
ARTICLE SEARCH TOOL AND TOPIC CLASSIFIER

A Thesis

by

SANJEEV NARAYANAN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Chao Tian
Co-Chair of Committee, Anxiao Jiang
Committee Members, Tie Liu

Byung-Jun Yoon
Head of Department, Miroslav Begovic

December 2019

Major Subject: Electrical Engineering

Copyright 2019 Sanjeev Narayanan

ABSTRACT

This thesis focuses on 3 main tasks related to Document Recommendations. The first approach

deals with applying existing techniques on Document Recommendations using Doc2Vec. A robust

representation of the same is presented to understand how noise induced in the embedding space

affects predictions of the recommendations.

The next phase focuses on improving the above recommendations using a Topic Classifier. A

Hierarchical Attention Network is employed for this purpose. In order to increase the accuracy of

prediction, this work establishes a relation to embedding size of the words in the article.

In the last phase, model-agnostic Explainable AI (XAI) techniques are implemented to prove the

findings in this thesis. XAI techniques are also employed to show how we can fine tune model

hyper-parameters for a black-box model.

ii

DEDICATION

To my parents and my dearest friends.

iii

ACKNOWLEDGMENTS

I use this opportunity to express my gratitude to everyone who supported me throughout this

extremely rewarding research experience. I extend my sincere appreciation to my advisor, Dr.

Anxiao Jiang for guiding me in every step of this research work.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Chao Tian [advisor],

Professor Anxiao Jiang [co-advisor] and Professor Tie Liu & Professor Byung-Jun Yoon of the

Department of Electrical and Computer Engineering and

All work conducted for the thesis dissertation was completed by the student independently.

Funding Sources

This thesis work was not funded by any source.

v

NOMENCLATURE

BiGRU Bidirectional Gated Recurrent Unit

AI Artificial Intelligence

XAI Hierarchical Attention Network

PDP Partial Dependence Plot

ICE Individual Conditional Expectation

LIME Locally Interpretable Model-agnostic Explanations

SHAP Shapley Additive Explanations

ELI5 Explain Like I’m 5

Doc2Vec Document-to-Vector

Word2Vec Word-to-Vector

RNN Recurrent Neural Network

CNN Convolutional Neural Network

MTC Medical Text Classification

NLP Natural Language Processing

GloVe Global Vectors

LSTM Long-Short Term Memory

CBOW Continuous Bag-of-Words

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES. xi

1. INTRODUCTION TO TOPICS . 1

2. ARTICLE SEARCH TOOL . 1

2.1 Motivation and Challenges . 1
2.2 Related Work . 1

2.2.1 Working of paragraph vectors . 3
2.2.2 Document Vectorization. 6

2.3 Design - Building a robust search tool . 9
2.4 Performance Evaluation . 10

3. TOPIC CLASSIFIER . 13

3.1 Motivation and Challenges . 13
3.2 Related Work . 13

3.2.1 Attention Network . 14
3.2.2 Hierarchical Attention Network . 15

3.3 Designs for the Topic Classifier and Integrated Model . 17
3.3.1 Experiment 1. 17
3.3.2 Experiment 2. 17
3.3.3 Experiment 3. 17
3.3.4 Experiment 4. 18

3.3.4.1 Model Averaging . 18
3.3.4.2 Using Shallow Learning Techniques . 19

vii

3.4 Performance Evaluation . 20
3.4.1 Results for Experiment 1 . 20
3.4.2 Results for Experiment 2 . 22
3.4.3 Results for Experiment 3 . 24

3.4.3.1 Query Generation . 26
3.4.3.2 Evaluation of the Integrated model . 26
3.4.3.3 Discussion . 28
3.4.3.4 Why my topic classifier helps in my integrated model 28

3.4.4 Results for Experiment 4 . 29
3.4.4.1 Model Averaging - Using only fully connected layers 29
3.4.4.2 Model Averaging - Using HAN . 29
3.4.4.3 Shallow Learning approach . 30

3.5 Applications . 30
3.5.1 Medical Text Classifier (MTC) . 31
3.5.2 Web of Science Dataset . 31
3.5.3 Kaggle Cancer Gene Mutation Dataset . 32

4. EXPLAINABLE AI TECHNIQUES . 34

4.1 Motivation and Challenges . 34
4.2 Related Works . 34

4.2.1 Complexity related strategy . 34
4.2.2 Interpretability via Scoop . 35

4.2.2.1 LIME. 35
4.2.2.2 SHAP . 38
4.2.2.3 ELI5 . 44

4.2.3 Model related methods . 44
4.3 Designs . 46

4.3.1 Experiment 1. 46
4.3.2 Experiment 2. 46
4.3.3 Experiment 3. 46
4.3.4 Experiment 4. 46

4.4 Performance Evaluation . 47
4.4.1 Result for Experiment 1 . 47
4.4.2 Results for Experiment 2 . 53
4.4.3 Result for Experiment 3 . 58
4.4.4 Result for Experiment 4 - Application . 60

5. CONCLUSIONS . 69

REFERENCES . 71

viii

LIST OF FIGURES

FIGURE Page

2.1 One-hot Encodings . 3

2.2 Example of a random encoded vector . 4

2.3 Architecture of the neural network [6] . 4

2.4 Weights from the example up to hidden layer . 5

2.5 Weights from the example up to hidden layer for 3 samples . 5

2.6 Output Layer [6] . 6

2.7 Comparison of CBOW and document vectors [6] . 7

2.8 Flow of document vector generation upto hidden layer . 8

2.9 Comparing the drop in Accuracy over the 3 word count ranges . 10

2.10 Comparing the drop in Accuracy . 11

2.11 Comparing the drop in Accuracy over the 3 word count ranges . 12

3.1 Hierarchical Attention Network [22] . 16

3.2 Confusion Matrix generated for the test dataset . 20

3.3 Training Performance over 7 epochs . 21

3.4 A closer look at the model performance in epoch 7 . 22

3.5 Embedding Dimension 50, Number of features = 200,000 . 22

3.6 Embedding Dimension 100, Number of features = 200,000 . 23

3.7 Embedding Dimension 200, Number of features = 200,000 . 23

3.8 Embedding Dimension 300, Number of features = 200,000 . 23

3.9 Comparison of the performance of the embedding dimension variants 24

ix

3.10 Comparison of Prediction Accuracy of the Integrated model and Doc2vec model
for the 3 datasets . 25

3.11 Comparison of Prediction Accuracy of the Model with respect to Threshold for
prediction . 27

3.12 Single model versus Ensembles . 29

3.13 Single model versus Ensembles . 30

3.14 Comparison of Embedding dimension variant for the applications. 33

4.1 DeepSHAP interpretation [37] . 43

4.2 Attention weights for words in every sentence . 48

4.3 Attention Output with words that have max attention weights . 48

4.4 LIME output . 49

4.5 Eli5 output . 50

4.6 SHAP summary plot - Class labels correspond to 0: ’Company’, 1: ’Educational
Institution’, 2: ’Artist’, 3: ’Athlete’, 4: ’Office Holder’, 5: ’Mean Of Transporta-
tion’, 6: ’Building’, 7: ’Natural Place’, 8: ’Village’, 9: ’Animal’, 10: ’Plant’, 11:
’Album’, 12: ’Film’, 13: ’Written Work’ . 51

4.7 Explainability per Epoch - MTC dataset . 59

4.8 MTC - Output from LIME. 61

4.9 MTC - Output from ELI5 . 61

4.9 MTC - Output from ELI5 (continued) . 62

4.10 MTC - SHAP summary plot - Class 0 - Neoplastic Diseases, Class 1 -Digestive
System Diseases, Class 2 -Nervous System Diseases, Class 3 -Cardiovascular Dis-
eases and Class 5 -General Pathological Conditions. 63

x

LIST OF TABLES

TABLE Page

3.1 Cosine similarity score for the top 10 generated documents with and without the
topic classifier . 25

3.2 Mean Test performance of commonly used ensemble techniques . 30

3.3 MTC - Comparison of the model performance with embedding size 31

3.4 WoS - Comparison of the model performance with embedding size 32

3.5 CGM - Comparison of the model performance with embedding size 32

4.1 Contribution among coalition . 38

4.2 Marginal Contribution by different orders . 39

4.3 Shapley value for each player . 40

4.4 Comparing predicted words over the 4 methods. 52

4.5 Comparing the methods for Embedding Dimension - 50 . 54

4.6 Comparing the methods for Embedding Dimension - 100 . 55

4.7 Comparing the methods for Embedding Dimension - 200 . 56

4.8 Comparing the methods for Embedding Dimension - 300 . 57

4.9 Score and KL-Divergence values for ELI5 . 58

4.10 MTC - Comparing the methods for Embedding Dimension - 50 . 64

4.11 MTC - Comparing the methods for Embedding Dimension - 100. 65

4.12 MTC - Comparing the methods for Embedding Dimension - 200. 66

4.13 MTC - Comparing the methods for Embedding Dimension - 300. 67

xi

1. INTRODUCTION TO TOPICS

The human brain is wired to understand complex sentences and have the ability to draw mul-

tiple conclusions from a given statement. Over an individual’s learning period, on an average, a

person is exposed to roughly 20,000 to 40,000 different words in English. Along with the knowl-

edge of grammar, the number of sentences one can comprehend is unbounded. We are in an era

where we focus on automating human tasks to simplify effort. The discipline of Natural Language

Processing (NLP) aims to improve the cognitive understanding of texts supplied to the machine.

For example, consider a situation where you have read the story of “Snow White and the Seven

Dwarves". It so happens that you forgot the names of characters, but you remember the main

picture in the story. In order to find the name of the story to fit your flow of thought, you will

instinctively Google for all possible phrases that would be coherent with the plot of the story. You

may search for the combinations that are not limited to “young girl", “evil queen", “short people",

“prince". Your required answer may not even be at the top of your search results. How exactly

do we make this more accurate? How will we be able to narrow down our search to the exact

answer or in other words, how will a machine be able to provide the result you are expecting? This

happens to be a widely researched problem in NLP, which is the crux of my thesis.

Model interpretation at heart, is to find out ways to understand model decision making policies

better. This is to enable accountability and transparency which will give users enough credence

to use these models in real-world problems which have a lot of impact to business and society.

Although, the black-box nature of these systems allow strong predictions, it cannot be precisely

explained. AI has already become ubiquitous and we have become reliant on AI making decisions

for us in our daily life, from merchandise and movie suggestions on Amazon and Netflix to friend

recommendations on Facebook and personalized ads on Google search result pages. Nonetheless,

in life-changing inferencing such as disease diagnosis, it is important to know the reasons behind

such a critical decision. To address such issues, we use Explainable Artificial Intelligence(XAI) to

1

make a transition towards more transparent AI. It aims to create a suite of strategies that produce

more explainable models whilst maintaining high performance levels.

2

2. ARTICLE SEARCH TOOL

2.1 Motivation and Challenges

We use search and recommender tools mainly for providing personalized suggestion for a task.

A good recommender tool understands what a user is looking for. There have been different

approaches to this like context based, keyword based or even Collaborative filtering. The main

challenge is to build a search tool that is context aware. It tries to derive the overall meaning and

big picture behind a search query and not just a local understanding.

2.2 Related Work

Understanding words and deriving meaning from them have been researched since 1980’s. The

earliest significant work on word representation started with Brown, et al on bigram and trigram

models of predicting the next word(s) given the previous words [1]. The notion “word" by itself

was conceived for a machine by Elman , where he explores the correlation between commonly

occurring words that form sentences (when sentences are generated at random). He used a net-

work with 5 input units, 20 hidden units, 5 output units, and 20 context units to produce a 5-bit

representation for the words [2]. When Rumelhart, et al perfected the backpropagation algorithm

for neural networks, word representations started to form a much more concrete structure and the

tasks for future work started to get more clear [3].

We have now come a long way from bigram and trigram models to learn an n-gram representation.

In any case, the straightforward procedures are at their limits in numerous errands. For exam-

ple, there are limited amounts of relevant in-domain information for automated speech recognition

whose performance is typically controlled by the size of high-quality transcribed speech data (often

just millions of words). In machine translation, the existing corpora for numerous dialects contain

as it were a couple of billions of words or less. Mikolov ,et al gave the idea computing continuous

vector representations of words from very large data sets [4]. The quality of these representations

1

were measured in a word similarity task. His work on word2vec has been an industry standard in

a lot of NLP practices and served as one of the first steps in semantic cognition. It sparked a lot of

applications in Information Retreival, Document Classification and many more. Pennington, et al

suggested that two words can be better distinguished with respect to a context word by the ratio of

the co-occurrence probabilities [5]. This function, that distinguishes two word vectors based on a

context word vector need to be formalized in a way that it is symmetric between context words and

words. Their model weighs all the co-occurrences equally. This GloVe vector representation has

taken the best of the Matrix factorization models and Local context window models and presented

a computationally simple yet efficient model to determine a rich distributed word representations.

Text classification and clustering have always played an important role in document retrieval. Such

algorithms typically require a fixed-length vector to represent the text input. Le , et al proposed the

idea of a paragraph vector, an unsupervised framework that learns continuous distributed vector

representations for pieces of texts [6]. The texts can be of variable-length, ranging from sentences

to documents. This technique was inspired from a multiple researches (Bengio, et al [7] , Collobert

, et al [8]) where each word is represented by a vector which is concatenated or averaged with other

word vectors in a context, and the resulting vector is used to predict other words in the context.

Paragraph vectors attempt to learns features that are relevant to the tasks at hand given very limited

prior knowledge.

Over time, learning representations were explored using transfer learning based approaches,

graph based approaches and using convolutional neural networks. Koopman, et al used a 2 step

approach to improve discriminating ability of the vector representations for document embeddings

[9]. They first reduce the dimensionality of the term vectors by an extremely efficient imple-

mentation of random projection [10] [11]. They then project the term vectors on the hyperplane

orthogonal to the average language vector. Tang, et al studied the problem of integrating very large

2

information networks into low-dimensional vector spaces, which is useful in many tasks such as

visualization, classification of nodes and prediction of links [12]. The authors proposed a model

that optimizes an objective which preserves both the local and global network structures. In many

real world scenarios of graph based embedding algorithms [13] [14] [15], aim to preserve the

first-order proximity between the vertices. However, these are seldom sufficient. In the paper,

the authors explore a second-order proximity between the vertices, defined not by the observed

intensity of the connection, but by the mutual neighborhood structures of the vertices. Peters, et

al [16] and Conneau, et al [17] used bi-LSTM based learning representations that model dynamic

word-use characteristics and how they vary across various linguistic contexts.

2.2.1 Working of paragraph vectors

Before we get to paragraph vectors, let us look at continuous Bag-of-words (CBOW) represen-

tation. CBOW’s way of working is that it tries to estimate the probability of a word given a context.

A context-setting may be a single word or a group of words. Consider the example of this sentence

The quick brown fox jumped over the lazy dog. For ease of understanding, let us consider a sliding

window of length 1. This corpus can be translated as follows into a training set for a CBOW model

Figure 2.1: One-hot Encodings

In the image below, the matrix on the right represents the one-hot encoded data on the left.

Consider the target of one of the datapoints, say that for the term “Fox" What follows this is a

3

Figure 2.2: Example of a random encoded vector

way to convert this one-hot encoded representation into the word embedding. This matrix dis-

played in the above image is sent to a three-layer shallow neural network: an input layer, a hidden

layer and an output layer. The output layer is a softmax - used to sum the probabilities obtained

in the output layer up to 1. From the Figure 2.2 , We have the encoded vector as the input to this

neural network. The hidden layer is a randomly initialized set of numbers that form the feature

space of the entire vocabulary. This means, we have an d-dimension vector for every word in the

vocabulary. This is equivalent to telling that the hidden layer acts as a look-up table for every word.

Let us for example, fix d = 6

Figure 2.3: Architecture of the neural network [6]

4

From the above example, this can be represented as :

Figure 2.4: Weights from the example up to hidden layer

The network output is a single vector (also with 6 components) containing the probability of a

randomly selected nearby word being that vocabulary word for each word in our vocabulary. Note

that the hidden layer neurons do not have an activation function. Now consider the hidden layer.

Looking at the rows of this weight matrix, it’s really what our word vectors are going to be. So the

ultimate goal of all this is only learning this matrix of hidden layer weight. Extending this example

to learning 3 words, we get

Figure 2.5: Weights from the example up to hidden layer for 3 samples

The above picture takes 3 contextual words and estimates a target word’s probability. As shown

above in blue, orange and green, the output can be assumed to take three one-hot encoded vectors in

the input layer. The measures remain the same, only the calculation of hidden activation changes.

Instead of simply copying the input-hidden weight network rows to the output layer, all matrix

rows are taken on average. With the above example, we can appreciate this. The output layer is a

softmax regression classifier. - output neuron (one per term in the lexicon) yields between 0 and 1,

5

and all these output values are summed up to 1.

Next comes the training. The objective function is the negative log likelihood of a word, given

its context. Here this likelihood is the softmax output of the network. The gradients are updated by

the rule of stochastic gradient descent and we finally learn the weights of the words in our vocab-

ulary. While we can train our word vectors based on our corpus, we can also use existing weights

that are available online to speed up our training.

Figure 2.6: Output Layer [6]

2.2.2 Document Vectorization

Document Vectorization is an extension to the word vectorization approach towards documents.

Its intention is to encode (whole) documents, consisting of lists of sentences, rather than lists of

ungrouped sentences. Let us look at some differences to understand an overview before moving to

an example.

• While word vectorization calculates a feature vector for every word in the corpus, Document

Vectorization computes a feature vector for every document in the corpus.

6

• While word vectorization works on the instinct that the word representation ought to be good

enough to predict the surrounding words, the underlying intuition of Document Vectoriza-

tion is that the document representation should be good enough to predict the words in the

document.

• For example, word vectorization’s learning strategy exploits the idea that the word mat fol-

lows the phrase the cat sat on. Document Vectorization’s learning technique takes advantage

of the assumption that the interpretation of adjacent terms relies unambiguously on the text.

Though the appearance of the phrase catch the ball is common in the corpus, when we know

the subject of a paper is “software" we can predict terms like bug or exception after the word

catch (ignoring the) instead of the word ball since catch the bug/exception is more likely

under the topic “software". On the other hand, if the topic of the text is perhaps “football"

we can expect ball after catch.

Now that we are familiar with the way how CBOW works, document vectorization can be ex-

plained easily with the same principle.

Figure 2.7: Comparison of CBOW and document vectors [6]

Notice that in Figure 2.7a, the CBOW representation is shown. In Figure 2.7b, we find that

there is an additional paragraph matrix D shown that is a part of the hidden layer. Just like how

7

the word vectors were generated in the previous case, the document vector D is also generated.

So, when training the word vectors W, the document vector D is trained as well, and in the end

of training, it holds a numeric representation of the document. The rest of the procedure is very

similar to the CBOW representation.

Let us go back to the same example where we consider the sentence The quick brown fox jumped

over the lazy dog as a whole document. The document vector is also averaged with the word vec-

tors to produce the new document vector for this sentence.

Figure 2.8: Flow of document vector generation upto hidden layer

This is once again followed by a softmax layer to obtain the probability of the next word, given the

document and the context. Just like in the previous case, we need only the hidden layer weights.

The contexts are fixed-length and analyzed over the article from a sliding window. The vector of

a document is distributed in all contexts created from the same paragraph, but not throughout the

document. However, the W word vector matrix is exchanged across paragraphs. Using stochastic

gradient descent, both D and W are conditioned and the gradient is extracted by backpropagation.

At prediction time, one needs to perform an inference step to compute the document vector for a

new text input. This is also obtained by gradient descent. The document vectors are obtained by

8

training a neural network on the task of predicting a probability distribution of words in a document

given a randomly-sampled word from the paragraph. The hyperparameter that is in our control is

the embedding dimension.

2.3 Design - Building a robust search tool

In this experiment, we focus on building a robust document search tool. One inherent property

of Doc2Vec model is the use of negative sampling. The theory of negative sampling was based on

the concept of noise contrastive estimation (analogous, as generative adversarial networks), which

states, that a good model must discern false signals from the real ones by the means of logistic re-

gression. Also, the motivation behind negative sampling objective is similar to stochastic gradient

descent: Instead of adjusting all the weights every time taking into account all the thousands of

observations we have, we use only K of them and also dramatically increase computational perfor-

mance. We can vary the number of negative samples. If we have to consider noise to be induced in

the model, it means any we must consider any form of perturbations in the embedding space. This

noise can be considered in 2 ways.

• In the first assumption, we consider words around context as noise

• In the second assumption, we consider perturbations in the embedding space itself as noise.

This is on the belief that changing the embeddings on the whole might force the model to cap-

ture nearby points that may target to some other document. For this, we induce a Gaussian noise

of varying variance and plot the model accuracy. This noise is added to the embedded test se-

quence and passed to the initially trained noise free model to predict the probability of the required

document.

9

2.4 Performance Evaluation

In our first assumption, we have modeled the noise as a unigram distribution, defined by:

U(wi) =
f(w)

3
4∑n

j=0 f(w)
3
4

(2.1)

The Figure 2.9 shows a plot of negative samples versus cosine similarity score for an arbitrary test

document. Here, we observe that there is an increasing trend in model performance with increase

in negative samples. The dips int he plot however, are due to the Popular Neighbor problem in the

dataset.

Figure 2.9: Comparing the drop in Accuracy over the 3 word count ranges

10

With respect to assuming the noise as a 0-mean Gaussian distribution, the Figures 2.10 and 2.11

show the prediction performance of the model with increasing standard deviation. This noise is

added to the embedded test sequence and passed to the initially trained noise free model to predict

the probability of the required document. Three ranges are considered here - Documents under

1000 words, between 1000 and 2000 words and over 2000 words.

Figure 2.10: Comparing the drop in Accuracy

11

Figure 2.11: Comparing the drop in Accuracy over the 3 word count ranges

12

3. TOPIC CLASSIFIER

3.1 Motivation and Challenges

In the previous chapter, I presented a method to create a doc2vec model. The output of doc2vec

may not be entirely satisfactory to a user because it may contain irrelevant contents that are prob-

ably “close" to the search query may show up in the results. In order to add a layer of relevance,

I use a topic classifier. The challenge that may not be solved is that the term relevance is human

centered and highly idiosyncratic. When a user inputs a search query and obtain a relevant “topic"

for his search query, he probably was happy with the mixed bag of results the doc2vec model.

There might also be a case when a user did not want the relevant topic suggested by my model. If

that is the case, then the search query by itself could need revision.

3.2 Related Work

This is one of the most experimented idea in NLP. Topic Classification has been approached in

a number of methods. Shallow learning methods including distributed representation were heavily

employed because they could efficiently construct high-quality word embeddings and because they

could be used for semantic compositionality [4] [18]. Soon, with some drawbacks with word-level

embeddings, researchers delved into two sides. The first being character level embeddings and the

second completely involving deep neural networks. Zhang, et al used a character-based represen-

tation of text as input for a convolutional neural network [19]. The approach’s hope was that if a

CNN could learn to interpret the key data, all the labor-intensive work needed to clean and com-

pose text could be resolved. Kim, et al was one of the first to bridge the gap between word vector

embeddings and convolutional neural networks [20]. Sentences were converted to embedding vec-

tors and made accessible to the system as a matrix output. Convolutions are performed word-wise

throughout the output using kernels of different sizes, such as 2 and 3 terms at a time. In order to

condense and summarize the extracted functions, the resulting function maps were then processed

using a max pooling layer Zhang, et al performed a sensitivity analysis into the hyper-parameters

13

needed to configure a single layer convolutional neural network for document classification [21].

Their aim was to provide general configurations that can be used for configuring CNNs on new text

classification tasks. Recently, Attention based networks have shown to get State-of-the-art results

in topic classification tasks. Yang, et al introduced the concept of hierarchical attention (HAN)

based network that employs sentence level and word level attention [22].

3.2.1 Attention Network

Attention Model, first introduced for Machine Translation [23] has now become a predominant

concept in neural network literature. The intuition behind attention can be best explained using

human biological systems. For example, our visual processing system tends to focus selectively

on parts of the image,while ignoring other irrelevant information in a manner that can assist in per-

ception. Let us consider a technical approach to understanding Attention Mechanism. Attention

is essentially a map, often with softmax function the inputs of dense layer.Until Attention Mecha-

nism, translating depended on reading a full sentence and compressing all data into a fixed-length

vector. As you can imagine, a sentence of hundreds of words defined by several words would

surely lead to knowledge loss, insufficient comprehension, etc. Be that as it may, Attention partly

fixes this issue. It helps the machine translator to display all the information contained in the orig-

inal sentence, then produce the correct word according to the actual term on which it operates and

the context. It can even zoom in or out (focus on local or global features) for translators.

Probabilistic Language Model’s main crux is to attribute a probability to a Markov Assumption

for a sentence. RNN (sequence to sequence (seq2seq)) was naturally applied to model the condi-

tional likelihood of words because of the complexity of sentences consisting of different numbers

of words. The seq2seq models is normally composed of an encoder-decoder architecture, where

the encoder processes the input sequence and encodes/compresses/summarizes the information

into a context vector (also called as the “thought vector") of a fixed length. This representation

is expected to be a good summary of the entire input sequence. The decoder is then initialized

with this context vector, using which it starts generating the transformed output. A critical and

14

apparent disadvantage of this fixed-length context vector design is the incapability of the system

to remember longer sequences. Often is has forgotten the earlier parts of the sequence once it has

processed the entire the sequence. The attention mechanism was born to resolve this problem.

The central idea behind Attention is not to throw away those intermediate encoder states but to

utilize all the states in order to construct the context vectors required by the decoder to generate

the output sequence. In brief, attention in deep learning can be loosely interpreted as a vector of

meaning weights: to predict or infer an item, such as a pixel in a picture or a term in a sentence, we

calculate how strongly it is associated with (or “attends to" as one may have read in many papers)

other elements using the attention function. It then takes the sum of their values weighted by the

attention vector as the approximation of the target.

3.2.2 Hierarchical Attention Network

When we think of the textual information nesting structure: character ∈ word ∈ sentence ∈

document, a hierarchical emphasis can be built either from top-down (word-level to character-

level) or from bottom-up (i.e., word-level to sentence-level) to classify hints or to collect important

information both globally and locally. Two BiGRUs are used to produce semantic representation

at word-level and sentence-level, respectively. To order to obtain a word-level and sentence-level

encoding, a pair of hierarchical attention layers are then applied:

h
(t)
i = BiGRU(v

(t)
i) (3.1)

vi =
∑
t

softmax(uTwh
(t)
i) · h(t)

i (3.2)

hi = BiGRU(vi) (3.3)

c =
∑
t

softmax(uTs hi) · hi (3.4)

Here, h(t)
i and hi stand for hidden representation for words and sentences. uTw and uw are word-level

and sentence-level pattern vectors to be learned during training.The final sentence-level represen-

15

tation c is then fed into a logistic regression layer to predict the category.

Figure 3.1: Hierarchical Attention Network [22]

We use this mechanism for document classification and predicting the class labels of documents

in the dataset. The dataset used for testing this network is the DBpedia ontology classification

dataset.

16

3.3 Designs for the Topic Classifier and Integrated Model

3.3.1 Experiment 1

We limit the number of words per sentence to 35 and the number of sentences per document

to 30. A look up dictionary is created in order to encode words to numbers and we obtain a vector

for each sentence and a matrix for the whole document. The model was coded to train for 10

epochs with early stopping when the loss was minimized. The training had 4375 iterations for

every epoch. The batch size was set to 128. The learning rate was set to 0.1. The model converged

to a training accuracy of 0.9859 with loss as 0.0488. Figure 3.3 shows the model performance for

each epoch. A closer look at the iterations in an epoch is shown in Figure 3.4. The model at the

end of each epoch was saved and on predicting the class labels from the testing data, we get the

testing accuracy as 0.9864. The confidence interval for this model is the 70000 articles from the

DBpedia set. The confusion matrix generated for this test dataset is displayed in Figure 3.2.

3.3.2 Experiment 2

In order to understand this topic classifier better, the embedding dimension was varied and the

model was retrained in the same format. From the plots in Figures 3.5 - 3.8, we see that the model

accuracy improves with increase in embedding dimension.

3.3.3 Experiment 3

This research focuses on combining the above mentioned applications where we explore a

new method of obtaining relevant documents/texts. We analyze the input text using a Hierarchical

Attention Network in order to obtain a broad category for the input text. This text, along with the

newly learned topic of the text helps to obtain similar documents that are now much more relevant

than spatially clustered ones. This model was run through 3 very popular datasets used in text

classification.

• The AG News Dataset - The AG News collection comprises of news articles from the web-

based database of news articles belonging to the four main groups (World, Business Sports,

17

Science / Technology). The dataset contains 30,000 training examples for each class 1,900

examples for each class for testing.

• The DBpedia Ontonlogy Dataset - The DBpedia ontology dataset contains 560,000 training

samples and 70,000 testing samples for each of 14 nonoverlapping classes from DBpedia.

• Newsgroups Dataset - The 20 newsgroups dataset comprises around 18000 newsgroups posts

on 20 topics split in two subsets: one for training (or development) and the other one for

testing (or for performance evaluation).

For each of the cases, we trained a paragraph vector model and a topic classifier model. The results

are as shown in Table 3.1 for a random test sample that generated 10 similar documents. In order

to justify how the topic classifier works, we use explainable AI techniques(presented in Chapter 3)

to justify why our topic classifier picked the right topic.

3.3.4 Experiment 4

In this experiment,we focus on an ensemble learning based approach to topic classifier. Ensem-

ble learning is a broad topic and is only confined by one’s own imagination. For this experiment, I

have used the 20 Newsgroups dataset.

The hypothesis of ensemble averaging relies on two properties of artificial neural networks - In

any network, the bias can be reduced at the cost of increased variance and In a group of networks,

the variance can be reduced at no cost to bias.

3.3.4.1 Model Averaging

Every part of the ensemble contributes an equal amount to the final prediction in Model Av-

erage. A weighted ensemble is an extension of this average ensemble where each member’s con-

tribution is weighted by the model’s performance. The weights of the model are small positive

values and sum up to one, allowing the weights to determine the level of confidence or expected

performance from each model. Uniform weight values (e.g. 1
k

where k is the number of ensemble

18

members) implies the weighted ensemble functions as a simple average ensemble. There is no

standard for calculating these weights.

3.3.4.2 Using Shallow Learning Techniques

The three most common approaches for combining multiple models ’ predictions are:

• Bagging - Building multiple models from different sub-sets of the training dataset.

• Boosting - Building multiple models sequentially, where each member learns to fix the pre-

diction errors of a prior model in the chain.

• Voting - For combining predictions several models (typically of different types) and basic

statistics are used

Bagging works best with high variance algorithms. A common example is decision trees, usu-

ally constructed without pruning. In this example, we will explore a Bagged Decision Tree with

100 estimators. A 10 fold cross validation is employed. Random forest is an example of bagged

decision trees. Learning information are replicated for substitution, but the trees are constructed

in a way that reduces the association between individual classifiers. In general, instead of greedily

selecting the best split point in tree building, only a random subset of features are regarded for each

split.

AdaBoost may have been the first effective boosting ensemble. algorithm. This operates by weigh-

ing cases in the dataset by ordering the classification complexity, allowing the algorithm to give

more or less attention to them as subsequent models are created. One of the most advanced en-

semble techniques is stochastic gradient boosting (also called gradient boosting machines). It is

a methodology that proves to be perhaps one of the best available techniques to improve perfor-

mance by ensembles.

Voting is one of the easiest ways to combine the results of many machine learning algorithms.

19

It essentially creates two or more different models from your testing dataset first. At that stage, a

Voting Classifier is utilized to wrap the models and aggregate the sub-model predictions if asked

to predict new data.

3.4 Performance Evaluation

3.4.1 Results for Experiment 1

The confusion matrix generated for the test cases in the DBpedia dataset are shown below. The

Figure 3.2: Confusion Matrix generated for the test dataset

plots that follow show the epoch-wise iteration for the classifier model.

20

Figure 3.3: Training Performance over 7 epochs

21

Figure 3.4: A closer look at the model performance in epoch 7

3.4.2 Results for Experiment 2

Figure 3.5: Embedding Dimension 50, Number of features = 200,000

22

Figure 3.6: Embedding Dimension 100, Number of features = 200,000

Figure 3.7: Embedding Dimension 200, Number of features = 200,000

Figure 3.8: Embedding Dimension 300, Number of features = 200,000

23

The trend for performance plot is shown as a comparison in the Figure 3.9. We see a clear

increase in the prediction performance as we increase the embedding dimension.

Figure 3.9: Comparison of the performance of the embedding dimension variants

3.4.3 Results for Experiment 3

From the table below, we see a significant improvement in the prediction of the article search

tool when it employs the topic classifier.

24

AG News DBpedia Newsgroups

Cosine
Similarity

score

Cosine
Similarity
score with

topic classifier

Cosine
Similarity

score

Cosine
Similarity
score with

topic classifier

Cosine
Similarity

score

Cosine
Similarity
score with

topic classifier
0.4918 0.6118 0.7214 0.8516 0.6017 0.7452
0.4903 0.5877 0.7156 0.7910 0.6013 0.6988
0.4902 0.5797 0.7102 0.7843 0.5982 0.6872
0.4856 0.5634 0.6817 0.7612 0.5881 0.6776
0.4833 0.5612 0.6624 0.7500 0.5582 0.6211
0.4611 0.5499 0.6391 0.6921 0.5521 0.6019
0.4207 0.5435 0.5801 0.6345 0.5517 0.6008
0.4002 0.5388 0.5789 0.6257 0.5499 0.5912
0.3844 0.5369 0.5721 0.5912 0.5112 0.5910
0.3844 0.5364 0.5721 0.5816 0.4998 0.5800

Table 3.1: Cosine similarity score for the top 10 generated documents with and without the topic
classifier

Plotting this table, we see a comparison for the 3 datasets as shown in Figure 3.10.

Figure 3.10: Comparison of Prediction Accuracy of the Integrated model and Doc2vec model for
the 3 datasets

25

3.4.3.1 Query Generation

In order to generate search queries for evaluation, I removed 2-3 random words from a sentence

in a document and replace them with their synonyms. I then observe if my model can capture the

same document.

For example, if the document “Sentence with all alphabets" has a sentence The quick brown fox

jumped over the lazy dog, my generated query will look like The rapid fox over lazy dog

3.4.3.2 Evaluation of the Integrated model

While so far, we have dealt with this problem as an unsupervised task, we can make it a super-

vised task in the following manner

• For each of the document in the database, I created an input-label pair of Document and its

title.

• Instead of splitting the document into train and test, I will train it on the whole dataset with

the words already present in the document and test on a subset of the dataset using the search

query for each.

• For each of the document, I will pick a sentence at random and create a test query as men-

tioned above.

• Predict the set of documents.

• If my test document is present in the output set of documents with a cosine similarity score

greater than a threshold value, I will count that as a correct prediction.

The above procedure will help to evaluate my approach in a supervised setting. In order to show

why using my integrated model is better, the same approach is followed. The following are the

evaluation results.

26

Figure 3.11: Comparison of Prediction Accuracy of the Model with respect to Threshold for pre-
diction

The figure 3.11 shows a comparison of the prediction accuracy for arbitrarily generated test

queries for 140,000 documents in the DBpedia dataset. The integrated model fares better than the

doc2vec. We see that the documents can be predicted accurately in comparison to just the doc2vec

model. In this plot, I varied the threshold for considering as a prediction. This means that when

the cosine similarity for the document is less than the threshold, I label it as an incorrect predic-

tion. The doc2vec model’s performance drops sharply over threshold values greater than 0.5. This

indicates that the doc2vec model returns documents with distance roughly around this threshold

value. This is not observed in the integrated model because the model predicts documents almost

surely for a threshold of 0.79 and reduces after 0.93 threshold. This value will never be equal to 1

because the my query string is not the same as the strings in my document.

27

3.4.3.3 Discussion

In the analysis above, I mentioned that I generate the queries for each document and observe

the prediction based on a threshold. In order to validate my approach, let us look at how the true

labels are created for this supervised task. Since my end goal is to predict the document, I will

label all documents as class 1. At the prediction time, based on the observed value and threshold,

I will assign the predicted labels to each of the documents in my test cases. Now, in a general

scenario, the ground truth is given to us already and it does not depend on the task/method that

follows. However, in this setting, I try to induce a supervised task setting and hence my ground

truth for all documents is class 1.

3.4.3.4 Why my topic classifier helps in my integrated model

Topic Classifier adds relevance to my search query. Doc2vec model alone outputs documents

that are generic and uses a distance metric. Now the question automatically becomes what is rel-

evance? The definition for relevance in Wikipedia is Relevance is the concept of one topic being

connected to another topic in a way that makes it useful to consider the second topic when con-

sidering the first. Relevance has proven to be a critical yet difficult term in formal analysis. Any

problem requires the prior definition of the underlying principles from which a solution can be

constructed. It is enigmatic, because in ordinary coherent structures, the sense of relevance tends

to be problematic and incomprehensible.

Let us try to visualize this. Consider an event where you ask a friend to fetch an object from

your house. Now let us also assume that this friend has never been inside your house. When you

simply give this person the task and not provide any other information, he will go through the

entire house till he finds it. Now, if we provide this person an extra piece of information that this

object is near the study table, the person’s search space is lesser and he is likely to find the object

faster. This is exactly what I aim to do in my integrated model.

28

3.4.4 Results for Experiment 4

3.4.4.1 Model Averaging - Using only fully connected layers

We extract the features from the newsgroups dataset. The neural network used has 1 hidden

layer with 100 nodes, ReLU activated and the output layer has 20 nodes. The model is fit for 25

epochs. An ensemble is created with 10 members. We have the following result, comparing the

performance of the classifier with and without the ensemble.

Figure 3.12: Single model versus Ensembles

3.4.4.2 Model Averaging - Using HAN

While this is the state of the art method for topic classifiers, there was not much increase in

prediction accuracy in using the HAN with model averaging technique. The method remained

same as what was in the previous case. We have the following result:

29

Figure 3.13: Single model versus Ensembles

3.4.4.3 Shallow Learning approach

We have the following results for the shallow learning methods on the 20 Newsgroups dataset.

Method Num Trees Mean Test Accuracy Training Time (approx)
Adaboost 200 0.912 4 hours

Bagged Decision Trees 100 0.8876 7 hours
Random Forest 200 0.8908 4 hours

Gradient Boosting 100 0.7126 2 hours
Voting Ensemble NA 0.8911 4 hours

Table 3.2: Mean Test performance of commonly used ensemble techniques

3.5 Applications

While I have shown a few examples where this topic classifier can be applied, there are various

other areas where the model can be applied. I introduce the same model with an additional Batch

Normalization layer for the sentence encoder and present 3 more examples to show the effect

of Embedding variants of the HAN model. For this particular example alone, I will show the

comparison of the techniques using XAI in the next section.

30

3.5.1 Medical Text Classifier (MTC)

In this publicly available dataset, we have around 10,000 abstracts for training, 1400 for val-

idation and 2800 for testing. It is important to understand that these are medical datasets and it

is highly likely that the labels can overlap to a large extent. Since we have 5 classes, the baseline

prediction accuracy is 0.20, while our variants perform far better. The table below shows the model

performance values. The 5 classes in this dataset are Neoplastic Diseases, Digestive System Dis-

eases, Nervous System Diseases, Cardiovascular Diseases and General Pathological Conditions.

The results below show the model performance for the 4 different embedding variants.

Embedding Size Train_acc Train_loss Test_acc Test_loss Epochs
50 0.7012 0.7092 0.6014 0.9263 11

100 0.7085 0.7129 0.5959 0.9903 9
200 0.7197 0.6909 0.5872 1.0282 8
300 0.7282 0.6712 0.6049 1.0001 7

Table 3.3: MTC - Comparison of the model performance with embedding size

3.5.2 Web of Science Dataset

Web of Science (previously known as Web of Knowledge) [24] is a website which provides

subscription-based access to multiple databases that provide comprehensive citation data for many

different academic disciplines. It has 7 major classes namely Computer Science, Electrical Engi-

neering, Psychology, Mechanical Engineering, Civil Engineering, Medical Science and Biochem-

istry. The results below show the model performance for the 4 different embedding variants. From

this dataset, we have around 28,000 abstracts for training, 10,000 for validation and 10,000 for

testing.

31

Embedding Size Train_acc Train_loss Test_acc Test_loss Epochs
50 0.8960 0.2975 0.8508 0.4825 19

100 0.8885 0.3165 0.8525 0.4751 16
200 0.9223 0.2391 0.8947 0.3118 8
300 0.9318 0.2043 0.9018 0.2918 7

Table 3.4: WoS - Comparison of the model performance with embedding size

3.5.3 Kaggle Cancer Gene Mutation Dataset

Memorial Sloan Kettering Cancer Center (MSKCC) launched a kaggle competition to classify

genetic mutations based on clinical evidence (text). There are nine different classes a genetic mu-

tation can be classified on (Labeled from 1-9). The results below show the model performance for

the 4 different embedding variants.

Embedding Size Train_acc Train_loss Test_acc Test_loss Epochs
50 0.4219 1.2975 0.3508 1.7825 35

100 0.4247 1.4876 0.4019 1.7000 26
200 0.4621 1.2284 0.4647 1.6118 16
300 0.4718 1.2043 0.4718 1.3918 16

Table 3.5: CGM - Comparison of the model performance with embedding size

From the above results, if we plot the table values (Figure 3.14), we see that the increase in em-

bedding dimension once again shows an increase trend in performance of the HAN model.

32

Figure 3.14: Comparison of Embedding dimension variant for the applications

33

4. EXPLAINABLE AI TECHNIQUES

4.1 Motivation and Challenges

The main drawback of black-box models, as the name suggests, is its inability to explain the

underlying computation. While they can be very powerful for predictive analysis, it is important

to know why they work. We blindly trust the recommendations of friends of Facebook, movie

recommendations on Netflix and Amazon. However, we do not have the same level of trust when

it comes to medical applications or actions involving life and property. This challenge is overcome

by using Explainable AI.

4.2 Related Works

We divide the strategies into 3 categories -

• based on complexity of interpretability

• based on grasp of interpretability

• based on level of dependency from the learning model in that problem.

4.2.1 Complexity related strategy

A machine learning model’s sophistication is directly linked to its interpretability. Generally

speaking, the more complicated the model, the harder it is to understand and justify. Rule Lists

and Decision trees are the most common intrinsic strategies that support the idea of making the

model itself interpretable [25] [26]. However, as mentioned above, this level of interpretability

trades off with the accuracy of the model. While some specific tasks in the industry involve a

small number of data point (where experiments to generate data points are expensive), such model

specific methods can be employed. In deep learning sense, there have been some authors who have

used the attention mechanism it self to interpret the model behavior [27] [28], many have given

counter examples to show merely attention is not a fail safe method for model interpretability [29]

[30].

34

4.2.2 Interpretability via Scoop

This strategy supports two methods - comprehension of the whole model action (Global In-

terpretability) or a particular instance (Local Interpretability). Global interpretability enables the

interpretation of a model’s whole meaning and supports the whole theory leading to all the various

possible consequences. This can be attributed to how the features affect class variables. While a

significant number of methods are used in literature to allow global interpretability [31][32][?], it

is arguably difficult to achieve global model interpretability in reality, especially for models that

exceed a limited set of parameters. Local interpretability can be more readily applicable to humans

who focus attention on only part of the system to comprehend the whole of it. So, the aim here

is to generate an individual explanation, generally, to legitimize why the model made a particular

decision for an instance. While there are many locally interpretable models [34] [35], we have 2

major contributions in this area - LIME [36] and SHAP [37].

4.2.2.1 LIME

The local explanation method LIME interprets an individual prediction by learning an inter-

pretable model locally. The intuition behind LIME is that it samples instances both in the vicinity

and far away from the interpretable representation of the original input. Then LIME takes the inter-

pretable representation of these sample points, determines their predictions and builds a weighted

linear model by minimizing the loss and complexity. The samples weighting is based on their

distances from the original point. The points weights decrease as the points get farther away. The

explanation is locally faithful, which means it represents the model prediction of vicinity instances.

Let us look at this intuition mathematically.

Let f denote the complex model being explained. f(x) is the probability that an instance x be-

longs to the certain class. Let g be defined as explanation model g ∈ G, where G is a class of

35

interpretable models, such as linear models and decision trees. If we assume a linear model,

g(z′) = wg · z′ (4.1)

Also, x ∈ RN where N is the number of features in the original input. A mapping function is

defined to convert the binary pattern of missing features represented by x′ to its original feature

value

x = hx(x′) (4.2)

LIME draws samples around x′ uniformly at random. Given a perturbed sample z′, LIME can re-

cover the sample to its original input z and obtain f(z), which is used as a label for the explanation

model. As we know, LIME generates the explanation ξ by minimizing the loss

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (4.3)

The first term measures how unfaithful g is in approximating f . The second term is the complexity

of the model. The proximity measure between x and z is denoted as an exponential kernel πx. The

loss L is computed by weighted square loss where πx(z). is an exponential kernel defined on some

distance function with width.

L(f, g, πx) =
∑

z,z′∈Z

πx(z)
(
f(hx(z′)− g(z′)

)2

(4.4)

To solve the above equations and to obtain the explanation, LIME approximates Ω(g) by selecting

K features with Lasso and then learning the weights via least squares.

Now, how does LIME go over this procedure?

• Enable n times for each prediction to justify. The permutations are done by randomly ex-

pelling terms from the initial example when the product of text projections is to be explained

36

Based on whether or not the model uses word location, words that appear several times will

be removed whether one-by-one or entirely.

• Let the black box model predict the result of all permuted cases.

• Measure the distance to the original from all permutations.

• Transfer the distance to a ranking of similarities based on score. As permutations are gen-

erated on the basis of inputs separately, comparisons are measured in various ways. The

cosine similarity measure is used for text data which is the norm in text analysis (the angle

difference between the two attribute vectors is effectively measured).

• Choose m best features from the permuted data to reflect the complex model’s outcome.

Choice of features is a full sub-field of modeling in itself and there’s no silver bullet for

LIME. Instead, it implements a variety of solutions to the choice of options that an user can

choose from.

• Fit a simple model to the permuted data, explaining the black box model output with the m

features of the permuted data weighted by its similarity to the original instance.

• Extract the weights of the function from the simple model and use them to illustrate the local

behavior of the black box model.

The reliability of the model or the metric of consistency (how well the interpretable model ap-

proximates the predictions of the black box) gives us a great perspective into how accurate the

interpretable model is to explain the predictions of the black box in the information instance of in-

terest. The examples of regional surrogate models may use features other than the original model.

This will be a huge advantage over other approaches when it is not possible to interpret the original

features. A text classifier can rely on conceptual word embedding as attributes, but the interpreta-

tion may be dependent on a sentence’s presence or absence of letters. The authors followed up on

LIME by introducing another paper that fortified results from LIME [9]. It had a limitation that al-

though we can use simple function to interpret complexity locally, it can only explain the particular

37

instance. It means that it may not able to fit for unseen instance. Anchors, the new strategy, uses

“local region” to learn how to explain the model. The “local region” refer to a better construction

of generated data set for explanation.

4.2.2.2 SHAP

Shapley value is a concept of solution in game theory. TThe aim is to use game theory to view

the goal model. All features are "contributor" and attempting to predict the "game" task and the

"reward" is the actual prediction minus the explanation model result. Shapley value is the average

contribution of features which are predicting in different situation. In other word, it is not talking

about the difference when the particular feature missed. The authors of SHAP prove in their NIPS

paper that the values of Shapley are the only guarantee of reliability and continuity and that LIME

is in essence a subclass of SHAP which lacks the same properties.

In order to understand SHAP values, let us look at a small example. Consider a development team.

Our aim is to create a deep learning framework that allows 100 line of codes to be completed while

we have 3 data scientists (L, M, N).

V(x) Lines of code
L 10
M 30
N 5

L,M 50
L,N 40
M,N 35

L,M,N 100

Table 4.1: Contribution among coalition

38

We calculate the marginal contribution through all permutations of players.

Order L Contribution M Contribution N Contribution

L,M,N V(L) = 10
V(L,M) - V(L)

= 50-10 = 40

V(L,M,N) - V(L,M)

= 100-50 = 50

L,N,M V(L) = 10
V(L,M,N) - V(L,N)

= 100-40 = 60

V(L,N) - V(L)

= 40-10 = 30

M,L,N
V(L,M) - V(M)

= 50-30 = 20
V(M) = 30

V(L,M,N) - V(L,M)

= 100-50 = 50

M,N,L
V(L,M,N) - V(M,N)

= 100-35 = 65
V(M) = 30

V(M,N) - V(M)

= 35-30 = 5

N,L,M
V(L,N) - V(L)

= 40-10 = 30

V(L,M,N) - V(L,N)

= 100-40 = 60
V(N) = 5

N,M,L
V(L,M,N) - V(M,N)

= 100-35 = 65

V(M,N) - V(M)

= 35-30 = 5
V(N) = 5

Table 4.2: Marginal Contribution by different orders

The shapley value is given by:

φi(v) =
1

|N |!
∑
R

[
v
(
PR
i ∪ {i}

)
− v
(
PR
i

)]
(4.5)

where

φ is the Shapley value,

N is the number of players,

PR
i is the set of player with order,

v
(
PR
i

)
is the contribution of set of player with that order,

v
(
PR
i ∪ {i}

)
is the contribution of set of player with that order and player i.

39

So, from Table 4.2 and the above Equation, we can compute the Shapley values for each of the

players as

Player Shapley Calculation Shapley Value
L (1/3!)(10+10+20+65+30+65) 33.33
M (1/3!)(40+60+30+30+60+5) 37.5
N (1/3!)(50+30+50+5+5+5) 24.17

Table 4.3: Shapley value for each player

These values makes sense because player N does least work individually, and hence has a much

lower Shapley value compared to L and M. In our examples, it is difficult to show by hand cal-

culations, the effect of each feature permuted with the rest. As a result, we can only interpret the

importance of each feature per class label from the summary plot.

While we have seen a great amount of consistency in the reason for class prediction over all

the cases, there are obviously some differences. Trivially, this is because the methods used are

completely different. SHAP, as the title of the paper says is a Unified approach to model inter-

pretability. It combines multiple methods and produces an optimized pipeline. Nevertheless, all

the 3 models have issues related to efficiency. SHAP, especially, has proven to be extremely useful

in interpreting tabular data. The authors have introduced KernelSHAP and DeepSHAP. Before we

go over the mathematics behind these methods, let us see the 3 useful properties of shapley values.

• Property 1 - Local Accuracy

f(x) = g(x′) = φ0 +
M∑
i=1

φix
′
i (4.6)

The explanation model g(x′) matches the original model f(x) when x = hx(x′), where φ0 =

f(hx(0)) represents the model output with all simplified inputs toggled off (i.e. missing).

40

• Property 2 - Missingness

x′i = 0 =⇒ φi = 0 (4.7)

Missingness constrains features where x′i = 0 to have no attributed impact.

• Property 3 - Consistency Let fx(z′) = f(hx(z′)) and z′\x denote setting z′i = 0. For any

two models f and f ′, if

f ′x(z′)− f ′x(z′\i) ≥ fx(z′)− fx(z′\i) ∀z′ ∈ {0, 1}M (4.8)

then,

φi(f
′, x) ≥ φi(f, x) (4.9)

This leads us back to the Equation 4.5, where we can rewrite the same as

φi(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !

[
fx(z′)− fx(z′\i)

]
(4.10)

where |z′| is the number of non-zero entries in z′, and z′ ⊆ x′ represents all z′ vectors where the

non-zero entries are a subset of the non-zero entries in x′.

These shapley values, as mentioned in the above equations and example, are the conditional

expectation function of the original model, i.e the solution to Equation 4.10. Here, fx(z′) =

f(hx(z′)) = E[f(z)|zS], where S is the set of non-zero indices in z′. The authors proposed

DeepSHAP as a way to combine Shapley values and the DeepLIFT technique to interpret deep

learning models. The summation-to-delta property in DeepLIFT states that

n∑
i=1

C∆xi∆o = ∆o (4.11)

where o = f(x) is the model output, ∆o = f(x)− f(r),∆xi = xi − xr, where r is the reference

41

input. Here, if we choose φi = C∆xi∆o and φ0 as f(r), we get our original idea of additive feature

attribution. From the explanation of conditional distribution, if we assume model linearity and

feature independence, we get

f(hx(z′)) = E[f(z)|zS] (4.12)

= EzS̄ |zS
[
f(z)

]
S̄ /∈ S (4.13)

≈ EzS̄

[
f(z)

]
(4.14)

≈ f
([
zS, E[zS̄]

])
(4.15)

If we interpret the reference value in summation-to-delta equation and the above conditional

distribution approximation, then DeepLIFT approximates SHAP values assuming that the input

features are independent of one another and the deep model is linear. Since DeepLIFT is an ad-

ditive feature attribution method that has local accuracy and missingness property, Shapley value

bridges the remaining consistency property in helping us arrive at DeepSHAP.

DeepLIFT’s multiplication rule is given by

m∆x∆t =
C∆x∆t

∆x
(4.16)

In other words, it is the ratio of contribution of difference-from-reference to input neuron ∆x to

difference-from-reference to target neuron ∆t to the difference-from-reference to input neuron ∆x.

Note the close analogy to the idea of partial derivatives where ∂t
∂x

is the infinitesimal change in t

caused by an infinitesimal change in x, divided by the infinitesimal change in x. The multiplier

is similar in spirit to a partial derivative, but over finite differences instead of infinitesimal ones.

Writing this multiplier in terms of shapley coefficients for backpropagation, we get the linear

approximation for shapley values in terms of DeepLIFT.

42

Figure 4.1: DeepSHAP interpretation [37]

mxjf3 =
φi

(
f3, x

)
xj − E

[
xj
] (4.17)

∀j∈{1,2} myifj =
φi

(
fj, y

)
yi − E

[
yi
] (4.18)

myif3 =
2∑

j=1

myifjmxjf3 (chain rule) (4.19)

This chain rule is given by

m∆xi∆t =
∑
j

m∆xi∆yjm∆yj∆t (4.20)

where x1, x2, x3, ... are input neurons, y1, y2, y3, .. are neurons in a hidden layer and target is t.

Linearly approximating Equation 4.17, we get the shapley value for the feature as

φi(f3, y) ≈ myif3

(
yi − E

[
yi
])

(4.21)

43

4.2.2.3 ELI5

We also have a python package ELI5 - Explain Like I’m 5 [38]! ELI5 provides both global

model interpretation and local model interpretation. The global model interpretation can be con-

sidered simply as a feature importance. It not only support decision tree algorithm such as Random

Forest and XGBoost but also all scikit learn estimators. ELI5 author introduces it as Permutation

Importance for global interpretation. To calculate the score, feature (a word) will be replaced by

other word (noise) and predicting it. The idea is that feature importance can be deduced by getting

how much score decrease when a particular word is not provided.

4.2.3 Model related methods

Another effective way to define model interpretability techniques is that if they are agnostic

methods, meaning they can be extended to any form of ML algorithms, or model-specific tech-

niques, meaning techniques that are only applicable to a particular algorithm category or class.

The downside to intrinsic method practice is that when we need a particular type of analysis,

we are limited to the models that provide it in terms of selection, possibly at the cost of using a

more accurate and representative model. Model-agnostic representations are normally post-hoc,

commonly used to explain neural networks, and could be local or global structures that can be

interpreted. There are four main categories of agnostic simulation techniques -

• Visualization - Visualization techniques are applied primarily to supervised models of learn-

ing. Popular visualization techniques include: Surrogate models, Partial Dependence Plot

(PDP) [39] and Individual Conditional Expectation (ICE) [40].

– These are models that are simple to explain a complex model. In general, it is an

interpretable model (like a regression model or decision tree) that is learned to approach

the latter on the assumptions of the original black-box model. There are, however,

almost no empirical assurances that the more complex version is strongly reflective of

the basic surrogate model. The LIME methodology described above is a recommended

method for constructing regional surrogate models around [36] single observations.

44

– PDP - This is a visual representation that helps to illustrate the partial average associa-

tion of one or more input parameters and a black-box model’s predictions.

– ICE - ICE plots extend PDP. While PD plots provide a fuzzy view of the workings of a

system, ICE plots show relationships and individual differences by breaking down the

PDP performance.

• This can be important inner representations when learning algorithms change cells in the

hidden surface. Therefore, the function of extracting explanations from the network is to re-

move the knowledge acquired through learning and encoded as an internal representation[41]

in a comprehensible manner.

• Influence methods - This method of techniques measures the value and importance of a

function by adjusting the output or internal components and observing how the changes

affect the performance of the design.

– Sensitivity Analysis - Sensitivity refers to how the source and/or weight interference of

an ANN output is affected. It is used to verify that model behavior and outputs remain

stable when intentionally disrupting data or simulating other changes in data. Visual-

izing the results of sensitivity analysis is regarded an agnostic interpretation strategy,

as the view of stability models as data shift increases confidence in the performance of

machine learning [42].

– Layer-wise Relevance Propagation - This strategy consolidates the prediction function

backwards, originating from the output layer of the network and backpropagating to

the input layer. The main property of this phase of restructuring is called preservation

of interest. This approach discusses predictions relevant to the state of peak uncertainty

[43] as opposed to sensitivity analysis.

– Feature Importance - Variable importance assesses each input variable’s contribution

(feature) to a complicated ML model’s predictions. The change in the prediction error

of the system is determined after the feature has been permutated to measure the value

45

of a function. It increases the model error by allowing the values of important features.

The model ignores the values of unimportant features when permuting and thus holds

[44] unchanged model error.

• Example based explanation - Example based explanation techniques select particular in-

stances of the dataset to explain the behavior of machine learning models. Example-based

explanations are mostly model agnostic because they make any ML model more interpretable

[45].

4.3 Designs

4.3.1 Experiment 1

Given a random test input, I generate explanations for the topic classifier model using the XAI

techniques.

4.3.2 Experiment 2

In Experiment 2 in Section 2, we varied embedding dimensions for the HAN model. Here, I

will generate explanations for each embedding variant to compare and show the improvement in

the prediction performance.

4.3.3 Experiment 3

This experiment focuses on the idea of model tuning using XAI techniques. For this, I will

generate explanations for the topic classifier as it trains.

4.3.4 Experiment 4

As mentioned in Section 3.3.2, the new HAN with a batch normalized layer has been compared

with the embedding dimension variant along with the XAI techniques.

46

4.4 Performance Evaluation

4.4.1 Result for Experiment 1

Consider a random test input:

Input Text : Share prices for the British drugmaker Indivior plunged today on the London Stock

Exchange. The drop came on news that the U.S. Justice Department indicted the company on fraud

and conspiracy charges. Indivior makes the drug Suboxone, widely used to treat people suffering

from opioid addiction. Federal prosecutors now claim the company falsely marketed Suboxone

as safer and less prone to abuse than cheaper generic drugs. North Country Public Radio’s Brian

Mann reports.

The predicted class from the hierarchical attention network is : Company. The attention weights

for the words are shown below, sentence-wise.

From these attention weights, we get the words with maximum attention values as

47

Figure 4.2: Attention weights for words in every sentence

Figure 4.3: Attention Output with words that have max attention weights

48

Next we look at the output from LIME, Eli5 and Shap.

Figure 4.4: LIME output

49

Figure 4.5: Eli5 output

50

Figure 4.6: SHAP summary plot - Class labels correspond to 0: ’Company’, 1: ’Educational In-
stitution’, 2: ’Artist’, 3: ’Athlete’, 4: ’Office Holder’, 5: ’Mean Of Transportation’, 6: ’Building’,
7: ’Natural Place’, 8: ’Village’, 9: ’Animal’, 10: ’Plant’, 11: ’Album’, 12: ’Film’, 13: ’Written
Work’

51

The table below highlights Which words are missing and which are found in common among

the 4 methods discussed above. The color coding is as follows: Yellow - 2 similar words ; Light

Green - 3 similar words ; Dark Green - All models have the words

Similar words and Dissimilar words
Attention Network LIME SHAP Eli5

News Company Opioid Share
Department Stock Prosecutors Price
Company Cheaper Safer Stock

Justice Opioid Plunged Exchange
Indicted Generic Indicted Company
Came Exchange Falsely Charges
Make Cheaper Makes
British Share Opioid
Drug Prone Fraud

Plunged Fraud Federal
Conspiracy Conspiracy Cheaper

Fraud Prices Generic
Today Addiction Marketed
People Treat
London Charges

Price Abuse
Drugmaker Generic

Charges Suffering
Treat Drop

Suboxone Drugs
Widely
Share
Stock
Used

Exchange
Suffering
Opioid

Addiction

Table 4.4: Comparing predicted words over the 4 methods.

52

4.4.2 Results for Experiment 2

What difference we observe mainly here is the difference in attention weights for the words.

While the ones with lower weights are not very consequential, the words with greater attention

weights change when the embedding dimensions are varied. Also, the models overfit within 6-7

epochs as can be seen in the Figure 3.3. As mentioned at the start of this section, one must look

beyond how trust-able is our interpretable model. We need to evaluate as humans to believe that

our model is right in predicting that particular class. The Tables 4.5-4.8 below compare the words

predicted by the attention network and the respective interpretable models. The color coding is as

follows: Yellow - 2 similar words ; Light Green - 3 similar words ; Dark Green - All models have

the words

53

Attention words for Embedding Dimension
50 100 200 300 LIME SHAP ELI5

Opioid News Exchange Company Cheaper Opioid Opioid
Stock Department Addiction Department Opioid Prosecutors Cheaper
Share Company London News Stock Safer Stock

Plunged Justice Opioid Opioid Company Plunged Exchange
Treat Indicted Stock Stock Exchange Indicted Generic

People Addiction Justice Share Generic Falsely Prices
Company Make Suffering Plunged Prices Cheaper Treat

Department British Department Treat Treat Share Fraud
News Drug Plunged People Share Prone Company
Justice Plunged Treat Conspiracy Marketed Fraud Share

Indicted Conspiracy People Fraud Fraud Conspiracy Federal
Conspiracy Fraud News Today Radio Cheaper Marketed

Fraud Today Drug Price Addiction Drop
People People Share Plunged Treat Today
London London Company Drugmaker Charges Radio

Drugmaker Price Price Charges Suffering Public
British Drugmaker Drop British Abuse Department

Charges Conspiracy Indicted Drugs
Treat Fraud Addiction Generic

Suboxone Indicted Came Drop
Widely Today Make
Share British Widely
Stock British Suffering

Exchange Drugmaker Drop
Suffering Conspiracy Justice
Opioid Make Suboxone

Indivior

Table 4.5: Comparing the methods for Embedding Dimension - 50

54

Attention words for Embedding Dimension
50 100 200 300 LIME SHAP ELI5

Opioid News Exchange Company Cheaper Opioid Opioid
Stock Department Addiction Department Opioid Prosecutors Cheaper
Share Company London News Stock Safer Stock

Plunged Justice Opioid Opioid Company Plunged Exchange
Treat Indicted Stock Stock Exchange Indicted Generic

People Addiction Justice Share Generic Falsely Prices
Company Make Suffering Plunged Prices Cheaper Treat

Department British Department Treat Treat Share Fraud
News Drug Plunged People Share Prone Company
Justice Plunged Treat Conspiracy Marketed Fraud Share

Indicted Conspiracy People Fraud Fraud Conspiracy Federal
Conspiracy Fraud News Today Radio Cheaper Marketed

Fraud Today Drug Price Addiction Drop
People People Share Plunged Treat Today
London London Company Drugmaker Charges Radio

Drugmaker Price Price Charges Suffering Public
British Drugmaker Drop British Abuse Department

Charges Conspiracy Indicted Drugs
Treat Fraud Addiction Generic

Suboxone Indicted Came Drop
Widely Today Make
Share British Widely
Stock British Suffering

Exchange Drugmaker Drop
Suffering Conspiracy Justice
Opioid Make Suboxone

Indivior

Table 4.6: Comparing the methods for Embedding Dimension - 100

55

Attention words for Embedding Dimension
50 100 200 300 LIME SHAP ELI5

Opioid News Exchange Company Cheaper Opioid Opioid
Stock Department Addiction Department Opioid Prosecutors Cheaper
Share Company London News Stock Safer Stock

Plunged Justice Opioid Opioid Company Plunged Exchange
Treat Indicted Stock Stock Exchange Indicted Generic

People Addiction Justice Share Generic Falsely Prices
Company Make Suffering Plunged Prices Cheaper Treat

Department British Department Treat Treat Share Fraud
News Drug Plunged People Share Prone Company
Justice Plunged Treat Conspiracy Marketed Fraud Share

Indicted Conspiracy People Fraud Fraud Conspiracy Federal
Conspiracy Fraud News Today Radio Cheaper Marketed

Fraud Today Drug Price Addiction Drop
People People Share Plunged Treat Today
London London Company Drugmaker Charges Radio

Drugmaker Price Price Charges Suffering Public
British Drugmaker Drop British Abuse Department

Charges Conspiracy Indicted Drugs
Treat Fraud Addiction Generic

Suboxone Indicted Generic Drop
Widely Today Make
Share Cheaper Widely
Stock British Suffering

Exchange Drugmaker Drop
Suffering Came Justice
Opioid Make Suboxone

Indivior

Table 4.7: Comparing the methods for Embedding Dimension - 200

56

Attention words for Embedding Dimension
50 100 200 300 LIME SHAP ELI5

Opioid News Exchange Company Cheaper Opioid Opioid
Stock Department Addiction Department Opioid Prosecutors Cheaper
Share Company London News Stock Safer Stock

Plunged Justice Opioid Opioid Company Plunged Exchange
Treat Indicted Stock Stock Exchange Indicted Generic

People Addiction Justice Share Generic Falsely Prices
Company Make Suffering Plunged Prices Cheaper Treat

Department British Department Treat Treat Share Fraud
News Drug Plunged People Share Prone Company
Justice Plunged Treat Conspiracy Marketed Fraud Share

Indicted Conspiracy People Fraud Fraud Conspiracy Federal
Conspiracy Fraud News Today Radio Cheaper Marketed

Fraud Today Drug Price Addiction Drop
People People Share Exchange Treat Today
London London Company Drugs Charges Radio

Drugmaker Price Price Charges Suffering Public
British Drugmaker Drop British Abuse Department

Charges Conspiracy Indicted Drugs
Treat Fraud Addiction Generic

Suboxone Indicted Generic Drop
Widely Today Make
Share Cheaper Widely
Stock British Suffering

Exchange Drugmaker Drop
Suffering Came Justice
Opioid Make Suboxone

Indivior

Table 4.8: Comparing the methods for Embedding Dimension - 300

57

It is very evidently seen from these tables that as we increase the dimension of the embed-

ding, there is a greater overlap between the words from the attention network and the interpretable

models. Particularly, ELI5 has a built in evaluation metric - “score" which is an accuracy score

weighted by cosine distance between generated sample and the original document (i.e. texts which

are closer to the example are more important). Accuracy shows how good are ‘top 1’ predictions.

ELI5 also tells the mean KL divergence for all target classes. The values are listed below for each

model.

Embedding Dimension Score Mean KL-Divergence
50 0.9398 0.0786

100 0.9403 0.0569
200 0.9397 0.0566
300 0.9410 0.0566

Table 4.9: Score and KL-Divergence values for ELI5

4.4.3 Result for Experiment 3

XAI can be used to tune model hyper-parameters. In the following example, I will show a

case where LIME is used to generate explanations for a particular test example of 300 dimension

embedding as it trains.

58

Figure 4.7: Explainability per Epoch - MTC dataset

59

4.4.4 Result for Experiment 4 - Application

We have the following test example.

Input text:Catheterization laboratory events and hospital outcome with direct angioplasty for

acute myocardial infarction To assess the safety of direct infarct angioplasty without antecedent

thrombolytic therapy, catheterization laboratory and hospital events were assessed in consecu-

tively treated patients with infarctions involving the left anterior descending (n = 100 patients),

right (n = 100), and circumflex (n = 50) coronary arteries. The groups of patients were similar

for age (left anterior descending coronary artery, 59 years; right coronary artery, 58 years; circum-

flex coronary artery, 62 years), patients with multivessel disease (left anterior descending coronary

artery, 55%; right coronary artery, 55%; circumflex coronary artery, 64%), and patients with ini-

tial grade 0/1 antegrade flow (left anterior descending coronary artery, 79%; right coronary artery,

84%; circumflex coronary artery, 90%). Cardiogenic shock was present in eight patients with in-

farction of the left anterior descending coronary artery, four with infarction of the right coronary

artery, and four with infarction of the circumflex coronary artery. Major catheterization laboratory

events (cardioversion, cardiopulmonary resuscitation, dopamine or intra-aortic balloon pump sup-

port for hypotension, and urgent surgery) occurred in 10 patients with infarction of the left anterior

descending coronary artery, eight with infarction of the right coronary artery, and four with infarc-

tion of the circumflex coronary artery (16 of 16 shock and six of 234 nonshock patients, p less

than 0.001). There was one in-laboratory death (shock patient with infarction of the left anterior

descending coronary artery).

Output topic from Topic Classifier: Cardiovascular Diseases

The figures 4.8 - 4.10 below show the outputs from each XAI technique discussed and the tables

4.10-4.13 that follow compare the embedding dimension variants .

60

Figure 4.8: MTC - Output from LIME

Figure 4.9: MTC - Output from ELI5

61

Figure 4.9: MTC - Output from ELI5 (continued)

62

Figure 4.10: MTC - SHAP summary plot - Class 0 - Neoplastic Diseases, Class 1 -Digestive
System Diseases, Class 2 -Nervous System Diseases, Class 3 -Cardiovascular Diseases and Class
5 -General Pathological Conditions.

63

Attention words for Embedding Dimension
50 100 200 300 LIME SHAP ELI5

occurred infarction angioplasty artery infarction coronary laboratory
myocardial myocardial thrombolytic eight left artery acute

catheterization acute descending right descending circumflex infarction
coronary angioplasty cardiogenic descending circumflex infarction myocardial
infarction left infarction thrombolytic coronary anterior coronary

cardioversion hypotension artery patient catheterization left artery
acute circumflex myocardial myocardial angioplasty right cardioversion
left right coronary angioplasty infarct laboratory circumflex

anterior coronary anterior coronary myocardial shock shock
angioplasty cardiogenic antecedent present artery events left

artery anterior shock involving catheterization cardiopulmonary
patient cardiopulmonary left acute cardiogenic anterior

hypotension artery acute infarction angioplasty
thrombolytic thrombolytic circumflex anterior cardioversion
circumflex shock multivessel circumflex
laboratory catheterization disease left

cardiopulmonary cardioversion patient antegrade
antegrade antecedent therapy multivessel
surgery dopamine antegrade shock

antecedent laboratory catheterization cardiogenic
hospital safety infarct
initial laboratory catheterization

safety
laboratory

Table 4.10: MTC - Comparing the methods for Embedding Dimension - 50

64

Attention words for Embedding Dimension
50 100 200 300 LIME SHAP ELI5

occurred infarction angioplasty artery infarction coronary laboratory
myocardial myocardial thrombolytic eight left artery acute

catheterization acute descending right descending circumflex infarction
coronary angioplasty cardiogenic descending circumflex infarction myocardial
infarction left infarction thrombolytic coronary anterior coronary

cardioversion hypotension artery patient catheterization left artery
acute circumflex myocardial myocardial angioplasty right cardioversion
left right coronary angioplasty infarct laboratory circumflex

anterior coronary anterior coronary myocardial shock shock
angioplasty cardiogenic antecedent present artery events left

artery anterior shock involving anterior catheterization cardiopulmonary
patient cardiopulmonary left acute cardiogenic anterior

hypotension artery acute infarction angioplasty catherterization
thrombolytic thrombolytic circumflex anterior cardioversion
circumflex shock multivessel circumflex
laboratory catheterization disease left

cardiopulmonary cardioversion patient antegrade
antegrade antecedent therapy multivessel
surgery dopamine antegrade shock

antecedent laboratory catheterization cardiogenic
hospital safety infarct
initial laboratory catheterization

safety
laboratory

Table 4.11: MTC - Comparing the methods for Embedding Dimension - 100

65

Attention words for Embedding Dimension
50 100 200 300 LIME SHAP ELI5

occurred infarction angioplasty artery infarction coronary laboratory
myocardial myocardial thrombolytic eight left artery acute

catheterization acute descending right descending circumflex infarction
coronary angioplasty cardiogenic descending circumflex infarction myocardial
infarction left infarction thrombolytic coronary anterior coronary

cardioversion hypotension artery patient catheterization left artery
acute circumflex myocardial myocardial angioplasty right cardioversion
left right coronary angioplasty cardiogenic laboratory circumflex

anterior coronary anterior coronary myocardial shock shock
angioplasty cardiogenic antecedent present artery events left

artery anterior shock involving anterior catheterization cardiopulmonary
patient cardiopulmonary left acute cardiogenic anterior

hypotension artery acute infarction angioplasty catherterization
thrombolytic thrombolytic circumflex anterior cardioversion
circumflex shock multivessel circumflex
laboratory catheterization disease left

cardiopulmonary cardioversion patient antegrade
antegrade antecedent therapy multivessel
surgery dopamine antegrade shock

antecedent laboratory catheterization cardiogenic
hospital safety infarct
initial laboratory catheterization

safety
laboratory

Table 4.12: MTC - Comparing the methods for Embedding Dimension - 200

66

Attention words for Embedding Dimension
50 100 200 300 LIME SHAP ELI5

occurred infarction angioplasty artery infarction coronary laboratory
myocardial myocardial thrombolytic eight left artery acute

catheterization acute descending right descending circumflex infarction
coronary angioplasty cardiogenic descending circumflex infarction myocardial
infarction left infarction thrombolytic coronary anterior coronary

cardioversion hypotension artery patient catheterization left artery
acute circumflex myocardial myocardial angioplasty right thrombolytic
left right coronary angioplasty cardiogenic laboratory circumflex

anterior coronary anterior coronary myocardial shock shock
angioplasty cardiogenic antecedent present artery events left

artery anterior shock involving anterior catheterization cardiopulmonary
patient cardiopulmonary left acute laboratory cardiogenic anterior

hypotension artery acute infarction angioplasty catherterization
thrombolytic thrombolytic circumflex anterior cardioversion angioplasty
circumflex shock multivessel circumflex
laboratory catheterization disease left

cardiopulmonary cardioversion patient antegrade
antegrade antecedent therapy multivessel
surgery dopamine antegrade shock

antecedent laboratory catheterization cardiogenic
hospital safety infarct
initial laboratory catheterization

safety
laboratory

Table 4.13: MTC - Comparing the methods for Embedding Dimension - 300

67

It is very evidently seen from these tables that as we increase the dimension of the embed-

ding, there is a greater overlap between the words from the attention network and the interpretable

models.

68

5. CONCLUSIONS

Semantic vector space models of language represent each word with a real-valued vector. These

vectors can be used as features in a variety of applications, such as information retrieval , docu-

ment classification , question answering , named entity recognition, and parsing. Traditionally,

keyword research involved building a list or database of relevant keywords that we hoped to rank

for. Often graded by difficulty score, click through rate and search volume, keyword research was

about finding candidates in this list to create content and gather some organic traffic through exact

matching.

This thesis involved 3 stages that were interconnected. In the first section, we understood how

paragraph vectors worked and how to obtain documents similar to a search query based on cosine

similarity as a metric. I then analyzed how noise affects the model through negative sampling as

well as external Gaussian perturbations.2.10 and 2.11 were self explanatory in terms of how the

model behaved.

In Chapter 3, my aim was to improve the document prediction accuracy of documents we saw

in Chapter 2. I used a topic classifier to bridge this gap in improving prediction accuracy. In order

to understand the working of the topic classifier, I employed a Hierarchical Attention Network as

well as an ensemble of shallow learning models (refer 3.3). In order to find the optimal topic clas-

sifier, I varied the embedding dimension and compared the performance of the models - Figures

3.5 to 3.8. Once I had the optimal classifier, I employed it to obtain the document based on a

search query. I tested this on multiple datasets and the results showed a significant improvement

in utilizing this technique. In addition to these, I tested this model on 3 separate datasets to show

the use of this in Medical Field, Genetics and Abstract Classification for topics in Science.

In the final Chapter, I justified the actions I took in Chapter 3 using XAI techniques. The methods

69

listed in the chapter are model agnostic. This means that they cannot peek into the model, but find

a local explanation a particular example. LIME, SHAP and ELI5 proved to be extremely useful in

showing the consistency of the Topic Classifier. I was also able to prove that the overlap between

the words increased with increase in embedding dimension.

70

REFERENCES

[1] Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and Jenifer C Lai.

Class-based n-gram models of natural language. Computational linguistics, 18(4):467–479,

1992.

[2] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[3] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning representations

by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[4] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[5] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for

word representation. In Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP), pages 1532–1543, 2014.

[6] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In

International conference on machine learning, pages 1188–1196, 2014.

[7] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural proba-

bilistic language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

[8] Ronan Collobert and Jason Weston. A unified architecture for natural language processing:

Deep neural networks with multitask learning. In Proceedings of the 25th international con-

ference on Machine learning, pages 160–167. ACM, 2008.

[9] Rob Koopman, Shenghui Wang, and Gwenn Englebienne. Fast and discriminative seman-

tic embedding. In Proceedings of the 13th International Conference on Computational

Semantics-Long Papers, pages 235–246, 2019.

[10] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with bi-

nary coins. Journal of computer and System Sciences, 66(4):671–687, 2003.

71

[11] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert

space. Contemporary mathematics, 26(189-206):1, 1984.

[12] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-

scale information network embedding. In Proceedings of the 24th international conference

on world wide web, pages 1067–1077. International World Wide Web Conferences Steering

Committee, 2015.

[13] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embed-

ding and clustering. In Advances in neural information processing systems, pages 585–591,

2002.

[14] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework

for nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

[15] Trevor F Cox, MA Cox, and TF COX. Multidimensional scaling, st, 1994.

[16] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Ken-

ton Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint

arXiv:1802.05365, 2018.

[17] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. Su-

pervised learning of universal sentence representations from natural language inference data.

arXiv preprint arXiv:1705.02364, 2017.

[18] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In

International conference on machine learning, pages 1188–1196, 2014.

[19] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text

classification. In Advances in neural information processing systems, pages 649–657, 2015.

[20] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint

arXiv:1408.5882, 2014.

72

[21] Ye Zhang and Byron Wallace. A sensitivity analysis of (and practitioners’ guide to) convolu-

tional neural networks for sentence classification. arXiv preprint arXiv:1510.03820, 2015.

[22] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierar-

chical attention networks for document classification. In Proceedings of the 2016 conference

of the North American chapter of the association for computational linguistics: human lan-

guage technologies, pages 1480–1489, 2016.

[23] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[24] Kamran Kowsari, Donald E Brown, Mojtaba Heidarysafa, Kiana Jafari Meimandi, Matthew S

Gerber, and Laura E Barnes. Hdltex: Hierarchical deep learning for text classification. In

2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA),

pages 364–371. IEEE, 2017.

[25] Benjamin Letham, Cynthia Rudin, Tyler H McCormick, David Madigan, et al. Interpretable

classifiers using rules and bayesian analysis: Building a better stroke prediction model. The

Annals of Applied Statistics, 9(3):1350–1371, 2015.

[26] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. In-

telligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission.

In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 1721–1730. ACM, 2015.

[27] Attend Show. Tell: Neural image caption generation with visual attention. Kelvin Xu et. al..

arXiv Pre-Print, 23, 2015.

[28] Goku Mohandas. Interpretability via attentional and memory-based interfaces, using tensor-

flow, 2017.

[29] Sofia Serrano and Noah A Smith. Is attention interpretable? arXiv preprint

arXiv:1906.03731, 2019.

73

[30] Sarthak Jain and Byron C Wallace. Attention is not explanation. arXiv preprint

arXiv:1902.10186, 2019.

[31] Chengliang Yang, Anand Rangarajan, and Sanjay Ranka. Global model interpretation via

recursive partitioning. In 2018 IEEE 20th International Conference on High Performance

Computing and Communications; IEEE 16th International Conference on Smart City; IEEE

4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pages

1563–1570. IEEE, 2018.

[32] Marco A Valenzuela-Escárcega, Ajay Nagesh, and Mihai Surdeanu. Lightly-supervised rep-

resentation learning with global interpretability. arXiv preprint arXiv:1805.11545, 2018.

[33] Dumitru Erhan, Aaron Courville, and Yoshua Bengio. Understanding representations learned

in deep architectures. Department dInformatique et Recherche Operationnelle, University of

Montreal, QC, Canada, Tech. Rep, 1355:1, 2010.

[34] Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful

perturbation. In Proceedings of the IEEE International Conference on Computer Vision,

pages 3429–3437, 2017.

[35] Pieter-Jan Kindermans, Kristof T Schütt, Maximilian Alber, Klaus-Robert Müller, Dumitru

Erhan, Been Kim, and Sven Dähne. Learning how to explain neural networks: Patternnet and

patternattribution. arXiv preprint arXiv:1705.05598, 2017.

[36] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?: Explain-

ing the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining, pages 1135–1144. ACM, 2016.

[37] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,

editors, Advances in Neural Information Processing Systems 30, pages 4765–4774. Curran

Associates, Inc., 2017.

[38] TeamHG-Memex. Eli5. https://eli5.readthedocs.io/en/latest/overview.html#features.

74

[39] Donald P Green and Holger L Kern. Modeling heterogeneous treatment effects in large-scale

experiments using bayesian additive regression trees. In The annual summer meeting of the

society of political methodology, 2010.

[40] Alex Goldstein, Adam Kapelner, Justin Bleich, and Emil Pitkin. Peeking inside the black

box: Visualizing statistical learning with plots of individual conditional expectation. Journal

of Computational and Graphical Statistics, 24(1):44–65, 2015.

[41] Robert Andrews, Joachim Diederich, and Alan B Tickle. Survey and critique of tech-

niques for extracting rules from trained artificial neural networks. Knowledge-based systems,

8(6):373–389, 1995.

[42] Paulo Cortez and Mark J Embrechts. Using sensitivity analysis and visualization techniques

to open black box data mining models. Information Sciences, 225:1–17, 2013.

[43] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert

Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions

by layer-wise relevance propagation. PloS one, 10(7):e0130140, 2015.

[44] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. Model class reliance: Variable im-

portance measures for any machine learning model class, from the “rashomon” perspective.

arXiv preprint arXiv:1801.01489, 2018.

[45] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are not enough, learn to crit-

icize! criticism for interpretability. In Advances in Neural Information Processing Systems,

pages 2280–2288, 2016.

75

