interpreted with caution because we are not
presenting the performance on the identification of disease but the capability of some
radiomics features to predict the disease status outcome of the patients with metastatic
colon cancer after the standard first adjuvant therapy.

Underlining the results on the PET radiomics analysis in the whole patient group,
among per-lesion analysis, the feature selected as the most accurate for the DA classifier
was GLZLM_GLNU, while three features (GLZLM_ZLNU and GLRLM_SRHGE between
CT features and GLZLM_GLNU between PET features) were selected from PET/CT im-
ages obtaining slight enhancement of accuracy when CT analysis was merged with PET
performances (AUROC 65.22%).

In per-patient analysis, 3 PET features (GLZLM_ZLNU, GLZLM_HGZ, RIM_SUV
bwstdev2), and 1 PET/CT feature (HUKurtosis) were selected by DA classifier (AUROC
61%). Considering these first two analysis groups, three features belonging to the GLZLM
class were identified as the most accurate for the DA classifier. The GLZLM, also called
gray-level size-zone matrix (GLSZM), is the texture class that provides information on the
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size of homogeneous zones for each gray-level. Consequently, it is indirectly linked to
the heterogeneity of the lesions, which, reflecting biological characteristics, has a potential
value in predicting the progression of the disease [9].

In regard to colorectal liver metastasis, the presence of metastasis in this site is widely
considered as one of the unfavorable prognosis parameters. However, commonly employed
SUV metrics (SUVmax, SUVpeak, SUVmean) from [18F]FDG PET images perform relatively
poorly in outcome prediction tasks (OS, PFS, EFS). In contrast, the use of liver metastasis
number and volumetric measurements of MTV and TLG appears to be capable of providing
significant performance [33]. Our radiomics model results, similarly, showed sub-optimal
performances in the prediction of disease outcome by defining, at per-lesion analysis,
one PET feature (GLZLM_GLNU with AUROC 39.94%) and three PET/CT features (GL-
ZLM_ZLNU and GLRLM_SRHGE between CT features and GLZLM_GLNU between PET
features with AUROC 55.26%). Similarly, in liver lesions per-patient analysis, we found
3 PET features (GLZLM_ZLNU, GLZLM_HGZ, RIM_SUVbwstdev2 with AUROC 60.11%)
and one PET/CT feature (HUKurtosis with AUROC 43.48%).

Furthermore, to quantify the influence of liver metastasis over all PET/CT findings,
one only feature considering PET imaging (i.e., DISCRETIZED_SUVbwmin) and two
features considering PET/CT imaging (DISCRETIZED_HISTO_Energy between the CT
features and DISCRETIZED_SUVbwmin between the PET features) was able to discrim-
inate liver metastasis from the rest of the other lesions (AUROC = 88.91% and 95.33%,
respectively). These results, confirmed after further investigations, may be interpreted
as crucial in the diagnostic and prognostic impact of liver lesions in patients affected by
metastatic colorectal cancer.

Potential limitations of the study must be considered. First, some intrinsic biases as the
well-known sub-optimal accuracy of PET in some conditions due to FDG uptake variability,
depending on the histology, size, location (particularly relevant for primary lesion in terms
of prognosis: right vs. left colorectal cancer), pH, and possible overestimation of metabolic
activity due to associate inflammation, could have affected the results. Furthermore, this is
a retrospective single-center study, with a relatively small number of patients and a design
study limited by data available. All patients who underwent [18F]FDG PET/CT after the
first adjuvant therapy were at different disease stages, treated with different chemotherapy
combinations following Italian oncological guidelines (5FU or oral capecitabine in combi-
nation with either oxaliplatin or irinotecan in various schedules) and a different number of
cycles based on patients clinical conditions. All these variables might affect the patient’s
outcome. In addition, radiomics features were extracted only from the [18F]FDG-positive
tumor to construct the model, and the remaining normal tissue in the image may still
contain invisible but useful data. To properly analyze the entire images, 3D deep learning
methods will be necessary.

Our study results could benefit from validation in a prospective multi-center study.
Nevertheless, our preliminary experience suggests that PET texture analysis is feasible and
could carefully be used as an independent indicator for the prognosis of patients with a
high risk of disease progression and supporting clinicians for a more accurate selection of
patients that may benefit from tailored therapies.

As future research direction of our study, radiomics analyses based on wavelet and
Laplacian of Gaussian features will also be considered (e.g., using Pyradiomics) [34]. Fur-
thermore, machine learning investigation could be conducted in the staging preoperative
scan, aiming to identify patients with an increased risk of liver metastases susceptible to
liver-directed therapies, as previously reported in CT textural analysis by Creasy et al. [35].

5. Conclusions

Our machine learning model on restaging [18F]FDG PET/CT demonstrated to be
feasible and potentially useful in the predictive evaluation of disease progression in
metastatic colon cancer after first-line therapies. New investigations might propose morpho-
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functional-based radiomics algorithms for risk stratification and impact on treatment man-
agement in colorectal cancer.
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Abstract: Assessment of magnetic resonance imaging (MRI) after neoadjuvant chemoradiation ther-
apy (nCRT) is essential in rectal cancer staging and treatment planning. However, when predicting
the pathologic complete response (pCR) after nCRT for rectal cancer, existing works either rely on
simple quantitative evaluation based on radiomics features or partially analyze multi-parametric MRI.
We propose an effective pCR prediction method based on novel multi-parametric MRI embedding.
We first seek to extract volumetric features of tumors that can be found only by analyzing multiple
MRI sequences jointly. Specifically, we encapsulate multiple MRI sequences into multi-sequence
fusion images (MSFI) and generate MSFI embedding. We merge radiomics features, which capture
important characteristics of tumors, with MSFI embedding to generate multi-parametric MRI em-
bedding and then use it to predict pCR using a random forest classifier. Our extensive experiments
demonstrate that using all given MRI sequences is the most effective regardless of the dimension
reduction method. The proposed method outperformed any variants with different combinations of
feature vectors and dimension reduction methods or different classification models. Comparative
experiments demonstrate that it outperformed four competing baselines in terms of the AUC and
F1-score. We use MRI sequences from 912 patients with rectal cancer, a much larger sample than in
any existing work.

Keywords: convolutional neural network (CNN); magnetic resonance imaging (MRI); neoadjuvant
chemoradiation therapy (nCRT); pathologic complete response (pCR); radiomics; rectal cancer

1. Introduction

Rectal cancer is a carcinoma with a high incidence, accounting for 11.4% of the total
cancer incidence, with 25,330 new cases in Korea in 2019, according to the Korea Central
Cancer Registry [1]. Magnetic resonance imaging (MRI) is considered one of the most
effective tools for staging rectal cancer by evaluating the local progression of tumors and
lymph node metastasis.

Recently, for locally advanced rectal cancer, neoadjuvant chemoradiation therapy
(nCRT) has been suggested to perform chemoradiation therapy before surgery [2]. If a
patient is highly likely to have a pathologic complete response (pCR) after nCRT, they can
avoid or postpone surgery while monitoring recurrence. Therefore, if we can predict pCR
after nCRT accurately through MRI assessment, surgery could be avoided in the case of
some patients, thereby greatly improving their quality of life by preserving their organs,
which surgery might otherwise damage [3]. However, treatments, such as nCRT, may
cause fibrosis, desmoplastic reaction, or colloid formation; therefore, MRI analysis becomes
increasingly challenging.

Appl. Sci. 2021, 11, 9494. https://doi.org/10.3390/app11209494 https://www.mdpi.com/journal/applsci91
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To predict the pCR of rectal cancer, radiologists have used various MRI sequences,
such as T2-weighted images (T2), diffusion-weighted imaging (DWI) [4,5], and contrast-
enhanced imaging (CE) [6]. While T2 is considered as an essential MRI sequence, radiol-
ogists can achieve higher accuracy by using DWI along with T2 than using T2 alone [7].
This can be improved further by replacing T2 and DTW with T2/Gabor (T2 after applying
the Gabor filter) and DWI/ADC (apparent diffusion coefficient of DWI) [8,9].

To quantitatively evaluate MRI for the pCR prediction of rectal cancer, many prior
studies [8,10–12] have focused on radiomics features that can quantify the texture and
non-texture characteristics of tumors. For example, a random forest classifier on T2/Gabor
radiomics features outperformed qualitative analysis of T2 and DWI by radiologists [8]. By
merging the radiomics features of multi-parametric MRI [10] and additional information,
such as tumor length [11], simple classifiers based on multi-layer perceptron (MLP), and
logistic regression, have shown high pCR prediction accuracy.

Recently, convolutional neural network (CNN) architectures have been widely used
to extract new features of tumors in medical images, such as MRI and CT/PET [13–18].
Using 2D-CNN pre-trained on non-medical images, 2D features of the tumor are extracted
from CE MRI and used for an effective logistic regression classifier [13,14]. To improve
the pCR prediction accuracy, 2D-features from multi-parametric MRI [15] and radiomics
features [16] can be combined. Some approaches have used pre-trained 3D-CNN to extract
3D features of tumor volume [17,18]. However, they neither analyze multi-parametric MRI
nor consider radiomics features; they analyze 3D CT/PET images [18] or the DWI/ADC
MRI sequence [17] only.

In this study, given pre-operative MRI sequences, {T2, DWI/ADC, and CE}, we
predict the pCR of rectal cancer after nCRT by using multi-parametric MRI embedding.
Specifically, we focus on extracting 3D features of tumor volume and radiomics features
and fusing them to generate novel and diverse features of multi-parametric MRI. To this
end, we encapsulate multiple MRI sequences into a multi-sequence fusion image (MSFI)
and extract features directly from it, instead of simply merging the features extracted from
each MRI sequence.

We generate MSFI embedding using a 3D-CNN, which is known to capture non-linear
correlations of volumetric features extracted by 3D convolutional filters. As the number of
3D filters to tune for a deep 3D-CNN is very large, training randomly initialized filters will
be more likely to overfit as the size of training set becomes smaller. For better generalization
ability, we use transfer learning [19] with a 3D-CNN pre-trained on a large collection of
videos.

Finally, we generate multi-parametric MRI embedding by concatenating MSFI embed-
ding and radiomics features and performing dimension reduction for pCR prediction. This
enables us to consider both diverse structural features of the tumor volume present in each
MRI sequence and novel volumetric features that can only be found by analyzing multiple
MRI sequences jointly.

We utilize the annotated MRI sequences of 912 rectal cancer patients, a sample size that
is significantly larger than those used in previous works. We construct our pCR prediction
model and existing models using MRI sequences of 592 patients after enlarging the number
of MRI sequences using image augmentation techniques. For the model evaluation, we use
the MRI sequences of 320 patients.

Our main contributions are as follows.

• We propose a method for encapsulating multiple MRI sequences into an MSFI and
generating MSFI embedding using 3D-CNN to extract novel volumetric features of
tumors.

• We introduce multi-parametric MRI embedding that contains diverse discriminative
features of tumors by incorporating MSFI embedding and radiomics.

• We show the superiority of the proposed method through extensive experiments
using the pre-operative MRI sequences of 912 rectal cancer patients.
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2. Related Works

2.1. Qualitative Evaluation of Rectal Cancer Using MRI

Various types of MRI sequences, such as T2, DWI, and CE, have been used by radiolo-
gists for the qualitative evaluation of rectal cancer. In particular, radiologists can assess
rectal cancer more accurately by simultaneously examining multiple MRI sequences at the
same time. T2 has been considered as the best MRI sequence for evaluating rectal cancer,
while DWI can help predict pCR after nCRT because it shows rectal cancer in a scar more
clearly [4,5,20]. Recently, it has been shown that by using both T2 and DWI, radiologists
can predict pCR more accurately than using T2 alone, since DWI enables them to interpret
qualitative characteristics of rectal cancer that are invisible in T2 [21]. CE is helpful in
assessing rectal cancer by providing the perfusion properties of tumors [6,22].

2.2. Quantitative Evaluation of Rectal Cancer using Radiomics Features

Radiomics features are quantities that can be automatically extracted from medical
images and used to assist clinical decision-making [23]. Given a sequence of medical
images and tumor masks, 2D/3D radiomics features pertaining to the tumor shape, voxel
intensity histogram, and texture of tumor areas (such as the gray-level co-occurrence matrix
and gray-level size-zone matrix), can be extracted [24]. Since radiomics features effectively
quantify both texture and non-texture characteristics of tumors, many prior studies have
used them for pCR prediction.

Recently, in diagnosing pCR after nCRT, a random forest classifier on T2/Gabor
radiomics features has shown higher performance (AUC = 0.93) than qualitative assessment
of T2 and DWI by radiologists, based on a cohort of 114 rectal cancer patients [8]. Given
the computerized tomography (CT) radiomics features of 222 patients, an MLP classifier
(AUC = 0.72) was shown to outperform a logistic regression classifier (AUC = 0.59) and
support vector machine (SVM) classifier (AUC = 0.62), because it can capture non-linear
correlations between CT radiomics features and the pCR of rectal cancer [25].

Radiomics features obtained from multi-parametric MRI have been used to predict
the pCR of rectal cancer. Multi-parametric MRI provides more comprehensive information
on rectal tumor areas than a particular MRI sequence does. Given the radiomics features
of multi-parametric MRI, {T2, DWI/ADC, and CE}, of 48 patients, a three-layer MLP
classifier (AUC = 0.79) was shown to outperform conventional voxelized heterogeneity
analysis by radiologists (AUC = 0.71) [10]. By fusing T2 and DWI radiomics features
before and after the CRT of 152 patients and additional information, such as tumor length,
one logistic regression classifier showed an AUC of 0.9756 in a validation cohort of 70
patients [11]. Using the radiomics features of T2, DWI, and CE obtained before and after
nCRT of 186 patients, another logistic regression classifier achieved an AUC of 0.948 [12].

2.3. Quantitative Evaluation of Rectal Cancer using Deep Learning

While radiomics features capture the essential characteristics of rectal tumor areas, we
can extract new discriminative features using various CNN architectures. Using features
of CE MRI extracted by 2D-CNN pre-trained on non-medical images, logistic regression
classifiers can effectively predict the pCR of breast cancer (AUC = 0.85 [13] AUC = 0.77 [14]).
With the features of multi-parametric MRI, T2, and CE, extracted by pre-trained 2D-CNN,
an SVM classifier can accurately predict the pCR of breast cancer (AUC = 0.87) [15]. Given
the multi-parametric MRI of DWI/ADC and CE, an MLP classifier has been shown to
achieve higher accuracy and robustness by exploiting both 2D-CNN embedding and
radiomics features of MRI [16].

However, 2D-CNN cannot capture features of tumor volumes, because it analyzes each
slice of MRI sequences separately. 3D-CNN can capture volumetric features by applying
3D filters across consecutive slices of an MRI sequence. Given 3D rectal CT/PET images
of tumors, 3D-CNN has been used to extract volumetric features for pCR prediction [18].
This end-to-end deep learning method shows a 0.64 c-index score, which is higher than
the Cox proportional hazards model (0.62) [26] and random survival forests (0.60) [27],

93



Appl. Sci. 2021, 11, 9494

based on a cohort of 84 patients. Given DWI/ADC MRI sequences obtained before nCRT, a
logistic regression model on 3D-CNN embedding (AUC = 0.73) was shown to outperform
a logistic regression model on its radiomics features (AUC = 0.64), based on a cohort of 43
rectal cancer patients [17].

Our method differs from these works in three aspects. First, we focus on extracting
the discriminative volumetric features of rectal cancer by applying 3D-CNN to multi-
parametric MRI. Next, we exploit both our novel volumetric features and radiomics features
of multi-parametric MRI to generate multi-parametric MRI embedding for pCR prediction
of rectal cancer. Lastly, our experimental evaluation is based on a large collection of multi-
parametric MRI scans of 912 rectal cancer patients. To the best of our knowledge, very few
studies have used a cohort of more than 200 rectal cancer patients.

3. Method

3.1. Data Preprocessing

In this study, we use pre-operative MRI sequences of 912 patients with rectal cancer
after nCRT. To split the samples into train and test sets, we partition them into two disjoint
cohorts based on surgery date. In this way, we want to predict the prognosis of future
patients by using the data of past patients before a specific point in time. This data
partitioning scheme is frequently used in medical research because it naturally reflects the
actual disease incidence and prevents random selection bias.

The training set consists of MRI sequences of 592 patients, 114 pCR patients, and 478
non-pCR patients, and the test set contains the MRI sequences of 320 patients, of which 78
are pCR, and 242 are non-pCR patients. We excluded the MRI sequences of 13 patients
because it was impossible to evaluate their MRI reliably due to metal artifacts caused by
metal stents for rectal obstruction. The disease stage information is summarized in Table 1.
During the MRI examination, we followed the MRI protocol described in Appendix A.

Table 1. Disease stages of rectal cancer patients (total = 912).

Train (n = 592) Validation (n = 320)

Age (mean ± SD years) 58.8 ± 12.1 59.5 ± 11.8
Male (n (%))/Female (n (%)) 388 (65.5)/204 (34.5) 199 (62.2)/121 (37.8)

pCR (n (%)) 114 (19.3) 78 (24.4)

ypT stage (n (%))
T0 114 (19.3) 78 (24.4)
Tis 6 (1.0) 8 (2.5)
T1 36 (6.1) 14 (4.4)
T2 145 (24.5) 60 (18.8)
T3 285 (48.1) 156 (48.8)
T4 6 (1.0) 4 (1.3)

ypN stage (n (%))
N0 409 (69.1) 231 (72.2)
N1 139 (23.5) 76 (23.8)
N2 44 (7.4) 13 (4.1)

A board-certified abdominal radiologist with 6 years of experience registered multi-
parametric MRI sequences. Fully automated co-registration was performed, and then
the radiologist validated the co-registered MRI sequences. Automated co-registration of
rectal MRI is known to be effective because rectum is in the pelvic cavity and, thus, moves
much less during respiration. No manual correction was performed. Then, the radiologist
drew the volume of interest (VOI) to include the whole tumor volume on T2 images semi-
automatically using a 3D Slicer tool [28]. All VOIs were confirmed by a senior abdominal
radiologist with 19 years of experience to ensure the quality of tumor annotations.
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Disagreements on annotations were resolved by consensus-based discussion. The
radiologists were blinded to the clinical and histopathologic data, except for information
on the diagnosis of rectal cancer. During training, we oversampled pCR MRI images in the
training set to alleviate the class imbalance between pCR and non-pCR [29].

Figure 1 shows snapshots of MRI sequences, {T2, DWI/ADC, and CE}, of a pCR
patient (upper) and those of a non-pCR patient (lower). Yellow masks depict rectal tumor
areas segmented and validated by radiologists. As the resolution or the number of slices
may differ across MRI sequences, we executed MRI alignment and z-normalization as
preprocessing steps.

To equalize the resolution of different MRI sequences, images were resampled to an
isovoxel size of 1 mm3 using the B-Spline method [30]. Then, the signal intensities of the
images were converted to values in the range (−3, 3) using z-score normalization. These
values were multiplied by 100 and converted to a value between (−300, 300). Radiomic
features were extracted by assigning a bin size of 5 for grayscale discretization. Due to
the lack of a standardized signal intensity scale of MRI, signal intensity normalization is
recommended before comparing MRI images [31].

Grayscale normalization improves the robustness of radiomics features [32,33]. As
with T2, we applied z-score normalization to the post contrast enhanced MRI during
the preprocessing stage. All processes, including voxel resampling and signal intensity
normalization, were performed using the functions implemented in pyradiomics. As the
width and height of the interpolated MRI slices ranged from 224 to 230 after voxel size
resampling, we cropped larger ones slightly to obtain slices of equal resolution. After data
preprocessing, each MRI sequence has 30 slices of resolution (224 × 224).

Figure 1. Three types of MRI images {T2, DWI/ADC, and CE} of a pCR patient (upper) and a
non-pCR one (lower). Yellow masks are rectal tumor areas segmented and validated by radiologists.

3.2. Suggested Method
3.2.1. Representing Multiple MRI Sequences as MSFI Embedding

Figure 2 depicts our pCR prediction process used to transform given multi-parametric
MRI sequences into embedding. To extract features of tumor volumes, we highlight tumor
areas in each MRI image and select the MRI images related to the major tumor volume as
follows. First, we highlight the tumor area in each MRI image by filling the region outside
its tumor mask with zeros. Then, to select contiguous slices capturing tumor volume, we
find the slice with the largest tumor area and pick five and six slices above and below the
slice, respectively, in each MRI sequence.
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If the tumor size exceeded 12 slices, a total of 12 slices were used above and below
the central section with the largest tumor area. The reason is that after nCRT, the viable
portion of the tumor is mainly found in the central region of the tumor, and the border
region of the tumor has a very small volume or is observed as a streak-like fibrosis, making
it difficult to represent the characteristics of the entire tumor volume.

In our study, the number of patients whose tumor size exceeded 12 slices is relatively
small (22/592 in the training set and 17/320 in the test set). Lastly, since the input resolution
of the 3D-CNN used for transfer learning is 112 × 112, we center-cropped each slice around
the tumor area accordingly.

Figure 2. The pCR prediction process using the 3D-CNN classifier from which we extract MSFI
embedding, given {T2, DWI/ADC, and CE} MRI sequences.

To alleviate data scarcity and avoid overfitting, we apply data augmentation tech-
niques and transfer learning. We use data augmentation techniques, such as 3D-rotation
and 3D-shift [34] during the training stage to increase the size and variety of the training
set. We exclude some image augmentation techniques, such as adding Gaussian noise and
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applying a median filter, because they often distort the texture of tumor areas, which is an
essential characteristic of tumors for pCR prediction [35].

In addition to extracting the diverse features from each MRI sequence, we aim to
examine novel features that can be found only by considering multiple MRI sequences
jointly. For this, we transform the given three MRI sequences, {T2, DWI/ADC, and CE},
into an MSFI. The MSFI is a sequence of slices containing 3D values (v1, v2, v3), where v1,
v2, and v3 are from T2, DWI/ADC, and CE, respectively. After encapsulating three MRI
sequences into the MSFI, we use it as an input for deep learning to represent it as MSFI
embedding.

To extract the volumetric features of tumors, we use a 3D-CNN model that is known
for its high classification performance on video data. Unlike 2D-CNN, 3D convolutional
filters can identify patterns that appear across multiple image slices. As there are many
3D convolutional filters to tune in a deep 3D-CNN model, we perform transfer learning to
improve generalization ability [36,37], instead of training randomly initialized 3D filters.

For this, we used 3D-ResNet [38] pre-trained on Kinetic [39], a large-scale, high-
quality video dataset that contains 400 classes with at least 400 videos per class and is
considered as a de facto standard for the research on 3D image processing. 3D-ResNet is
known to distinguish 3D instances very effectively by reducing the gradient-vanishing
effect through gradient flow. This means that its pre-trained 3D filters can already extract
useful volumetric features from 3D instances. Therefore, by fine-tuning the pre-trained
filters in 3D-ResNet, we can construct more effective 3D filters for MSFI embedding
extraction. Figure 3 shows the architecture of 3D-ResNet, the 3D-CNN that we use for
MSFI embedding extraction. We obtain MSFI embedding from the fully connected layer of
the trained 3D-ResNet.

Figure 3. Architecture of the 3D-CNN classifier for MSFI embedding extraction.
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3.2.2. Extracting Radiomics Features

Given multi-parametric MRI, we seek to extract another set of features that can capture
different aspects of tumor characteristics than MSFI embedding. Radiomics features have
already demonstrated a high correlation with pCR after nCRT for rectal cancer. Thus,
we merge radiomics features with MSFI embedding to further improve pCR prediction
performance. Using the pyradiomics package [40], we extract radiomics features from
tumor areas in multiple MRI sequences, {T2, DWI/ADC, and CE}.

Figure 4 shows 3740 radiomics features that were extracted from multiple MRI se-
quences, {T2, DWI/ADC, and CE}. From each MRI sequence, we extracted 2D/3D ra-
diomics features on the tumor shape, voxel intensity histogram, texture of tumor areas, such
as the gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM),
gray-level size-zone matrix (GLSZM), and gray-level dependence matrix (GLDM). In addi-
tion, we applied filters, such as log and wavelet transform, to each MRI sequence to extract
higher-order statistical features on rectal tumor areas [41]. To extract more diverse textual
features from T2, we applied a Gabor filter with four angles, {0◦, 45◦, 90◦, and 135◦}.

Figure 4. Radiomics feature extraction.

3.2.3. Predicting pCR using Both MSFI Embedding and Radiomics Features

For effective pCR prediction, we seek to use diverse characteristics of tumor areas
by considering both MSFI embedding and radiomics features. Radiomics features are
extracted through mathematical analysis of each MRI sequence and mainly capture shapes,
voxel intensity histograms, and the texture of tumor areas. MSFI embedding is generated
through deep learning of multi-parametric MRI and consists of novel volumetric features
highly related to pCR prediction.

Figure 5 presents an overview of our pCR prediction method. Given three MRI
sequences, {T2, DWI/ADC, and CE}, we extracted 512-dimensional MSFI embedding and
3740 radiomics features, as shown in Figures 2 and 4. Then, we obtained a novel multi-
parametric MRI embedding, a compact and effective representation of multi-parametric
MRI, by combining MSFI embedding and radiomics features and compressing them into
150 features using kernel principal component analysis (PCA) [42].
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Figure 5. The overall pCR prediction method using both radiomics features and MSFI embedding,
given three MRI sequences.

Kernel PCA is a dimension reduction method that modifies linear PCA [43] by replac-
ing the linear kernel with a Gaussian kernel. Thus, non-linear transformation is performed
so that feature vectors can be represented in a linearly separable feature space. We use
this multi-parametric MRI embedding as input to a random forest classifier for pCR pre-
diction [44]. We build our pCR classifier based on the random forest model, because
random forest classifiers on radiomics features have shown high performance in predicting
pCR after nCRT for rectal cancer—sometimes higher than qualitative MRI assessment by
radiologists [8,45].

Note that a deep neural network classifier is likely to overfit when trained with multi-
parametric MRI embeddings, because they are no longer images; thus, data augmentation
or transfer learning cannot be applied.

4. Experiments

We evaluate the pCR prediction performance of the proposed method through the ex-
periments listed as follows. Specifically, we investigate the impact of input MRI sequences,
analyze the pCR prediction performance of the proposed method and compare it with
existing methods.

1. Comparison of five types of input MRI sequences:

(a) {T2}
(b) {DWI/ADC}
(c) {CE}
(d) {T2, DWI/ADC} and
(e) {T2, DWI/ADC, and CE} (ours).

2. Comparison of the proposed method with its variants that differ in two factors, MRI
feature vector extraction and pCR classification:

• Three MRI feature vectors: radiomics features, MSFI embedding, and multi-
parametric MRI embedding (ours).

• Six classification models: logistic regression, xgboost, lightgbm, random forest
(ours), MLP, and ensemble of the five classifiers.

3. Comparative evaluation of the proposed method with four competing baselines:

(a) SVM classifier on radiomics features [46],
(b) RF classifier on radiomics features [8],
(c) MLP classifier on radiomics features [25], and
(d) 3D-CNN classifier on MRI images [18].
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To evaluate the overall pCR prediction performance, we use AUC (Area Under the
ROC Curve), because it reflects the sensitivity and specificity of a classifier at the same time.

AUC( f ) =
∑t0∈D0 ∑t1∈D1

�[ f (t0) < f (t1)]∣∣D0
∣∣ · ∣∣D1

∣∣ . (1)

For a classifier f , we estimate its AUC based on the Wilcoxon–Mann–Whitney statis-
tic [47], as shown in Equation (1). D0 and D1 are the set of non-pCR patients and the set
of pCR patients, respectively, and �[ f (t0) < f (t1)] is an indicator function. We use an
independent test cohort to measure the AUC of each classifier.

4.1. Experimental Setup

To generate MSFI embedding, we set the hyperparameters of 3D-ResNet as follows.
The batch size was 2, and the number of training epochs was set to 100. We used the Radam
optimizer [48] to alleviate the local minima convergence problem that may occur when an
adaptive learning rate is used. Initial learning rate was 10−3, and warmup-proportion was
0.1. We used 512 as the dimension of MSFI embedding throughout the experiments.

The hyperparameters of existing pCR classifiers were set as follows. For tree-based
classifiers, such as xgboost, lightgbm, and random forest, the number of decision trees was
set to 1000 to obtain stable pCR prediction results. For a logistic regression classifier, we
selected features with L2 regularization. For an MLP-based classifier, a two-layer MLP was
used with ReLU as an activation function. We trained it using the Adam optimizer [49].
An ensemble classifier performs soft voting by averaging the pCR probabilities predicted
by five classifiers: logistic regression, xgboost, lightgbm, random forest, and MLP.

We examine three different dimension reduction methods in {No dimension reduction,
PCA, and Kernel PCA} and compare the AUC of an ensemble classifier.

4.2. Impact of Input MRI Sequences

To demonstrate the impact of the input MRI sequences on the pCR prediction perfor-
mance, we compare the pCR prediction performance of five types of input MRI sequences in
Table 2: {T2}, {DWI/ADC}, {CE}, {T2, DWI/ADC}, {T2, DWI/ADC, and CE}. Note that
pCR prediction performance is affected not only by the input MRI sequences but also by the
feature vector extraction method and the pCR classification model. For a fair comparison,
we use both radiomics features and MSFI embedding extracted by the same architecture,
3D-ResNet, and apply different dimension reduction methods, as in {no dimension re-
duction, PCA, and Kernel PCA}. We report the AUC of an ensemble classifier because it
corresponds to the average performance of five different pCR classification models.

Table 2. Comparison of pCR prediction performance of five types of input MRI sequences. For a fair
comparison, we extract both MSFI embedding and radiomics features from input MRI sequences,
apply three different dimension reduction methods in {No dimension reduction, PCA, and Kernel
PCA} and report the AUC of an ensemble classifier.

Input MRI Sequences No Dimension Reduction PCA Kernel PCA

{T2} 0.765 0.791 0.787
{DWI/ADC} 0.721 0.801 0.791

{CE} 0.716 0.800 0.801
{T2, DWI/ADC} 0.764 0.793 0.800

{T2, DWI/ADC, and CE} 0.811 0.804 0.819

Table 2 shows that the AUC of pCR prediction using three MRI sequences, {T2,
DWI/ADC, and CE}, as the input is higher than that using one of these MRI sequences
separately, regardless of the dimension reduction method. In particular, while T2 is widely
known to be the most effective in evaluating rectal cancer, pCR prediction performance can
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be further improved when DWI/ADC and CE are used simultaneously. When comparing
{T2, DWI/ADC} and {T2, DWI/ADC, and CE}, we observe that pCR prediction using
three input MRI sequences, {T2, DWI/ADC, and CE}, outperforms {T2, DWI/ADC}.

Among the three possible pairs of MRI sequences from {T2, DWI/ADC, and CE}, we
include only {T2, DWI/ADC} in Table 2, because using T2 and DWI together is already
known to be highly effective in evaluating rectal cancer. Radiologists achieve higher pCR
prediction accuracy by using both T2 and DWI than by using T2 alone [21] and simple
classification methods, such as logistic regression and random forest on radiomics features
from T2 and DWI, outperform MRI assessment by radiologists [8].

4.3. Analysis of Our pCR Prediction Model

We evaluated the effectiveness of the proposed pCR prediction method by examining
two major factors: MRI feature vector extraction and pCR classification. Recall that for
effective pCR classification, we suggest using multi-parametric MRI embedding as an input
to a random forest classifier.

In the proposed pCR prediction method, we generate multi-parametric MRI embed-
ding by concatenating MSFI embedding and radiomics features extracted from given MRI
sequences, {T2, DWI/ADC, and CE}, and applying kernel PCA. To check the impact of
multi-parametric MRI embedding, we apply nine different input vectors to a random
forest classifier by combining a feature vector of {radiomics features, MSFI embedding,
concatenation of both} and a dimension reduction method of {No dimension reduction,
PCA, and Kernel PCA}.

Table 3 presents the pCR prediction performance of random forest classifiers using
nine input vectors. We observe, among various input vectors, that with the input vector
obtained by concatenating MSFI embedding and radiomics features and then applying
kernel PCA, that is, our multi-parametric MRI embedding, random forest classifier achieved
the highest AUC of 0.837.

Table 3. Comparison of pCR prediction performance of various combinations of feature vectors and
dimension reduction methods. Three types of feature vectors, {radiomics features, MSFI embedding,
concatenation of both}, and three dimension reduction methods, {No dimension reduction, PCA,
and Kernel PCA}, are considered. The pCR classification model is fixed to a random forest.

Feature Vector No Dimension Reduction PCA Kernel PCA

MSFI embedding 0.776 0.739 0.732
Radiomics features 0.811 0.754 0.819

Concatenation of both 0.796 0.746 0.837

From this, we observe that MSFI embedding extracts novel volumetric features that
cannot be found in the pool of radiomics features. At the same time, radiomics features
explain some essential characteristics of rectal cancer that MSFI embedding cannot repre-
sent. Thus, multi-parametric MRI embedding succeeds in capturing more diverse features
from the given MRI sequences. We also observe that kernel PCA can extract discriminative
features for pCR prediction from MSFI embedding and radiomics features.

Then, we compare the effectiveness of MSFI embedding and radiomics features. In
Table 3, MSFI embedding shows a lower AUC than the radiomics features when used
as the input to the random forest classifier. However, while we use 3D-ResNet only for
MSFI embedding extraction, it should be noted that its pCR classification performance has
already reached 0.807 just as (B4) in Section 4.4. Recall that the random forest classifier on
radiomics features is known to be highly effective in pCR prediction for rectal cancer [8].

Given three MRI sequences, {T2, DWI/ADC, and CE}, we can obtain multi-parametric
MRI embedding by concatenating MSFI embedding and radiomics features and performing
kernel PCA. Through this novel embedding, we aim to show the effectiveness of our
random forest classifier by comparing it with various classification models.
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Table 4 presents the AUC of six pCR classifiers built on multi-parametric MRI embed-
ding: logistic regression, xgboost, lightgbm, random forest, MLP, and an ensemble of all
the classifiers. The random forest classifier outperforms all the other classifiers, including
the ensemble, demonstrating an AUC of 0.837.

Table 4. Comparison of pCR prediction performance of various classifiers built on multi-parametric
MRI embedding.

Classifier
Logistic
Regression

Xgboost Lightgbm
Random
Forest

MLP Ensemble

AUC 0.804 0.783 0.792 0.837 0.798 0.819

4.4. Comparison with Existing pCR Prediction Methods

To demonstrate the superiority of our method in predicting pCR after nCRT for rectal
cancer, we compared it with four competing baselines: (B1) SVM classifier on radiomics
features [46]; (B2) random forest classifier on radiomics features [8]; (B3) MLP classifier on
radiomics features [25]; and (B4) 3D-CNN classifier on MRI images [18].

For a fair comparison, we re-implemented all the baselines to re-train them with our
large training set containing three MRI sequences, {T2, DWI/ADC, and CE}, of 592 rectal
cancer patients. As input to the three baselines, (B1)–(B3), we used 3740 radiomics features
extracted as shown in Figure 4. We also re-implemented the 3D-CNN classifier [18], (B4),
so that it could accept three MRI sequences, instead of CT/PET images, of rectal cancer as
the input.

We compared the proposed method with four baselines by evaluating the overall pCR
prediction performance using four measures: AUC, F1-score, specificity, and sensitivity.
Specificity and sensitivity correspond to the true negative rate and true positive rate,
respectively, and the F1-score is their harmonic mean.

In Table 5, we observe that the proposed method outperformed all competing baselines
in terms of the AUC and F1-score. (B2) performed the best among (B1)–(B3) built on
radiomics features. However, while the sensitivity of the proposed method was slightly
lower, the overall performance of the proposed method was better than that of (B2).
This implies that MSFI embedding successfully represents novel features of tumors that
radiomics features cannot capture. Compared with (B4), all four measures of the proposed
method were higher, which indicates that radiomics features contribute to the improved
performance of the proposed method.

Table 5. Comparison of pCR prediction performance with competing baselines.

pCR Prediction Method AUC F1-Score Specificity Sensitivity

(B1) SVM classifier (input = radiomics features) [46] 0.799 0.53 0.45 0.67
(B2) RF classifier (input = radiomics features) [8] 0.811 0.63 0.56 0.74

(B3) MLP classifier (input = radiomics features) [25] 0.763 0.54 0.49 0.62
(B4) 3D-CNN classifier (input = MRI images) [18] 0.807 0.63 0.59 0.68

Proposed Method 0.837 0.65 0.60 0.72

5. Discussion

This is the first study that fully exploits both radiomics features and a deep embedding
network of multi-parametric MRI to predict pCR after nCRT in patients with locally
advanced rectal cancer. We demonstrated the superiority of the proposed method by
analyzing its pCR prediction performance and comparing it with competing baselines
based on a large cohort of 912 rectal cancer patients.

Before analyzing the pCR prediction performance of our method, we showed that the
average pCR prediction performance was the highest (AUC = 0.819) when using various
features from the entire multi-parametric MRI (Table 2). Given multi-parametric MRI,
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we generated radiomics features and MSFI embedding and merged them through kernel
PCA to obtain multi-parametric MRI embedding. The multi-parametric MRI embedding
exhibited higher pCR prediction performance than radiomics features or MSFI embedding
(Table 3).

This means that some tumor characteristics that are highly relevant to pCR predic-
tion are captured by either radiomics features or MSFI embedding but not both. It also
indicates that MSFI embedding can represent novel volumetric features of tumors in multi-
parametric MRI. Given multi-parametric MRI embedding, we demonstrated that a random
forest classifier was the most effective pCR prediction model (Table 4), as suggested in our
method. Then, we confirmed that our method outperformed four competing baselines in
terms of overall prediction performance (AUC = 0.837 and F1-score = 0.65) for pCR after
nCRT for locally advanced rectal cancer (Table 5).

The 3740 radiomics features and 512 features in MSFI embedding are not equally im-
portant to the pCR prediction. Using kernel PCA, we performed non-linear dimensionality
reduction over the vector of 4252 features to obtain a low-dimensional embedding that
maximizes the variance. In our experiments, we selected 150 as the optimal number of
components through hyperparameter tuning. Instead of tuning the output dimension
manually, advanced feature selection techniques [50] that automatically determine the
optimal number of features can be used. To explore non-linear combinations of features,
we can also consider performing kernel PCA by fixing the variance threshold instead of
specifying the number of components.

Our MRI data is heterogeneous as it was acquired from different patients using MRI
scanners of various vendors, as stated in Appendix A. Due to the lack of a standardized
signal intensity scale, heterogeneous MRI images are not directly comparable [31]. To
deal with such heterogeneity, we used pyradiomics, the most widely used tool for reliable
radiomics feature extraction. During preprocessing, we applied voxel size resampling and
signal intensity normalization implemented in pyradiomics because these two techniques
have been known to improve the robustness of radiomics features [32,33]. We used the
preprocessed MRI data as an input to 3D-CNN for MSFI embedding to improve the
robustness of MSFI embedding. We expect that we can further improve the pCR prediction
performance by applying semi-supervised training techniques for heterogeneous medical
image data [51].

Segmentation variability also affects the pCR prediction performance of the proposed
method. As we performed semi-automatic VOI segmentation using 3D Slicer tool that
requires manual adjustment, inter- and intra-observer variability still needs to be resolved.
The proposed method uses features extracted from segmented VOI of multi-parametric
MRI, and thus the pCR prediction performance will gradually drop as segmentation
variability increases. While there is a lack of reliable and validated fully automatic VOI
segmentation tools for MRI [52], there have been efforts to develop automated VOI seg-
mentation tools based on deep learning [53–55]. By using automatic VOI segmentation, we
can fully automate the proposed method and perform more reliable and consistent pCR
prediction.

This study has clinical significance in that it increases the applicability of a new
treatment method, such as “wait-and-see” without surgery [56,57] by achieving a higher
prediction performance of pCR after nCRT based on a large number of patients. For the past
decade, the two-step process of performing nCRT followed by surgery has been considered
as the standard treatment. pCR is often achieved after nCRT only, although the surgery
was unavoidable even in the case of pCR. This is because we can determine the presence or
absence of pCR only after performing surgery.

Rectal cancer surgery often causes anal function loss and sexual dysfunction. Although
these are not directly related to survival, they severely reduce the quality of life. If we
can predict pCR after nCRT before surgery with higher accuracy than existing methods
as shown in Table 5, this means that more patients can avoid surgery in the case of pCR.
Therefore, it is important to predict pCR more accurately and reliably before surgery.
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As the wait-and-see method is not included in the internationally standardized medi-
cal guidelines, it is currently being conducted only as a clinical study by some professors at
our hospital and is not a routine process. Therefore, it is not mandatory for radiologists to
provide information on the prediction of pCR. More studies on reliable pre-operative pCR
prediction are necessary to establish clinical guidelines for pre-operative pCR prediction,
and this study will contribute to it. The inability to compare the results of this study with
clinical practice is a limitation of this study, and further research is needed.

6. Conclusions

Given pre-operative multiple MRI sequences, {T2, DWI/ADC, and CE}, of rectal
cancer after nCRT, we proposed an effective pCR prediction method by building a random
forest classifier through novel multi-parametric MRI embedding. We obtained multi-
parametric MRI embedding by MSFI embedding and incorporating it with radiomics
features. We extracted MSFI embedding using 3D-ResNet to capture novel volumetric
features of tumors by considering multiple MRI sequences jointly.

Through extensive experiments, we demonstrated the superiority of the proposed
method by demonstrating the effectiveness of (1) multiple input MRI sequences, (2) multi-
parametric MRI embedding, and (3) the random forest pCR classifier. Then, we compared
the proposed method with four competing baselines and showed that our method achieved
the highest overall pCR prediction performance. Our experimental results are robust in
that we used a large dataset of 912 patients’ MRI sequences, which is much larger than that
of any existing work.
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Appendix A. MRI Protocol

MRI examinations [58] were performed with a 1.5-T scanner (Achieva, Philips Health-
care) or a 3.0-T MR scanner (Magnetom Tim Tio, Siemens Healthineers, Germany; or Ingenia,
Philips Medical Systems, the Netherlands). For bowel preparation, 20 mg of scopolamine
butylbromide (Buscopan; Boehringer Ingelheim) was injected intramuscularly, and sonogra-
phy transmission gel (50–100 mL) was administered in the rectal lumen for the mass at the
lower or middle rectum before MRI scanning.

The MRI sequences included high-resolution T2-weighted images using a respiratory-
triggered fast spin echo (axial, sagittal, and oblique axial and coronal orientations), axial
T1-weighted images, axial diffusion-weighted images using single-shot echo-planar imaging
(the highest b-values 1000 s/mm2), as well as gadolinium contrast enhanced T1 weighted
images using a three-dimensional gradient-echo sequence. The oblique T2-weighted image
sequence was obtained orthogonal or parallel to the long axis of the tumor. An intravenous
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bolus of gadobutrol (Gadovist; Bayer AG, Berlin, German: 0.1 mL/kg of body weight) or
gadopentetate dimeglumine (Magnevist; Bayer Healthcare, Berlin, Germany: 0.2 mL/kg of
body weight) was injected at a rate of 2.0 mL/s. The details on MRI sequences are summarized
in Table A1.

The effectiveness of T2 and ADC in staging/restaging rectal cancer has been widely
accepted. Regarding DCE, however, a consensus meeting of 14 abdominal imaging experts
from the European Society of Gastrointestinal and Abdominal Radiology (ESGAR) recom-
mended that, although some promising data are available, it should currently be considered
as a research tool and not be adopted routinely [59]. Therefore, we acquired contrast enhanced
T1 weighted gradient echo images but not DCE.

Table A1. The MRI parameters.

1.5 T 3.0 T

Fast Spin-
Echo T2-
Weighted
Image (T2)

Diffusion-
Weighted
Image
(DWI)

3D T1-
Weighted
Gradient
Echo (CE)

Fast Spin-
Echo T2-
Weighted
Image (T2)

Diffusion-
Weighted
Image
(DWI)

3D T1-
Weighted
Gradient
Echo (CE)

Plane Axial, Sagittal,
Oblique axial,
Oblique coro-
nal

Axial Axial Axial, Sagittal,
Oblique axial,
Oblique coro-
nal

Axial Axial

Repetition time(ms) 2740–4200 6900–9100 3.51 3800–5500 9500–12,000 3.51

Echo time(ms) 80 64–90 1.44 80–120 62–95 1.44

Flip angle(degrees) 137 90 90–150 90

B factor(s/mm2) 0, 300, 1000 0, 300, 1000

Field of view(mm) 180 or 240 220 240 180 or 240 220 240

Matrix without inter-
polation

304 128 or 150 240 320–448 126 or 153 240

Slice thickness (mm) 3 3 3 3 3 3

Slice gap (mm) 0 0 0 0

Echo train length 16 17 or 35
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Featured Application: The study proposes an analysis of the robustness of Positron Emission To-

mography (PET) radiomics features after PET image co-registration with two different Magnetic

Resonance Imaging sequences, namely T1 and FLAIR.

Abstract: Radiomics holds great promise in the field of cancer management. However, the clinical
application of radiomics has been hampered by uncertainty about the robustness of the features
extracted from the images. Previous studies have reported that radiomics features are sensitive to
changes in voxel size resampling and interpolation, image perturbation, or slice thickness. This study
aims to observe the variability of positron emission tomography (PET) radiomics features under the
impact of co-registration with magnetic resonance imaging (MRI) using the difference percentage
coefficient, and the Spearman’s correlation coefficient for three groups of images: (i) original PET,
(ii) PET after co-registration with T1-weighted MRI and (iii) PET after co-registration with FLAIR
MRI. Specifically, seventeen patients with brain cancers undergoing [11C]-Methionine PET were
considered. Successively, PET images were co-registered with MRI sequences and 107 features were
extracted for each mentioned group of images. The variability analysis revealed that shape features,
first-order features and two subgroups of higher-order features possessed a good robustness, unlike
the remaining groups of features, which showed large differences in the difference percentage coeffi-
cient. Furthermore, using the Spearman’s correlation coefficient, approximately 40% of the selected
features differed from the three mentioned groups of images. This is an important consideration for
users conducting radiomics studies with image co-registration constraints to avoid errors in cancer
diagnosis, prognosis, and clinical outcome prediction.

Keywords: radiomics feature robustness; imaging quantification; [11C]-methionine positron emission
tomography; PET/MRI co-registration
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1. Introduction

Cancer is one of the leading causes of mortality, and anatomical and functional imaging
is of vital importance for diagnosis, treatment planning, and treatment response, which
has become standard in clinical protocols for many different oncological disease types.
However, qualitative analyses are not always sufficient to reveal disease characteristics
and to make a treatment decision or final diagnosis with the utmost confidence. To
date, interest has emerged in characterizing tumor heterogeneity and phenotypes based
on innovative image-based biomarkers related to the pathological, genomic, proteomic,
and clinical data. Recent advances in computational power and the use of automated
algorithms have generated a new area of research termed radiomics [1,2] that can be
applied on imaging data sets such as computed tomography (CT) [3,4], positron emission
tomography (PET) [5,6], and magnetic resonance imaging (MRI) [7,8]. It is based on the
extraction of a large variety of biomarkers from images in order to improve diagnosis and
treatment response prediction, and thus potentially allow for the personalization of cancer
treatments. The fundamental hypothesis of radiomics is that much more information is
presented in medical images than what visual assessment can understand, and therefore,
the pathophysiological information of tumors can be captured using image biomarkers. In
computer vision and image processing, a biomarker is an information about the content
of an image and can be renamed as feature. Specifically, these features express properties
regarding the shape, histogram, and texture of the images. Shape features are based on the
surface reconstruction whereas first-order metrics are obtained from the histogram that
describes the distribution of voxel intensities in the image. Information about inter-voxel
relationships within the image can be interpreted using higher-order statistics based on
texture analysis. As a result, quantitative analysis based on these features is considered
one of the key findings in clinical studies for cancer detection, diagnosis and therapy
assessment, resulting in improved decision support systems. Nevertheless, their clinical
application may be challenging. A major obstacle is that the “robustness” of the extracted
radiomics features is unclear. Robustness is understood as the level of variability of features
as a result of perturbations, such as image co-registration. In other words, an essential
ingredient to establish novel quantitative imaging biomarkers in clinical practice is to
quantify and ascertain the consistency of radiomics features.

Recently, many researchers have focused on gaining a deeper understanding of fea-
ture robustness. However, most studies used phantoms, and consequently, it is difficult
to ensure that their results could be applied to imaging studies of real patients [9]. Fur-
thermore, standardizing the parameters during image acquisition in clinical settings is a
challenge. To date, there are various studies on the robustness of radiomics features due
to various factors, such as the impact of voxel size resampling and interpolation, image
perturbation, different slice thickness, etc. [10–12], and many works have discussed the
potential uncertainty of feature extraction, i.e., [13].

In PET imaging, some standardized semi-quantitative measurements are usually
extracted and used in clinical practice, such as the standardized uptake value (SUV),
and the metabolically active tumor volume (MTV) [14]. Tixier et al. [15] investigated
the reproducibility of SUV, intensity histogram features, intensity-size zone features, and
co-occurrence matrices features. The results showed that these features were insensitive
to the discretization range. Hatt et al. [16] investigated the robustness of PET based
heterogeneity textural features with respect to the delineation of volumes and partial
volume effects correction. These features were significantly affected by the differences
in the volume delineation. The authors further reported that local features, e.g., entropy
and heterogeneity, were more robust when compared to regional features, e.g., intensity
variability and size-zone variability. To the best of our knowledge, no studies have analyzed
the robustness of PET radiomics features in a real patients’ dataset after the co-registration
with MRI.

We hypothesize that image co-registration can change the voxel intensity relationships
between neighboring voxels which in turn changes the feature values. Furthermore, the
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volume shape is likely to differ from the original one, changing the shape based feature
values, such as the sphericity, compactness, convexity, etc. [17]. In practice, we expected
that the image co-registration would introduce further uncertainty to radiomics studies.
Specifically, we consider PET images, and we assess the variation in PET radiomics features
after the co-registration with T1-weighted MRI, and FLAIR MR images obtained using
the same acquisition protocols and the same scanners. MRI is generally used for standard
clinical care of patients with brain tumors (i.e., diagnoses, monitor tumor progression, and
treatment response assessment) but the clinical role of PET in the management of these
patients has evolved considerably in recent years. Consequently, MRI and PET are applied
to diagnose and classify brain tumors before surgery, to plan and manage intraoperative
phase, to monitor and evaluate response to treatment, and to understand the effects of
treatment on the patient’s brain.

A recent radiomics study [18] suggests that [18F]-Fluorodeoxiglucose (FDG) PET-
based radiomics is a reliable non-invasive method to distinguish lymphoma and glioblas-
toma. Specifically, thirteen features were selected for the differential diagnosis of lymphoma
and glioblastoma. The same research group [19] affirms that the radiomics signature based
on FDG-PET is a promising method for the non-invasive measurement of glioma prolifera-
tive activity and facilitates the prediction of patient prognoses. Nevertheless, although FDG
is considered the best oncology radio-tracer in PET, it shows a high-glucose metabolism in
normal brain tissue, which hinders the identification of a low- or intermediate-grade tumor
with similar or less activity. For this reason, an alternative radio-tracer, [11C]- Methionine
(MET), is studied since it provides a high detection rate of focal lesions in the central
nervous system [20]. Particularly, [11C]-MET reflects amino acid transport in tumor which
demonstrates a higher efficiency compared to [18F]-FDG in delineating the tumor extent,
especially in the low-grade gliomas. The uptake of amino acid in a normal brain is relatively
low as compared to those with gliomas since cancers need to consume more methionine
for extensive proliferation and survival, while normal cells do not [21]. For this reason,
it is important to incorporate MET-PET imaging in addition to MRI to provide specific
information for defining the target volume for the radio-surgical treatment in patients with
recurrent brain tumors to optimize target identification for infiltrating or ill-defined brain
lesions.

Considering MET-PET radiomics studies, Stefano, et al. [5] were able to select a sub-
panel of three features (namely asphericity, low-intensity run emphasis, and complexity)
with valuable association with patient outcome (sensitivity, 81.23%; specificity, 73.97%;
accuracy, 78.27%). Hotta et al. [22] developed a radiomics model to differentiate recurrent
brain tumor from radiation necrosis based on MET-PET in a mixed cohort of 41 patients with
brain metastasis or glioma. A random forest classifier was trained to separate radiation
necrosis from recurrent brain tumor. The implemented radiomics model obtained an
area under the receiver operating characteristic curve (AUC) of 0.98 (specificity, 94%;
sensitivity, 90%). Papp at al. [23] considered machine-learning-driven survival models
for glioma built on in vivo MET-PET characteristics, ex vivo characteristics, and patient
characteristics with an AUC of 0.9. However, many technical challenges still remain,
including image co-registration, such that PET radiomics can effectively contribute to
personalized medicine [24].

For this reason, seventeen glioblastoma patients who underwent both MET-PET
and MRI between a time range of three years (2016–2019) were used for our analysis by
extracting radiomics features grouped into shape, first- and higher-order features. Usually,
the feature extraction task is one of the five fundamental tasks of a radiomics workflow [25]
together with image acquisition, target segmentation, feature selection, and implementation
of the classification model to predict the clinical outcome. Nevertheless, our study will omit
the final task focusing on the first four steps by newly adding the PET/MRI co-registration
prior to the feature extraction process to evaluate its impact in a radiomics study.
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2. Materials and Methods

To analyze the stability of PET radiomics features after co-registration with MRI,
the PET volume of interest was delineated before and after co-registration using a semi-
automatic threshold segmentation approach, followed by the extraction of radiomics
features. Afterward, a robustness analysis was performed considering the different feature
groups and, since not all radiomics features are useful in predicting a particular outcome
of an event, the most representative features were identified from the large number of ex-
tracted features through an appropriate selection algorithm. An overview of our workflow
is shown in Figure 1. Each step is detailed in the following sections.

Figure 1. An overview of the study workflow.

2.1. Medical Imaging

While MRI images are anatomical imaging with high spatial resolutions but a limited
physiological information, PET images provide metabolic details on the target but with
poor spatial resolution leading to low-valued anatomical information. As a consequence, it
would be advantageous to integrate useful data from those two images into a single one
with complementary anatomical and functional information yielding more accurate disease
information that will significantly aid in the early detection of tumors and enhance the
efficiency of diagnosis. Compared with PET/CT, hybrid PET/MRI is capable of providing
superior anatomical detail while reducing the cost of significant radiation exposure. The
adoption of hybrid PET/MRI, however, is still limited. Consequently, while PET/CT is an
image acquired with a single device in almost all hospital centers, PET/MRI performed in
a single scanning session is not yet a widely used technology. For this reason, PET/MRI
image co-registration, which is a process of overlaying images from different modalities
taken at different time points of the same organ, plays an increasingly important role in the
part of medical imaging analysis. Therefore, seventeen glioblastoma patients undergoing
[11C]-MET PET (Biograph Horizon, Siemens Healthcare, Erlangen, Germany) and MRI
(T1-weighted and FLAIR sequences, Achieva, Philips Healthcare, Best, The Netherlands)
examinations were considered. An interval of no more than 15 days between PET and
MRI examinations was considered. Specifically, the mean interval was of 6.6 days (range
2–15 days). PET images were reconstructed using the Ordered Subset Expectation Max-
imization (OSEM) with 4 iterations with a 512 × 512 image matrix and a voxel size of
0.4821 mm × 0.4821 mm × 3 mm. T1-weithted sequences had a matrix resolution of
288 × 288 with a voxel size of 0.8888 mm × 0.8888 mm × 2 mm, while FLAIR sequences
had a matrix resolution 240 × 240 image matrix with a voxel size of 1 mm × 1 mm × 2 mm.
PET/MRI co-registrations were obtained using the automatic registration MIM software
(MIM v.7.0.5 software; Cleveland, OH, USA). Rigid Assisted Alignment is MIM’s default
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method for aligning images by maximization of mutual information. An optimization
routine adjusts the translation and rotation between the two series in order to maximize a
mutual information metric. The mutual information metric is based on the intensities of the
overlapping voxels between the two images that are being aligned and is partially based
on joint entropy calculations between the volumes. The theory is that the ratio of intensity
levels should vary little in regions of similar structures contained in the series. Therefore,
the variability of this ratio should be minimized, and mutual information maximized,
when the images are aligned correctly. The advantage of this technique is that it is general
in nature and can be used to align series of the same modality or different modalities. In
our study, this function produces a link between PET and MRI series that allows you to
localize and scroll on both series simultaneously, transfer contours, and more.

The following steps were performed for all patient studies such that there were no
differences in the co-registration algorithm while avoiding other sources of bias:

1. In an open session, click the “Create Fusion” tool;
2. Select the main series;
3. Select the secondary series;
4. The co-registered image is created and appears on the current page.

The primary series is the series that remains unaltered when co-registration is per-
formed (MRI in our study). The secondary series (PET) is rotated and translated to be
alignment with the main series which aligns images by maximization of mutual informa-
tion. An optimization routine adjusts translation and rotation between the two series in
order to maximize a mutual information metric. After that, the segmentation task was
performed on the original and co-registered PET images. This process is challenging be-
cause many tumors show unclear borders [26]. Radiologists can flexibly delineate targets
manually resulting in highly accurate segmentations. Nevertheless, manual segmentation
is labor-intensive, time-consuming, and not always feasible for radiomics analysis requiring
huge datasets. Additionally, manual segmentation is subject to inter- and intra-observer
variability [27]. Hence, many semi-automatic delineation algorithms, such as region grow-
ing or thresholding, are used in the clinical environment although less precise than manual
segmentation. Conversely, they reduce the operator interaction in the segmentation process,
improving time efficiency, and reproducibility. Consequently, the stand-alone and freely
available Local Image Feature Extraction (LifeX, IMIV/CEA, Orsay, France) platform [28]
was used. Specifically, the threshold method was applied in the regions including the
target roughly determined by the user. With this approach, the region is identified by the
user, but no accurate drawing is required. Once the inclusion of the anomalous region was
chosen, the algorithm performed all the subsequent processes automatically leading in the
delineation of the volume of interest (VOI). According to [29], the threshold value was set
at 40% of the maximum SUV (SUVmax). This operation was performed for each PET study,
before and after image co-registration.

2.2. Feature Extraction

After VOI identification, the extraction of radiomics features was performed for each
patient in the data set. One of the main points in radiomics is to increase the reproducibility
of the extracted features. For this, the image biomarker standardization initiative (IBSI) [30],
which is an independent international collaborative study towards the standardization of
radiomics features for the purpose of high-throughput quantitative image analyses, has
been introduced. For this reason, we used a comprehensive open source IBSI-compliant
platform called PyRadiomics (Harvard Medical School, Boston, MA, USA) [31], which
enables processing and extraction of radiomics features from medical image data using
a large panel of engineered hard-coded feature algorithms, and currently is one of the
most commonly used software for radiomics studies. PyRadiomics is implemented in
Python, a language that has established itself as a popular open-source language for
scientific computing, and which can be installed on any system. PyRadiomics provides a
flexible analysis platform with a back-end interface allowing automation in data processing,
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feature definition, and batch handling. The Pyradiomics platform calculates different
feature classes, namely first-order statistics, shape descriptors, and five texture classes:
gray level cooccurrence matrix (GLCM), gray level run-length matrix (GLRLM), gray level
dependence matrix (GLDM), gray level size-zone matrix (GLSZM) and neighboring gray
level dependence matrix (NGLDM).

Shape-based features are based on the VOI voxel representation and are independent
of the distribution of gray level intensity in the image. They are used to describe the
three-dimensional shape, size of the lesion and other geometric aspects such as volume,
maximum diameter along different orthogonal directions, surface, tumor compactness, and
sphericity (a measure of roundness). Specifically, compactness and sphericity describe how
the VOI shape differs from that of a circle (for 2D analyses) or a sphere (for 3D analyses).
Additionally, the surface area is calculated by triangulation (a process that produces a net of
triangles that completely cover the tumor surface) and serves as a base for calculation of the
surface-volume ratio: spiculated tumors show higher values than those of a round tumor
of similar volume. Furthermore, flatness describes whether the surface of the object is flat
or has raised areas or indentations. In short, these radiomics features provide physical
measurements and significantly contribute to clinical outcome.

First-order statistical features describe the frequency distribution of voxels within a
VOI. This information can be obtained from the histogram of gray-level intensity values;
for this, they are referred as “histogram-based” features. Sophisticated features include
skewness and kurtosis, which describe the shape of the intensity distribution of data:
skewness reflects the asymmetry of the data distribution curve to lower or higher values
than the mean one (negative skew and positive skew, respectively), whereas kurtosis
reflects the tail of a data distribution with respect to a gaussian distribution due to outliers.
Other features include histogram entropy and uniformity (also called energy).

Texture analysis is a key concept in radiomics. It refers to wide variety of quantitative
methods that are used to assess the relative voxel positions within the image to derive
texture features. As a result, the texture features provide information on the spatial
organization of color or intensities in an image or a selected region of an image. The
texture is a linked set of voxels fulfilling a given gray level property that occurs repeatedly
in an image region thus creating a textured region. Due to the fact that the texture is
characterized by the spatial distribution of gray levels in a neighborhood, it cannot be
defined for a point. Texture features are sub-categorized according to particular matrices
from which they are obtained. These matrices are calculated to describe the spatial voxel
differences by considering the spatial correlation properties of gray scales and therefore
are the most capable of expressing the correlation between different parts of the tumor.
In particular, GLCM is used to quantify the incidence of voxels with same intensities at
a predetermined distance along a fixed direction while GLRLM quantifies consecutive
voxels with the same intensity along fixed directions and GLDM is created by counting
the number of voxel segments having the same intensity in a given direction. In addition,
GLSZM is defined as number of connected voxels that have equal gray level intensity.
Finally, NGTDM valuates the spatial interrelationships between 3 or more voxels. These
features provide a complete information of the tumor; therefore, it is believed to match and
resemble the visual experience of a human.

To evaluate the difference percentage (DP) coefficient between the feature values
extracted from the original PET images and the co-registered PET ones, we used the
following formula:

DP = 100 × ABS

(
Feature Valueoriginal PET − Feature Valueco−registered PET

Feature Valueoriginal PET

)
(1)

2.3. Feature Selection and Analysis

The process of identifying small sets of features useful for diagnostic purposes, namely
the selection feature process, is a challenging task in radiomics studies. The aim is to
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obtain the smallest possible set of features, considered as optimal set for achieving a good
predictive performance, thus leading to exclusion of non-reproducible, redundant, and
irrelevant features from the dataset. In this study, we want to investigate whether the same
optimal set of radiomic features is obtained from three sets of images, namely original
PET, PET co-registered with T1-weighted MRI, and PET co-registered with FLAIR MRI.
In that way, the robustness of radiomics features can be evaluated after co-registration.
Spearman’s rank correlation coefficient, which belongs to the filter method group [25],
is used to assess whether there is any association between two observed features and to
estimate the strength of this relationship. In this way, it is possible to eliminate all features
whose level of correlation is above a user-specified threshold. For two sets of variables x
and y, each raw score xi and yi is converted to ranks Xi and Yi. The Spearman’s correlation
coefficient is then used on the ranked variables which can be expressed mathematically by
the following formula:

ρ = 1 − 6 ∑ d2
i

n(n2 − 1)
(2)

where di = Xi − Yi is the difference between ranks and n is the number of paired observa-
tions. The coefficient ranges from −1 to +1, where negative values indicate that y decreases
with x and positive values indicate that y increases with x. In other words, a correlation
of 1.0 indicates a perfect positive correlation, and a correlation of −1.0 indicates a perfect
negative correlation. Particularly, the strength of association between the two variables
is considered very strong if the coefficient ranges from 0.8 to 1, moderate from 0.6 to 0.7,
weak from 0.3 to 0.5, and very weak when less than 0.2. When the correlation coefficient is
equal to 0, the two variables are independent from one another [32] (see Table 1).

Table 1. The Spearman’s rank correlation coefficient ranges from -1 to 1 indicating various degrees of
association between radiomics features.

Correlation Coefficient Degree of Association

±1 Perfect

±0.9 Very Strong

±0.8 Very Strong

±0.7 Moderate

±0.6 Moderate

±0.5 Fair

±0.4 Fair

±0.3 Fair

±0.2 Poor

±0.1 Poor

0 None

In our study, a threshold of 0.8 was selected such that a number of high correlated
features will be extracted. Consequently, a list of features that are not correlated, i.e., have
the correlation coefficient lower than the chosen threshold, is obtained. After applying this
correlation-based method, observation of different radiomic features from three different
sets of images is obtained to evaluate the robustness of radiomics features following
co-registration interference.

115



Appl. Sci. 2021, 11, 10170

3. Results and Discussions

A total of 107 features (14 shape features, 18 first-order statistical features, and 65
texture features) were extracted from each PET study before and after co-registration with
T1-weighted (for 15 patients because two T1 images were unavailable), and FLAIR (for all
17 patients) MRI sequences, for a total of three feature datasets for each lesion.

Starting from an exploratory analysis of the difference percentage between the feature
values obtained from original PET images and co-registered PET ones, the shape-based
feature group showed a mean less than 5% for all features indicating that this group has
significantly robust features (see Figure 2). This is because a similar VOI is used before and
after co-registration, and as a result, the shape characteristics are not supposed to change
significantly from each other after the co-registration process. Even the first-order statistical
GLCM and NGTDM features showed a median of less than 20% (<10% for first-order
statistical features); thus, they are quite robust (see Figure 3).

Figure 2. Difference percentage between non-co-registered and co-registered PET with T1-weighted and FLAIR MRI (the
median is indicated in orange, while mean in green) for shape-based features.

Figure 3. Cont.
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Figure 3. Difference percentage between non-co-registered and co-registered PET with T1-weighted and FLAIR MRI (the
median is indicated in orange, while mean in green) for first-order, and GLCM, and NGTDM features, respectively.

Vice versa, significant differences were found for the remaining texture matrices with
mean values above 40% (Figure 4). In the case of the GLSZM Large Area High Gray Level
Emphasis feature, the main exceeded 70%. These results are consistent with previous results
published in [33]. In addition, in GLSZM group, a peculiarly high difference percentage was
obtained for one patient (DP = 546% for the Large Area Low Gray Level Emphasis feature).
Once again, this result shows a similarity with Meijer’s findings [33], where the GLSZM
class is the one with the highest variation. Specifically, a difference of 106.58% was reported
for the Large Area Low Gray Level Emphasis feature. This value refers to the variability
analysis of the PET features when image acquisition is repeated five times. Conversely, in our
study, the comparison is not between PET phantom studies obtained at different times but
between PET and co-registered PET studies. Consequently, we can expect that this difference
increases in our study where image co-registration is considered. In other studies dealing
with other types of images, i.e., CT imaging [17] where deformable image registration was
applied, the shape-based features were 100% robust, while GLSZM and NGTDM were the
most unstable feature groups. Furthermore, features from the categories of intensity and
GLCM were considered as stable. This is in good agreement with our results. In a MRI study,
Joonsang Lee’s [34] found that the variation of radiomics features were intermediate or high
for Skewness, glcm-Autocorrelation, glcm-ClusterShade, glcm-Imc1, glrlm-LongRunLow (or
High) GrayLevelEmphasis, firstorder-90Percentile, glcm- ClusterTendency, glcm-Correlation,
and ngtdm-Complexity. This also matches with our study.
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Figure 4. Difference percentage between non-co-registered and co-registered PET with T1-weighted
and FLAIR MRI (the median is indicated in orange, while mean in green) for GLRLM, GLSZM, and
GLDM features.

The next step was to verify if the same optimal set of radiomics features was obtained
in the three groups of images after the selection process based on the Spearman rank
correlation coefficient. This approach was replicated for all patient studies producing a
matrix that showed the correlation coefficient for all extracted features (see Figure 5).

118



Appl. Sci. 2021, 11, 10170

 
Figure 5. Correlation matrix for the 107 radiomics features.

A threshold of 0.8 (see Table 1) was chosen to reduce the amount of radiomics features
that are highly correlated. In this way, only uncorrelated features were considered. Specifi-
cally, 21 features were identified both for PET, and PET co-registered with FLAIR while 19
for PET co-registered with T1. Although the number of uncorrelated features is similar (in
the case of PET and PET/T1 is identical), the same features were not selected. In particular,
nine features were different between PET and PET co-registered with FLAIR, while eight
were different between PET and PET co-registered with T1. Approximately 40% of the
uncorrelated features were different within the three image datasets. The different features
from each other group are detailed in Tables 2 and 3.

Table 2. The different features selected in PET and PET co-registered with FLAIR datasets.

PET PET FLAIR Co-Registration

shape-MinorAxisLength firstorder-90Percentile

shape-Sphericity glcm-Autocorrelation

firstorder-10Percentile glcm-ClusterShade

firstorder-InterquartileRange glcm-ClusterTendency

firstorder-Skewness glcm-Correlation

glrlm-LongRunHighGrayLevelEmphasis glrlm-LowGrayLevelRunEmphasis

glszm-GrayLevelNonUniformity glrlm-RunVariance

glszm-GrayLevelNonUniformityNormalized glszm-SmallAreaEmphasis

gldm-SmallDependenceLowGrayLevelEmphasis glszm-SmallAreaEmphasis
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Table 3. The different features selected in PET and PET co-registered with T1 datasets.

PET PET T1 Co-Registration

shape-MinorAxisLength shape-Maximum2DDiameterSlice

shape-Sphericity glcm-ClusterShade

firstorder-Skewness glcm-Imc1

glrlm-LongRunHighGrayLevelEmphasis glrlm-LongRunLowGrayLevelEmphasis

glszm-GrayLevelNonUniformity glrlm-RunVariance

glszm-GrayLevelNonUniformityNormalized glszm-SizeZoneNonUniformity

gldm-LargeDependenceLowGrayLevelEmphasis

gldm-SmallDependenceLowGrayLevelEmphasis

These results show that the co-registration process not only modifies the value of
the features, as shown in the previous analysis based on the difference percentage value,
but that the changes are severe enough that the selection process identifies about 40%
of different features in the three image datasets. Arguably, resizing voxels can be the
parameter with the greatest impact on feature robustness when co-registration is performed.
However, we cannot say for sure which parameter harmed the process the most. In general,
it can be argued that feature robustness can be improved if an effort is made to harmonize
image acquisition and processing as defined by EARL accreditations [35]. Further analyses
will be needed to provide more detailed information on this issue.

4. Conclusions

Radiomics involves the extraction of a huge number of quantitative features from
medical images to predict patient outcomes and to support clinical decision-making sys-
tems. However, the clinical application of radiomics is limited due to uncertainty about
the robustness of the extracted features. To analyze this aspect in the context of PET/MRI
co-registration, we applied a semi-automatic segmentation based on the thresholding
method combined with an automatic PET feature extraction process using Pyradiomics. In
this way, the difference in percentage coefficients was evaluated between features extracted
from: i) original PET, ii) PET after co-registration with T1-weighted MRI and iii) PET after
co-registration with FLAIR MRI. In addition, feature selection using Spearman’s correlation
method was proposed to reduce the high dimension of extracted features and verify if
the selected radiomics features are consistent after co-registration of PET images on MRI
ones. The results showed that the shape features, first-order statistical features, NGTDM
and GLCM features are robust, as the percentage difference is less than 20%. Conversely,
GLSZM, GLRLM and GLDM showed very weak robustness due to co-registration. In addi-
tion, approximately 40% of different features were identified in the three image datasets
after eliminating all highly correlated features in each dataset. In conclusion, co-registration
compromises the robustness of radiomics features; thus, authors need to be careful when
radiomics studies are performed on co-registered images. Any results found using PET
images are not transferable to the co-registered images. Understanding the robustness of
radiomics features after image co-registration can aid future radiomics research to enhance
the clinical outcome prediction and improve diagnosis and prognosis of cancer.
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Featured Application: The study proposes a methodology to evaluate the response of patients

with brain lesions to Gamma Knife treatments through the use of Positron Emission Tomogra-

phy imaging.

Abstract: Gamma Knife treatment is an alternative to traditional brain surgery and whole-brain
radiation therapy for treating cancers that are inaccessible via conventional treatments. To assess
the effectiveness of Gamma Knife treatments, functional imaging can play a crucial role. The aim
of this study is to evaluate new prognostic indices to perform an early assessment of treatment
response to therapy using positron emission tomography imaging. The parameters currently used in
nuclear medicine assessments can be affected by statistical fluctuation errors and/or cannot provide
information on tumor extension and heterogeneity. To overcome these limitations, the Cumulative
standardized uptake value (SUV) Histogram (CSH) and Area Under the Curve (AUC) indices were
evaluated to obtain additional information on treatment response. For this purpose, the absolute
level of [11C]-Methionine (MET) uptake was measured and its heterogeneity distribution within
lesions was evaluated by calculating the CSH and AUC indices. CSH and AUC parameters show
good agreement with patient outcomes after Gamma Knife treatments. Furthermore, no relevant
correlations were found between CSH and AUC indices and those usually used in the nuclear
medicine environment. CSH and AUC indices could be a useful tool for assessing patient responses
to therapy.

Keywords: gamma knife; imaging quantification; [11C]-methionine positron emission tomogra-
phy; cancer

1. Introduction

The Leksell Gamma Knife (GK) is a stereotactic radio surgical device capable of
treating brain tumors inaccessible to conventional surgery by allowing accurate target
irradiation. It is a minimally invasive instrument that does not involve a scalpel or in-
cision [1,2]. Tumor delineation is the crucial step when planning GK treatment because
metastatic lesions can show infiltrative natures. Magnetic resonance (MR) is usually used
to perform accurate delineation of the target volume. MR provides high-quality images
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with excellent soft-tissue contrast [3–6]. With the aim of adding another layer of sophistica-
tion during radiosurgery, the integration of positron emission tomography (PET) images
in the treatment planning phase was evaluated [7–9]. Functional information improves
lesion knowledge, as demonstrated by Gempt et al. [10]. The biological tumor volume
(BTV) identified by PET can be used to treat the cancer region more precisely [11]. Fur-
thermore, PET imaging has become a standard component of diagnosis and staging in
oncology [12–16]. Functional changes are often faster and more indicative of the effects
caused by therapy than anatomical imaging, providing a faster method of detecting the
treatment response [17,18]. Levivier et al. [19] found that PET conveys complementary
information to information derived from computerized tomography (CT) or MR imaging
in brain disorders. Historically, the first parameter introduced for the evaluation of PET
studies is the maximum standardized uptake value (SUVmax), which provides punctual
information of the voxel showing the highest uptake value within the tumor. Nevertheless,
this parameter can be affected by statistical fluctuation errors and cannot provide informa-
tion on the extent of the tumor [20]. For this reason, other quantitative indices have been
introduced, such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG) [21].
These parameters provide information on the extent of the tumor but no information on
the uptake heterogeneity.

To overcome these limitations and considering that the dose distribution is not uniform
in GK treatments, sixteen patients underwent [11C]-Methionine (MET) PET scans and
GK treatments were considered in this study to calculate new PET indices, such as the
Cumulative SUV Histogram (CSH) and Area Under the Curve (AUC), in order to obtain
additional PET information, such as the functional heterogeneity [22]. In other words, we
focus on the [11C]-MET uptake heterogeneity in pre- and post-treatment PET examinations
by calculating CSH and AUC for each patient. Methionine is an amino acid that exhibits
increased transport within active cancer cells. It has been reported that the extent of
tumor cell invasion can be more clearly detected by [11C]-MET PET than by CT or MR [23].
The correlation between CSH and AUC results with medical reports evaluated by three
physicians was also considered in our study. The proposed methodology could represent a
useful tool for assessing patient response to GK treatments.

2. Materials and Methods

2.1. Patients

We retrospectively analyzed patients with metastatic brain cancers who underwent
restaging PET/CT after GK between March 2014 and December 2015. The inclusion
criteria were as follows: (i) [11C]-MET PET/CT performed one week before stereotactic
neuro-radiosurgery, (ii) [11C]-MET PET/CT performed two months after stereotactic neuro-
radiosurgery for the early treatment assessment, and (iii) MR performed one year after
stereotactic neuro-radiosurgery to assess the treatment response. In this way, sixteen
patients (8 males, 8 females; mean age ± standard deviation: 60 ± 9.80 years; median
age: 57 years; age range: 48 ÷ 78 years) with metastatic brain cancers originating from
melanoma (n = 2), breast (n = 2), kidney (n = 2), lung (n = 9), and urothelium (n = 1) primary
cancers were considered.

All subjects were treated with Leksell Gamma Knife® model C, a mini-invasive
technique for the treatment of cerebral lesions inaccessible to conventional surgery [24,25].
The dose released during treatment in a single fraction ranged from 16 to 18 Gy at 50%
isodose. The qualitative evaluation of the treatment response was carried out by a team of
three physicians (S.C., Sebastiano Cosentino, F.M., and S.C., Salvatore Cicero). The clinical
staff jointly analyzed brain tumors without any information of the quantitative evaluation
performed in this study. Comparing their perspectives, physicians were able to provide a
careful assessment for each case.

This study was not a clinical trial but a retrospective study that did not influence
management of patients. Image analyses were performed offline. In any case, the informed
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consent to the processing of personal data was obtained from all the subjects involved in
the study.

2.2. [11C]-Methionine PET (MET)

Methionine is the most popular amino acid tracer used in PET imaging. It has a
potential role in providing additional information in brain studies, although MR remains
the gold-standard for diagnosis and follow-up evaluations after radiotherapy [26,27]. Cell
proliferation in brain tumors is associated with protein synthesis and since the amino acids
are protein constituents, avid uptake of these precursors indicates a rapidly proliferating
cell. As a consequence, an increase in amino acid transport and protein synthesis, compared
to normal tissue, indicates the presence of tumor proliferation. For this reason, MET-PET is
able to distinguish between malign and benign tissue with great sensitivity and specificity.
The MET-PET specificity for cancer delineation and differentiation between relapse and
radiation necrosis is higher than MR [28].

Since C-11 isotope has a short half-life (20.3 min) [29], on-site production of MET is
essential to perform diagnostic scans. An IBA cyclotron 18 MeV was used to produce C-11.
To ensure compatibility with in vivo administration, the final product was subjected to
quality control according to European Pharmacopoeia. Radiochemical and enantiomeric
purity, higher than 95% and 90%, respectively, were assessed by radio-HPLC-UV, while
residual solvents were evaluated by gas chromatography.

2.3. PET/CT

PET brain acquisitions were performed using the PET/CT Discovery 690 with time
of flight (TOF) by General Electric Medical Systems (Milwaukee, WI, USA). Patients
fasted for 4 hours before PET examination and were injected intravenously with MET.
The PET protocol started 10 minutes after injection. PET images consisted of a matrix of
256 × 256 voxels of 1.1719 × 1.1719 × 3.27 mm3 voxel size. Imaging data were encoded in
the 16-bit Digital Imaging and Communications in Medicine (DICOM) format. The activity
of MET administered to patients was 550 MBq.

2.4. PET Feature-Based Measures

Similar to the dose–volume histogram (DVH), which is the radiation dose histogram
for tumor treatment [30], the CSH uses the SUV derived from PET imaging instead of
the dose value derived from CT imaging. Specifically, the SUV is the widely used PET
semiquantitative parameter calculated as the ratio of the tissue radioactivity concentration
(RC) in kBq/mL and the MET injected dose (ID) in MBq at the time of injection divided by
the body weight in kilograms [31]:

SUV =
RC
ID

× Mp (1)

where RC is calculated as the ratio between the image intensity and the image scale factor.
ID is the product between actual activity and dose calibration factor. Therefore, in the case
of PET imaging, the image intensity values were normalized in SUVs. While the SUVmean
is the mean intensity value in the region of interest (ROI), the SUVmax is defined as the
voxel with the highest SUV within a specified ROI. It is the most common PET parameter
because it is both a ROI and user independent [32]. A disadvantage is that it represents
a small portion of the tumor that may not be a statistically reliable representation of the
whole-tumor biology. It does not take into account the SUV distribution within the tumor.
Starting from these considerations, the CSH is the representation of the percentage of the
tumor volume with a certain SUV [22,33]. The CSH summarizes the 3D functional imaging
intensity information in a single curve for the structure of interest, which will be used
to derive intensity-volume metrics, such as the area under the CSH (AUC) to take into
account the tumor uptake heterogeneity [22] (see Figure 1 for an example of CSH and
AUC). In this way, it is possible to analyze changes in the uptake distribution within the
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tumor due to nonuniform dose distribution during GK treatments. Finally, in addition to
the aforementioned PET feature-based measures, MTV and TLG were also calculated [21].
These parameters provide information on the tumor extension but no information on the
uptake heterogeneity. MTV is the active volume of oncological lesions obtained using a
segmentation algorithm, e.g., [34,35], while TLG was calculated to acquire a simultaneous
estimate of volumetric and metabolic information:

TLG = MTV × SUVmean (2)

Consequently, TLG is also a segmentation-dependent parameter.

Figure 1. An example of Cumulative standardized uptake value (SUV) Histogram (CSH) and Area
Under the Curve (AUC). CSH shows the percentage of the tumor volume with a certain SUV. For
example, the 60% of the tumor has a SUV > 1.

2.5. Data Analysis

For the purpose of treatment response monitoring, the quantitative assessment of PET
studies before and after treatment can become the standard. In general, however, the uptake
of PET radiotracers is not homogeneously distributed across the tumor due to necrosis,
cell proliferation, blood flow, microvessel density, and hypoxia [22]. For this reason, it
is interesting to quantify heterogeneity in tumor uptake to provide useful information
for planning radiation therapy treatment. The area under the CSH can be a quantitative
parameter capable of providing additional information on the tumor response and its
heterogeneity. Lower values correspond to greater heterogeneity.

To evaluate this innovative PET parameter in the evaluation of the treatment response,
we analyzed PET images using a semiautomatic MATLAB tool [36] to reduce intra- and
interoperator result variability. As a matter of fact, semiautomatic algorithms provide
greater accuracy and consistency in defining PET volumes and they are important to
quantify the response to therapy. In our tool, the operator dependence is minimal because
it is limited to the change in the size of the bounding area containing the cancer region—no
parameter setup is required.

In the following, a brief explanation of the processing steps is presented. The user
draws a line on the coronal PET image along the lesion, and the axial slice with SUVmax
is automatically identified and showed to the user. To manage ambiguous situations,
physicians can make corrections to the volume of interest (VOI), including the tumor
region, obtained as described in [36]. After a square bounding region enclosing the tumor
is shown, the user can reduce the region size to discard any external area with high uptake
to target. This approach allows the proper inclusion of cancer, excluding false positives.
Furthermore, the number of PET slices containing the tumor in basal examinations is
recorded to process the same slice volume in post-GK treatment examinations. In this way,
the proposed tool is designed ad hoc to appropriately compare cumulative histograms
between follow-up scans. According to the literature [19], the SUV threshold was set at
50% of SUVmax and the area under the CSH curve was considered as a quantitative index
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of the MET uptake heterogeneity within the lesion volume. Figure 2 outlines the overall
flow diagram of the proposed approach.

Figure 2. Flow diagram of the proposed semiautomatic approach to calculate CSH and AUC
parameters. Adopted graphical and color notations are explained in the legend box.

In order to evaluate the ablation effect, the percentage change of AUC between pre-
and post-treatment periods was obtained as follows:

ΔAUC =
AUCpost − AUCpre

AUCpre
(3)

AUC variation was analyzed and its correlation with the patients’ outcomes was
studied. Three outcome classes, based on variation of AUC and on shifting of CSH
curve, were identified: positive response, stable response, and negative response. Figure 3
shows the workflow of the proposed study used to compare PET studies before and after
GK treatment.

Figure 3. The workflow of the proposed study.
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2.6. Statistical Analysis

Statistical analyses were performed to assess whether ΔAUC provides additional
information compared to the other PET parameters (ΔMTV, ΔSUVmax, ΔSUVmean and
ΔTLG). For this reason, the Pearson correlation coefficient (r) between ΔAUC and the
aforementioned prognostic indices was computed as:

r =
COV(X, Y)

σXσY
(4)

where COV is covariance, σX is the standard deviation of X and σY is the standard deviation
of Y. The Pearson correlation coefficient ranged between +1 and −1, where + 1 and −1 show
total correlation (no difference between ΔAUC and the aforementioned prognostic indices),
0 is no correlation (total difference between ΔAUC and the aforementioned prognostic
indices). Consequently, the determination coefficient (R2) was calculated as:

R2 = r2 (5)

In this way, R2 ranges from 0 to 1. R2 = 0 means that the dependent variable cannot
be predicted by the independent variable. Finally, the paired t-test was used to determine
whether a result is statistically significant. Particularly, the t-test was used to determine
whether the correlation coefficient is significantly equal to zero, hence there is no evidence
of an association between ΔAUC and the aforementioned indices.

3. Results

A total of 16 patients were involved in this study. All subjects were treated with the
Leksell Gamma Knife Model C and they underwent PET/CT Discovery 690 with TOF (GE
Medical Systems) before and after the treatment. For basal studies, tumor size ranged
from 0.25 to 10.56 cm3 (mean ± standard deviation: 2.83 ± 2.41 cm3) with a SUVmax
between 1.6 and 6.84 (mean ± standard deviation: 3.91 ± 1.57). In follow-up studies,
tumor size ranged from 0 (complete response) to 12.02 cm3 (mean ± standard deviation:
2.40 ± 2.96 cm3) with a SUVmax between 0 (complete response) and 4.6 (mean ± standard
deviation: 2.81 ± 1.17). Changes (Δ) in AUC, SUVmax, SUVmean, MTV and TLG between
baseline and follow-up scans and medical reports performed by the three nuclear medicine
physicians are shown in Table 1 for each patient.

Table 1. Positron emission tomography (PET) parameter variations (%) between pre- and post-Gamma Knife (GK) treatment.

Patient N. ΔAUC ΔMTV ΔSUVmax ΔSUVmean ΔTLG Physician Report

#1 2.33 13.87 −12.63 −12.18 0.05 Stable

#2 −38.62 18.80 −32.72 −25.73 −11.77 Improvement

#3 −59.05 0.12 −47.66 −33.56 −33.48 Improvement

#4 −17.43 −62.72 −20.23 −5.91 −64.93 Improvement

#5 −57.59 −81.16 −41.83 −14.34 −83.86 Improvement

#6 −36.42 24.85 −44.36 −40.85 −26.15 Improvement

#7 8.62 −16.90 9.47 10.10 −8.50 Worsening

#8 16 −100 −100 −100 −100 Complete Response

#9 −11.22 7.73 −2.29 −5.56 1.73 Stable

#10 −4.61 −13.27 −11.28 3.08 −10.60 Stable

#11 −30.37 −31.53 −26.21 −17.96 −43.83 Improvement
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Table 1. Cont.

Patient N. ΔAUC ΔMTV ΔSUVmax ΔSUVmean ΔTLG Physician Report

#12 −13.07 14.14 −22.74 −17.40 −5.72 Improvement

#13 −23.03 −94.29 −34.64 −10.65 −94.90 Improvement

#14 −25.48 −62.20 −30.11 −11.82 −66.67 Improvement

#15 1.88 −61.12 −1.00 4.34 −59.43 Stable

#16 −6.11 −5.06 −33.55 −13.41 −17.80 Stable

Starting from an exploratory analysis of PET parameters to understand if ΔAUC
could actually provide further information to other PET parameters, Pearson correlation
coefficients (r) between ΔAUC and the aforementioned prognostic indices were com-
puted. ΔMTV, ΔSUVmax, ΔSUVmean, and ΔTLG were not highly correlated with ΔAUC
(see Figure 4). The determination coefficients (R2) were low, demonstrating a low corre-
lation between considered measures. As a result, it can be affirmed that ΔAUC provides
additional information than other PET parameters. The paired t-test showed a p-value
greater than 0.05 in all cases, so there is no evidence of an association between ΔAUC and
the aforementioned indices. Finally, three outcome classes were identified based on the
variation of AUC and on the shifting of the CSH curve: positive response, stable response,
and negative response, as shown in Figure 5.

 
Figure 4. Correlation between ΔAUC and Δmetabolic tumor volume (ΔMTV), ΔSUVmax, ΔSUVmean, and Δtotal lesion
glycolysis (ΔTLG).
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Figure 5. AUC variation correlated to patients’ outcomes.

3.1. Positive Response

Nine patients who showed positive responses to treatment show a reduction in the
AUC greater than about 10% and a shifting of the CSH to the left, as is possible to see
in Figure 6 (patient #3). Patients included in this category show a marked response
to the therapy. In particular, all cases show a reduction in the MET uptake (as can be
seen in Table 1, where ΔSUVmean is always negative), indicating a probable formation of
necrotic areas.

Figure 6. On the left: CSH pretreatment (top left); CSH post-treatment (top right); comparison between pre- and post-
treatment (bottom) in positive response case: ΔAUC = −59.05%. On the right: PET images of pre- and post-treatment. (For
interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)

3.2. Stable Response

The five patients included in this class show a AUC reduction of less than 10% and no
modification of the CSH between the PET pretreatment and the PET post-treatment, as it is
possible to see in Figure 7 (patient #1). Patients included in this category show a moderate
response to the therapy.

3.3. Negative Response

The patient included in this class shows an increasing AUC and a right shifting of
CSH, as it is possible to see in Figure 8 (patient #7). The patient included in this category
worsened following therapy.
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Figure 7. On the left: CSH pretreatment (top left); CSH post-treatment (top right); comparison between pre- and post-
treatment (bottom) in stable response case: ΔAUC = 2.33%. On the right: PET images of pre- and post-treatment. (For
interpretation of the references in this figure legend in colour, the reader is referred to the web version of this article.)

Figure 8. On the left: CSH pretreatment (top left); CSH post-treatment (top right); comparison between pre- and post-
treatment (bottom) in negative response case: ΔAUC = 8.62%. On the right: PET images of pre- and post-treatment. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4. Discussion

The conventional parameters used in the nuclear medicine environment, such as the
SUVmax, can be affected by statistical fluctuation errors and cannot provide information
on the tumor extension and heterogeneity. The other parameters introduced to resolve
these limitations have some limitations related to partial volume effect [32] and to the
segmentation method chosen to identify the tumor area [37]. TLG is the first parameter
that can provide both anatomical and metabolic information. It is calculated by performing
a multiplication of SUVmean with the MTV value. Nevertheless, TLG does not take into
account the SUV distribution within the VOI.

New parameters were proposed, such as CSH and AUC, in order to provide infor-
mation about the absolute uptake, the radiotracer distribution, and the lesion dimen-
sion [22,33,38,39]. The histograms are similar to DVH used in radiotherapy [30]. The CSH
is a cumulative histogram that shows the percentage of the lesion volume with the same
SUV. It takes into account the distribution of SUV within the tumor volume. The AUC
consists of the value of the area under the histogram curve and can be a quantitative index
of tracer uptake heterogeneity or homogeneity tumor response [22].

The aim of this work was to assess these new prognostic indices in order to perform
an early assessment of the treatment response to therapy using MET-PET images. The
strength of these new parameters is that they can potentially take into account the SUV
distribution within the tumor area voxel by voxel and not only a single one, as is the case
when using SUVmax or a single mean value, i.e., the SUVmean, which does not take into
account the tumor heterogeneity. No relevant correlation was found between AUC and
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other parameters usually used in the nuclear medicine environment. Furthermore, the
CSH and AUC parameters showed a good agreement with the patient follow-up after
GK treatments. Changes in AUC between baseline and follow-up scans could indicate
an increase in necrotic tissue tumour after treatment [22]. In our study, the proposed
classification (positive, stable, and negative response) found a good agreement with the
patient outcome evaluated by three physicians. In particular, nine patients with a positive
response to the treatment showed a reduction in AUC—lower AUC values correspond to
greater heterogeneity, which can be associated with an increase in the necrotic tissue, as
well as the corresponding MET uptake reduction in the follow-up scans.

Conversely, an increase in heterogeneity (positive ΔAUC) can indicate a negative
response to therapy. As a result, AUC represents a potential clinical index for an early
assessment of the treatment response. In fact, functional changes are faster to identify
the therapy response than anatomical imaging (CT or MRI). However, the current clinical
methodology in nuclear medicine departments is limited to visual assessment or uptake
value measurements, such as SUVmax. Our preliminary results suggest that the proposed
parameters could provide better discriminating power for the use of PET imaging in
radiotherapy or chemotherapy. These parameters may be incorporated into the plan-
ning process to modify patient management. For example, this could be carried out by
intensifying chemotherapy treatment after radiotherapy for high-risk patients showing
negative responses or providing less toxic regimens for patients at lower risk; in the age of
radiomics [40,41], it is mandatory to find the most relevant quantitative features in moni-
toring or predicting the patient’s response to cancer therapy. Further studies are needed
to evaluate the proposed PET parameters in depth and enlarge the number of patients
involved, as well as improve statistics to validate the patient outcome classes identified in
our work.

5. Conclusions

CSH and AUC could be new functional parameters useful for evaluating treatment re-
sponse considering the heterogeneity information provided by PET studies. An innovative
method to monitor the patient’s treatment response could be developed to alter patient
management in the early stages to maximize results of therapy from the perspective of
personalized medicine.
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Abstract: Background: Zebrafish (Danio rerio) is a model organism for the study of human cancer.
Compared with the murine model, the zebrafish model has several properties ideal for personalized
therapies. The transparency of the zebrafish embryos and the development of the pigment-deficient
”casper“ zebrafish line give the capacity to directly observe cancer formation and progression in the
living animal. Automatic quantification of cellular proliferation in vivo is critical to the development
of personalized medicine. Methods: A new methodology was defined to automatically quantify the
cancer cellular evolution. ZFTool was developed to establish a base threshold that eliminates the
embryo autofluorescence, automatically measures the area and intensity of GFP (green-fluorescent
protein) marked cells, and defines a proliferation index. Results: The proliferation index automatically
computed on different targets demonstrates the efficiency of ZFTool to provide a good automatic
quantification of cancer cell evolution and dissemination. Conclusion: Our results demonstrate that
ZFTool is a reliable tool for the automatic quantification of the proliferation index as a measure of
cancer mass evolution in zebrafish, eliminating the influence of its autofluorescence.

Keywords: xenotransplant; cancer cells; zebrafish image analysis; in vivo assay

1. Introduction

Over the past 15 years, the zebrafish (Danio rerio) has emerged as a model system for
the study of human cancer. The transparency of the zebrafish embryos and the develop-
ment of the pigment-deficient “casper” zebrafish line allow scientists to observe cancer
formation and progression directly in the living animal. The optical clarity of zebrafish can
be exploited further by the use of fluorescent tags to label specific cell lineages to visualize
tumor processes including initiation, progression, and regression. The zebrafish is exper-
imentally amenable to transplantation assays that test the serial passage and malignant
potential of fluorescently-labeled tumor cells as well as their capacity to disseminate and/or
metastasize. Due to its fecundity and the optical clarity during embryonic development,
the zebrafish has proven to be an excellent in vivo model system for high-throughput
drug screening, because it allows the visual assessment of both drug efficacy and toxic-
ity [1]. During recent years, the improvement of xenotransplantation of human cancer
cells into zebrafish embryos has emerged as a powerful tool, complementary to murine
models [2]. Mikut et al. [3] described the state of the art for automated processing of ze-
brafish imaging data and identified future challenges for zebrafish image analysis research.
The zebrafish characteristics are exploited to address important questions in genetics, devel-
opmental biology, drug discovery, toxicology, and biomedical research. Zebrafish models
exist for a broad range of human diseases, such as cardiovascular diseases [4], cancer [5],
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or movement disorders [6]. The present paper describes our research about measuring
evolution on cancer cells on zebrafish. Although several articles have been published on
zebrafish xenotransplantation [7–10], our aim is to optimize this technique for primary
cultures originated from colorectal cancer patients in 48 h zebrafish embryos. Previously,
RT qPCR and 2D imaging have been used to quantify both proliferation and migration.
However, the techniques described so far do not provide an accurate measurement for
both parameters. We propose accurate quantification on zebrafish embryos by temporal
analysis of xenotransplanted cells marked with GFP (green-fluorescent protein). In the
literature, some other works have conducted research on measuring the evolution of cancer
cells and some of them developed an image analysis tool for it, such as ZebIAT [11], the
Fiji distribution of the free software ImageJ, pioneer in bioimage analysis [12], or using
commercial software [13]. A good revision of software for zebrafish image processing is
in [3]. Nevertheless, these software tools are too specific, and none of them perform the
analysis objective of our research, so we had to develop our own methodology.

2. Materials and Methods

2.1. Material

The images used in this paper were captured from zebrafish embryos, as described in
the previous study for which this software was initially developed [14]. In the following,
we resume those conditions.

Zebrafish embryos were obtained from mating adults according to standard proce-
dures. The human colorectal cancer cell line HCT116 was obtained from American Type
Culture Collection (ATCC, Manassas, VA, USA, Catalog No. CCL-247) and cultured using
McCoy’s 5A Medium containing 10% FBS (GIBCO, Invitrogen, Waltham, MA, USA) and
1% Pen/Strep (GIBCO, Invitrogen) at 37 ◦C with 5% CO2 in a humidified atmosphere.
The HCT116 cell line was transfected to express GFP constitutively. HCT116 cells were
transduced using a lentiviral-driven GFP construct (Sigma, Darmstad, Germany, Mission
TurboGFP, SHC003 V). Cells were placed 72 h postinfection under selective pressure using
10 μg/mL puromycin.

Two days postfertilization (dpf), zebrafish embryos were dechorionated (if needed)
and anesthetized with 0.003% tricaine (Sigma). Cell injections were performed manually
directly into the yolk of the embryo. Incorrectly injected embryos without cells inside the
yolk or showing them in the circulation after xenotransplantation were discarded. After
injection, 2 dpf embryos were incubated at 36 ◦C in 24-well plates with salt dechlorinate tap
water (SDTW, chlorine free water obtained with a reverse osmosis filter system) for 72 h to
check the proliferation of the cell line by ZFTool. Each embryo was photographed with
an AZ-100 Nikon fluorescence stereomicroscope (same exposure times, gamma correction
set to 1) at 0 h postinjection (hpi) and 72 hpi to be analyzed by ZFTool software. This
software analyzes the green channel image. The gray image of the fish is used only for
visualization purposes.

Figure 1 shows a typical image of both zebrafish and GFP mass at 0 hpi and 72 hpi.
The GFP image is overlaid over the original embryo image just for positioning it over
the zebrafish.

2.2. Methods

The objective of ZFTool is to automatize and improve the task of measuring the
number and mean value of GFP pixels to compare them for 0 hpi and 24, 48, or 72 hpi
(depending on the experiment) in order to quantify cancer mass evolution with time.
ZFTool was developed as a Matlab toolbox and is available at https://gitlab.citius.usc.es/
zebrafish/zftool. (Accessed on 22 August 2021). ZFTool eliminates the autofluorescence
of the zebrafish through computation of the area with different intensity thresholds and
automatically computing the autofluorescence threshold, which is established for both
images at 0 hpi and 24, 48, or 72 hpi. ZFTool can establish a base threshold that eliminates
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embryo autofluorescence and measures the area of marked cells (GFP) and the intensity of
those cells to define a proliferation index.

Figure 1. Example of segmentation over a characteristic image (zebrafish #8 at 0 hpi and 72 hpi)
where the GFP value and the contour image are overlaid in green and red, respectively. The white
rectangle will be the region of interest in the next figures.

The input to the system are two images at 0 hpi and two images at 24, 48, or 72 hpi
(the user selects the time to measure the tumor evolution, ZFTool works with any of these
values). The output is both numerical (final threshold, mean areas and GFP intensities,
proliferation index) and graphical (GFP intensity and area evolution, threshold, and images
with initial and final perimeter). As was stated before, zebrafish is ideal for quantification
of GFP masses because of its transparency, but a problem arises caused by the variable
autofluorescence of the fish, especially in the yolk area. In order to accurately quantify the
GFP evolution, a preprocessing must be applied to eliminate the autofluorescence region
from the count. This preprocessing is based on the observation of evolution of GFP area
with a threshold from 0 (no threshold) to 50 in steps of 5 (see an example in Figure 2).

As was stated before, this autofluorescence is variable, depending of the fish and on
the hpi, so this threshold must be adapted to each case. The ZFTool software evaluated
the graph of GFP threshold with respect to the area and selected as threshold the point in
which this area remains stable.

Once this autofluorescence is eliminated, some parameters are computed in order
to measure the cancer mass evolution: the number of GFP pixels in the image (nGFP),
which represents the area of the cells inside the yolk sac at two different times, and the
GFP intensity Medium Value (GMV), which represents the medium intensity of the flu-
orescence inside the yolk. By multiplying the nGFP number by the GMV of each image,
we determined the proliferation ratio between 0 hpi and 72 hpi to estimate the cell growth.
The result obtained at 72 hpi was divided by that obtained at 0 hpi, yielding a proliferation
index value (PI):

PI =
nGFP72hpi ∗ GMV72hpi

nGFP0hpi ∗ GMV0hpi
(1)

A PI value = 1 means that cells remain stable during incubation, a PI slightly higher
than 1 usually indicates a dissemination of cells (greater area, similar intensity), a PI near
or over 2 indicates a proliferation of cells (greater area, greater intensity), and a PI lower
than 1 indicates tumor cell death.

We must have in mind that, in order to compare these measures at 0 hpi and at 72 hpi,
the threshold in both cases must be the same, so we will compute these two thresholds
automatically and the biggest one will be applied to both images.

Due to zebrafish autofluorescence and the variability of capture conditions, the seg-
mentation threshold will not be always the same. In order to design a methodology for
automatic computation of this threshold, several tests were performed with a training set
of 14 zebrafish, applying thresholds from 0 to 50 in 5 intervals and discarding regions
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with areas less than 10 pixels. Figure 3 shows the evolution of area and intensity for two
characteristic zebrafish (#8 and #14), one with no proliferation of cell mass and another one
with proliferation of cancer cell mass.

Figure 2. Example of autofluorescence in the yolk sac for fish #8 at 0 hpi and 72 hpi. (a) The graph
shows the area evolution with respect to the GFP threshold in steps of 5. The abrupt decay in the area
caused by the fish autofluorescence can be observed. When the area remains stable for 3 iterations,
the threshold is fixed. (b) threshold at 0 hpi in magenta and final threshold (20 in this case) in blue.
The GFP (green channel) was artificially enhanced in order to make visible the autofluorescence
causing the initial contour. This is better seen in the image at 72 hpi (c). The original images are
shown in Figure 3, where the autofluorescence cannot be appreciated.

After applying the whole algorithm to the test set, we can conclude that when the
cancer cells disseminate over the fish, the GFP region area is greater but the mean GFP
intensity becomes lower for 72 hpi than those values for 0 hpi. On the other hand, when
there is cell multiplication, both the GFP area and GFP mean intensity achieve greater
values, depending on the proliferation factor. This fact can be observed in Figure 3, where
we can conclude dissemination of cells for fish #8 and proliferation for fish #14. For fish
#8, the regions after applying the threshold can be seen in Figure 3 (middle), where it can
be seen that the region is more irregular and the cells are disseminated over the region.
For fish #14, we can observe in Figure 3 (bottom) a proliferation of cells, the GFP intensity
is greater and the area is also greater.

As 2D images are more easily captured and do not require as expensive instrumenta-
tion as for 3D images (confocal microscope), we will work with 2D images for quantifying
cancer mass evolution. We have previously conducted experimentation [15] in order to
establish a correspondence between 2D and 3D image analysis. These results are resumed
in Figure 4, where both 2D and a z-stack of 25 images were captured for fish #11 at 0 hpi and
72 hpi. 2D images were acquired under the same conditions of images in this manuscript
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(AZ-100 microscope). The z-stack of 25 images separated by 1 μ was acquired using a
confocal microscope. We used BioimageXD [16] to reconstruct the volume and compute
the thresholded values to eliminate autofluorescence, as performed with 2D images.

Figure 3. Characteristic zebrafish #8 and #14. Up: fish #8 (blue) presents greater area and lower inten-
sity after 72 h while fish #14 (red) presents greater area and higher intensity after 72 h. Threshold final
values for zebrafish #8 and #14 are 20 and 35, respectively. Middle and bottom rows: thresholded
GFP regions for zebrafish #8 (middle) and zebrafish #14 (bottom) for 0 hpi (left) and 72 hpi (right).

Figure 4. Cont.
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Figure 4. Comparison of 2D and 3D analyses for fish #11. First row: 2D analysis with ZFTool. Second
row: 3D analysis with BioimageXD. Third row: # pixels evolution and # voxels evolution. Fourth
row: GFP intensity evolution for pixels (left) and voxels (right).

As shown in Figure 4, the graphs follow the same evolution for 2D and 3D analysis,
so we can use the 2D analysis of ZFTool as an estimation of the evolution of the tumor.
The proliferation index obtained for fish #11 is 1.52 for 2D analysis and 1.77 for 3D analysis,
concluding that there is a proliferation of cells (greater area and greater intensity) in
both cases.

3. Results

To prove the algorithm and assess its performance, we analyzed images belonging
to a test set. This test set is composed of 18 zebrafish with captures taken at 0 hpi and
72 hpi. Results confirmed the assumption made in the previous section that when area
and intensity reach greater values, it is a symptom of proliferation, and when the area is
greater and intensity is lower, it is a symptom of dissemination of cancer cells. The applied
automatic threshold performs well in all cases and agrees with the expectations concluded
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by an expert. Table 1 shows the measurements for zebrafish #8, #11, and #14 and the final
proliferation index.

Table 1. Final thresholds and measurements of areas and mean green value for zebrafish #8 (dissemi-
nation, PI around 1), #11 (proliferation, PI greater than 1), and #14 (proliferation and dissemination,
PI greater than 2).

Zebrafish # Threshold nGFP0hpi GMV0hpi nGFP72hpi GMV72hpi PI

#8 20 3144 92.08 5349 63.07 1.16
#11 40 4279 97.25 6133 102.88 1.52
#14 35 1991 82.94 5106 89.72 2.77

4. Discussion and Conclusions

In this manuscript, we presented ZFTool, a software to quantify tumor evolution. Some
issues to discuss are related with the correlation between 2D and 3D analysis, the affection
of autofluorescence, and the biomarkers. Related to the first issue, although the relation
between 2D and 3D measurements must be demonstrated, some previous experimentation
conducted by the authors [15] explored the correlation between 2D and 3D tumor evolution,
as shown in Figure 4 for fish #11, which obtained a similar value for the proliferation index
(1.52 in 2D and 1.77 in 3D). With respect to autofluorescence, as ZFTool works directly
with the channel green image, if another image (i.e., channel red) is provided, all the
computations will work properly, as results do not depend on the channel being used.
In case the fish do not have autofluorescence in that channel, the graphs of evolution shown
in Figures 2 and 3 will have an almost horizontal tendency, so the value of the threshold
will be almost indifferent; ZFTool will be able to work in this case also.

While working with different biomarkers, we decided to optimize the software with a
permanent labeling of the cells, expressing GFP protein in the cytoplasm. In this way, cells
were able to maintain the GFP intensity throughout the experiment, allowing to quantify
the proliferation of the cells through the integrated density, leading to a proliferation index.
Nevertheless, not all the xenograft assays are performed with this ideal labeling, requiring
lipophilic dyes (DiI, DiD, DiO) to label the membrane of the cells. Using this approach,
ZFTool functions as previously described, erasing the autofluorescence, which is important
because working with a lypophilic dye could lead to an increase in autofluorescence or
artifacts due to the lysis of the injected cells and the spread of the dye across areas of the
zebrafish embryo. Even so, when a lipophilic dye is used, it is not possible to calculate a
proliferation ratio, but a more accurate fold change between the conditions tested against
the control.

Another issue is if it would be adequate to fix the autofluorescence of the fish previ-
ously to the injection. We have decided not to do this as the autofluorescence is dependent
of each individual, by the stage of development and by the drugs under research. This is
precisely why we fixed the threshold in this way: we computed the first possible threshold
for each fish in each moment and fixed the greater value as the common threshold. As the
graphs in Figures 2 and 3 show, this will be the first possible threshold, when the autofluo-
rescence is eliminated, although selecting a subsequent threshold barely affected the mean
area and intensity of the tumor.

In our research, a proliferation index was defined, as indicated in Equation (1). This
parameter by itself should be an indicator of proliferation in most of the experiments.
Nevertheless, there are different scenarios for the proliferation index, considering that if
the dissemination is larger than the proliferation, the increase in the proliferation index
could be due exclusively to spread instead of division of the cells. For this reason, ZFTool
also offers as output both the intensity and area and, apart from that, the graphs and the
images to be used as complementary diagnostics by the researchers. Although a nuclear
marker could be used for quantifying cell proliferation, the quality of the images and its
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2D character does not permit such exact counting, so we used the intensity of the GPF as
an indicator of the number of superposed cells.

As a future perspective and projection of the software, once systematized, improved,
and tested, it will help to automatize part of the xenograft procedure and conduct an in vivo
assay screening that could help clinicians decide the best chemotherapy combinations for
each patient through the injection of patient cancer cells into the zebrafish embryos. Al-
though this objective could be achieved, there are many variables that this technique needs
to take into consideration to evaluate the proliferation of the cancer cells and treatments,
such as the microenvironment of the tumor and the matrix in the human body.

As a conclusion, in this work, we designed an algorithm to automatically perform
the thresholding and computation of GFP area and mean intensity values. These values
are characteristics that demonstrate the evolution of the injection of cancer cells into the
yolk sac of a zebrafish embryo. This computation is of great interest for cancer research
as zebrafish allow in vivo assays and we can perform a reliable, repeatable, and quick
computation of characteristic features. We also defined a so-called proliferation index as a
measure of the degree of dissemination or multiplication of tumor cells.
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Abstract: A camera-based method using Technetium-99m diethylenetriaminepentaacetic acid (Tc-99m
DTPA) is commonly used to calculate glomerular filtration rate (GFR), especially, as it can easily
calculate split renal function. Renal depth is the main factor affecting the measurement of GFR
accuracy. This study aimed to compare the difference of renal depths between three formulae and a
CT scan, and, additionally, to calculate the GFRs by four methods. We retrospectively reviewed the
medical records of patients receiving a renal dynamic scan. All patients underwent a laboratory test
within one month, and a computed tomography (CT) scan within two months, before or after the
renal dynamic scan. The GFRs were calculated by employing a renal dynamic scan using renal depth
measured in three formulae (Tonnesen’s, Itoh K’s, and Taylor’s), and a CT scan. The renal depths
measured by the above four methods were compared, and the GFRs were compared to the modified
estimated GFR (eGFR). Fifty-one patients were enrolled in the study. The mean modified eGFR
was 60.5 ± 42.7 mL/min. The mean GFRs calculated by three formulae and CT were 45.3 ± 23.3,
54.7 ± 27.5, 56.5 ± 26.3, and 63.7 ± 30.0, respectively. All of them correlated well with the modified
eGFR (r = 0.87, 0.87, 0.87, and 0.84, respectively). The Bland–Altman plot revealed good consistency
between the calculated GFR by Tonnesen’s and the modified eGFR. The renal depths measured using
the three formulae were smaller than those measured using the CT scan, and the right renal depth
was always larger than the left. In patients with modified eGFR > 60 mL/min, the GFR calculated by
CT was the closest to the modified eGFR. The Renal depth measured by CT scan is deeper than that
using formula, and it influences the GFR calculated by Gate’s method. The GFR calculated by CT is
more closely related to modified eGFR when modified eGFR > 60 mL/min.

Keywords: glomerular filtration rate; Gate’s method; renal depth; computed tomography

1. Introduction

Globally, people suffering from chronic kidney disease (CKD), acute kidney injury
(AKI), and renal replacement therapy exceed 805 million in total [1]. Renal diseases are a
notable public health issue and a leading, heavy, burden on the medical system. By 2040,
CKD is predicted to become the fifth leading cause of death [2]. Renal diseases are not
easily diagnosed, as they are asymptomatic in their early stages. Therefore, the accurate
measurement of the glomerular filtration rate (GFR) is critical for detecting renal function
and for clinical treatment.

Although inulin clearance has been the widely accepted gold standard [3] for mea-
suring the GFR, this methodology is time-consuming, expensive, and not easily available,
making it unsuitable for routine clinical use. Some equations such as Cockcroft–Gault
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(CG) [4], modification of diet in renal disease (MDRD) [5], and CKD epidemiology collabo-
ration (CKD-EPI) [6], which estimate GFRs based on serum creatinine measurement with
ease and convenience, have been widely accepted for clinical use.

Among other techniques aimed to estimate GFR, the camera-based method with
technetium-99m (Tc-99m) diethylenetriaminepentaacetic acid (DTPA) using modified Gate’s
method represent an easy way to estimate unilateral renal function. In addition, it can
determine unilateral renal blood flow and distinguish between renal pelvic ectasia and
post-renal obstruction. This is important clinical information for patients with unilateral
renal disease, and for kidney donations. Unfortunately, some researchers have questioned
the method [7,8].

The most important factor of Gate’s method affecting the GFR is renal depth [9]. The
more accurate the measurement of renal depth, the more accurate the GFR calculation
will be. The renal depths have been measured by techniques such as ultrasound (US),
lateral view in radionuclide renal scintigraphy, and the computed tomography (CT), with
varied precisions [10,11]. The current study aimed to compare the renal depth measured by
different formulae and a CT scan, and it additionally sought to compare the GFR calculated
from different methods with the reference value.

2. Materials and Methods

2.1. Patients

This is a retrospective study that analyzed the medical records of patients from nuclear
medicine databases from September 2019 to September 2020 in Kaohsiung Medical Univer-
sity Hospital. Patients were accepted if they fulfilled the following criteria: (i) had received
radionuclide renal dynamic imaging; (ii) had received an abdominal CT scan within two
months before or after the radionuclide renal scan; (iii) had undergone a laboratory test for
plasma creatinine (Pcr) within a month; and (iv) were more than 20 years old. The study
review process was approved by the Institutional Review Board of Kaohsiung Medical
University Hospital. (KMUHIRB-E(I)-20210244).

2.2. Renal Dynamic Image

Thirty minutes before the exam, patients were encouraged to drink at least 300 mL
of water. Each patient’s age, sex, body weight, and body height were entered into the
workstation. We noted the full syringe dose at the beginning and the empty syringe
dose at the end of the examination. Patients were placed supine, and the procedure
began immediately after the bolus intravenous injection of 6 mCi Tc-99m DTPA. The
renal dynamic image was acquired in a 128 × 128 frame matrix for the ensuing 22 min
using a Siemens E. CAM gamma camera (Siemens, Erlangen, Germany) equipped with a
low-energy high-resolution collimator.

The regions of interest for each kidney were drawn manually by an experienced nu-
clear medicine radiographer. The background ROI for subtraction was drawn automatically
by placing a semilunar region around the outer-lower aspect of each kidney (Figure 1). The
GFRs were calculated by Gate’s method using the following formula [9].

Dual renal uptake (%) = [(Cr − Crb)/e−μRD + (Cl − Clb/e−μLD)]/(Full − Empty)

GFR = dual renal uptake (%) × 100 × 9.8127 − 6.82519

where Cr: right kidney counts, Crb: right background counts, Cl: left kidney counts, Clb:
left background counts, RD: right kidney depth, LD: left kidney depth, μ: attenuation
coefficient of Tc-99m in soft tissue (0.153 cm−1), e: Euler’s number, Full: full syringe counts,
Empty: empty syringe counts
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Figure 1. Demonstration of the region of interest (ROI) when calculating the glomerular filtration rate
(GFR) by Gate’s method from a 33-year-old woman. The ROIs for each kidney were drawn manually
via the compression posterior image. Background subtraction was drawn by placing a semilunar ROI
in the outer-lower of each kidney automatically.

The renal depth was estimated by the following three formulae (developed by Ton-
nesen, Itoh K, and Taylor, respectively) [12–14] and a CT scan.

2.3. Assessment of Renal Depth by Tonnesen’ s Formula

The right renal (dR) and left renal (dL) depths were estimated from the body height
and weight using the following equations [12]:

dR = 13.3 × (BW/BH) + 0.7

dL = 13.2 × (BW/BH) + 0.7

where BW: body weight(kg), BH: body height(cm).

2.4. Assessment of Renal Depth by Itoh K’s Formula

The right renal (dR) and left renal (dL) depths were estimated from body height and
weight using the following equations [13]:

dR = 13.6361 × (BW/BH)0.6996

dL = 14.0285 × (BW/BH)0.7554

where BW: body weight(kg), BH: body height(cm).

2.5. Assessment of Renal Depth by Taylor’s Formula

The right renal (dR) and left renal (dL) depths were estimated from the body height,
body weight, and age using the following equations [14]:

dR = 15.31 × (BW/BH) + 0.022 × age + 0.077

dL = 16.17 × (BW/BH) + 0.027 × age − 0.94

where BW: body weight (kg), BH: body height (cm), age: patient’s age (year).

2.6. Assessment of Renal Depth by CT

The CT scan was performed in the supine position with a 5 mm slice thickness spiral
scan covering the whole abdomen (Figure 2). We chose the axial views, including the
middle point of the long axis of each kidney, and the renal depth was defined as the
distance from the middle point of the anteroposterior diameter to the body surface on the
back in each view.
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Figure 2. Demonstration of measuring the renal depth via CT image. Two axial slices including the
middle of each kidney were collected. The point of deepest (D) and superficial (S) to back body
surface were drawn. The renal depth was calculated as (D + S)/2.

2.7. Estimated GFR (eGFR)

The eGFR was a creatinine-based equation and was modified with CKD patients in
Chinese patients. The GFRs were calculated with renal depth assessed by three formulae
and a CT scan, and they were compared with the eGFR estimated using the following
equations [15]:

eGFR (mL/min/1.73 m2) = 175 × (Pcr)−1.234 × (Age)−0.179 (×0.79 if female)

where Pcr was in unit of mg/dL; Age was in years.

2.8. Modified Estimated GFR (Modified eGFR)

We use the body surface area (BSA) according to Du Bois to modify the estimated
GFR [16]:

Modified eGFR(ml/min) = eGFR × (BSA/1.73)

BSA (m2) = 0.20247 × BH0.725 × BW0.425

where BH: body height (m); BW: body weight (kg).

2.9. Statistical Analysis

Continuous variables of measurement data were expressed as mean ± standard
deviation (SD). A regression test was performed to compare the correlations between
the calculated GFRs and modified eGFR. The Bland–Altman, boxplots, and data were
analyzed using the MedCalc Statistical Software, version 20.014 (MedCalc Software Ltd.,
Ostend, Belgium; https://www.medcalc.org; lasted accessed on 17 November 2021). A
p-value < 0.05 was considered statistically significant.

3. Results

A total of 51 patients, consisting of 21 males and 30 females with a mean age of
60.5 years (range 25–86 years), were enrolled in this study (Table 1). Among them, ten
patients were diagnosed with comorbid diabetes mellitus. Clinical manifestations of
these patients included hydronephrosis and renal calculus (n = 32, 62.7%), renal tumors
(n = 10, 19.6%), urinary tract infection (n = 2, 3.9%), acute kidney injury (n = 1, 2.0%), and
some other or undetermined diagnosis (n = 6, 11.8%). Plasma creatinine level ranged
from 0.48 mg/dL to 6.12 mg/dL, and the mean value was 1.8 ± 1.3 mg/dL. The average
modified eGFR was 60.5 ± 42.7 mL/min. The mean GFRs calculated by Tonnesen’s formula,
Itoh K’s formula, Taylor’s formula, and CT were 45.3 ± 23.3, 54.7 ± 27.5, 56.5 ± 26.3, and
63.7 ± 30.0, respectively.
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Table 1. Clinical characteristics of 51 patients enrolled in this study.

Variable Values a

Age 60.5 ± 13.3
Sex
Male 21 (41)
Female 30 (59)

Height (cm) 160.6 ± 8.3
Weight (kg) 63.4 ± 10.9
BMI (kg/m2) 24.5 ± 3.5
Plasma creatinine (mg/dL) 1.8 ± 1.3
Modified eGFR (ml/min) 60.5 ± 42.7
Tonnesen’s GFR (ml/min) 45.3 ± 23.3
Itoh K’s GFR (ml/min) 54.7 ± 27.5
Taylor’s GFR (ml/min) 56.5 ± 26.3
CT GFR (ml/min) 63.7 ± 30.0

Abbreviations: BMI, body mass index; modified eGFR, estimated GFR by modified abbreviated modification of
diet in renal disease study equation and modify by body surface area; GFR, glomerular filtration rate; SD, standard
deviation; CT, computed tomography. a Values are presented as No. (%) or mean ± SD.

The scatter plot and regression lines are seen in Figure 3. The correlation coefficient of
the calculated GFRs (Tonnesen’s, Itoh K’s, Taylor’s, and CT) and modified eGFR were 0.87,
0.87, 0.87, and 0.84, respectively. All were statistically significant with a p-value < 0.001.
The Bland–Altman plot showed good agreement between GFRs calculated by Tonnesen’s
(p = 0.0001) and the modified eGFRs. However, no statistical difference was observed
between the GFRs calculated by Itoh K’s (p = 0.0818), Taylor’s (p = 0.2355) methods, and by
a CT scan (p = 0.3402) and the modified eGFR (Figure 4).

Figure 3. Cont.

149



Appl. Sci. 2022, 12, 698

Figure 3. The correlation between GFRs calculated using renal depth by four ways and modified
eGFR. (A), the GFR calculated using the renal depth estimated by Tonnesen’s formula (r = 0.87,
y = 0.476x + 16.477). (B), the GFR calculated using the renal depth estimated by Itoh K’s formula
(r = 0.87, y = 0.560x + 20.879). (C), the GFR calculated using the renal depth estimated by Taylor’s
formula (r = 0.87, y = 0.534x + 24.170). (D), the GFR calculated using the renal depth estimated by CT
(r = 0.84, y = 0.589x + 28.101).

Figure 4. Cont.
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Figure 4. The Bland–Altman plot for GFRs calculated through four methods and the modified eGFR.
(A), GFR calculated by Tonnesen’s formula (p = 0.0001). (B), GFR calculated by Itoh K’s formula
(p = 0.0818). (C), GFR calculated by Taylor’s formula (p = 0.2355). (D), GFR calculated by CT scan
(p = 0.3402).

The renal depth, when estimated by the three formulae, was significantly smaller
than that estimated by a CT scan (all for p < 0.05), and the right side was somewhat larger
than the left side (p < 0.05; Figure 5). On the contrary, the deeper right renal depth was
found only in 63% of the patients when estimated by CT scans. In patients with modified
eGFR > 60 mL/min, the GFRs calculated using Tonnesen’s formula were obviously low,
leading to the underestimation of the GFR in the clinical setting. The GFRs calculated using
CT scans were closer when the modified eGFR was more than 60 mL/min (Figure 6).
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Figure 5. The boxplots for comparison of the bilateral renal depth measured by three formulas
(Tonnesen’s, Itoh K’s, and Taylor’s) and the CT scan. (A), right renal depth. (B), left renal depth.

Figure 6. The boxplots for comparison of the GFRs calculated by Tonnesen’s, Itoh K’s, Taylor’s
formula, CT scan, and the modified eGFR. (A), patients with modified eGFR more than 60 mL/min.
(B), patients with modified eGFR less than 60 mL/min.
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4. Discussion

This is a retrospective study that analyzed and compared how the renal depth influ-
ences the GFR. As previously mentioned, renal depth is the main factor affecting Gate’s
method [9]. In our study, we found that the GFR calculated by four methods (three formu-
lae and the CT scan) were all well correlated to the modified eGFR. However, the depths
of both kidneys measured by CT were significantly deeper than those measured by the
other three formulae. Further, in the current study we noticed that, in the patients with a
modified eGFR over 60 mL/min, the GFR calculated by Tonnesen’s is underestimated due
to the smallest renal depths. Moreover, the GFR calculated by CT renal depth is closest to
the modified eGFR. The result is compatible with that described in the previous studies, in
which it was stated that Gate’s method underestimated GFR because Tonnesen’s formula
underestimated the renal depth [14,17,18].

The plasma creatinine equation and creatinine clearance have been used widely in
estimating the GFR, and, thus, were used as the reference in the current study. It is a simple
method in clinical practice, but there are some limitations. First, the separate renal GFR
cannot be assessed and calculated. Second, it is not suitable in some patient groups, such
as obese individuals, children, pregnant women, and patients without CKD. It has been
reported to overestimate GFR in malnourished patients [4], and underestimate it in healthy
people [5].

Nowadays, Gate’s method is still the method most preferred in the clinical evaluation
of the GFR. It has the advantage of providing total GFR while also calculating the separate
renal GFR at the same time. In clinical practice, patients who received the renal dynamic
imaging may have various conditions of unilateral renal disease, e.g., urinary tract obstruc-
tion, tumor, renal artery anomaly, congenital renal abnormality, and pyelonephritis, etc.
Measuring the renal depths accurately is crucial, but it is not always easy in calculating
the GFR. Some previous studies reported that the depth of the right kidney is deeper than
that of the left side [12–14]; however, in the current study, only 63% of patients had deeper
right kidney than left side. The exact reason for this finding is not certain, but we speculate
that there may be selection bias due to different clinical backgrounds and relatively smaller
patient populations. We need to consider this situation when we estimate unilateral renal
function. It will help improve the accuracy of clinical diagnosis.

Acquiring the lateral view when conducting the dynamic renal imaging is simple and
clinically feasible without additional radiation exposure for accurate GFR measurement [19].
However, in patients with clinical situations such as hydronephrosis and tumor, radiotracers
cannot be detected completely and, therefore, this decreases the scanning validity. Based
on the attenuation coefficient of Tc-99m in soft tissue of 0.153, even a 1-cm error (either
positive or negative) in the renal depth measurement will lead to a 14–16% error, either
under or over-estimation, in the calculation of the GFR [20,21]. In the current study, 82.3%
of patients had hydronephrosis, renal calculi, and/or renal tumor, so we did not use lateral
view acquiring for renal depth evaluation.

With respect to the CT scan, the advantage is found in the clear anatomic depiction.
It measures objective renal depth while also providing information of renal location and
morphology, and, thus, it helps to raise the accuracy when evaluating the GFR. The
multidetector CT had been used to measure unilateral renal GFR [22,23]. Kwon et al.,
reported that unilateral GFR measured by contrast enhanced CT was reproducible and it
agreed well with the iothalamate clearance [22]. An additional article by You et al. reported
that, with a renal dynamic image as the reference, the unilateral renal GFR measured by
CT revealed a well and significant correlation [23]. We have found similar results in the
current study, especially for patients with modified eGFR over 60 mL/min. However, there
is a disadvantage pertaining to additional radiation exposure during the CT scan, and this
should be taken into consideration in clinical settings.

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), based on the
intrarenal kinetics of contrast, is another clinical technique for evaluating the GFR, and
this has now been studied [24,25]. The best advantage of using DCE-MRI to measure
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GFR is that patients receive no ionizing radiation exposure. However, the accuracy of the
technique has not yet been validated with the standard reference. Additionally, checking
renal function before administrating the contrast agents in patients with renal function
impairment is also important.

The current study compared the clinical roles of three formulae, and CT scans, on
evaluating bilateral renal depths and calculating the GFR. There are some limitations
in the current study. First, it was a retrospective study design with relatively smaller
patient population. Second, the patients’ background was relatively diverse although more
than half of the patients displayed clinical symptoms of urinary tract obstruction and/or
hydronephrosis. Further prospective studies dealing with larger patient populations and
similar clinical settings may be conducted.

5. Conclusions

According to our results, it is found that the renal depth estimated by CT scans is
evidently deeper than that measured by the three formulae. The value of the GFR calculated
by CT scans is closer to the modified eGFR in patients with modified eGFR over 60 mL/min.
It is potentially valuable for us to take these findings into consideration when clinically
dealing with the GFR.
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Featured Application: Left atrial stasis is a useful metric to evaluate hemodynamic recovery of

the left atrial after pulmonary vein ablation.

Abstract: Atrial fibrillation (AF) is associated with systemic thrombo-embolism and stroke events,
which do not appear significantly reduced following successful pulmonary vein (PV) ablation.
Prior studies supported that thrombus formation is associated with left atrial (LA) flow alterations,
particularly flow stasis. Recently, time-resolved three-dimensional phase-contrast (4D-flow) showed
the ability to quantify LA stasis. This study aims to demonstrate that LA stasis, derived from 4D-
flow, is a useful biomarker of LA recovery in patients with AF. Our hypothesis is that LA recovery
will be associated with a reduction in LA stasis. We recruited 148 subjects with paroxysmal AF
(40 following 3–4 months PV ablation and 108 pre-PV ablation) and 24 controls (CTL). All subjects
underwent a cardiac magnetic resonance imaging (MRI) exam, inclusive of 4D-flow. LA was isolated
within the 4D-flow dataset to constrain stasis maps. Control mean LA stasis was lower than in the
pre-ablation cohort (30 ± 12% vs. 47 ± 18%, p < 0.001). In addition, mean LA stasis was reduced
in the post-ablation cohort compared with pre-ablation (36 ± 15% vs. 47 ± 18%, p = 0.002). This
study demonstrated that 4D flow-derived LA stasis mapping is clinically relevant and revealed stasis
changes in the LA body pre- and post-pulmonary vein ablation.

Keywords: atrial fibrillation; 4D-flow; stasis; pulmonary vein ablation

1. Introduction

Atrial fibrillation (AF) is the most common arrhythmia associated with high morbidity
and thrombo-embolism mortality [1]. At age 40 and older, AF lifetime risks increase for
both men and women [2]. Previous studies have suggested that reduced flow velocity, i.e.,
flow stasis, in the left atria (LA) and LA appendage among subjects with paroxysmal AF in
sinus rhythm can be an independent predictor of thrombus formation and stroke [3–5]. The
complex 3-dimensional nature of LA flow can be explored using four-dimensional flow
(4D-flow) by magnetic resonance imaging (MRI), which has proved to effectively assess LA
stasis [6–8]. Furthermore, 4D-flow facilitates the visualization of flow patterns [9,10], vortex
formation [8], and other advanced hemodynamic biomarkers [9,10]. In patients where rate
control and anti-arrhythmic drugs are insufficient, pulmonary vein (PV) ablation therapy
is used to maintain sinus rhythm. Therefore, the assessment of LA stasis changes due to
ablation therapy requires further exploration.
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This study aims to demonstrate that LA stasis, derived from 4D-flow, is a useful
biomarker of LA recovery in patients with AF undergoing PV ablation. Our hypothesis is
that LA recovery will be associated with a reduction in LA stasis.

2. Materials and Methods

2.1. Study Population

A total of 172 subjects were recruited prospectively. This included a control cohort
(n = 24), a pre-ablation cohort (n = 108) with paroxysmal AF with an over 2-year duration
of the first-time diagnosis, and a post-ablation cohort (n = 40) with PV ablation therapy per-
formed 3–6 months prior to imaging exam. A commercial software (Acuity®, Cohesic Inc.,
Calgary, AB, Canada) was used for the delivery of informed consent, health questionnaires,
and collection of MRI-related variables.

Pre-ablation and post-ablation patients were required to be ≥18 years of age and have
sinus rhythm at the time of imaging, with no more than mild mitral valve insufficiency, no
cardiomyopathy, or complex congenital heart disease. Patients with implantable devices,
severe renal impairment (eGFR ≤ 30 mL/min/1.73 m2), or other recognized contraindica-
tions to MRI were excluded. Control subjects were required to be ≥18 years of age and
have no history of cardiovascular disease, diabetes, or uncontrolled hypertension.

2.2. Risk Score

In all patients, the CHA2DS2-VASc risk score was calculated following current AF
guidelines [11,12]. In addition, medical records obtained prior to MRI exam were used to
document clinical risk factors for stroke/thrombo-embolism. Patients were given a single
point for congestive heart failure/left ventricular (LV) systolic dysfunction, hypertension,
diabetes mellitus, vascular disease, age 65–74, female gender, and two points for age ≥ 75
and prior stroke/transient ischemic attack thrombo-embolism [12].

2.3. Cardiac Magnetic Resonance Imaging Protocol

Cardiac imaging examination was performed using 3T MRI scanners (Skyra and
Prima, Siemens, Germany). All subjects underwent a standardized clinical imaging
protocol inclusive of retrospective electrocardiographic gating, time-resolved balanced
steady-state free precession (SSFP) cine imaging in four-chamber, three-chamber, two-
chamber, and short-axis views of LV at end-expiration. Contrast usage of gadolinium
contrast volume of 0.2 mmol/kg (Gadovist®, Bayer Inc., Mississauga, ON, Canada) was
administrated to acquire a contrast-enhanced 3D magnetic resonance angiogram (MRA)
of the pulmonary veins in all subjects for assessing LA structure. Time-resolved three-
dimensional phase-contrast MRI with three-directional velocity encoding (4D-flow, Siemens
WIP 785A) was performed for 5–10 min, following contrast administration to measure
in-vivo blood flow velocities within the whole heart. We have previously reported this
whole-heart protocol [8,13]. Briefly, 4D-flow data was acquired during free breathing using
navigator gating of diaphragmatic motion; sequence parameters were as follows: flip
angle = 15 degrees, spatial resolution = 2.0 − 3.5 × 2.0 − 3.5 × 2.5 − 3.5 mm; temporal
resolution = 39–48 ms; and velocity sensitivity = 150–200 cm/s. Total acquisition time
varies between 8–12 min, depending on heart rate and respiratory navigator efficiency. The
number of phases was adjusted to 25.

2.4. Standard Cardiac Imaging Analysis

Standard cardiac images were analyzed by a blinded reader to the study, using
dedicated software (cvi42, Circle Cardiovascular Imaging Inc., Calgary, AB, Canada) to
determine LV end-diastolic and LV end-systolic volume, LV ejection fraction, LV mass, and
LA maximum volume.
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2.5. 4D-Flow Data Analysis

4D-flow data were pre-processed for Maxwell terms, eddy current-induced phase
offset, and velocity aliasing (if present), Figure 1A. A 3D phase-contrast magnetic resonance
angiogram was generated for each subject and used to perform a LA segmentation using
an in-house program based on Matlab (Matlab, Mathworks, Natick, MA, USA), Figure 1B.
Then, the 4D-flow data set was masked to calculate velocity magnitude and stasis maps,
Figure 1C. Velocity magnitude was calculated as follows:

Vmag =
√

V2
x + V2

y + V2
z (1)

 

Figure 1. Data processing and analysis workflow. Panel (A) shows an example of corrected 4D-flow
images. Panel (B) illustrates a time-average phase-contrast (PC) magnetic resonance angiogram
(MRA) with an optimal threshold for visualizing left atrial (LA) anatomy. The LA was manually
segmented using slice-by-slice, isolating the LA volume. Panel (C) shows the calculated LA stasis
maps within the LA volume using a sagittal and a top-view maximum intensity projection. Red areas
represent high stasis; blue areas represent low stasis.

Velocity magnitude from all voxels inside the isolated LA volume at all cardiac time-
frames was used to create a velocity histogram [6,14]. Local peak velocity was obtained by
averaging the top 5% of all velocity magnitude values. Local mean and standard deviation
velocity were obtained. The relative amount of flow stasis (in percent) was calculated for
each voxel by determining the incidence of voxels < 0.1 m/s among the total number of
time frames [7,8]. Mean LA stasis was obtained by averaging the relative amount of flow
stasis of voxels in the segmented LA volume. Volumetric LA stasis mapping was used to
characterize stasis distribution visually.

2.6. Statistical Analysis

Shapiro-Wilk test was used to determine if parameters were normally distributed. To
compare parameters within groups, 1-way analysis of variance or Kruskal-Wallis was used.
Since AF prevalence increases with age, subjects were divided into three groups (<50 years,
between 50 to 60 years, and >60 years) to assess age effect on LA stasis. Tukey’s test or
Mann-Whitney U-test were performed for multiple comparisons. Bonferroni correction was
used to adjust for multiple comparisons and the differences were considered significant
if p < 0.0166. Pearson correlation was calculated to investigate relationships between
parameters. Statistical analysis was performed using SPSS 25 (SPSS, Chicago, IL, USA).
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3. Results

3.1. Patient Characteristics

Patient baseline demographics are summarized in Table 1. The mean age of the
pre-ablation cohort was 58 ± 10 years with 76% of men; the post-ablation cohort was
58 ± 11 years with 80% of men. Both cohorts were significantly older than the control
cohort, 38 ± 15 years with 71% of men (p < 0.001). Similar differences were found for
weight, body surface area, and diastolic blood pressure (p = 0.001). The mean CHA2DS2-
VASc risk score of the pre-ablation patient population was 1.83 ± 0.98 (versus 0.33 ± 0.48
in controls, p < 0.001; and versus 0.81 ± 0.88 in post-ablation patients, p < 0.001). In
pre-ablation patients, 2 (1.8%) having a risk score of 0, 47 (43.5%) having a risk score of 1,
34 (31.5%) having a risk score of 2, 18 (16.7%) having a risk score of 3, and 7 (6.5%) having a
risk score of ≥4. Post-ablation patients showed a lower average risk score than pre-ablation
(0.81 ± 0.88, p < 0.001), with 21 (52.5%) having a risk score of 0, 10 (25%) having a risk score
of 1, 8 (20%) having a risk score of 2, and 1 (2.5%) having a risk score of 3. Cohorts showed
a significant difference in LA volume (p < 0.001), with higher pre-ablation LA volume than
controls (88 ± 29 mL vs. 66 ± 15 mL, p < 0.001), and lower post-ablation LA volume than
pre-ablation (74 ± 20 mL vs. 88 ± 15 mL, p = 0.018). LV function remained similar pre-
and post-ablation, however, controls differed, showing lower end-systolic volume than
pre-ablation cohort (54 ± 11 mL vs. 69 ± 20 mL, p = 0.002). Ejection fraction was reduced
in AF cohorts (p < 0.004), with similar values pre- and post-ablation.

Table 1. Data baseline.

Control (n = 24) Pre-Ablation (n = 108) Post-Ablation (n = 40) p-Value

Demographics
Age (years) 38 ± 15 58 ± 10 58 ± 11 <0.001

Sex n (% women) 7 (29) 26 (24) 8 (20) 0.707
Height (m) 1.73 ± 0.10 1.78 ± 0.09 1.79 ± 0.07 0.064
Weight (Kg) 75 ± 19 90 ± 18 87 ± 16 0.001

Body Surface Area (m2) 1.89 ± 0.28 2.11 ± 0.25 2.07 ± 0.21 0.001
Heart Rate (bpm) 65 ± 11 62 ± 13 65 ± 13 0.541

Systolic Blood Pressure (mmHg) 114 ± 15 119 ± 14 117 ± 26 0.479
Diastolic Blood Pressure (mmHg) 64 ± 12 71 ± 10 67 ± 7 0.011

Stroke Risk Score
CHA2DS2-VASc Score 0.33 ± 0.48 1.83 ± 0.98 0.81 ± 0.88 <0.001

Score 0 (n) 16 2 21
Score 1 (n) 8 47 10
Score 2 (n) 0 34 8
Score 3 (n) 0 18 1
Score 4 (n) 0 6 0
Score 5 (n) 0 1 0

Left Atrium
Left Atrial Volume (mL) 66 ± 15 88 ± 29 74 ± 20 <0.001

Left Ventricle
End-Diastolic Volume (mL) 154 ± 31 171 ± 35 158 ± 30 0.026
End-Systolic Volume (mL) 54 ± 11 69 ± 20 65 ± 16 0.003

Ejection Fraction (%) 65 ± 4 60 ± 7 59 ± 6 0.004
Left Ventricle Mass (g) 100 ± 29 114 ± 29 113 ± 23 0.07

3.2. Left Atrial Hemodynamic Assessment

Control mean LA stasis was lower than in the pre-ablation cohort (30 ± 12% vs.
47 ± 18%, p < 0.001). Mean LA stasis was reduced in the post-ablation cohort as compared
with pre-ablation (36 ± 15% vs. 47 ± 18%, p = 0.002), Figure 2A. Both pre- and post-ablation
cohorts showed elevated standard deviation LA stasis as compared with controls (23 ± 5%
vs. 17 ± 3%, p < 0.001; 22 ± 5% vs. 17 ± 3%, p = 0.001, Figure 2B). Similarly, mean LA
velocity and standard deviation also decreased, Figure 2C,D.
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Figure 2. Left atrial stasis and velocity in controls, pre-ablation, and post-ablation patients. Panel (A)
shows the comparison of all cohorts for mean left atrial (LA) stasis. Panel (B) shows the comparison
of standard deviation LA stasis. Panels (C) and (D) show the comparison for all cohorts for mean
and standard deviation LA velocity.

When comparing age groups, subjects older than 60-year-old showed an increased
LA volume compared with the younger group of 50-year-old (88 ± 29% vs. 73 ± 19%,
p = 0.01, Figure 3A). Standard deviation LA stasis increased with age when considering all
subjects (p < 0.001, Figure 3B). Subjects between 50 and 60 years showed an increment of
13% in standard deviation LA stasis as compared with the younger cohort of 50-year-old
(p = 0.008). Similarly, an increment of 21% was observed in the older cohort of >60-year-old
(p < 0.001). LA volume was >100 mL in 20% of subjects with an increased stasis compared
with a lower LA volume of 60 mL, which included 45 subjects (23 ± 6% vs. 20 ± 5%,
p = 0.033). Overall, subjects with risk score > 2 (n = 26) showed more increased standard
deviation LA stasis than those with a risk score of 0 (n = 122) (24 ± 5% vs. 21 ± 5%,
p = 0.031). No association was found with LA peak velocity, mean velocity, or standard
deviation velocity.

Figure 3. Age comparison for left atrial volume and standard deviation stasis. Panel (A) shows the
comparison of age groups for left atrial (LA) volume. Panel (B) indicates the comparison of age
groups for standard deviation LA stasis.

4. Discussion

This study illustrates the usefulness of 4D-flow to quantify and assess LA stasis. The
main findings of our study were: (1) LA stasis can be substantially reduced after PV
ablation; (2) Standard deviation LA stasis and atrial volume significantly increase with age;
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(3) Standard deviation LA stasis was higher in patients with risk score > 2 pre-ablation and
was reduced post-ablation.

Virchow’s triad is widely accepted and defines the main factors leading to throm-
bogenesis [15]. These factors include abnormal stasis or reduced blood flow, endothe-
lial/endocardial injury or dysfunction, and hypercoagulability. Time-resolved 4D-flow
provides a non-invasive characterization of LA hemodynamics and has been used to assess
AF patients pre-ablation [7,8,16]. As derived from 4D-flow, LA stasis may serve as an
essential biomarker that characterizes the predisposition to atrial thrombogenesis to that of
regular risk predictors (e.g., CHA2DS2-VASc Score). Despite the comprehensive assessment
obtained by 4D-flow, an accurate 3D segmentation is required. In our study, semi-manual
segmentation was obtained. A careful selection of intensity threshold can facilitate the
appropriate visualization of PV and LA appendage. Fluckiger et al. reported comparable
mean flow velocity in the LA between paroxysmal AF patients and controls [14]. In our
study, the mean LA velocity was significantly reduced in pre-ablation and post-ablation,
which aligned with a more extensive study conducted by Lee et al. [17]. The latter was
supported by other recent studies [6,8,16]. Significant inverse relationships between LA
mean/peak velocity and risk score were reported in previous studies [6,17]. In our study,
no significant associations were found for LA mean/peak and standard deviation veloci-
ties. Much of the attention has been given to the LA appendage as the primary source of
thrombus formation in AF. A previous study from Markl et al. suggested that atrial flow dy-
namics are disrupted in AF patients, even during coordinated activity, thus suggesting an
AF component that may be unrecognized [6]. In one of our recent studies, we demonstrated
that vortex formation within the LA is influenced by pulmonary vein inflow velocities and
LA remodeling with a higher prevalence of stasis [8]. There may be an interplay between
the functional (LA volume, pressure overload, and dilation) and hemodynamic features
(stasis, vortex formation, energetics, and flow patterns). The associations between these
factors are complex and may have compensatory effects. However, identifying irreversible
recovery should warn for earlier detection of complications or adverse outcomes [18,19].
Despite the lack of significant change in LA velocities between the pre-ablation and post-
ablation cohort, we were able to detect an improvement via mean LA stasis. Note that LV
and LA standard metrics also failed to detect a significant change pre- and post-ablation.

Overall, these findings put in context new evidence characterizing paroxysmal AF
complex hemodynamics. However, current guidelines rely on clinical factors and co-
morbidities, with the exclusion of AF burden, atrial size, flow hemodynamics, and other
factors that may suggest more advanced atrial disease and this higher risk of thromboem-
bolic events [20]. Therefore, including the above-mentioned factors may help to improve
long-term LA recovery outcomes.

This study has some limitations, including limited patients matching pre and post-
ablation, follow-up of AF recurrence, age-matching, and manual static segmentation.
Our study excluded patients with more than mild mitral insufficiency, given that it is
anticipated to be a potential confounder to LA hemodynamics and baseline characteristics.
Clinical background decision for ablation referral was not individually investigated. Our
segmentations did not separate LA volume from the LA appendage, which can be useful
for a better characterization of LA stasis. However, LA appendage measurements may
be affected by the high noise levels and the influence of low spatial resolution. For all
subjects, we used an optimized 4D-flow WIP sequence for Siemens scanners. However,
this sequence is based on average data over multiple heart cycles, which is known to
limit the assessment of arrhythmic effects. The latter justifies, in part, that all our subjects
were in sinus rhythm. Recent developments are leading towards multi-dimensional and
self-gated acquisition frameworks that may allow better to explore heart variability and its
hemodynamics [21]. However, these developments are still in the early stage, require high
computational cost, and are not widely accessible for clinical application.
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5. Conclusions

This study demonstrated that 4D-flow could characterize relevant LA blood flow
stasis changes in patients with AF undergoing PV isolation.
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Abstract: Feature-based retinal fundus image registration (RIR) technique aligns fundus images
according to geometrical transformations estimated between feature point correspondences. To
ensure accurate registration, the feature points extracted must be from the retinal vessels and
throughout the image. However, noises in the fundus image may resemble retinal vessels in local
patches. Therefore, this paper introduces a feature extraction method based on a local feature of retinal
vessels (CURVE) that incorporates retinal vessels and noises characteristics to accurately extract
feature points on retinal vessels and throughout the fundus image. The CURVE performance is tested
on CHASE, DRIVE, HRF and STARE datasets and compared with six feature extraction methods
used in the existing feature-based RIR techniques. From the experiment, the feature extraction
accuracy of CURVE (86.021%) significantly outperformed the existing feature extraction methods
(p ≤ 0.001*). Then, CURVE is paired with a scale-invariant feature transform (SIFT) descriptor to
test its registration capability on the fundus image registration (FIRE) dataset. Overall, CURVE-SIFT
successfully registered 44.030% of the image pairs while the existing feature-based RIR techniques
(GDB-ICP, Harris-PIIFD, Ghassabi’s-SIFT, H-M 16, H-M 17 and D-Saddle-HOG) only registered
less than 27.612% of the image pairs. The one-way ANOVA analysis showed that CURVE-SIFT
significantly outperformed GDB-ICP (p = 0.007*), Harris-PIIFD, Ghassabi’s-SIFT, H-M 16, H-M 17
and D-Saddle-HOG (p ≤ 0.001*).

Keywords: image registration; fundus image; feature extraction

1. Introduction

Retinal fundus image registration (RIR) is an essential tool in facilitating the diagnosis
and treatment of retinal diseases [1]. RIR aligns fundus images according to geometrical
transformation estimated from correspondence between fixed and moving images. Existing
RIR techniques can be grouped based on the type of correspondence utilized in estimating
the geometrical transformation, namely, intensity-based and feature-based.

The intensity-based RIR technique searches the similarity between the intensity pat-
terns in fixed and moving images to estimate the geometrical transformation. The similarity
between the intensity patterns is established using a similarity metric such as mutual in-
formation [2], cross-correlation [3] and phase correlation [4,5]. However, the registration
performance of the intensity-based RIR technique is limited in the presence of non-uniform
intensity distribution and homogenous texture [6], which is commonly observed in fundus
images. Furthermore, the intensity patterns from the non-overlapping area can mislead the
similarity metric in estimating inaccurate geometrical transformation.

Appl. Sci. 2021, 11, 11201. https://doi.org/10.3390/app112311201 https://www.mdpi.com/journal/applsci165
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Generally, the feature-based RIR technique is more reliable and robust in register-
ing fundus images compared to the intensity-based RIR technique. This is because the
feature-based RIR technique estimates the geometrical transformation according to the
correspondence of local features such as feature points. However, the feature-based RIR
technique requires the feature points to be extracted from reliable information to ensure
accurate registration. Reliable information is distributed throughout an image and repeat-
able despite the changes in viewpoint or intensity [7]. The feature-based RIR technique
is mainly comprised of feature extraction, feature descriptor, matching and estimating
geometrical transformation. Feature extraction plays a crucial role in ensuring the feature
points are detected and selected from reliable information by examining the local patches.

The feature extraction method in the existing feature-based RIR techniques extracts
feature points from retinal vessels [8], vessel bifurcations [9], corner [10], extrema [11–13]
or distinctive structure information [14]. Among this information, the retinal vessel is
the most reliable because it can be found throughout the fundus image and is repeatable
despite the changes in viewpoint or intensity. Additionally, the appearance of the retinal
vessels within the local patches are consistent as a continuous line in 2-dimensional, and
curvature shape in 3-dimensional, despite its size and contrast. However, the noises such
as the retinal nerve fiber layer, underlying choroidal vessels, microaneurysm and exudates
can also appear as curvature shapes in the local patches.

Therefore, this paper introduces a new feature extraction method based on the local
feature of retinal vessels (CURVE). The proposed CURVE extracts feature points throughout
the fundus image with the ability to discriminate the aforementioned noises. To register
the fundus images, a feature-based RIR technique framework (CURVE-SIFT) is described
where CURVE is paired with the scale-invariant feature transform (SIFT) descriptor [15].

The remainder of this paper is organized as follows. Section 2 highlights and discusses
the issues of the feature extraction method in the existing feature-based RIR techniques.
Section 3 describes the methodology of the CURVE-SIFT technique. The experimental
settings in developing and evaluating the CURVE-SIFT technique are presented in Section 4.
Section 5 reports and discusses the experimental results. Finally, the conclusion and future
work are given in Section 6.

2. Related Works

The majority of the existing feature-based RIR techniques [13,16–18] mainly utilized
the SIFT detector [15] to extract the feature points. SIFT detector finds extrema from
local patches in a hierarchical difference of Gaussian (DoG) scale-space to allow feature
points to be found based on the structure of various sizes. Then, the extrema that are low
contrast and on edges are rejected to ensure the final feature points are distinctive and
repeatable. However, the retinal vessels exhibit inconsistent contrast levels throughout the
fundus image. Therefore, Ghassabi et al. [11] utilized robust uniform SIFT (UR-SIFT) [19]
to overcome this issue.

The UR-SIFT is an improvement of the SIFT detector, where the feature points are
selected according to the strength of the texture surrounding the points. This enables
UR-SIFT to be more efficient in extracting feature points on retinal vessels compared to
the standard SIFT detector. Furthermore, UR-SIFT ensures the extracted feature points
are distributed throughout the hierarchical DoG scale space. The distribution is set in
reverse from the scale coefficients of the scale space. This results in more feature points
being extracted in the lower part of the hierarchical DoG scale space where the images are
larger and finer. Opposite to this, fewer feature points are extracted in the upper part of
the hierarchical DoG scale space where the images are smaller and coarser.

Ghassabi et al. further improved their work by introducing a stability score as part
of the selection criterion [8]. The stability score incorporates Frangi’s vesselness measure
(FVM) [20], a vessel enhancement filter that suppresses noise in the image. Incorporating
FVM enabled the ability of [8] to discriminate between retinal vessels and noises.
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Extracting feature points on retinal vessels from the underexposed region in the
fundus image is addressed in [12], where the illumination invariant Difference of Gaussian
(iiDoG) operator was incorporated into the hierarchical scale space [21]. iiDoG operator
is composed of normalized difference of Gaussian (nDoG) and DoG operators based on
a piecewise function. The combination of these operators increases the visibility of the
underexposed region while leaving the correctly exposed region unchanged. This work
utilized a similar approach as in SIFT detector to extract extrema from the hierarchical
iiDoG scale space. A threshold is introduced to discard the extrema on the retinal surface
before the final feature points are selected. The threshold is based on the distribution of the
intensity in the local patch.

Other than SIFT, the existing feature-based RIR techniques [10,22–24] extract geometric
corner [25], Harris corner [26] and speeded up robust features (SURF) [27,28]. Meanwhile,
Ramli et al. [14] introduced D-Saddle to extract feature points from the low-quality region
based on distinctive structural information.

There are several issues that can be outlined from the highlighted feature extraction
methods. First, feature enhancement algorithms such as DoG and iiDoG operators are
mainly incorporated in building the hierarchical scale space. These operators increase the
visibility of the retinal vessels as well as the noises, which make it more challenging for the
feature extraction method to discriminate between them.

Second, the feature extraction methods are mainly without a proper selection module
to select feature points on retinal vessels. A proper selection module should consider both
retinal vessels and noise information as they may appear similarly within a local patch.
Therefore, considering both in the selection module allows for more robust discrimination
between retinal vessels and noises.

3. Methodology

The CURVE-SIFT technique constitutes five main stages, as shown in Figure 1. Stage 1
converts the input images to grayscale. The proposed CURVE in Stage 2 extracts feature
points from the input grayscale images, which also highlights the main contribution of
this paper. Stage 3 computes the SIFT descriptor to describe the surrounding region of
each CURVE feature point. From the computed descriptors, matches are established, and
outliers are removed in Stage 4. Finally, Stage 5 estimates the geometrical transformation
between fixed and moving images. The details of these stages are explained in the following
sub-sections. The mathematical symbols and notation used in this section are listed in
Appendix A (Table A1).

Figure 1. A general framework of the CURVE-SIFT technique.
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3.1. STAGE 1: Pre-Processing

The conversion of the input images from color to grayscale follows the calculation of
luminance in Recommendation ITU-R BT.601-7 [29] given below:

I = 0.2989R+ 0.587G + 0.1140B (1)

where, I is the input image in grayscale, R is the red channel, G is the green channel and
B is the blue channel. The grayscale conversion based on luminance was chosen for this
study because it has been shown to be superior to other grayscale conversions in terms of
highlighting texture visibility [30] and trade-off between accuracy and processing cost.

3.2. STAGE 2: Feature Extraction

This sub-section describes the proposed CURVE to extract feature points on retinal
vessels. CURVE is composed of feature detection and feature selection modules. The feature
detection module detects candidate feature points according to the curvature shape of the
retinal vessels. The curvature shape of the retinal vessels is observed when its grayscale
image is depicted in 3D (see Table A2 in Appendix B). However, the detected candidate
feature points are located on retinal vessels as well as noises. Therefore, the feature
selection module removes the detected candidate feature points associated with noises by
considering the unique characteristics of both retinal vessels and noises in intensity profiles.
Then, the final feature points are chosen based on the strength of the retinal vessels. The
steps in the feature detection and feature selection modules are summarized in Figure 2.

Figure 2. Overview of CURVE feature extraction in Stage 2. CURVE is composed of a feature
detection module and feature selection module.

3.2.1. Feature Detection Module

The feature detection module examines local patches in the images of the hierarchical
Gaussian scale space to detect extrema within the curvature shape of various sizes. This
module involves three main steps, as explained below.

(a) STEP 1: Building a hierarchical Gaussian scale space

The initial step of the feature detection module is to build a hierarchical Gaussian
scale space. The hierarchical Gaussian scale space enables the detection of the candidate
feature points on various sizes of retinal vessels at the lower octave as the images are
larger and finer with detailed information. At the higher octave, the candidate feature
points are detected on thicker retinal vessels as the images are smaller and coarser with
prominent information.

Building the hierarchical Gaussian scale space (G) involves generating three oc-
taves (P = 3 | p = 0, . . . , P − 1) and six levels (Q = 6 | q = −1, · · · , Q − 2) per octave,
as in [15,31].
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The initial Gaussian image Gp,q at p = 0 and q = −1 is created through convolution of
input image I with width of relative Gaussian kernel σ̌p,q at p = 0 and q = −1 as follows:

G0,−1 = I ∗ σ̌0,−1 (2)

with, σ̌0,−1 is denoted by:

σ̌0,−1 =
√

σ2
0,−1 − σ2

s (3)

The width of the relative Gaussian kernel σ̌p,q assumes the input image I is pre-filtered
with a sampling Gaussian kernel σs ≥ 0.5 [15]. Thus, σ0,−1 can be expressed as in [15,31]:

σ0,−1 = σ0·2−1/Q−3 (4)

where, σ0 = 1.6 is the base width of the Gaussian kernel.

σ̌0,−1 =
√

σ2
0,−1 − σ2

s (5)

To obtain Gp,−1 at higher octave p ∈ [1, . . . , P − 1], Gp−1,2 is downsampled by half.
The subsequent Gp,q at p ∈ [0, . . . , P − 1] and q ∈ [0, . . . , Q − 2] can be obtained from the
convolution between Gp,−1 in the respective octave with the relative Gaussian kernel of
width σ̌q given by:

σ̌q = σ0·
√

22q/Q−3 − 1 (6)

(b) STEP 2: Detecting local extrema

The feature detection module continues with the detection of extrema within the local
patches of 3 × 3 pixels. An extremum represents the maximum or minimum intensity
value of the center pixel compared to the eight immediate neighbors in the local patch. The
local patches across the image are overlapped by 1/3 of its size. The extrema found near
the border of the field of view (FOV) are excluded from further processing using a mask
image.

(c) STEP 3: Test extrema if within curvature structure

The retinal vessels generally exhibit curvature shape in 3-dimensions. Therefore, the
extrema are tested if they are within the curvature structure by performing two tests as
reported in [32]. These tests are the inner ring test and outer ring test.

• STEP 3(a): Inner ring test

The inner ring test considers eight pixels surrounding an extremum (aj
∣∣ j ∈ [1, . . . , 8]),

as depicted in Figure 3a. Four out of eight pixels are tested at a time for patterns × and +,
as shown in Figure 3b–e. These patterns are formed when the intensities of two opposing
pixels are brighter (dark green dot) than the other two opposing pixels in orthogonal (pink
dot). The extrema can pass this test with one or two patterns. Then, the central intensity
value β is estimated by taking the median value of four pixels if the extremum passes with
one pattern, and eight pixels if it passes with two patterns. The extrema that failed the
inner ring test are eliminated.

Figure 3. Inner ring test. (a) Eight pixels denoted by aj, j ∈ [1, . . . , 8] surrounding an extremum, e. (b,c) Patterns in the
shape of ×. (d,e) Patterns in the shape of +. Pixels with a dark green dot have higher intensity values than pixels with a
pink dot.
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• STEP 3(b): Outer ring test

A circumference of 16 pixels surrounding an extremum that passes the inner ring test
forms the outer ring pixels ( bl | l ∈ [1, . . . , 16]) as shown in Figure 4a. These pixels are
divided into groups of low, middle and high as defined below:

Group low (red dot) : Ibl
< β − ε

Group middle (purple dot) : β − ε ≤ Ibl
≤ β + ε

Group high (green dot) : Ibl
> β + ε

(7)

where, Ibl
is the intensity of the outer ring pixels and ε is the offset. The offset ε is set to

0.0010 as the intensity value of the pixels is in the range of [0, 1] [14].

Figure 4. Outer ring test. (a) Sixteen pixels denoted by bl , l ∈ [1, . . . , 16] surrounding an extremum, e. (b–e) Examples of
outer ring patterns. Pixels with red dot are from group low, pixels with purple dot are from group medium and pixels with
green dot are from group high.

Then, the extrema are tested for the outer ring patterns consisting of consecutive
and alternating arcs from groups low and high. The length of each arc can be between
2 to 8 pixels. These arcs can also be separated by pixels from group middle up to two
pixels. Examples of the outer ring patterns are depicted in Figure 4b–e. The extrema that
pass the outer ring test are the extrema found within the curvature structure, as shown
in Figure 5. These extrema are assigned as candidate feature points and included in the
feature selection module.

Figure 5. Example of candidate feature point (pointed by black arrow) from feature detection module.
The candidate feature point is an extremum within a curvature structure.

3.2.2. Feature Selection Module

The feature selection module includes exclusion and selection processes. The exclusion
process discards the candidate feature points associated with noises while the selection
process selects the final feature points according to the strength of the retinal vessels. These
processes require gradient and binary interpolated patches as input.

(a) STEP 4: Preparing gradient and binary interpolated patches

The initial step of the feature selection module is to extract a square patch with the
size of sp × sp pixels for each candidate feature point from the respective Gp,q. The size of
the patch is varied depending on the octave position (p) of the candidate feature point to
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ensure the retinal vessel can be captured within the patch despite the image size of Gp,q.
The side length

(
sp
)

of the patch is an odd number computed as follows:

sp = sinitial − 4(p + 1) (8)

where, sinitial is the initial side length. There are three possible values for sinitial as defined
in (9). sinitial is set by referring to the size of the initial Gaussian image G0,−1. These values
are determined by observing the retinal vessels with the thickest width on the fundus
images from five datasets; CHASE_DB1 [33,34], DRIVE [35,36], HRF [37,38], STARE [39,40]
and Fundus Image Registration (FIRE) dataset [41]. Furthermore, by considering scale or
zoom less than 1.5 [8]. The sinitial is suitable for input images larger than that of the largest
image used to determine sinitial (10 megapixels). This is because hierarchical Gaussian scale
space down-sampled the input image by half as the level increased and reduced the image
details as the octave increased, allowing the vessels of varying sizes to fit in the square
patch even for input images larger than 10 megapixels.

sinitial

⎧⎪⎨
⎪⎩

35 pixels if G0,−1 > 1000 × 1000 pixels
25 pixels if G0,−1 ≤ 1000 × 1000 pixels > 600 × 600 pixels
21 pixels if G0,−1 ≤ 600 × 600 pixels

(9)

The extracted gradient patch is up-sampled using cubic interpolation with a refine-
ment factor of two to smooth the region around the vessel edges. Then, this interpolated
patch is converted to a binary image as depicted in Figure 6(aii,bii). These patches are used
as input for exclusion and selection processes.

Figure 6. Examples of the (i) gradient and (ii) binary interpolated patches extracted from (a) retinal
vessel and (b) noise. Red ‘×’ represents the position of the candidate feature point on the patch.

(b) STEP 5: Exclusion process

The curvature structure in the local patch represents retinal vessels of various sizes
as well as noises such as the retinal nerve fiber layer, underlying choroidal vessels, mi-
croaneurysm and exudates. Therefore, five exclusion criteria specifying the characteristics
of the retinal vessels and noises on the sum of intensity profiles are presented to discard
candidate feature points on noises.

The intensity profile is the intensity value of the pixels extracted from a cross-sectional
line running through the patch. In this study, the intensity profiles extracted from multiple
cross-sectional lines are summed to distinctively highlight the characteristics of the retinal
vessels and noises in the interpolated patch. The intensity profiles are extracted from a
total of Ltotal cross-sectional lines that parallel each other with Ldistance distance between
the lines. These cross-sectional lines are positioned either along or perpendicular to the
main orientation of the interpolated patch. The main orientation is the angle between the
x-axis and major axis of the ellipse on the prominently connected region of the binary
interpolated patch.

The Ltotal , Ldistance and orientation of the cross-sectional lines are set according to the
exclusion criteria as summarized in Table 1. The length of the cross-sectional lines in the
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pixel can be determined from Ltotal and Ldistance to ensure the lines do not exceed the size
of the interpolated patch in any orientation as follows:

Llength = sbin − (Ldistance.Ltotal) (10)

where, Llength is the length of the cross-sectional lines, sbin is the side length of the binary
interpolated patch, Ldistance is the distance between the parallel cross-sectional lines and
Ltotal is the total cross-sectional lines.

Table 1. Settings and details of exclusion criteria in STEP 5.

STEP 5(a):
Exclusion
Criterion 1

STEP 5(b):
Exclusion
Criterion 2

STEP 5(c):
Exclusion
Criterion 3

STEP 5(d):
Exclusion
Criterion 4

STEP 5(e):
Exclusion
Criterion 5

Settings to extract the sum of intensity profiles from interpolated patches

Interpolated Patch Binary Gradient – – Binary and
gradient

Cross-sectional
lines

Ltotal 5 7 – – 7

Ldistance 3 pixels 5 pixels – – 5 pixels

Orientation
Along main
orientation

Perpendicular
to main

orientation
– –

Perpendicular
to main

orientation
Details of exclusion criteria

Input

Sum of
intensity

profiles from
binary

interpolated
patch

Sum of
intensity

profiles from
gradient

interpolated
patch

Valley with
maximum
depth from
STEP 5(b)

Valley with
maximum
depth and

global
minimum from

STEP 5(c)

Sums of
intensity

profiles from
binary and

gradient
interpolated

patches

Candidate
feature point

On Vessels
A horizontal

line.
Figure 7(aii)

With at least a
valley.

Figure 8(aii)

Is global
minimum.

Figure 9(aii,bii)

At-axis.
Figure 10a,b

Intersected
when overlaid.
Figure 11(aiii)

On Noise
With at least a

peak.
Figure 7(bii)

Without valley.
Figure 8(bii)

Is local
minimum.

Figure 9(cii)

At 1st or 4th
section on

x-axis.
Figure 10c

Apart from
each other

when overlaid.
Figure 11(biii)

Figure 7. Exclusion criterion 1. (i) Cross-sectional lines and (ii) sum of intensity profiles for binary interpolated patch with
(a) retinal vessel and (b) noise. A candidate feature point is discarded if any peak is found on the sum of intensity profiles
from binary interpolated patch as in (b)(ii).
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Figure 8. Exclusion criterion 2. (i) Cross-sectional lines and (ii) sum of intensity profiles for gradient interpolated patch
with (a) retinal vessel and (b) noise. A candidate feature point is discarded if the sum of intensity profiles from gradient
interpolated patch is without any valley as in (b)(ii).

Figure 9. Exclusion criterion 3. (i) Cross-sectional lines and (ii) sum of intensity profiles for gradient interpolated patch with
(a) normal retinal vessel, (b) retinal vessel with central light reflex and (c) noise. A candidate feature point is discarded
when the valley with the maximum depth is a local minimum as in (c)(ii).

Figure 10. Exclusion criterion 4. (a,b) The valley with the maximum depth is on the 2nd or 3rd section for retinal vessels.
(c) The valley with the maximum depth is on the 1st or 4th section for noise. A candidate feature point is discarded when
the valley with the maximum depth is at the 1st or 4th section, as in (c).
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Figure 11. Exclusion criterion 5. Cross-sectional lines on (i) gradient and (ii) binary interpolated patches for (a) retinal
vessel and (b) noise. (iii) The intersection between sums of intensity profiles from (i) and (ii). A candidate feature point is
discarded when the overlaid sums of intensity profiles are apart from each other, as in (b)(iii).

Ltotal LdistanceAtx

• STEP 5(a): Exclusion criterion 1

Retinal vessel in a binary interpolated patch forms a nearly straight and wide con-
nected region, as depicted in Figure 7(ai). This characteristic can be represented by the sum
of the intensity profiles extracted from five cross-sectional lines positioned along the main
orientation of the patch. The Ltotal , Ldistance and orientation for these cross-sectional lines
are chosen to best express the retinal vessel of various sizes in the patch. For retinal vessels,
the sum of the intensity profiles appears as a horizontal line, as depicted in Figure 7(aii).
Contrarily, the noise comprises an inconsistent connected region, as shown in Figure 7(bi),
which results in the detection of peaks in the sum of intensity profiles. Therefore, a
candidate feature point with peaks on the sum of intensity profiles is discarded.

• STEP 5(b): Exclusion criterion 2

For the gradient interpolated patch associated with the retinal vessel as in Figure 8(ai),
the cross-sectional lines with Ltotal = 7, Ldistance = 5 and positioned perpendicular to the
main orientation are fully intersected by the vessel. Therefore, the sum of the intensity
profiles from these cross-sectional lines will consist of at least a valley, as depicted in
Figure 8(aii). In opposite, no valley can be found on the sum of the intensity profiles
extracted from the patch associated with noise, as shown in Figure 8(bii). Thus, this
candidate feature point is discarded from further processing.

• STEP 5(c): Exclusion criterion 3

The valleys discovered in STEP 5(b) are further examined for their depth and posi-
tioned on the y-axis. For a candidate feature point located on a retinal vessel, the valley
with the maximum depth is at the lowest position of the y-axis or global minimum, as
shown in Figure 9(aii,bii). Therefore, a candidate feature point is discarded if the valley
with the maximum depth is a local minimum, such as in Figure 9(cii).

• STEP 5(d): Exclusion criterion 4
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The valley with maximum depth and global minimum from STEP 5(c) is examined
for its position on the x-axis. The sum of the intensity profiles is divided into four sections
of equal size. The valley with the maximum depth is expected to be at the second or third
section on the x-axis if a candidate feature point on a retinal vessel is either normal or
with central light reflex as shown in Figure 10a,b Therefore, a candidate feature point is
excluded if the valley with the maximum depth is located at the first and fourth sections,
as in Figure 10c.

• STEP 5(e): Exclusion criterion 5

This criterion overlaid the sum of the intensity profiles from gradient and binary
interpolated patches. The intersection can be found when a candidate feature point is
located on a retinal vessel and vice versa, as depicted in Figure 11. Thus, the candidate
feature point is discarded when the overlaid sums of the intensity profiles are apart from
each other.

(c) STEP 6: Selection process

The exclusion process removes the majority of the candidate feature points detected
on noises. However, the remaining candidate feature points may include points detected
on noises with a high structural similarity as the retinal vessels in the interpolated patches.
Therefore, the selection process includes two main steps to select the final feature points,
namely, distribution and selection weightage. The distribution will ensure the final feature
points are selected throughout the image, while the selection weightage highlights the
strength of the retinal vessel in the patch for each candidate feature point.

• STEP 6(a): Distribution

The distribution of the feature points all over the image is vital to ensure a high
registration accuracy [42]. There are two procedures involved in distributing the feature
points. First, the feature points are distributed across the hierarchical Gaussian scale space
by computing the maximum number of feature points (Np,q) for each Gaussian image Gp,q.
Np,q is set proportionally inverse to the width of the Gaussian kernels used when building
the scale space as described in [8,11,19]:

Np,q = Ntotal .Fp,q (11)

The proportion of the feature points Fp,q is given by:

Fp,q =
f0

μ(Q)p+q+1
(12)

The proportion in the initial image of the scale space f0 and the constant factor μ can
be expressed as:

f0 =
μP(Q)−1

∑
P(Q)
n=1 μn−1

(13)

μ = 2
1
Q (14)

where, P is the total octave with index p ∈ [1, . . . , P − 1], Q is the total level with index
q ∈ [−1, . . . , Q − 2], n is the index of the images in the hierarchical Gaussian scale space
and Ntotal is the total feature points in the hierarchical Gaussian scale space. In this study,
Ntotal is set to 4500 points, which empirically shows to provide a reasonable amount of
feature points to perform image registration. However, if the candidate feature points are
detected at less than 4500 points, Ntotal is set to 90% of the total candidate feature points.

The second procedure distributes Np,q across partitioned grids in each Gaussian image
Gp,q. This operation begins by partitioning Gp,q into rectangle grids of 150 × 150 pixels. The
maximum number of feature points Nu in a grid image of index u is computed as follows:

Nu = DCu.Np,q (15)
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The distribution coefficient for a grid image (DCu) represents a combination of three
factors. These factors are entropy [43], peak deviation nonuniformity [44] and total candi-
date feature points detected in the grid image.

The first factor of the entropy (EG) [43] defines the texture of the grayscale grid
image. The grid image with high contrast retinal vessels, regardless of the sizes, will yield
a large entropy value and vice versa. However, the entropy value presents a minimal
distinction between the grid image with low contrast retinal vessels and with only noises
or retinal surface.

Therefore, peak deviation nonuniformity (UG) [44] is included as the second factor.
This factor is sensitive to the changes in the grayscale level. Thus, it is beneficial in
distinguishing between the grid image containing low contrast vessels and the grid image
with only noises.

In the coarser grid image, particularly at the higher octave, fewer candidate feature
points are detected compared to the finer grid image. However, the values of the entropy
and peak deviation nonuniformity measured from the coarser and finer grid images only
show a minimal difference. To compensate for these factors, the total candidate feature
points detected in the grid image (TG) is considered as the third factor.

The distribution coefficient DCu for a grid image u can be expressed as the combination
of the three factors:

DCu = WEG
EG

∑U
u EG

+ WUG
UG

∑U
u UG

+ WTG
TG

∑U
u TG

(16)

where, WEG is the weight factor for the entropy, WUG is the weight factor for the peak
deviation nonuniformity, WTG is the weight factor for the total candidate feature points, u is
the index of the grid image with u ∈ [1, · · · , U] and U is the total grid in a Gaussian image
Gp,q. The weight factors are empirically set to WEG = 0.3, WUG = 0.3 and WTG = 0.4 to
give a distinctive representation in describing the grid image.

• STEP 6(b): Selection weightage

The selection process is continued by computing selection weightage for each candi-
date feature point. The selection weightage highlights the strength of the retinal vessels
indicated by entropy, area of the intersected region and the mean histogram of gradient
orientation at the vessel edges.

The entropy (EP) is computed as in [43] to describe the texture in the gradient in-
terpolated patch. Next, the area of the intersected region (AP) is determined between
the sums of intensity profiles from the gradient and binary interpolated patches in STEP
5(e), as depicted in Figure 12. The lowest intersection point on the y-axis is used as the
reference level to approximate the area of the intersected region using the trapezoidal rule.
The area of the intersected region expresses the strength of the retinal vessels in terms
of size and contrast. For example, the intersected region has a larger area for a thicker
and high contrast retinal vessel. The area decreases as the size and contrast of the retinal
vessel decreases.

Figure 12. Area of intersected region between the sums of the intensity profiles from exclusion
criterion 5.
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The mean histogram of the gradient orientation at the vessel edges (HP) is estimated
using both gradient and binary interpolated patches. Initially, the partial derivative is
performed on the gradient interpolated patch to obtain gradient orientation for each
pixel. The partial derivative is approximated using the central difference as it gives
a more accurate approximation compared to other techniques, such as forward and
backward approximations.

Then, the binary interpolated patch is used to obtain the vessel edges by performing
binary dilation to increase the thickness of the edges. Once the pixels on the vessel edges
are identified, the gradient orientation is extracted. The gradient orientation for these
pixels is organized into a histogram of 36 bins, as shown in Figure 13. In this histogram,
the non-zero frequencies are averaged to represent the mean histogram of the gradient
orientation at the vessel edges. The mean histogram will yield a high value for a high
contrast retinal vessel as the edges are thicker and the gradient orientation is more uniform.
In contrast, the mean histogram will yield a low value for the low contrast retinal vessel as
the edges are thinner and the gradient orientation is less uniform.

Figure 13. (a) Example of gradient orientation at the edges of the retinal vessel in a gradient
interpolated patch. (b) Close-up from the red rectangle region. (c) Histogram of 36 bins generated for
the gradient orientation in (a). The frequency in the histogram signifies the total occurrence of the
gradient orientation within the respective bin.

The selection weightage denoted by SWi is computed for each candidate feature point
(i) to highlight the strength of the retinal vessels as expressed below:

SWi = WEP
EP

∑TC
i HP

+ WAP
AP

∑TC
i AP

+ WHP
HP

∑TC
i HP

(17)

where, WEP is the weight factor for the entropy, WAP is the weight factor for the area of the
intersected region, WHP is the weight factor for the mean histogram of the gradient orienta-
tion at the vessel edges, i is the index of the candidate feature point with i ∈ [1, · · · , TC]
and TC is the total candidate feature point in a Gaussian image Gp,q. The weight factors
are empirically set to WEP = 0.3, WAP = 0.4 and WHP = 0.3 to distinctively highlight the
strength of the retinal vessels.

Finally, a total of Nu candidate feature points with the highest value of the selection
weightage SW are selected as feature points in each grid image. Then, the positions of the
selected feature points are refined to sub-pixel accuracy at the respective Gp,q, as in [15,45].
The feature points with refined positions are converted from the position at the respective
scale space to the coordinate system of the initial Gaussian image G0,−1 follows:

Km = 2p.Km,p,q (18)

where, Km is the feature point of index m in the coordinate system of the initial Gaussian
image G0,−1 and Km,p,q is the feature point of index m in the coordinate system at the
respective octave p and level q.

177



Appl. Sci. 2021, 11, 11201

3.3. STAGE 3: Feature Descriptor

SIFT descriptor [15] is assigned to each feature point extracted from fixed and moving
images. VLFeat toolbox [46] with default settings is used to compute the SIFT descriptor.

3.4. STAGE 4: Matching

The matches are obtained by establishing pairwise distances between SIFT descriptors.
The distances are computed using the sum of squared differences (SSD). The outliers in
the matches are eliminated using M-estimator SAmple Consensus (MSAC) algorithm [47].
MSAC eliminates the outliers when the distance between the matches in the fixed image and
the projected matches from the moving image exceeds a specified threshold. The projection
is performed according to the non-reflective similarity transformation and estimated from
two randomly selected matches. The distance threshold is set between 1 and 100 with an
increasing step of 0.1. The random trial is repeated 5000 times, and the desired confidence
is set to 99%.

3.5. STAGE 5: Geometrical Transformation

Similarity and local weighted mean transformations [48] are estimated for each image
pair from the established inliers. Only the transformation that gives the best registra-
tion accuracy is chosen for evaluation. The radius of influence for local weighted mean
transformation is set in the range of 10 to the total inliers with an increasing step of two.

4. Experimental Setup

The CURVE-SIFT was implemented in MATLAB R2016b running on a virtual machine
from Google Cloud Engine with specifications of Intel Xeon® E5 2.6GHz (24 vCPUs) and
40 GB of RAM. Toolboxes employed were Image Processing, Computer Vision, Signal
Processing and VLFeat [46].

The evaluation was divided into two parts. First, CURVE was evaluated in extracting
feature points on retinal vessels. The performance of CURVE was compared with five
feature extraction methods from the existing feature-based RIR techniques, namely, Harris
corner [26], SIFT [15], SURF [27,28], Ghassabi’s [8] and D-Saddle [14]. Then, CURVE-SIFT
was evaluated in registering image pairs from three retinal image registration applications
and compared with five existing feature-based RIR techniques; GDB-ICP [13], Harris-
PIIFD [10], Ghassabi’s-SIFT [8], H-M 16 [16], H-M 17 [9] and D-Saddle-HOG [14]. In the
experiment, these five existing feature-based RIR techniques were utilized exactly as they
are. H-M 16, H-M 17 and D-Saddle-HOG were originally developed using FIRE dataset for
super-resolution, image mosaicking and longitudinal study applications, while Ghassabi’s-
SIFT, GDB-ICP and Harris-PIIFD were developed for image mosaicking and low-quality
image using other datasets.

4.1. Datasets

A total of five public datasets at the original image size were employed in the eval-
uation. The original image size was used in the experiment as decreasing the spatial
resolution of the fundus image can degrade its quality and led to an inaccurate diagnosis
and treatment of retinal diseases [49]. Four of the datasets evaluated the feature extraction
performance, namely, CHASE_DB1 [33,34], DRIVE [35,36], HRF [37,38] and STARE [39,40].
These datasets contain fundus images affected by pathological cases. The provided ground
truth images are in the form of the segmented vessels performed by experts. This en-
ables the evaluation of the extracted feature points on the retinal vessels. The details of
CHASE_DB1, DRIVE, HRF and STARE datasets are described in Table 2.
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Table 2. Descriptions of CHASE_DB1, DRIVE, HRF and STARE datasets for evaluating feature extraction performance.

Descriptions
Datasets

CHASE_DB1 DRIVE HRF STARE

Total images 28 40 45 20
Image size (pixels) 999 × 960 564 × 584 3504 × 2336 605 × 700

Total patients 14 40 45 20
Age (Years) 9–10 25–90 N/A N/A

Pathological cases Vessel
tortuosity

33 images without sign of
diabetic retinopathy

7 images with mild early
diabetic retinopathy

15 images of healthy
patients

15 images of diabetic
retinopathy
15 images of

glaucomatous

Abnormalities that
obscure the blood

vessel appearance, such
as hemorrhaging, etc.

Field of view 30◦ 45◦ 45◦ 35◦
Year 2012 2004 2009 2000

Ground truth images 56 60 45 40
Intensity distribution 1 22.6136 49.3307 34.9433 49.5126

1 Described by peak deviation nonuniformity intensity. Values close to 0 indicates non-uniform intensity distribution in the image.

The registration performance of CURVE-SIFT is evaluated in the Fundus Image Reg-
istration dataset (FIRE) [41]. This dataset is the only public fundus image registration
dataset with ground truth annotation. The FIRE dataset consists of 134 image pairs divided
into super-resolution, image mosaicking and longitudinal study applications, as described
in Table 3. All image pairs are affected by diabetic retinopathy where vessel tortuosity,
microaneurysms and cotton-wool are visible on the images. Each image pair includes
10 corresponding ground truth annotations identified by experts.

Table 3. Descriptions of FIRE dataset for evaluating registration performance.

Descriptions
Retinal Image Registration Applications

Super-Resolution Image Mosaicking Longitudinal Study

Total images 71 49 14
Image size (pixels) 2912 × 2912

Total patients 39
Age (Years) 19–67

Pathological cases Diabetic retinopathy
Field of view 45◦

Year 2006 to 2015
Ground truth images 10 corresponding points for each image pair

Anatomical differences 1 No No Yes
Scale ≈1 ≈1 ≈1

Overlapping area (%) 86–100 17–89 95–100
Rotation (◦) 0◦–12◦ 6◦–52◦ 1◦–4◦

1 Anatomical differences observed between fixed and moving images.

Registering image pairs from super-resolution, image mosaicking and longitudinal
study applications involve a combination of several challenges, namely, overlapping area
and rotation. The overlapping area is an intersection region between fixed and moving
images. A small overlapping area limits the amount of similar information between im-
ages, which can be insufficient to estimate an accurate geometrical transformation. The
rotation in the fundus image is introduced to access part of the retina or due to involun-
tary movement by the patient. The rotation alters the orientation of similar information
between images. This alteration can be challenging for the feature-based RIR technique to
establish correspondences.

The super-resolution application combines multiple fundus images with a large over-
lapping area and small rotation. The super-resolution application is performed to increase

179



Appl. Sci. 2021, 11, 11201

the density of the spatial sampling, which can resolve the blurred edges of the retinal
vessels caused by patient movements or improper imaging setup.

The image mosaicking application aligns multiple fundus images to generate an image
with a wider view of the retina. The wide view image of the retina can be used to view
the full extent of the retinal disease in one big picture during diagnosis [50,51] and during
the preparation of eye laser treatment for diabetic retinopathy [52]. However, registering
image pairs from the image mosaicking application can be challenging as it involves a
combination of small overlapping areas and large rotation.

The longitudinal study application combines multiple fundus images that are acquired
at different screening sessions. Therefore, the anatomical changes due to progression or
remission of retinopathy such as increased vessel tortuosity, microaneurysms and cotton-
wool spots can be observed between fixed and moving images. The longitudinal study
application is essential in monitoring the progression of retinal diseases, such as glaucoma
and age-related macular degeneration, which usually undergoes a long degeneration
process [53].

4.2. Evaluation Metrics
4.2.1. Feature Extraction Performance

(a) Extraction accuracy

The extraction accuracy expresses the ability of a feature extraction method to extract
feature points on retinal vessels. The extraction accuracy for an image can be computed by:

ExAc =

total f eature points extracted
on vessels

total f eature points
× 100% (19)

where, ExAc is the extraction accuracy in percentage.
The extraction accuracy for an image is set to 0% when the feature points extracted

are below the minimum requirement of three points to perform a transformation. One-way
Analysis of Variance (ANOVA) with Tukey’s post hoc was performed to compare the
extraction accuracy between methods.

(b) Factors influencing the extraction accuracy

Two factors influencing the feature extraction accuracy were investigated. These
factors are changes in image size and intensity distribution throughout the image. The
relations were investigated using Spearman’s rank-order correlation. The image size and
the intensity distribution of the fundus images in CHASE, DRIVE, HRF and STARE datasets
are summarized in Table 2. The intensity distribution is described by peak deviation
nonuniformity [44].

4.2.2. Registration Performance

(a) Success rate

Success rate measures the ability of a feature-based RIR technique to register image
pairs and meet the specified requirement of target registration error (TRE). TRE is the mean
distance in pixel between the ground truth annotations in a fixed image to the transformed
ground truth annotations from the moving image. A perfect registration for an image pair
is represented by TRE values equal to 0.

However, achieving a perfect registration can be challenging in a real-world applica-
tion. Thus, the registration for an image pair is considered successful if the obtained TRE is
below one pixel for super-resolution applications and five pixels for image mosaicking and
longitudinal study applications [54]. The success rate can be computed as given below:

Success rate =

total image pairs with
success f ul registration

total image pairs
× 100% (20)
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The one-way ANOVA with Tukey’s post hoc was performed to compare the success
rate between the feature-based RIR techniques.

(b) Factors influencing the success rate

Factors of overlapping area and rotation were investigated for their influence on the
success rate using Spearman’s rank-order correlation. It should be noted that for this
evaluation, the successful registration was set below five pixels for all image pairs despite
its registration application. As the details of the overlapping area and rotation are not
initially provided by the FIRE dataset, this information is measured as follows.

The overlapping area in percentage is obtained from the overlap area between the
fixed image and transformed moving image. The moving image is transformed to the
orientation of the fixed image using affine transformation inferred from the corresponding
ground truth annotations. The rotation for an image pair is measured from the average
angle between corresponding ground truth annotations without considering the effect
of translation, as in [14]. Thus, results were in the larger angle of rotation. The range of
overlapping area and rotation in the FIRE dataset is provided in Table 3.

5. Results

5.1. Feature Extraction Performance

CURVE extracts an average of 2482 feature points from the CHASE, DRIVE, HRF
and STARE datasets, where 2149 of them are accurately associated with retinal vessels.
This constitutes an average feature extraction accuracy of 86.021% with a variation of
9.199% between images, as outlined in Table 4. Furthermore, the one-way ANOVA analysis
shows that the feature extraction accuracy of CURVE was significantly outperformed by
all existing feature extraction methods (p < 0.001*). CURVE obtained the biggest accuracy
difference with SIFT detector (69.857%) and the smallest difference with Harris corner
(44.408%). Examples of CURVE feature points extracted from four datasets are depicted
in Figure 14.

Table 4. Overall feature extraction accuracy (%) in CHASE_DB1, DRIVE, HRF and STARE datasets.

Feature Extraction Method Total Images Mean Standard Deviation Min Max

Harris corner 133 41.613 21.317 0.000 92.857
SIFT detector 133 16.164 5.411 5.241 30.299

SURF 133 18.929 4.206 9.502 30.412
Ghassabi’s 133 28.280 5.975 17.055 44.197
D-Saddle 133 20.509 4.791 12.221 31.273
CURVE 133 86.021 9.199 59.677 97.842

Figure 14. Examples of feature points extracted by CURVE. Top row: Images with the lowest
extraction accuracy in each dataset. Bottom row: Images with the highest extraction accuracy in
each dataset.
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The high feature extraction accuracy of CURVE is contributed to by the utilization
of both the retinal vessels and noise characteristics in the feature detection and selection
modules. Thus, enabling accurate discrimination between the retinal vessels and noises.
Contrarily, Ghassabi’s and D-Saddle enhanced the fundus image to increase the visibility
of the retinal vessels. However, this enhancement also increases the visibility of the noise,
which led both methods to yield low feature extraction accuracy. The extracted feature
points located on the noises for these methods were observed to be on the edge of the optic
disc, retinal nerve fiber layer, underlying choroidal vessels and macula. The other feature
extraction methods such as Harris corner, SIFT detector and SURF are without a specific
feature selection module to extract feature points on retinal vessels. These feature extraction
methods were used in the existing feature-based RIR techniques [10,13,16], where the
authors focused on the development of the feature descriptor and transformation model.

Other than that, the minimal usage of rigid thresholds or variables allows CURVE to
accurately extract feature points from fundus images with varying sizes. This is shown
by the smallest Spearman’s rho among all methods and insignificant correlation between
the changes in image size and the extraction accuracy of CURVE (rs = −0.032, p = 0.712)
as presented in Table 5. Furthermore, the extraction accuracy of D-Saddle (rs = −0.138,
p = 0.114) and Ghassabi’s (rs = −0.142, p = 0.104) exhibit insignificant correlation with the
changes in image size but their correlations are stronger than CURVE. In contrast, SIFT
detector is very sensitive to the changes in image size among all methods where its feature
extraction accuracy decreases in larger images (rs = −0.649, p < 0.001*).

Table 5. Correlation between extraction accuracy and factors.

Feature Extraction Method
Image Size Intensity Distribution

rs p-Value rs p-Value

Harris corner −0.178 0.041 * 0.360 <0.001 **
SIFT detector −0.649 <0.001 ** 0.138 0.113

SURF 0.590 <0.001 ** −0.398 <0.001 **
Ghassabi’s −0.142 0.104 0.314 <0.001 **
D-Saddle −0.138 0.114 0.386 <0.001 **
CURVE −0.032 0.712 0.342 <0.001 **

rs: Spearman’s rho. **: Correlation is significant at the 0.01 level (2-tailed). *: Correlation is significant at the 0.05 level (2-tailed).

However, CURVE performance is significantly affected in the presence of non-uniform
intensity distribution in the image (rs = 0.342, p < 0.001*). CURVE is sensitive towards the
non-uniform intensity distribution because it highly depends on the intensity changes to
locate the curvature of the retinal vessels in the feature detection module. Furthermore,
CURVE does not incorporate any feature enhancement algorithm. The feature enhancement
algorithms, such as DoG and iiDoG operators, can suppress the non-uniform intensity
distribution and increase the visibility of the retinal vessels but at the cost of increasing
the visibility of the noises. Thus, it is avoided in the proposed CURVE. Contrarily, the
correlation between SIFT detector and the intensity distribution is not significant and the
weakest among all feature extraction methods (rs = 0.138, p = 0.113).

5.2. Registration Performance

The evaluation continues by accessing the registration performance of CURVE-SIFT
and six existing feature-based RIR techniques [8–10,13,14,16]. From the experimental
results outlined in Table 6, CURVE-SIFT successfully registered a total of 59 image pairs
in the FIRE dataset with a success rate of 44.030%. The one-way ANOVA analysis shows
that the success rate of CURVE-SIFT significantly outperformed GDB-ICP at p = 0.007*,
whereas Harris-PIIFD, Ghassabi’s-SIFT, H-M 16, H-M 17 and D-Saddle-HOG at p < 0.001*.
The biggest success rate difference was observed between CURVE-SIFT and Harris-PIIFD
(40.299%), while the smallest difference was with GDB-ICP (16.418%).
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Table 6. Success rate (%) in the FIRE dataset.

Feature-Based
RIR Technique

Total
Image Pairs 1 Mean

Standard
Deviation

TRE (Pixels)

Min Max

Overall
GDB-ICP 37 27.612 44.875 2.354 10.416

Harris-PIIFD 5 3.731 19.024 3.319 1486.255
Ghassabi’s-SIFT 17 12.687 33.407 3.082 322.616

H-M 16 22 16.418 37.183 2.857 410.087
H-M 17 26 19.403 39.694 2.920 60.875

D-Saddle-HOG 16 11.940 32.548 4.583 27.266
CURVE-SIFT 59 44.030 49.829 1.928 1016.330

Super-resolution
GDB-ICP 17 23.944 42.978 0.486 4.575

Harris-PIIFD 2 2.817 16.663 0.785 12.850
Ghassabi’s-SIFT 13 18.310 38.950 0.665 15.798

H-M 16 18 25.352 43.812 0.554 13.903
H-M 17 20 28.169 45.302 0.489 5.696

D-Saddle-HOG 10 14.085 35.034 0.748 9.327
CURVE-SIFT 28 39.437 49.219 0.613 9.696

Image Mosaicking
GDB-ICP 16 32.653 47.380 1.946 6.323

Harris-PIIFD 0 0.000 0.000 10.041 3870.632
Ghassabi’s-SIFT 0 0.000 0.000 7.358 578.494

H-M 16 0 0.000 0.000 7.976 129.658
H-M 17 1 2.041 14.286 3.327 41.192

D-Saddle-HOG 2 4.082 19.991 3.082 366.401
CURVE-SIFT 26 53.061 50.423 1.787 19.799

Longitudinal Study
GDB-ICP 4 28.571 46.881 2.354 10.416

Harris-PIIFD 3 21.429 42.582 3.319 1486.255
Ghassabi’s-SIFT 4 28.571 46.881 3.082 322.616

H-M 16 4 28.571 46.881 2.857 410.087
H-M 17 5 35.714 49.725 2.920 60.875

D-Saddle-HOG 4 28.571 46.881 4.583 27.266
CURVE-SIFT 5 35.714 49.725 1.928 1016.330

1 Total image pairs with successful registration.

Moreover, the overall success rate of D-Saddle-HOG (14.085%) reported in this study
is much lower than in [14] because this study evaluates D-Saddle performance on the FIRE
dataset at the original image size of 2912 × 2912 pixels. Contrarily, the work presented
in [14] evaluates D-Saddle-HOG performance on the FIRE dataset at the smaller image
size of 583 × 583 pixels. The extraction accuracy of D-Saddle is insignificantly correlated
to the changes in image size, as shown in Table 5. However, D-Saddle-HOG employed a
Histogram of Oriented Gradients (HOG) descriptor [55] in its framework where a larger
image can decrease the number of correct matches or inliers established between the
computed HOG descriptor [56]. Insufficient amounts of the established inliers can lead to
the estimation of inaccurate geometrical transformation.

The most noticeable performance of CURVE-SIFT is observed in the image mosaick-
ing application. The image pairs from the image mosaicking application involved the
combination of smaller overlapping areas (17–89%) and larger rotation (6◦–52◦) in the
dataset. Despite these challenges, the success rate of CURVE-SIFT (53.061%) is significantly
outperformed for all existing feature-based RIR techniques (p < 0.001*). This performance
is contributed to by CURVE’s ability to accurately extract feature points on retinal vessels
and distribute them throughout the image to increase the chances of the inliers being
established within the overlapping area. Furthermore, the employed SIFT descriptor has
the ability to establish over 60% of inliers when the rotation is below 90◦ [57]. These abilities
are also expressed in the established Spearman’s rank-order correlations in Table 7, where
CURVE-SIFT yields smaller Spearman’s rho values indicating weaker correlations with the
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overlapping area and rotation compared to Harris-PIIFD, Ghassabi’s, H-M 16, H-17 and
D-Saddle. In contrast, the existing feature-based RIR techniques recorded a much lower
success rate with less than 32.653%, whereas Harris-PIIFD, Ghassabi’s and H-M 16 were
unable to register any of the image pairs in the image mosaicking application.

Table 7. Correlation between success rate and factors.

Feature-Based
RIR Technique

Overlapping Area Rotation

rs p-Value rs p-Value

GDB-ICP 0.443 <0.001 ** −0.380 <0.001 **
Harris-PIIFD 0.732 <0.001 ** −0.723 <0.001 **

Ghassabi’s-SIFT 0.795 <0.001 ** −0.766 <0.001 **
H-M 16 0.785 <0.001 ** −0.763 <0.001 **
H-M 17 0.773 <0.001 ** −0.765 <0.001 **

D-Saddle-HOG 0.769 <0.001 ** −0.745 <0.001 **
CURVE-SIFT 0.415 <0.001 ** −0.382 <0.001 **

rs: Spearman’s rho. **: Correlation is significant at the 0.01 level (2-tailed).

The image pairs from the super-resolution application are the least challenging in the
FIRE dataset as they involve a large overlapping area (86–100%) and small rotation (0◦–12◦).
However, the super-resolution application requires a very accurate registration with a TRE
of less than one pixel. For this reason, CURVE-SIFT only recorded a success rate of 39.437%
in this application, where the TRE of the failed registration ranged between 1.003 pixels
to 9.696 pixels. The success rate of CURVE-SIFT outperformed all existing feature-based
RIR techniques evaluated in this study but only significant with Harris-PIIFD (p < 0.001*),
Ghassabi’s-SIFT (p = 0.030*) and D-Saddle-HOG (p = 0.004*).

The image pairs from the longitudinal study application are the most challenging
for CURVE-SIFT to register, where it obtained the lowest success rate (35.714%) among
the applications in the FIRE dataset. Furthermore, no significant difference can be noted
between the success rate of CURVE-SIFT and existing feature-based RIR techniques. This
shows that the registration performance of CURVE-SIFT is affected when the anatomical
appearance is varied between images in the pair. Particularly, CURVE-SIFT failed to
register image pairs when the prominent differences of vessel thickness and tortuosity were
observed between images. The difference in vessel thickness between fixed and moving
images leads to different descriptors being computed for local features at the same part
of the vessels. As a result, these local features were unable to establish a correspondence,
resulting in low registration accuracy. In the event of increased tortuosity, the corresponding
local features were appropriately established. However, the tortuosity causes the vessels to
bend and alters the actual physical position of the vessels on the eyeball. Consequently,
the registration was performed between local features on the same part of the vessels
but at different physical positions, which resulted in high TRE. For existing feature-based
RIR techniques, the invariant features utilized in their works were extracted throughout
the image. Thus, minimize the impact of vessel thinning and tortuosity compared to our
work. Examples of registered image pairs for CURVE-SIFT in each application are depicted
in Figure 15.
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Figure 15. Examples of the successfully registered image pairs for CURVE-SIFT in the FIRE dataset. The green markers are
inliers on the fixed image, while red/blue markers are inliers on moving image. Right images: Close-up for yellow square
area as checkerboard image containing alternating rectangular regions from fixed image and moving image.

6. Conclusions

This paper introduces a new feature extraction method known as CURVE for the
feature-based RIR technique. The proposed CURVE aims to extract feature points on
retinal vessels and throughout the fundus image, which is important to ensure accurate
registration of fundus images. However, in the local patches, the noises, such as retinal
nerve fiber layer, underlying choroidal vessels, microaneurysm and exudates can also
appear similar to retinal vessels. Therefore, CURVE incorporates both characteristics of the
retinal vessels and noises in its modules to enable accurate discrimination between them.

The ability of CURVE to extract feature points on retinal vessels was demonstrated on
the CHASE_DB1 [33,34], DRIVE [35,36], HRF [37,38] and STARE [39,40] datasets. Then, the
CURVE performance was compared with five feature extraction methods from the existing
feature-based RIR techniques, namely, Harris corner [26], SIFT detector [15], SURF [27,28],
Ghassabi’s [8] and D-Saddle [14]. From the experiment, CURVE accurately extracts an
average of 86.021% of the feature points on retinal vessels and significantly outperformed
the existing feature extraction methods (p < 0.001*). Further analysis shows that the impact
of image size on CURVE performance is minimal (rs = −0.032, p = 0.712) but significantly
affected in the presence of non-uniform intensity distribution in the image (rs = 0.342,
p < 0.001*).

The registration performance when utilizing CURVE feature points in the feature-
based RIR technique was demonstrated on the FIRE dataset. CURVE was paired with the
SIFT descriptor [41], and the registration performance of CURVE-SIFT was compared with
five existing feature-based RIR techniques; GDB-ICP [13], Harris-PIIFD [10], Ghassabi’s-
SIFT [8], H-M 16 [16], H-M 17 [9] and D-Saddle-HOG [14]. Overall, CURVE-SIFT success-
fully registered 44.030% of the image pairs in the FIRE dataset, while the success rate of the
existing feature-based RIR techniques is less than 27.612%. The one-way ANOVA analysis
showed that CURVE-SIFT is significantly outperformed GDB-ICP at p = 0.007* whereas
Harris-PIIFD, Ghassabi’s-SIFT, H-M 16, H-M 17 and D-Saddle-HOG at p < 0.001*. CURVE-
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SIFT obtained the highest success rate (53.061%) in the image mosaicking application,
while the success rates of the existing feature-based RIR techniques were only between
0% to 32.653%. The image mosaicking application consists of image pairs with smaller
overlapping areas compared to other applications in the FIRE dataset. Thus demonstrating
the ability of CURVE to extract feature points on retinal vessels throughout the image. This
is crucial to increase the chances of the inliers being established within the overlapping area
to estimate an accurate geometrical transformation. In the future, we will focus our efforts
to improve CURVE in extracting feature points from fundus images with non-uniform
intensity distribution. Moreover, we will explore the possibility of a fusion strategy to
combine deep convolutional neural network (CNN) with local feature point for feature
extraction [58]. However, at the time of this study, the size of the public RIR dataset was
small, which may result in model overfitting or underfitting [59]. The study will begin
once a larger dataset or suitable pre-trained model for RIR is available publicly.
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Appendix A

Table A1. Mathematical symbols and notation.

No. Symbol Description No. Symbol Description

1 σ̌p,q
Relative Gaussian kernel at octave p
and level q. 28 Ldistance

Distance between the parallel cross-sectional lines.
Exclusion criterion 1 : Ldistance = 3 pixels.
Exclusion criterion 2, 5 : Ldistance = 5pixels.

2 β Central intensity value. 29 Llength Length of the cross-sectional lines.

3 ε Offset, ε = 0.0010. 30 Ltotal

Total of the cross-sectional lines, an odd number.
Exclusion criterion 1 : Ltotal = 5 pixels.
Exclusion criterion 2, 5 : Ltotal = 7pixels.

4 μ Constant factor. 31 m Index of the feature point.

5 σ0 Base width of Gaussian kernel, σ0 = 1.6. 32 n Index of the images in the hierarchical Gaussian scale
space.

6 σs Sampling Gaussian kernel, σs = 0.5. 33 Ntotal
Total feature points in the hierarchical Gaussian
scale space, Ntotal = 4500points.

7 σp,q Absolute Gaussian kernel at octave p and. 34 Np,q The maximum number of feature points in Gp,q.
8 aj Pixel for inner ring test. 35 Nu The

9 AP
Area of the intersected region between the
sums of intensity profiles from the gradient
and binary interpolated patches.

36 p Octave index, p ∈ [0, . . . , P − 1].

10 bl Pixel for outer ring test. 37 P Total octave in the scale space, P = 3.
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Table A1. Cont.

No. Symbol Description No. Symbol Description

11 B The blue channel. 38 q Level index within an octave, q ∈ [−1, . . . , Q − 2].
12 DCu Distribution coefficient for a grid of index u. 39 Q Total level in each octave, Q = 6.
13 e Extremum. 40 R The red channel.
14 EG Entropy of a grid image. 41 sbin Side length of the binary interpolated patch.

15 EP Entropy of a gradient interpolated patch. 42 sinitial

Initial side length of the patch in pixels. sinitial
is set according to the image size of the initial Gaussian
image G0,−1.

sinitial

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

35 pixels if G0,−1 > 1000 × 1000 pixels
25 pixels if G0,−1 ≤ 1000 × 1000 pixels

> 600 × 600 pixels
21 pixels if G0,−1 ≤ 600 × 600 pixels

16 f0
Proportion of the feature points at the initial
Gaussian image G0,−1. 43 sp Side length of the patch at octave p.

17 Fp,q Proportion of the feature points at Gp,q. 44 SWi Selection weightage for a candidate feature point of index i
18 G The green channel. 45 TG Total candidate feature points detected in a grid image.
19 G Hierarchical Gaussian scale space. 46 u Index of the grids in Gp,q.
20 Gp,q Gaussian image at octave p and. 47 U Total grids in a Gaussian image Gp,q.

21 i Index of the candidate feature point in a
Gaussian image. 48 UG Peak deviation nonuniformity of a grid image.

22 I Input image in grayscale. 49 WAP
Weight factor for the area of the intersected region,
WAP = 0.4.

23 Iaj
Intensity of inner ring pixel aj
in grayscale, Iaj ∈ [0, 1]. 50 WEG Weight factor for the entropy, WEG = 0.3.

24 Ibl

Intensity of outer ring pixel bl
in grayscale Ibl

∈ [0, 1]. 51 WEP Weight factor for the entropy, WEP = 0.3.

25 j Index of inner ring pixels, j ∈ [1, . . . , 8]. 52 WHP
Weight factor for the mean histogram of the gradient
orientation at the vessel edges, WHP = 0.3.

26 Km Feature point of index m. 53 WTG
Weight factor for the total candidate feature points,
WTG = 0.4.

27 Km,p,q

Feature point of index m
in the coordinate system at the respective
octave p and level q.

54 WUG
Weight factor for the peak deviation nonuniformity,
WUG = 0.3.
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Abstract: In computed tomography imaging, the computationally intensive tasks are the pre-
processing of 2D detector data to generate total attenuation or line integral projections and the
reconstruction of the 3D volume from the projections. This paper proposes the optimization of the
X-ray pre-processing to compute total attenuation projections by avoiding the intermediate step to
convert detector data to intensity images. In addition, to fulfill the real-time requirements, we design
a configurable hardware architecture for data acquisition systems on FPGAs, with the goal to have a
“on-the-fly” pre-processing of 2D projections. Finally, this architecture was configured for exploring
and analyzing different arithmetic representations, such as floating-point and fixed-point data for-
mats. This design space exploration has allowed us to find the best representation and data format
that minimize execution time and hardware costs, while not affecting image quality. Furthermore, the
proposed architecture was integrated in an open-interface computed tomography device, used for
evaluating the image quality of the pre-processed 2D projections and the reconstructed 3D volume.
By comparing the proposed solution with the state-of-the-art pre-processing algorithm that make use
of intensity images, the latency was decreased 4.125×, and the resources utilization of ∼6.5×, with a
mean square error in the order of 10−15 for all the selected phantom experiments. Finally, by using
the fixed-point representation in the different data precisions, the latency and the resource utilization
were further decreased, and a mean square error in the order of 10−1 was reached.

Keywords: computed tomography; image pre-processing; high-level synthesis; X-ray pre-processing;
pipelined architecture

1. Introduction

Computed tomography (CT) is an X-ray 3D cross-sectional imaging technology and
is heavily used for medical and industrial applications. The X-ray source and the 2D
detector are the major components of a CT system. The X-ray source generates photons of
various energies, which pass through the patient body. The photons undergo the process of
attenuation, where a fraction of them are either absorbed or scattered. The unattenuated or
transmitted photons are detected by a 2D array of detector cells generating a 2D shadow or
projection image of the patient body. The X-ray source–detector pair rotates around the
patient and acquires projection images at various angles. The 2D cross-sectional images
or 3D volumes of the patient can be generated from the 2D projections using state-of-
the-art reconstruction algorithms [1]. The advent of hardware accelerators and efficient
algorithms has made real-time volumetric imaging feasible by fast image processing and
reconstruction. Clinical CT images have been used for patient diagnosis (diagnostic CT),
such as detecting tumors and aneurysms [1]. In addition, the CT scanners (interventional
CT) have also been employed for intra-operative guidance (e.g., instrument or needle
tracking) and the assessment of interventional procedures, such as tumor ablation [2].

The main objective of the diagnostic CT is the accurate reconstruction of the patient’s
anatomy with the highest image quality possible (e.g., high spatial resolution, and reduced
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noise). By contrast, the main challenge of interventional CT is to display the reconstructed
images in real time with an acceptable image quality necessary for the smooth functioning
of interventional procedures. To overcome the constraints induced by image quality, X-ray
dose reduction, and real-time capability, the development of efficient algorithms and their
implementation utilizing task and/or data parallelism in hardware accelerators such as
graphics processing units (GPU), digital signal processors (DSP) and field programmable
gate arrays (FPGA) is an active research area [3–7]. Alcaín et al. [7] published a survey
about the different usage of various hardware accelerators in real-time medical imaging.
They also discussed interventional CT and the advantage of using hardware accelerators,
compared to CPUs.

These accelerators implement specific math co-processors, able to process different
data formats. The main standard used for real numbers is the single-precision floating-point
format (IEEE 754) [8], which allows a wide range of numerical values. By contrast, due
to the hardware complexity of the math co-processor (also known as floating point unit,
FPU) to represent and process the IEEE 754 data format, new math co-processors for real
number operations are explored in the literature. These are often based on approximate
computing techniques [9,10]. For example, tensor core processing units [11,12] enhance
the performance of real number operations by using the Bfloat16 format. This format is
defined by a custom 16-bit floating point representation [13].

Due to the complexity of the algorithms and the amount of data needed to be pro-
cessed, the various hardware accelerators are often not capable of running the projection
pre-processing and the volume reconstruction in real time [7]. Hence, apart from the in-
vestigation of novel algorithms and architectures, the utilization of novel custom number
representations and data formats are also explored [12,14]. In fact, in CT image processing, real
numbers are involved that can be represented with various data representations and formats.
For instance, Maaß et al. [14] employed 32-bit (float) and 16-bit (half) floating-point data for-
mats to represent the projection pixel values. As per their results, the half data format halved
the required memory bandwidth without compromising the accuracy of reconstruction.

For the best of our knowledge, in CT image processing, the exploration of the design
space (with the different data representations and formats) is a complex task in which
there are no systematic solutions which guide the designer to select either a custom or
a standard data format. All proposed solutions implement the CT pre-processing and
reconstruction algorithm with a pre-selected data format without considering which data
format is optimal for the image quality, the real-time requirements, and the hardware
realization, at the same time. Maaß et al. [14] compared 32-bit and 16-bit floating-point
data formats without considering the impact of these in terms of hardware cost and
additional data representation, such as fixed point. For exploring new custom co-processors,
FPGAs are well-suitable platforms. In contrast to CPUs, GPUs, and DSPs that have a fixed
instruction-set architecture (ISA) and data representations, FPGAs allow designers to define
custom hardware architectures and to explore custom data representations [6]. Therefore,
they can be used for exploring the design space, where different custom and standard data
formats are defined and selected.

Contributions. In this article, we propose various hardware optimizations of the X-
ray pre-processing step in interventional CT. It involves the optimization of the numerical
computation of total attenuation values and its hardware acceleration. This pre-processing
step is also called I0-correction. First, we apply the pre-processing algorithm on the digital
detector signals without the intermediate step to convert them to intensity images. Conse-
quently, the total attenuation computation formula is simplified in terms of arithmetic and
hardware complexity. Second, we implement a custom hardware accelerator as dataflow
architecture, called the CT pre-processing core, that pre-processes the raw sensor data on
the fly, without storing data in external memory. Furthermore, this core is designed using
high-level synthesis (HLS), and it is configurable for various encoding and data widths of
fixed-point and floating-point representations. In addition to the proposed pre-processing
optimization, we integrated the implementation of the CT pre-processing core in an open-
interface CT assembled in our laboratory. The proposed core implemented on FPGA can
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be integrated directly with the data acquisition system (DAS), which collects the detector
signals and forwards the pre-processed data to the reconstruction system.

Finally, we perform a design space exploration (DSE) to find which real number
representation and data format better fits the pre-processing step for interventional CT
applications. The DSE considers the different data representations as input variables and
the qualitative and quantitative metrics, such as image quality, execution time, and the
X-ray dose as decision variables. We systematically pre-select the input data formats based
on the raw sensor and the reconstruction data formats. In addition, we pre-select specific
metrics for estimating hardware costs, such as execution time, data width, and memory
bandwidth required per pixel. Apart from that, we use image quality metrics, such as mean
square error (MSE) of the 2D image and low contrast, noise and uniformity of the 3D volume.
The image quality is analyzed after reconstructing the images of a dedicated CT image
quality phantom known as CATPHAN® 500 [15] phantom [15].

Structure. This paper is organized as follows: Section 2 describes the CT scanner, the
difference between attenuation and intensity projection images, and the computing theory
for real number representations; Section 3 explains the related works; Sections 4 and 5
present the optimization of projection pre-processing and the CT pre-processing core;
Section 6 illustrates the implementation and the CT integration; Section 7 introduces the
DSE for the different real number representations; Section 8 describes the phantom modules,
the image quality metrics, and CT settings utilized for the DSE; Sections 9 and 10 show the
results of the X-ray pre-processing for various real number representations.

2. Background

This section describes the CT scanner, how FPGAs are used in CT, and the theory of
the computation of total attenuation required during the pre-processing steps of the CT
reconstruction. In addition, we describe the different data representations for real numbers
used in our design space exploration.

2.1. Computed Tomography Scanner

The word tomography is derived from the Greek words tomos (slice or section) and
graphein (to write or draw) [16]. Therefore, CT can be defined as the depiction of the
cross-sectional images or slices of a patient’s body [17]. The multiple slices can be stacked
together to form a three-dimensional image or volume [17].

As shown in Figure 1, the CT scanner consists of an X-ray tube or source, a gantry
module, a detector system (DMS), collimators, a motorized patient’s table, and an image
reconstruction unit. For controlling and synchronizing all these components, different
FPGAs are used in the CT scanner [18]. The X-ray tube system, collimators, and detector are
fixed on the rotating disk, mounted on the gantry; the rest of the components are fixed on
the stationary side. The communication between the rotating and stationary sides is done
through slip-ring technology consisting of brushes that permit the electrical connection
between the rotating and stationary sides.

The CT scanner works by moving the patient table to the space inside the gantry
module, and when the patient’s body goes through it, the X-ray tube system and the DMS
rotates around the object’s body with a frequency of about 170 rpm [16]. In the meantime,
the X-ray tube system shoots a narrow beam of photons through the object’s body. The
attenuated beam photons of the object’s body are acquired by detector sensors on the
opposite side of the X-ray tube system [16]. The data are acquired as pixels of 2D images,
called projections. Usually, modern CT scanners collect over 1160 projections per round [18].
These data are transferred to the image reconstruction unit, where the volume of the object’s
body is reconstructed as volume.
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X-Ray Tube system

Detector(DMS)

Gantry module

Reconstruction Unit

Multi-Modality
(3D sensor camera)

Patient’s Table

Figure 1. CT scanner components. Reprinted/adapted with permission from Ref. [18]. Copyright
2019, IEEE.

The image formation in CT involves pre-processing acquired detector data, recon-
structing the volume from the processed projections, and post-processing the reconstructed
volume. CT reconstruction from the processed projections (total attenuation values or
line integrals) is an inverse problem [19]; it means that input values (3D volumes) are
estimated from the output values (2D images). Numerous solutions can be found for
this problem in the literature, including the filtered back-projection (FBP) and iterative
reconstruction [20–23]. Our article focuses on the X-ray pre-processing step to compute the
total attenuation values from the digitized detector data. In interventional CT, it has to be
executed in real time.

2.2. Pre-Processing: X-ray I0-Correction

During CT data acquisition, the patient body is irradiated with the photons emanating
from the X-ray source. Some of the photons are attenuated during the photon–matter
interaction. An X-ray detector detects the unattenuated or transmitted photons generating
projection images. X-ray detection involves the two-level conversion process, where the
X-ray photons are converted to light, and the photo-diode array converts them to electrical
signals. Analog-to-digital converters (ADCs) of the acquisition system will transform
electric signals into digital signals and store them in a compressed format. These 2D
images are called detector data projections and are denoted by d(u, v), where u and v are
the detector row and column indices. Conventionally, the detector data projections are
transformed into X-ray intensity projections as per the following equation:

I(u, v) = c · e−d(u,v) (1)

where c is a scaling factor. I(u, v) is the intensity image data. The exponential decay of
the X-ray intensity during X-ray transmission through the patient body is given by the
Beer–Lambert law [20,23]. The total attenuation values along the X-ray path are given by

P(u, v) = ln
(

I0(u, v)
I(u, v)

)
(2)

where I0 projections are stored in the CT system during the calibration of the scanner by
acquiring the intensity projections without any object. Formula (2) is also called I0-correction.
A CT 3D volume is reconstructed from the attenuation projections using state-of-the-art
reconstruction algorithms.

From the detector, the DAS collects the raw sensor data which must be multiplied
with a factor of f to obtain the detector data projections, as given by

d(u, v) = f · Raw(u, v) (3)
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Commercial CTs usually do not provide the projections as detector data projections,
but they convert them to intensity image data. In fact, pre-processing algorithms usu-
ally process projections in intensity image data and then apply the I0-correction for the
reconstruction step.

In Section 4, we propose a mathematical optimization of the I0-correction that uses
directly the raw sensor data, instead of using the converted intensity image data.

2.3. Real Number Representations

As mentioned above, the CT reconstruction algorithms use real numbers. In comput-
ing, real numbers are usually represented by the float or the double format. These formats
are two different encodings of the standard for floating-point arithmetic (IEEE 754) [8]. This
standard specifies conversions and arithmetic representations, and methods for binary and
decimal floating-point arithmetic. As shown in Figure 2, the floating-point numbers are
represented by their sign (S), exponent (E), and mantissa (M) bits. The floating-point value
can be represented as a function of S, E and M, as follows:

f (S, E, M) =

{
(-)S · 2E+1−2e−1 · (1 + M · 2−m) for 0 < E < 2e−1 (4)

(-)S · (1 + M · 2−m) else (5)

In the formula above, m represents the amount of mantissa bits (e.g., in single precision,
floating-point m is equal to 23).

Figure 2. Encodings of the floating-point standard.

According to IEEE 754 standard, there are four different formats of encoding for
the floating-point, with 16, 32, 64 and 128 bits, and they are called half-precision, single-
precision, double-precision and quad-precision respectively. E and M have different data
widths, based on the selected encoding, as shown in Figure 2.

The various encodings determine number representations with different accuracy. In
addition, they use different arithmetic processing units, which have different performance
in terms of power consumption, execution time, memory utilization, and chip area. For
example, the single-precision floating point represents numbers in the range between 2−149

and 2128, with a relative error of 2−23, caused by truncating digits.
As the target data to process are limited in a small range of values, and the accuracy

of the IEEE 754 representation is not required for the target application, new custom and
approximate representations have been proposed in literature, with the aim to optimize
hardware resources, data resources, and execution time. A proposed solution in the
literature is the fixed-point representation [24].

As shown in Figure 3, this representation is composed of three parts: sign (S), integer (I)
and fraction (F) fields. There is no fixed encoding for this representation, but the hardware
designer sets the size of the data width (W), that is equal to S + I + F. The size of I and
F depends on the values to represent, and the desired accuracy. Furthermore, math co-
processors for fixed-point operations are usually faster than the respective for the IEEE-754
standard, because the same operation implemented in fixed-point precision use fewer
logic gates and hardware resources than floating-point precision, but usually it has a
lower accuracy and can represent a smaller range of numbers. In Section 7, we explore
different settings of the parameters S, I and F for finding the optimal configuration of these
parameters with an acceptable accuracy of the CT dataset.
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Figure 3. Fixed-point representation.

3. Related Works

In the literature, there are a lot of algorithms and hardware accelerators for CT pre-
processing and reconstruction. Most of them use FPGAs [25–31], and GPUs [32–36] as a
target platform because these offer a high level of flexibility and parallelism. Here, we do
not compare the different architectures for FPGAs with the proposed CT pre-processed
core because it is not possible to compare them and it is also out of the scope of our article.
Instead, we are interested in optimizing the pre-processing step and investigating the
impact of data formats on the reconstructed image; we only consider the different data
formats used in these works. In addition, we report the related works, where the authors
analyzed and compared different data formats in CT reconstruction, and point out the
difference with our work that aim to find the best data format in interventional CT.

Dandekar et al. in [4] presented a reconfigurable architecture for the real-time pre-
processing of interventional CT. They proposed a streaming architecture that optimizes
latency. They implemented a median filtering and anisotropic diffusion filtering based on
neighborhood voxels (3D pixels). This property was used for implementing a custom brick-
caching schema that improves the memory performance. They describe their architecture in
VHDL with different fixed-data formats: 8, 12 and 16 bits. With the custom implementation
of these optimizations, they achieve a processing rate of 46 frames per second for images of
size 256 × 256 × 64 voxels.

Another important work comes from Korcyl et al. in [37]. They built real-time
tomographic data processing on FPGA SoC devices. They designed the whole system from
detector’s scanner to the reconstruction unit. The reconstruction system is implemented on
a single FPGA board that processes the image in real-time. The architecture is composed
of 8 parallel pipelines that acquire data from the scan. Inside, they de-couple the data,
process them and display the images to the doctor, without using any external memory
access. These FPGA accelerators for real-time CT pre-processing and reconstruction have
different architectures, which use custom and standard data formats. Even if they optimize
the architectures with a custom data format, they do not investigate the impact of the data
format on the pre-processed and reconstructed image. They select a data format which
fulfills the hardware requirements of their specific solution. In our work, we investigate
the impact of the data formats on the pre-processed and reconstructed image. In addition,
the CT pre-processing core can be configured at the synthesis time for using different data
formats for raw sensor data, pre-processing data and reconstructed data.

For the best of our knowledge, in the literature, only Clemens Maaß et al. in [14]
investigated the impact of data formats on the reconstructed image. They worked with
different encodings of the IEEE-754 standard and they showed that the half-precision
floating-point can enable a fast image reconstruction process without declining image
quality [14]. So, instead of 32-bit single precision, 16-bit half precision is used as data format,
and it reduces the traffic on the memory bus [14]. Due to arithmetic complexity, the back-
projection needs to access the external memory multiple times [14]. By choosing the half-
representation data format, they can reduce the data traffic and can increase the throughput
of the memory bus. This work focuses on the difference between half- and single-precision
floating point representation, but does not consider fixed-point representation and custom
data representation, which also are used in CT image processing.

For example, Nourazar and Goossens [12] proposed an iterative CT reconstruction
algorithm optimized for tensor cores of NVidia GPUs. To enhance the performance, they
performed the reconstruction algorithm with a mixed-precision computation; the error of
the mixed-precision computation was almost equal to single-precision (32-bit) floating-
point computation [12]. Using a mixed-precision computation means that different data
formats are used in the reconstruction algorithm for representing the same real value.
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In our work, through a DSE, we systematically search in the design space the best
data format for interventional CT. Different from Clemens Maaß et al. [14], we use a DSE
in our methodology and we do not only consider the image error as the MSE and noise,
but we also consider hardware cost metrics and image quality metrics, such as low contrast
and uniformity. In addition, we do not limit our study to the floating-point representation,
but we also consider fixed-point representation. Furthermore, with the proposed CT
pre-processing core, custom data formats can be investigated.

4. X-ray I0-Correction Optimization

In this section, we describe the proposed method and formulas for performing the
I0-correction directly on the acquired raw sensor data, without converting them to intensity
domain images.

As explained in Section 2.2, most of the commercial CT scanners provide the projec-
tions, directly converted in the intensity domain, as real or integer number values, and the
total attenuation correction is applied with Formula (2). This formula is computationally
complex to implement because the logarithm operation usually is not a primitive operation
in the math co-processors. In addition, for using this formula, the collected data must be
converted from raw sensor data to intensity data inside the CT scanner; the conversion
determines an additional latency between the DMS and the reconstruction system. In fact,
for converting data from raw sensor data to intensity data, Formulas (1) and (3) are used.
Formula (1) comprises an exponential operation, which is also not a primitive operation in
most of math co-processors.

In our proposed optimization, we consider raw sensor data as input for the I0-
correction. In this way, we have merged Formulas (1)–(3) which are usually separated and
implemented in the CT data acquisition system and the reconstruction system. By merging
them, we obtain the following formula:

P(u, v) = loge(
c · exp(−( f · Raw0(u, v)))
c · exp(−( f · Raw(u, v)))

) (6)

If we implement Formula (6) as is, the logarithm and the power operations should be
implemented. However, since we implement it inside the data acquisition system of the CT,
we apply the mathematical simplification that results in the equivalent formula, shown in (7).

P(u, v) = log10(2) · f · (Raw0(u, v)− Raw(u, v)) (7)

Therefore, as shown in Formula (7), the I0-correction can be performed directly on raw
sensor data with basic operations provided by most of the math co-processors. This mathe-
matical optimization determines the decreasing of the resource utilization and execution
time, compared to the implementation of Formula (6).

Furthermore, to perform the I0-correction and the whole pre-processing step on the fly,
we propose the implementation of the algorithm in a dataflow architecture. To describe how
Formulas (6) and (7) were implemented in the dataflow architecture, we used the data flow
graph representation [38], as shown in Figures 4 and 5. In the data flow graph the square
boxes represent the input/output data and constants, the circular boxes, the operation and the
arrows the flow of data. The dataflow graph shows the flow and the data and dependency of
the operations. The various operations in the boxes have different latency and hardware costs
in a math co-processor. The values of these metrics depend on the implemented operation
and the selected data format. In the next sections, we focus on the hardware implementation
of the dataflow architecture, its integration in the data acquisition system of the open-interface
CT and how different data formats influence performance.
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Figure 4. Data flow graph representation for the optimized I0-correction.

Raw0(u,v)

Raw(u,v)

-f c

exp

log

exp

:

**

**

P(u,v)

Figure 5. Data flow graph representation for the standard I0-correction.

5. CT Pre-Processing Core Architecture

In this section, we describe our CT pre-processing core, which implements the I0-
correction. For fulfilling the real-time requirements, the CT pre-processing core is designed
as a dataflow architecture, which has a constant delay and throughput. Furthermore, to
process data with high clock frequency and to reduce the critical path of the arithmetic
operations, the dataflow architecture is pipelined. The depth of the pipeline depends on
the data format and prepossessing algorithm, as explained in Section 9.

The CT pre-processing core, as shown in Figure 6, has the following three main stages:

• Sensor-data conversion stage: This stage obtains the pixel raw sensor data of the I0-
image and the current image collected by the data acquisition system (DAS). In this stage,
each pixel is converted to the selected pre-processing data format. At synthesis time, a
custom configuration for floating-point or fixed-point representation must be selected.

• Image-processing stage: In this stage, pixel data are ready to be pre-processed in the
selected data representation. This stage has multiple internal stages, and it is scalable
for additional pre-processing steps. In this article, we focus on the pre-processing step,
based on Formulas (6) and (7).

• Reconstruction conversion stage: This stage obtains the pre-processed data (atten-
uation image) and converts them in the reconstruction data format, defined at the
synthesis time. The output results are ready for the reconstruction, and they are
forwarded to the data stream unit, which is responsible either for storing or sending
them to the reconstruction system.

detector type [AXI4-Stream]

Raw0(p,x,y)

Raw(p,x,y)

Raw0(p,x,y)

P(p,x,y) P(p,x,y)

Raw(p,x,y)

Sensor-data
conversion

stage

Reconstruction
conversion

stage

Image-processing
stage

image-processing type [HLS-Stream] reconstruction type [AXI4-Stream]

Figure 6. CT pre-processing core.
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For communicating, the CT pre-processing core uses the AXI4-Stream interface. This
flexible interface can be configured with different data widths, so it can be easily used for
different data representations, and integrated in any system that uses the AXI4-Stream standard.

The CT pre-processing core is designed for processing one pixel per clock cycle. If the
DAS collects multiple pixels per clock cycle, multiple instances of this core must be added;
in this way, all the collected pixels are processed in parallel. For example, in the integration
with the DAS of our open-interface CT, we have four instances because the DAS collects
four pixels per clock cycle, as is explained in the following Section 6.

Furthermore, the CT processing core is designed and implemented to be configurable
for custom data representations that are defined at synthesis time. In this way, the architec-
ture can be easily used for DSE, as it is explained in Section 7.

6. CT Pre-Processing Core Implementation and Integration

In this section, we describe the implementation of the CT pre-processing core and its
integration in the DAS of a running open-interface CT. This DAS component is implemented
by a ZC706 evaluation board with the XC7Z045 MPSoC-FPGA model from Xilinx [39]. An
MPSoC-FPGA is a system on chip (SoC) containing an FPGA part and a processing system
(PS) part with multiple CPUs and a GPU.

6.1. IP Block Design

For implementing the CT pre-processing core on the Xilinx board, we used Vitis™ HLS,
which is the Xilinx high-level synthesis tool that allows C, C++, and OpenCL™ functions
to become hardwired onto the device logic fabric and RAM/DSP blocks. The HSL imple-
mentation results in a register transfer level (RTL) block design, also called IP block design,
which can be implemented on FPGA. Moreover, by describing our hardware components
with Vitis™ HLS, we do not have to describe the arithmetic hardware components at the
logic gate level. In fact, Vitis™ HLS utilizes optimized arithmetic hardware components,
provided by Xilinx as a library.

The CT pre-processing core is described with C++ source code. Each stage of the
dataflow architecture is encapsulated in a C++ function. The arguments of each function
describe the input/output ports of the stage. In synthesis, to obtain the pipelined dataflow
architecture, we use the directives “#pragma HLS DATAFLOW” and “#pragma HLS PIPELINE

dataflow” provided by Vitis™ HLS. These directives allow to implement C++ loops and
C++ functions as a pipelined dataflow RTL block design.

Externally, the CT pre-processing core communicates via AXI4-STREAM interfaces.
These are defined by using the data format “hls::axis” and the directive “#pragma HLS
INTERFACE axis”, which can be only used for the external interfaces of the core. As a result,
for interconnecting the three internal stages of the CT pre-processing with a stream interface,
the “hls::stream” template type and the directive “#pragma HLS STREAM variable=data
format ” are used.

Furthermore, we define three primitive data formats, which allow to parameterize the
core for different data formats in the three main stages of the CT pre-processing core:

• Detector format: This format refers to the raw-sensor data that are generated by
the DMS and collected by the data-flow module in the DAS. It defines the input data
format of the sensor-data conversion stage.

• Image-processing format: This format refers to the desired data format for the
pre-processing steps. It defines the output data format of the sensor-data conversion
stage, the data format for the image-processing stage, and the input data format of the
reconstruction conversion stage.

• Reconstruction format: This format refers to the reconstruction representation. It
defines the output data format of the reconstruction conversion stage.

The designer in Vitis™ HLS defines the primitive data formats as the C++ class at
synthesis time.
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For DSE purposes, we configure the CT processing core with different encoding of the
floating-point and fixed-point representations. For implementing these representations with
the Xilinx arithmetic processing units, we use the provided libraries hls_math, hls_half, and
ap_fixed. These allow us to use double, float, single, half and ap_fixed<W,I> formats. In fixed
format, W refers to the data width and I the integer part of the real value number. In Section 9,
the implementation results of the different configurations used in the DSE are discussed.

6.2. Open-Interface CT

Before describing the integration of the CT pre-processing core within the DAS, we
introduce our open-interface CT architecture, as well as the DAS architecture, which is the
central control unit of the system, the flow of data from the DMS to the reconstruction system.

Our open-interface CT, as shown in Figure 7, consists of the following components: a
64 row DMS and an X-ray tube system, a gantry module from Schleifring [40], a patient table,
and a reconstruction system. As shown in Figure 8, all these components are controlled by the
DAS, which is fixed in the rotating side and is implemented on the XC7Z045 MPSoC-FPGA.

Figure 7. Components of our open-interface CT system. (a) Complete experimental CT system with (1) X-
ray tube, (2) cooling system, (3) generator, (4) gantry subsystem with bore, (5) multiline DMS, (6) patient
table. (b) Detailed view of the DMS and CCU implemented on the Xilinx ZC706 Evaluation Kit.
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Copyright 2020, IEEE.

From the hardware designer prospective, the design of the open-interface CT is based
on the system architecture shown in Figure 8, where the the DAS and the reconstruction
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systems are the components responsible for controlling and reconstructing tasks, respec-
tively. The DAS has three main modules on the FPGA part of the MPSoC-FPGA and has a
software stack on the PS part for controlling them [41].

The DAS system has the following modules, which are implemented in the FPGA part
and controlled by the PS part:

• Control-synchronization module: This module is responsible for controlling and
synchronizing all the external components on the stationary and the rotating sides. It
is scalable, allowing an easy integration of other components in the open-interface CT,
such as additional DMSs, X-ray tube systems and other sensors for multi-modality CT.

• Data-flow module: This module is responsible for collecting projections from the DMS,
to manage eventually transmitting errors and to forward them to the image pre-processing
module. After the pre-processing steps, it sends all the pre-processed data to the recon-
struction system. It is implemented with a pipelined datapath that collects and forwards
data in real time, without buffering them in external memory [42].

• Image pre-processing module: This module represents the proposed CT pre-processing
core.

During the acquisition, the DMS acquires the raw sensor data and forwards them
to the DAS over the gigabit interface. The raw sensor data are collected in the data-flow
module of the DAS, which properly merges them and forwards to the image pre-processing
module, where our CT pre-processing core is implemented. Here, the raw sensor data are
converted to the selected pre-processing data format, pre-processed from raw sensor data
to attenuation data and converted to the selected reconstruction data format. After that,
the pre-processed attenuation data are forwarded to the reconstruction system, through the
data flow module, over the gigabit slip ring connection. In the reconstruction system, the
3D volume is reconstructed.

6.3. Data Acquisition System Integration

The CT pre-processing core is integrated in the image pre-processing module of the
DAS. We created the IP block design by Vitis™ HLS, and it was instantiated in the DAS
design as the IP core by using Vivado Design Suite.

Based on the DAS, the DMS and the reconstruction algorithm requirements, we set
the clock frequency, the input and output data representations of our CT processing core,
as follows:

• clock frequency = 100 MHz: It is the clock frequency for collecting data.
• input data = short format: It is a 16-bit unsigned representation, which is used for

the raw sensor data.
• output data = float format: It is a 32-bit single-precision floating-point represen-

tation, which is used for the reconstruction algorithm.

Due to these requirements, we set these two data formats in the sensor-data conversion
stage and the reconstruction conversion stage, respectively. Yet, in the image-processing
stage, we explored different data formats, with the aim to find the optimal data format for
interventional CT application.

7. Design Space Exploration

In this section, we explain our approach for the design space exploration of the different
data formats and representations, applied on the pre-processing step. In addition, we describe
the parameters and the metrics used to find the optimal data format and representation.

The DSE of all possible data representations in CT applications is time consuming. In
fact, for each input configuration, the 3D volume must be reconstructed, and the image
quality analysis must be performed. Due to that, it results in a complex problem, where it
is impossible to analyze all configurations for the different representations in the design
space. To simplify the exploration process, we define two steps that limit the size of the
problem itself. First, we make the “pre-selection of data formats and representations” for the
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input parameters, and after that the “pre-selection of metrics”. In this way, we reduce the set
of input parameters and decrease the evaluation time of each solution. As input parameter,
we also have the clock frequency, but it does not affect the image quality, so we set it at
100 MHz. The value of the set frequency is based on the data-rate of the collected data. In
this way, we decrease the design space because different clock frequencies can generate
different design performances in resource utilization and latency.

7.1. Pre-Selection of Data Formats and Representations

To pre-select the data formats and reduce the size of the design space, we use a top–
down approach. At the beginning, we decided to explore only standardized data formats
that are also implemented in the new commercial architectures, such as GPUs, and TPUs.
In this way, we focused on floating-point and fixed-point representations.

For interventional CT applications, the goal is to minimize latency while maintaining
high accuracy for having a real-time reconstruction. For this reason, in the second step,
from the pre-selected data representations, we considered only formats with data widths in
the range from 16 to 32. The values of this range are related to the data widths of raw sensor
data and reconstructed data. In fact, raw sensor data are usually represented with short
format (16-bit data width), and reconstructed data with float format (16-bit data width). In
addition, we considered the double format (64-bit data width), which we used as a reference
point in the image quality analysis. Therefore, for the floating-point representation, we
limited our study to three different encodings: half, single and double precision.

By contrast, regarding the fixed-point representation with a fixed-rounding configura-
tion, if all possible formats in the range from 16 to 32 bits are considered, 408 configuration
formats are possible. Therefore, we considered only the upper bound and lower bound
configurations, which are 16 and 32 bits. For these two data widths, there are 16 plus 32
possible configurations as fixed-point representation. Therefore, to reduce our DSE from
these 48 to the desired 2 configurations, we analyzed the raw sensor data and selected one
configuration for 32-bit fixed-point and one for 16 bit fixed point. The raw sensor data are
represented as 16-bit unsigned, so we configured the 32-bit fixed-point with I and F both
equal to 16 bits. In this way, the 32-bit fixed-point does not approximate any values in the
sensor data conversion stage.

Due to the fractional part of the fixed-point representation, the 16-bit fixed point
cannot contain the 16-bit unsigned, without approximation. Therefore, to find the best
configuration, we started from the 16-bit fixed-point configuration that has 8 bits for
integer and fractional, and we estimated the MSE. The MSE is the mean squared difference
between a reference value and an approximated value [43]. This is often used to measure
the image quality between two images [44]. To find other configurations, we analyzed the
multiplication factor of Formula (7), which can be approximated with a shift of the dot in the
number. So, we removed the multiplication and shifted the dot by decreasing/increasing
the integer and fractional parts, respectively, to reach the lowest MSE. In this way, we
reached the best configuration of 16-bit fixed-point with 4-bit and 12-bit for the integer and
fraction parts, respectively.

With this methodology, we pre-selected four data representations for the DSE, which
are half-precision and single-precision floating-point, and 16-bit and 32-bit fixed point,
where I and F are equal to 16 and 16 bits, and equal to 4 and 12 bits, respectively.

7.2. Selection of Metrics

To reduce the time involved in the DSE for generating the different results, we also
selected metrics that are significant for the hardware performance and the image quality
analysis in the case of interventional CT.

For the hardware performance evaluation, we considered the resource utilization of
the FPGA and the execution time of the different solutions. In our case, we only analyzed
the execution time of the CT pre-processing core, which is expressed as latency from the
Vitis™ HLS tool. For analyzing the resource utilization of the FPGA, we considered the
configurable blocks and memories mostly used for image processing applications. These
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are digital signal processing (DSP) blocks, flip-flop registers (FF), BRAM memory, and
look-up tables (LUTs) for the combinatorial logic [45].

For the image quality analysis, of the different solutions, we considered the following
metrics: MSE of the 2D projections, and noise, low contrast and uniformity of the reconstructed
3D volume. The MSE was applied on the 2D projections for measuring if the collected data
have an acceptable accuracy for the reconstruction. In this way, we only reconstructed
and performed the image quality analysis on acceptable configurations. The other selected
metrics for the image quality analysis are useful for interventional CT applications. The
uniformity and noise metrics are important to identify the eventual image degradation,
caused by the arithmetic approximation of the different data formats. The low contrast
metric is important for tumor detection [15], useful in tumor ablation, during surgery.

8. Image Quality Analysis

For performing the image quality analysis, we considered three elements: the CT
acquisition configuration, the significant metrics, and a representative phantom. Usually,
most of the work in the literature considers different CT scanners and/or acquisition config-
urations to research how these elements influence the image quality [46–48]. However, in
our research, we are interested in comprehending the influence of the data formats on the
image quality, independently by the CT scanner and acquisition configuration. Therefore
for our experiments, we used one scanner with a single configuration for the CT acquisition.
Additionally, we used the CATPHAN® 500 [15], which is a representative phantom. In fact,
this provides the complete characterization for maximizing the image quality.

8.1. CATPHAN® 500

The CATPHAN® 500 [15], as shown in Figure 9, has four modules enclosed in a 20 cm
housing. Each module is used for performing different image quality metrics, such as
geometry alignment, uniformity, noise and low contrast. Before describing the modules, we
introduce the Hounsfield unit (HU), also referred as the “CT number”. It is the relative
quantitative measurement of radio density [49]. Radiologists uses it in the interpretation of
CT images because different body tissues have different densities.

Figure 9. CATPHAN® 500.

We scanned the different modules with the same CT scanner configuration. Based on
the pre-selected metrics, we used the three following modules:

• CTP515 Low Contrast Module: This module consists of a series of cylindrical rods of
various diameters and three contrast levels to measure low contrast performance [15].
The roads, as shown in Figure 10, are provided on z-axis positions, for avoiding any
volume-averaging errors [50]. The different low contrast are useful for identifying
small low contrast objects, such as tumors. Subslice targets have a nominal 1.0%
contrast and z-axis lengths of 3, 5, and 7 mm. For each of these lengths, there are
targets with diameters of 3, 5, 7 and 9 mm [50]. We acquired this phantom section to
perform the low contrast image quality for the different data formats.
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Figure 10. Section of the CTP515 low contrast module.

• CTP486 Uniformity Module: This module is cast from a uniform material with a “CT
number” designed to be within 2% of water’s density under standard scanning proto-
cols [15]. This module is used for measurements of spatial uniformity, which means
CT number and noise value. As shown in Figure 11, this module has a different region
of interest (ROI) that can be targeted for measuring the uniformity of the different areas
of a phantom section. In fact, the mean CT number and standard deviation of a large
number of points, in a given ROI of the scan, is determined for central and peripheral
locations within the scan image for each format of the scanning protocol [50].

Figure 11. CTP486 uniformity module.

• CTP401 Slice Geometry and Sensitometry Module: This module is used to verify
the phantom position. The module, as shown in Figure 12, includes four sensitometry
targets (Teflon, Acrylic, LDPE and Air) to measure the CT number linearity [15]. The
module also contains five acrylic spheres to evaluate the scanner’s imaging of subslice
spherical volumes. The diameters of the acrylic spheres are 2 mm, 4 mm, 6 mm, 8 mm,
and 10 mm. We used this phantom for a human visual analysis of the CT images, in
relation to the different materials and the size of the spheres.
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Figure 12. CTP401 slice geometry and sensitometry module.

8.2. CT Acquisition Configuration

In the open-interface CT, we manually set-up the components with the following
parameters:

• X-ray tube system

– Voltage: 120 KV
– Intensity: 250 mA

• Detector system

– Number of row slices: 64
– x and y slice width: 0.625 mm
– Number of projections per round: 1160
– Size of the projection matrix in pixel: 672 × 64

• Gantry system

– Number of rounds per second: 1

• Reconstruction system

– Reconstruction algorithm: Feldkamp (FDK) algorithm [21]
– z slice width: 1 mm
– Size of the reconstructed matrix in pixel: 512 × 512

Furthermore, we pre-acquired and stored the I0-images, which are the projections
without phantom of one round. Figure 13 shows one of these projections stored as a short
data format.

Figure 13. I0-image: 2D projection without object.

Since, the I0-images are in the original raw sensor data, we only acquired it once, when
we started our experiments.

8.3. Image Quality Metrics Calculation

For each image quality parameter, we used a mathematical estimation of it. For the
pixel error of the 2D projections, we calculated the MSE, which gives the error interpretation
of the approximated image [44]. The formula of MSE is the following:
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MSE =
1
V

V

∑
j=1

(
Aj − Sj

)2 (8)

Here, Aj is the pixel value of the main image and Sj is the pixel value of the estimated
image [43]. As the main image, we selected the pre-processed image with double format.

For calculating the values of the noise, uniformity and low contrast from the reconstructed
volume, we considered a different ROI per module, as suggested by the CATPHAN® 500
Manual [15]. For selecting the ROI, we used the reconstructed images shown with red and
blue circles in Figure 14, where the pre-processing was done with the double format. For
the noise analysis, we calculated the standard deviation of the CT number for each of the
ROIs, placed on the uniformity module and shown in Figure 14.

Figure 14. Uniformity module, placements of the ROIs.

For the uniformity analysis, five ROIs with 40 pixels in diameter are placed on the
module, four peripheral ROIs and one central ROI. The average CT number, in HU, is
obtained for each of these ROIs, and the uniformity is measured as the maximum difference
between the mean value of the center ROI and one of the peripheral ROIs.

For the low contrast analysis, we calculated the contrast noise ratio (CNR) by placing a
ROI of 20 pixels in diameter in the larger targets of both the supra-slice 1.0% and supra-slice
0.5%, and in the background area right beside it. The CNR was calculated using Formula (9)
and averaged over 32 reconstructed slices.

CNR =
|ST − SB|

σB
(9)

In Formula (9), SA and SB are the signal intensity of the supra-slice target and the
background region, respectively, and σB is the standard deviation of the background.

9. Results and Discussion

This section shows and discusses the results of the proposed optimized method with
the different data formats used in the DSE. First, we compare the proposed method and the
standard method presented in Section 2.2. Second, we compare and discuss the results of the
pre-processing step and reconstruction image for the different data format configurations
selected within the DSE. Finally, we define which data format seems to be the best for the
pre-processing step in interventional CT.

We used Vitis™ HLS for the hardware performance analysis in terms of hardware
cost. In this article, we focus on the resource utilization and execution time of the CT
pre-processing core, which is configured to process one pixel per clock cycle. If the DAS
collects multiple pixels per clock cycle, multiple instances of the CT pre-processing core
must be added to the design. Due to the data parallelism, the resource utilization increases
linearly, while the overall execution time remains constant. In the reported results, we
selected the XC7Z045 MPSoC-FPGA model from Xilinx [39] as the FPGA target platform.
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9.1. Standard and Optimized Methods

As explained in Section 4, the standard method for I0-correction and the optimized
method were implemented in the CT pre-processing core. The two versions, shown in
Figures 4 and 5, were implemented with pipelining. In the optimized version, the logarithm
operation is pre-calculated because its argument is constant. The algorithm executes only
subtraction and multiplication operations. By contrast, the standard method executes
an additional power operation and logarithm operations, which are expensive in terms
of execution time and resource utilization. To compare and quantify the two methods
independently by the data format, we selected the same image-processing format (single-
precision floating point), and synthesized both with Vitis™ HLS. Furthermore, we analyzed
the MSE of the 2D pre-processed projections. The estimated MSE is 3.21 × 10−15, which is
almost 0. With the reported low MSE, we also validated our solution and we can confirm
that the two methods are equivalent, as expected from the mathematical simplification. In
fact, both methods generate the same output projections. The MSE is not exactly 0 because
the two methods evolve different operations and math co-processors components that
approximate the values in different ways.

As expected, the two methods differ in terms of hardware performance. The optimized
method, as reported in Table 1, does not use any BRAM and requires about 10 times less
DSP, FF and LUT resources, the standard method to perform a complex operation, as
logarithm and power need to buffer data; for this reason, BRAM is utilized. In addition,
these complex operations determine the higher LUT, FF and DSP utilization. FPGAs have a
small limited number of DSPs, and therefore, their utilization should be minimized, when
it is possible. Moreover, the low required resource utilization for our solution allows to
implement and integrate the pre-processing core directly in the DMS, closest to the sensor.

Table 1. Hardware report for CT pre-processing core (instance for 1 pixel per clock cycle).

Precision Name BRAM 18K DSP FF LUT Latency

Standard method (float) 2 30 3497 6881 660 ns
Optimized method (float) 0 5 527 785 160 ns

Due to the real-time requirements, the most important metric is the execution time/la-
tency. In this case, we analyzed the latency of the single operations for the two methods;
the results are also shown in Table 1. The standard method has a latency of 660 ns, while
the optimized method has a latency of 160 ns. In the standard method, there are power,
division and logarithm operations that are much slower operations than subtraction and
multiplication operations. In fact, the optimized method has only one multiplication and
one subtraction, which have low latency, as shown in Table 2 and discussed in Section 9.2.
For this reason, our solution achieves a speed-up of about 4.125× compared to the standard
method with the same data format. We see that in the optimized method configured with
the 32 bit-fixed point data format, we reach a speed-up of about 16.5× compared to the
standard method. This latency enhancement is a significant improvement for the real-time
requirements of the interventional CT application.

Table 2. Timing analysis of the standard method.

1st Stage 2nd Stage 3rd Stage

Buffer Conv. Mul. Exp. Div. Div. Log. Muls Buffer

10 ns 50 ns 40 ns 140 ns 120 ns 120 ns 130 ns 40 ns 10 ns

By using the dataflow architecture, both solutions make it possible to pre-process a
new pixel each clock cycle. It was not possible to compare the optimized methods with
the related works, in terms of hardware implementation, due to the lack of information.
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Related works provide the whole execution time, without considering the pre-processing
step and its impact on reconstruction.

9.2. Comparison of the Data Formats

Before analyzing the results of the different data format configurations with the pre-
selected metrics, we performed a human visual analysis of the CTP401 module. In the
human visual analysis, we observed that the pre-processing step was well performed
and the grid between sensors was removed. Figure 15 shows the 2D projections pre- and
post-processing with the different data format configurations. Yet, we did not observe
differences between the different configurations with the human visual analysis.

(a) Raw sensor data with short format

(b) Pre-processed data with double format

(c) Pre-processed data with float format

(d) Pre-processed data with half format

(e) Pre-processed data with 32-bit fixed-point representation

(f) Pre-processed data with 16-bit fixed-point representation

Figure 15. Single projection of module CTP401, before and after the pre-processing.

Figure 16. Reconstructed image of the CTP401 module for human visual analysis.

The human visual analysis was conducted also for the reconstructed images, shown in
Figure 16. We observed that all target materials can be distinguished independently by the
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data format configuration utilized in the pre-processing step. This means that the image
quality does not seem to change in terms of human visual analysis.

Since with the human visual analysis, it is not possible to compare the accuracy and the
information lost between the different data formats, we estimated the MSE of the projections.
The MSE, as explained in Section 7, is the key point used for reducing the eligible data
formats for the DSE. It was crucial to select the two data format configurations of the 16-bit
and 32-bit fixed-point; we reduced from 48 to 2 possible data format configurations. The
MSE is a reasonable metric in this step because it can be applied to 2D projections before
the reconstruction. In addition, we noticed that it is in the same order of magnitude for the
different phantoms. However, the MSE does not consider all image quality metrics, which
are significant to understanding how data formats influence the quality of reconstructed
images. Therefore, we performed the measurement of low contrast, noise and uniformity for the
reconstructed images. For calculating these metrics, we acquired, pre-processed with different
data format configurations, and reconstructed the modules shown in Figures 17 and 18.

Figure 17. Reconstructed image of the CTP486 module, for noise and uniformity analysis.

Figure 18. Reconstructed image of the CTP515 module, for low contrast analysis.
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The results of the image quality analysis are shown in Table 3. We observed that the
MSE of all configurations is lower than 1. This value is very good in terms of image quality
since the MSE is usually between 2.36 and 2.37 also in medical image compression [51]. By
comparing the other image quality metrics of all data formats with the double format, the
values were judged to be good in most of the cases. In fact, these are in the same order
of magnitude as shown in Table 3. The only data format where the approximation of the
pre-processing has slightly influenced the reconstructed images is the 16-bit fixed point.
Due to the approximation made and the bit truncation involved for converting the raw
sensor data from 16-bit unsigned to 16-bit fixed point, the low contrast pixels are blurred.
Therefore, the contrast noise ratio (CNR) is about 0.2 lower than the double configuration.
By contrast, due to the blurred low contrast pixels of the 16-bit fixed-point configuration,
a lower noise and a better uniformity was estimated for this configuration, compared to
other data formats. In fact, in images with blurred pixels, the pixel values are similar, and
therefore, there is a lower noise and a better uniformity. From this image quality analysis, we
can conclude that all data formats result in an acceptable pre-processed and reconstructed
image quality. The 16-bit fixed point has some problems that would make sense to choose
it only if the hardware cost has much advantages, compared to other solutions.

Table 3. Image quality estimation of different data format configurations.

Resource Name Half Float Double Fixed 16 Fixed 32

MSE 2.39 × 10−7 3.21 × 10−15 0 0.22 0.0039
CNR Supra-Slice 1.0%

[ΔHU] 0.555 0.566 0.566 0.335 0.536

Noise [HU] 5.8 5.7 5.7 2.7 5.3
Uniformity [ΔHU] 3.54 3.57 3.57 2.44 3.5

To define the hardware costs of the different data types, we compared the resource
utilization and the latency of the various data format configurations. As shown in Table 4,
the utilization of all FPGA resources decreases from floating-point to fixed-point represen-
tations, independently of the data width. In fact, DSPs are minimized from 14 of the double
configurations to 0 and 1 of the 32-bit fixed-point and 16-bit fixed-point configurations,
respectively. In FPGA, the number of DSPs is crucial because they are in the order of
hundreds, while LUTs and FFs are in the order of hundreds of thousands. Therefore, the
low utilization of resources in fixed-point representations allows the FPGA to implement
additional pre-processing steps on the fly. The best result comes from the 32-bit fixed point;
this configuration is the only one that utilizes 0 DSPs and implements all operations with
LUTs and FFs. Therefore, even if it utilizes more LUTs than 16-bit fixed-point, we can
confirm that 32-bit fixed-point is the data format with the best performance in terms of
resource utilization concerning the FPGA available resources. The 32-bit fixed-point has
better performance than the 16-bit fixed-point due to the fact that Vitis™ HLS optimizes
the 32-bit fixed-point format in the provided libraries.

Table 4. Resource utilization of different data format configurations.

Resource Name Half Float Double Fixed 16 Fixed 32

BRAM 18k 0 0 0 0 0
DSP 4 5 14 1 0
FF 382 527 1292 167 309

LUT 223 785 1796 941 1245

Finally, we analyzed the execution time in the different cases. The results in Table 5
show the advantage of using fixed-point representation compared to floating-point repre-
sentation. In fact, 16-bit and 32-bit fixed-point configurations are 2.2× and 4× faster than
the single-precision floating-point configuration, respectively. The conversion between the
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collected data and fixed-point representation is faster than floating-point representation
because it is implemented with a combinatorial shift, which is implemented in hardware
with a bitwise assignment. Due to that, the conversion is implemented together with
the subtraction, which is also implemented with combinatorial logic. For this reason, the
reported conversion execution time is close to 0.

As mentioned above, due to the Vitis™ HLS optimization and the DSP optimization,
32-bit fixed-point configuration implements all operations with FFs and LUTs; therefore, it has
also lower latency than 16-bit fixed-point configuration. In fact, the former configuration does
not use DSPs for the multiplication, so its execution time is 10 ns (1 clock cycles). By contrast,
as shown in Table 5, due to the DSPs latency, the latter configuration spent 30 ns (3 clock
cycles) for the multiplication, which is the time required by DSP to process one operation.

Table 5. Timing analysis of different data format configurations; all values are expressed in ns.

1st Stage 2nd Stage 3rd Stage

Configuration Total Read Conv. Buffer Sub. Mul. Conv. Write
Half 190 10 50 20 50 40 10 10
Float 160 10 50 0 50 40 0 10

Double 220 10 50 0 70 60 20 10
Fixed 16-bit 70 0 0 0 10 30 20 10
Fixed 32-bit 40 0 0 0 10 10 10 10

To compare all the metrics of various configurations, we used the radar graphs shown
in Figure 19. Since the values have different units and scales, the min-max normalization
is used [52]. Double configuration has the maximum quality and hardware performance,
so it has most of the values equal to 1. By analyzing and comparing all results, we found
that the 32-bit fixed-point configuration is optimal for interventional CT pre-processing in
terms of image quality and resource utilization.
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Figure 19. Metrics analysis of the data format configurations; a good value of resource utilization,
latency, noise, and MSE should be close to 0; by contrast, a good value of low contrast and uniformity
should be close to 1.

The 32-bit fixed point is the best compromise between image quality and hardware
preference. It maximizes the hardware performance, and the image quality after the
reconstruction decreases only 7% in comparison with the double format. In contrast
to [14], we do not consider the required external memory bandwidth for the different
configurations because we are interested in finding only the best data format configuration
in the pre-processing step. In this step, our CT pre-processing core processes projections on
the fly and does not use any external memory, which usually is the main bottleneck GPU
and CPU solutions.

10. Summary

In this article, we proposed a hardware acceleration of the pre-processing step for
interventional CT. By performing this algorithm on the raw sensor data, we reduced
the number of operations and their complexity. In addition, with this optimization, we
achieved a speed-up of about 4.125× compared to the standard method. Furthermore,
we have implemented the algorithm in the proposed CT pre-processing core. This FPGA
accelerator pre-processes CT projections on the fly and can be configured for pre-processing
pixels with different data formats. In addition, we performed a design space exploration
of the different data formats between double, float, half floating point, and the different
configurations of 16-bit and 32-bit fixed point. Among them, we found out that 32-bit fixed
point is the optimal data format for pre-processing steps in interventional CT. In fact, with
32-bit fixed point, we achieve a speed-up of 16.5× compared to the standard method, and
it utilizes less FPGA resources. Additionally, with 32-bit fixed point, the image quality
of the reconstructed image decreases only about 7% compared to the double format. In
future works, we aim to extend this exploration also to the reconstruction step, where
mixed-precision data formats could be used.
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