38 research outputs found

    Modified CSLBP

    Get PDF
    Image hashing is an efficient way to handle digital data authentication problem. Image hashing represents quality summarization of image features in compact manner. In this paper, the modified center symmetric local binary pattern (CSLBP) image hashing algorithm is proposed. Unlike CSLBP 16 bin histogram, Modified CSLBP generates 8 bin histogram without compromise on quality to generate compact hash. It has been found that, uniform quantization on a histogram with more bin results in more precision loss. To overcome quantization loss, modified CSLBP generates the two histogram of a four bin. Uniform quantization on a 4 bin histogram results in less precision loss than a 16 bin histogram. The first generated histogram represents the nearest neighbours and second one is for the diagonal neighbours. To enhance quality in terms of discrimination power, different weight factor are used during histogram generation. For the nearest and the diagonal neighbours, two local weight factors are used. One is the Standard Deviation (SD) and other is the Laplacian of Gaussian (LoG). Standard deviation represents a spread of data which captures local variation from mean. LoG is a second order derivative edge detection operator which detects edges well in presence of noise. The proposed algorithm is resilient to the various kinds of attacks. The proposed method is tested on database having malicious and non-malicious images using benchmark like NHD and ROC which confirms theoretical analysis. The experimental results shows good performance of the proposed method for various attacks despite the short hash length

    Adaptive CSLBP compressed image hashing

    Get PDF
    Hashing is popular technique of image authentication to identify malicious attacks and it also allows appearance changes in an image in controlled way. Image hashing is quality summarization of images. Quality summarization implies extraction and representation of powerful low level features in compact form. Proposed adaptive CSLBP compressed hashing method uses modified CSLBP (Center Symmetric Local Binary Pattern) as a basic method for texture extraction and color weight factor derived from L*a*b* color space. Image hash is generated from image texture. Color weight factors are used adaptively in average and difference forms to enhance discrimination capability of hash. For smooth region, averaging of colours used while for non-smooth region, color differencing is used. Adaptive CSLBP histogram is a compressed form of CSLBP and its quality is improved by adaptive color weight factor. Experimental results are demonstrated with two benchmarks, normalized hamming distance and ROC characteristics. Proposed method successfully differentiate between content change and content persevering modifications for color images

    A Smart and Robust Automatic Inspection of Printed Labels Using an Image Hashing Technique

    Get PDF
    This work is focused on the development of a smart and automatic inspection system for printed labels. This is a challenging problem to solve since the collected labels are typically subjected to a variety of geometric and non-geometric distortions. Even though these distortions do not affect the content of a label, they have a substantial impact on the pixel value of the label image. Second, the faulty area may be extremely small as compared to the overall size of the labelling system. A further necessity is the ability to locate and isolate faults. To overcome this issue, a robust image hashing approach for the detection of erroneous labels has been developed. Image hashing techniques are generally used in image authentication, social event detection and image copy detection. Most of the image hashing methods are computationally extensive and also misjudge the images processed through the geometric transformation. In this paper, we present a novel idea to detect the faults in labels by incorporating image hashing along with the traditional computer vision algorithms to reduce the processing time. It is possible to apply Speeded Up Robust Features (SURF) to acquire alignment parameters so that the scheme is resistant to geometric and other distortions. The statistical mean is employed to generate the hash value. Even though this feature is quite simple, it has been found to be extremely effective in terms of computing complexity and the precision with which faults are detected, as proven by the experimental findings. Experimental results show that the proposed technique achieved an accuracy of 90.12%

    A Review of Hashing based Image Copy Detection Techniques

    Get PDF
    Images are considered to be natural carriers of information, and a large number of images are created, exchanged and are made available online. Apart from creating new images, the availability of number of duplicate copies of images is a critical problem. Hashing based image copy detection techniques are a promising alternative to address this problem. In this approach, a hash is constructed by using a set of unique features extracted from the image for identification. This article provides a comprehensive review of the state-of-the-art image hashing techniques. The reviewed techniques are categorized by the mechanism used and compared across a set of functional & performance parameters. The article finally highlights the current issues faced by such systems and possible future directions to motivate further research work

    Hough transform generated strong image hashing scheme for copy detection

    Get PDF
    The rapid development of image editing software has resulted in widespread unauthorized duplication of original images. This has given rise to the need to develop robust image hashing technique which can easily identify duplicate copies of the original images apart from differentiating it from different images. In this paper, we have proposed an image hashing technique based on discrete wavelet transform and Hough transform, which is robust to large number of image processing attacks including shifting and shearing. The input image is initially pre-processed to remove any kind of minor effects. Discrete wavelet transform is then applied to the pre-processed image to produce different wavelet coefficients from which different edges are detected by using a canny edge detector. Hough transform is finally applied to the edge-detected image to generate an image hash which is used for image identification. Different experiments were conducted to show that the proposed hashing technique has better robustness and discrimination performance as compared to the state-of-the-art techniques. Normalized average mean value difference is also calculated to show the performance of the proposed technique towards various image processing attacks. The proposed copy detection scheme can perform copy detection over large databases and can be considered to be a prototype for developing online real-time copy detection system

    A survey of detection and mitigation for fake images on social media platforms

    Get PDF
    Recently, the spread of fake images on social media platforms has become a significant concern for individuals, organizations, and governments. These images are often created using sophisticated techniques to spread misinformation, influence public opinion, and threaten national security. This paper begins by defining fake images and their potential impact on society, including the spread of misinformation and the erosion of trust in digital media. This paper also examines the different types of fake images and their challenges for detection. We then review the recent approaches proposed for detecting fake images, including digital forensics, machine learning, and deep learning. These approaches are evaluated in terms of their strengths and limitations, highlighting the need for further research. This paper also highlights the need for multimodal approaches that combine multiple sources of information, such as text, images, and videos. Furthermore, we present an overview of existing datasets, evaluation metrics, and benchmarking tools for fake image detection. This paper concludes by discussing future directions for fake image detection research, such as developing more robust and explainable methods, cross-modal fake detection, and the integration of social context. It also emphasizes the need for interdisciplinary research that combines computer science, digital forensics, and cognitive psychology experts to tackle the complex problem of fake images. This survey paper will be a valuable resource for researchers and practitioners working on fake image detection on social media platforms.peer-reviewe

    A hybrid approach for stain normalisation in digital histopathological images

    Get PDF
    Stain in-homogeneity adversely affects segmentation and quantifi-cation of tissues in histology images. Stain normalisation techniques have been used to standardise the appearance of images. However, most the available stain normalisation techniques only work on a particular kind of stain images. In addition, some of these techniques fail to utilise both the spatial and tex-tural information in histology images, leading to image tissue distortion. In this paper, a hybrid approach has been developed, based on an octree colour quantisation algorithm combined with the Beer-Lambert law, a modified blind source separation algorithm, and a modified colour transfer approach. The hybrid method consists of two stages the stain separation stage and colour transfer stage. An octree colour quantisation algorithm combined with Beer-Lambert law, and a modified blind source separation algorithm are used during the stain separation stage to computationally estimate the amount of stain in an histology image based on its chromatic and luminous response. A modified colour transfer algorithm is used during the colour transfer stage to minimise the effect of varying staining and illumination. The hybrid method addresses the colour variation problem in both H&DAB (Haemotoxylin and Diaminoben-zidine) and H&E (Haemotoxylin and Eosin) stain images. The stain normali-sation method is validated against ground truth data. It is widely known that the Beer-Lambert law applies to only stains (such as haematoxylin, eosin) that absorb light. We demonstrate that the Beer-Lambert law applies is applicable to images containing a DAB stain. Better stain normalisation results are obtained in both H&E and H&DAB images

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    Learning to compress and search visual data in large-scale systems

    Full text link
    The problem of high-dimensional and large-scale representation of visual data is addressed from an unsupervised learning perspective. The emphasis is put on discrete representations, where the description length can be measured in bits and hence the model capacity can be controlled. The algorithmic infrastructure is developed based on the synthesis and analysis prior models whose rate-distortion properties, as well as capacity vs. sample complexity trade-offs are carefully optimized. These models are then extended to multi-layers, namely the RRQ and the ML-STC frameworks, where the latter is further evolved as a powerful deep neural network architecture with fast and sample-efficient training and discrete representations. For the developed algorithms, three important applications are developed. First, the problem of large-scale similarity search in retrieval systems is addressed, where a double-stage solution is proposed leading to faster query times and shorter database storage. Second, the problem of learned image compression is targeted, where the proposed models can capture more redundancies from the training images than the conventional compression codecs. Finally, the proposed algorithms are used to solve ill-posed inverse problems. In particular, the problems of image denoising and compressive sensing are addressed with promising results.Comment: PhD thesis dissertatio

    Recent Advances in Digital Image and Video Forensics, Anti-forensics and Counter Anti-forensics

    Full text link
    Image and video forensics have recently gained increasing attention due to the proliferation of manipulated images and videos, especially on social media platforms, such as Twitter and Instagram, which spread disinformation and fake news. This survey explores image and video identification and forgery detection covering both manipulated digital media and generative media. However, media forgery detection techniques are susceptible to anti-forensics; on the other hand, such anti-forensics techniques can themselves be detected. We therefore further cover both anti-forensics and counter anti-forensics techniques in image and video. Finally, we conclude this survey by highlighting some open problems in this domain
    corecore