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Abstract Stain in-homogeneity adversely affects segmentation and quantifi-
cation of tissues in histology images. Stain normalisation techniques have been
used to standardise the appearance of images. However, most the available
stain normalisation techniques only work on a particular kind of stain images.
In addition, some of these techniques fail to utilise both the spatial and tex-
tural information in histology images, leading to image tissue distortion. In
this paper, a hybrid approach has been developed, based on an octree colour
quantisation algorithm combined with the Beer-Lambert law, a modified blind
source separation algorithm, and a modified colour transfer approach. The
hybrid method consists of two stages the stain separation stage and colour
transfer stage. An octree colour quantisation algorithm combined with Beer-
Lambert law, and a modified blind source separation algorithm are used during
the stain separation stage to computationally estimate the amount of stain in
an histology image based on its chromatic and luminous response. A modified
colour transfer algorithm is used during the colour transfer stage to minimise
the effect of varying staining and illumination. The hybrid method addresses
the colour variation problem in both H&DAB (Haemotoxylin and Diaminoben-
zidine) and H&E (Haemotoxylin and Eosin) stain images. The stain normali-
sation method is validated against ground truth data. It is widely known that
the Beer-Lambert law applies to only stains (such as haematoxylin, eosin) that
absorb light. We demonstrate that the Beer-Lambert law applies is applica-
ble to images containing a DAB stain. Better stain normalisation results are
obtained in both H&E and H&DAB images.
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1 Introduction

In histopathology, tissue samples are examined for disease diagnosis. Image
staining is performed to increase the contrast of the image. In-homogeneity in
histology images is still a major problem that impairs visual inspection as well
as image analysis by computer systems [86,41,85,66]. Figure 1 demonstrates
the colour variation problem.

(a) (b)

(c) (d)

Fig. 1 (a) and (b) are the same H&E histology images captured using an Aperio scanner
and Hamamatsu scanner respectively. (c) and (d) are different H&DAB histology images
from the same batch stained at different times.

Stain normalisation is performed to standardise the appearance of the im-
ages so as to improve image analysis during image segmentation and quan-
tification[15]. However, serious tissue distortion may occur if stain normali-
sation is poorly performed leading to poor image interpretation [86,55,8,85].
For example, several objects may appear to be linked as a single object after
segmentation [30,12]. For more accurate diagnosis, an automated stain nor-
malisation method should preserve both tissue structure and texture in the
image. Different stain normalisation approaches have been proposed. How-
ever, most of these stain normalisation techniques are based on histogram
specification [34,28], grey world normalisation [88], comprehensive colour nor-
malisation [19], and histogram equalisation [46,58]. These colour normalisation
techniques work on natural images rather than histology images [86,41,85].
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Stain normalisation techniques employ non-negative matrix factorisation
(NMF) [86,41,85], singular value decomposition (SVD) [57], principal compo-
nent analysis (PCA) [45], [33], independent component analysis (ICA) [84],
statistical based algorithm ICA [1,51], and machine learning [97,78,35,98].
However, these methods are only applicable to certain histology images. In
addition, some of these methods produce undesirable image tissue distortions
and also introduce considerable visual artefacts in histology images [86,41].
Further more, some of these methods require expertise and are computation-
ally expensive. For accurate stain normalisation, a precise estimation of each
applied stain in both source image and target image is necessary to modify
stain colour to match that of the target image [86,85,57]. For example in
H&E stained image slides, purple and pink stains are estimated respectively
based on the Beer-Lambert law. It is widely known that the Beer-Lambert
law applies to only stains (such as haematoxylin, eosin) that absorb light [89].
We demonstrate that Beer-Lambert law is applicable to DAB images. In this
paper, a hybrid approach has been developed, based on an octree colour quan-
tisation algorithm combined with Beer-Lambert law, a modified blind source
separation algorithm, and a modified colour transfer approach. Stain normal-
isation is carried out in similar way as existing approaches [86,57]. However,
our method utilises blind source separation in [63] rather than NMF during
stain separation. Note: we modified the blind source separation in [63] for a
better stain normalisation.

The rest of the paper is structured as follows: Section 2 briefly reviews some
stain normalisation algorithms, Section 3 presents the proposed methodology,
Section 4 presents experimental results and the discussion of results, Section
6 concludes the paper.

2 Related Work

This section briefly reviews existing stain normalisation algorithms address-
ing the stain in-homogeneity problem in histology images. The commonly used
stain normalisation methods include NMF, SVD, PCA, ICA. All of these meth-
ods are based on matrix factorisation(also known as matrix decomposition).
Matrix decomposition methods reduce a complex matrix into constituent parts
so as to make it easier to calculate. Although these methods are based on ma-
trix factorisation, they use various kinds of assumptions translated into dif-
ferent constraints and/or objective functions during stain normalisation [87].
For-example, NMF aims at considering the physical constraint that each stain
has a non-negative response, SVD aims at evaluating the decomposition that
best approximates a data matrix, given some rank restriction [69], PCA aim
at accounting for as much of the data variability while enforcing orthogonal-
ity between their components, and ICA is based on the assumption that each
stain, stains the tissue independently from all the other stains [67,87]. In imag-
ing, besides stain normalisation, matrix factorisation has been used to recover
human pose [31], to extract muscle synergy [18], to segment objects [81,61],
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to classify images [101], to monitor human motion [90], to reduce image di-
mension [4,79], to extract features [83], and to retrieve images from the large
database of images [96]. This is because of its effectiveness and efficiency. The
four stain normalisation methods are described below.

2.1 Non-Negative Matrix Factorisation (NMF)

NMF was proposed by Paatero and Tapper in 1994 [62]. Non-negative matrix
factorization (NMF) factors a data matrix into low-rank latent factor matrices
with non-negativity constraints. Given a data matrix X and a target rank R,
NMF seeks a factorization model [20].

X ≈WHT , X ∈ RM×N ,H ∈ RM (1)

where W ≥ 0 H ≥ 0, and R ≤ min{M,N}.
Compared to other matrix factorisation methods, NMF is capable of learn-

ing parts of objects [47,20]. In addition, NMF is able to identify the ground-
truth-generative factors W and H up to certain trivial ambiguities, which re-
sults into a strong interpretability. NMF can be combined with other methods
such as non negative least squares to normalise stain in FAST images as the
FAST images consist of more objects than it had spectral dimensions [11].
The effectiveness of NMF in analyzing real-life non-negative data has sparked
a substantial amount of research in image analysis. In image analysis, NMF
and related techniques have been applied to different kinds of imaging(such as
remote sensed images, medical images(such as histology images, CT images,
MRI images), and natural images) during feature extraction [80,56,53,92,48],
image classification [26,76,99,5], image ranking [82,14], image reconstruction
[17,16,7], and image enhancement [43,22,42,100,85,86,54,41,42,73,87]. How-
ever, NMF, is less utilised during image enhancement of medical images, in
particular histology imaging, which is affected by colour variation problem.
This study focus on stain normalisation methods.

During stain normalisation, NMF-based algorithms attempt to factor the
optical density (OD) matrix into W and H with the constraint that all ele-
ments must be non-negative, since stains cannot absorb a negative amount of
light. It also forces all columns of the stain vectors to be unit length to keep
it from having an infinite number of solutions that differ only by a constant.
These methods work well on multispectral images, however they tend to incon-
sistently converge when only three spectral components are available[57]. The
standard NMF is subject to local minimisation that is initialisation-dependent
and thus requires a good approximation of the colour vectors to initialise the
factorization process [87]. In addition, standard NMF is not capable of pre-
serving structural and textual information during stain normalisation. Further
more, NMF is not suitable for estimating the stain vector extraction [93,87].

Following NMF, various analysis have been studied. For example, to help
circumvent problems that can be found with NMF, Xu et al., [93] proposed
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the use SNMF in place of NMF to extract the colour vectors. In SNMF, reg-
ularisation and sparsity terms are introduced in the NMF objective function.
However, Xu et al., [93] does not provide information about the initialisation
they use for the SNMF algorithm. In 2017,Van et al., [87] tested SNMF us-
ing the parameter in [52]. According to Van et al., [87], SNMF requires good
initialisation to be efficient, which is not always an easy task. Vahadane et
al., [86] developed a stain normalisation approach based on SNMF to preserve
the structural information of the source image after color normalization. In
this approach, sparsity constraints are added on to stain channels during stain
separation. Parameters for stain normalization are calculated based on the
pseudo maximum of the separated stains. Sparsity constraints are able to en-
hance the recognition ability of the model for separating independent stains.
However, the weighting of stains is processed independently after stain sep-
aration, which limits the capacity for color normalization. Furthermore, the
overall intensity and proportion of the separated stains are not considered in
the model of stain separation. It risks a bias in stain separation, for which
most of the pixels would be normalized to share the appearance of a single
stain[102].

Amit et al., [54], developed a stain normalisation method based on graph
regularised sparse NMF to preserve the textural information in the image.
Like the method in [86], this method also add sparsity constraints on to stain
channels during stain separation. This method also does not consider inten-
sity and proportion of the separated stains in the model of stain separation.
In [102], an adaptive color deconvolution (ACD) model for stain separation
and color normalization of histological images is presented. In this method,
the stain color appearance matrix is utilised as variables, the ACD model is
solved through an integrated optimization. The normalization is achieved by
a unified transformation for the pixels in the image. Unlike in [86,54], This
method considers both intensity and proportion of the stains. Both intensity
and proportion are embedded in the ACD model to effectively reduce the
failure of stain separation and also to avoid color artifacts in the normalized
images.

Recently Li et al., [50] proposed a majorisation-minimisation principle to
develop a convergence-guaranteed algorithm NMF. However, the method was
applied during communication analysis of signals.

2.2 Singular Value Decomposition (SVD)

The singular value decomposition of a matrix A is an attractive algebraic trans-
form that factorises a matrix A into the product of three matrices(U,D,V): Let
A be a m× n matrix. The Singular Value Decomposition of A is as follows:

A = UDV T (2)
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Where U and V are orthogonal matrices with singular values. V T is the
conjugate transpose of V. D is a diagonal matrix with singular elements[39].
The process of SVD depends on the task at hand.

During stain normalisation, SVD is used for automated stain matrix esti-
mation to address colour variation problems [57]. The SVD method works by
calculating the plane from the two vectors corresponding to the two largest sin-
gular values of the SVD decomposition of the OD(optical density) transformed
pixels and then later projecting OD transformed pixels onto the plane [84,57,
1]. SVD easily adapts to variations in the local statistics of an image [95,64,27,
3,38]. SVD is also stable and robust to noise [91,94,44,44,39,6,2,71,60,37].
However, although SVD can effectively determine independent components,
it changes the colour distribution of both source and reference images, which
is not necessary [54]. Compared to NMF, SVD is fast. However, it tends to
produce unrealistic colours in the normalised source image [86,85].

2.3 Principal Component Analysis

Principal component analysis was first introduced by Karl Pearson in 1901 [65],
and developed independently by Hotelling in 1933 [32]. Principal component
analysis uses an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly uncorrelated
variables known as principal components.

During stain normalisation, in PCA [40], a plane is constructed that opti-
mally approximates variability between image pixels. The plane is spanned by
the two first principal component vectors of the image pixel colour data. The
deconvolution error is minimised, by making sure that the optimal colour de-
convolution vectors of the two stains in the original image are part of the plane.
Although PCA can identify an appropriate plane for describing the clouds of
bi-coloured pixels for H&E staining, it is not good at representing variability
in stain colours as it assumes fixed stain vectors for H and E images [67,1,87].
In comparison to PCA and NMF algorithms, ICA gives a superior projection
of the data with respect to each stain [84].

2.4 Independent Component Analysis (ICA)

Independent Component Analysis is blind source separation method that ob-
tains non-Gaussian signals from a Gaussian source. Independent Component
Analysis is quite similar to PCA[84]. The only difference lies in the way PCA
and ICA deal with data. PCA dispense the data in a way that best separates
variance while ICA dispense the data along the axes in such a way that each
independent component directly corresponds to a given stain[84]. ICA may
not achieve an orthogonal distribution if the two stains in the image are of
the same color. Although Trahearn et al., [84] introduced a correction step to
estimate the true stain vector from within the ICA space, the correction step
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involves two steps that include (a) the true stain vectors are a minor adjust-
ment from the unit vectors in ICA space, (b) Most of the data in ICA space is
close to one of the true stain vectors. However ICA is applicable to only images
with more than two stains. Rabinovic et al.,[67] compared two stain deconvo-
lution approaches, NMF and ICA. They showed that while NMF performed
better however neither of the methods was sufficient to fully deconvolve the
images [1], [13]. The study was performed on hyper-spectral images, rather
than light microscopy images. Hyper-spectral imaging are different from mi-
croscopy image in such a way that they have higher number of input channels
as compared to the three-channel RGB microscopy images, which may limit
the comparison that can be made between methods for the two modalities.

2.5 Statistical Blind Source Separation Algorithm ICA

Alsubaie N et al., [1] chose to recover the original source signals blindly by
using the statistical blind source separation algorithm ICA. In this method,
independent component analysis is used in the wavelet domain where each
colour channel of the input image is decomposed into a series of narrow sub-
band images using a decimated wavelet transform. Then later each sub-band
is statistically analysed in order to find the least Gaussian sub-bands. Finally,
ICA is applied to the selected sub bands to estimate the stain matrix. The
method cannot estimate weaker stains such as eosin.

3 Methods and material

This section presents the proposed methodology for automated stain normali-
sation of H&E and H&DAB stain histology images. The proposed methodology
involves two stages: (a) stain separation, and (b) colour transfer.

3.1 Proposed automated stain normalisation

The hybrid method consist of two stages: the stain separation stage and colour
transfer stage. An octree colour quantisation algorithm combined with the
Beer-Lambert law, and a modified blind source separation algorithm are used
during stain separation stage to computationally estimate the amount of stain
in an histology image based on its chromatic and luminous response. A modi-
fied colour transfer algorithm is used during the colour transfer stage to min-
imise the effect of varying staining and illumination.
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Fig. 2 Stain normalisation process

3.1.1 Stain separation

Stain separation is performed to computationally estimate the amount of stain
in an histology image based on its chromatic and luminous response [70,23,
67,24]. Octree colour quantisation algorithm is combined with Beer-Lambert
law,and a modified blind source separation algorithm are used during stain sep-
aration stage. Note: We modified the blind source separation [63]. As compared
to blind source separation method in [63], our blind source separation method
uses spatial-spectral Schrodinger-Eigen vectors and Eigen values during pre-
whitening process to determine the set of stain vectors and stain matrix(3 X
3). By making use of Schrodinger-Eigen vectors, we are able to incorporate
texture and spatial information [10]. Our Stain separation algorithm involves
three steps that comprise,(a) Estimate stain, (b) Obtain the stain vectors, (c)
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Perform colour deconvolution. The three steps are described in the section
below:-

(a) Estimate stain
(i) Colour quantisation

Colour quantisation is the process of choosing M colours from I to con-
struct a quantised colour space, Ī, where Ī = Īj, j = {1, 2, ....,M}
[77]. Colour quantisation is introduced due its ability to enhance the
image [8,29,59,77,36]. Quantisation algorithms can be categorised into
two classes: uniform quantisation and non-uniform quantisation algo-
rithm. The difference between the two lies in the way they handle colour
space. For example, in uniform colour quantisation, the colour space is
broken into equal sized regions where the number of regions is less than
or equal to M. Non-uniform colour quantisation breaks the colour space
depending on distribution of colours in the image. In terms of per-
formance, non-uniform algorithms outperforms uniform quantisation
algorithms. Non-uniform algorithms are easy to implement and offer
consistent results [77,49]. We choose Octree algorithm that is highly
non-uniform to extract the classes [72]. The colour classes are then la-
belled and the labelled image is converted into optical density. The
octree quantisation algorithm quantises the colour following the steps
below: given an image I, every colour in the image is stored in an octree
of depth 8 (every leaf at depth 8 represents a distinct colour). A limit
of M (in this case M = 256) leaves are placed on the tree. The colours
are filtered based on the limit of M leaves set. For example colour in
the tree can result in two outcomes: (a) if there are less than M leaves
the colour is filtered down the tree until either it reaches some leaf node
that has an associated representative colour or it reaches the leaf node
representing its unique colour, and (b) If there are greater than M leaves
in the tree some set of leaves in the tree must be merged (their rep-
resentative colours averaged) together and a new representative colour
stored in their parent.
Leaves are selected and merged following two criteria: (a) Reducible
nodes that have the largest depth in the tree should be chosen first.
They represent colours that lie closest together, (b) If there is more
than one group of leaves at the maximum depth the algorithm either
merges leaves that represent the fewest number of pixels to keep the
error small or reduce leaves that represent the most pixels. In this case
large areas will be uniformly filled in a slightly wrong colour while
maintaining detailed shading.
Once the entire image has been processed, the colour in the image is
quantised by simply filtering each colour down the tree until a leaf is
hit.

(ii) Convert the colour quantised image to optical density space

Z = LOG( I0) − LOG( I + 1) (3)
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where I0 is the illuminating light associated with the quantised RGB
Image I.

(b) Obtain stain vector
The stain vector is obtained following the steps below
(i) Pre-whiten data following the steps below [31].

Compute the correlation matrix using Eq. 4:-

R = Rs ×
R

′

s

Ls

(4)

where Rs is the received sigma. Rs
′
is the conjugate transpose of Rs.

Ls is the length of the sigma.
Obtain Eigen values U and Eigen vectors V using Schroedinger Poten-
tial in [10,9], rather than the common Eigen values and vector. Note:
As compared to blind source separation method in [63], our blind source
separation method uses spatial-spectral Schroedinger-Eigen vectors and
Eigen values during pre-whitening process to determine the set of stain
vectors and stain matrix(3 X 3).
Perform Eigen values decomposition using shur decomposition method
in Eq. 5. Shur decomposition method is expressed as [63,21,25,75]:

Ã
(d)
Y Y = QUQ−1 (5)

where Q is a unitary matrix, Q−1 is a conjugate transpose of Q. U
is the diagonal matrix with real entries. Denoising the estimate ÃY Y

of AY Y = E(Y Y −1) is performed by estimating the noise variance.
The noise variance is estimated by obtaining the average of the smallest
Eigen values. The denoised image is obtained using equation below:-

Ã
(d)
Y Y = ÃY Y − σ2

nIq (6)

Given that ideally Ã(d)
Y Y = HH−1, the non-zero part of the matrix

LD
1
2 equals H up to a unitary ambiguity matrix:

L̃ = HU (7)

where U is a unitary matrix. L̃ is constructed as a matrix containing
p large norm. Column in LD

1
2 .Then, the received signal is pre-filtered

using:
Ỹ = L̃#Y (8)

where # denote matrix pseudo-inverse.
(ii) Perform multi-kurtosis maximisation

Multi user kurtosis (MUK) can be defined by Mq×p the following set
of q × p complex matrices:
Mq×p = {D ∈ Cq×p such that DHD = Ip}
We perform MUK following the steps below:-
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Compute the gradient of F (G) using the formula in Eq. 9 with respect
to W. Then later obtain an adaptive stochastic-gradient algorithm.
Let

F( G) =
∑p

j=1 sign(K( zj) )K( zj) = sign(Ka)
∑p

j=1

(
E|zj|4−

2E2|zj|2−
∣∣∣E (z2j )∣∣∣2) And by invoking C2 with the assumption that

symmetrical inputs
( E( a2( K) = 0) ) , the gradient of F ( G) with respect to W is
given by:

∇(F (G)) = 4sign(Ka)
∑p

j=1

(
E|zj(k)|2zj(k)Y ∗(k)

)
(9)

Update W (k) in the direction of the instantaneous gradient using
Eq. 10.

W
′
(k + 1) = W (k) + µsign(Ka)Y ∗(k)Z (k) (10)

where µ = 4. µ is a constant.

Z (k) =

[
|z1 (k)|2z1 (k)....|zp (k)|2zp (k)

]
Satisfy the orthogonality

constraint at the next iteration of the algorithm by utilising the unitary
constraint using Gram-Schmidt orthogonalisation in Eq. 11.

G∈Mp×p ↔ GH(k + 1)G(k + 1) = Ip (11)

Undo the remaining unitary mixture which makes the equaliser W of
size p× p, hence saving computational cost. Then, to satisfy the con-
straint in Eq. 11, it suffices to satisfy W (k + 1) ∈Mp×p , i.e.

WH(k + 1)W (k + 1) = Ip (12)

Since there is no guarantee that W
′
(k + 1) will satisfy the constraint

in Eq. 12, we have to transform W
′
(k + 1) into a unitary

W (k + 1) = f
(
W

′
(k + 1)

)
(13)

By treating W (k + 1) as a p × p matrix satisfying Eq. 12 that is
as close as possible to W

′
(k + 1) in the Euclidean sense using the
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iterative procedure that satisfies the following criterion successfully for
j = 1, ...., p:{

minWj∇(Wj) =
(
Wj −W

′

j

)H (
Wj −W

′

j

)
subject to : WH

l Wj = σij, l = 1, ...., j
(14)

where X2 = XHX is squared Euclidean norm of vector X, σij is
kronecker delta, W

′

j is obtained from

W
′

=
[
W

′

1, ...,W
′

p

]
(15)

To solve Eq. 14, we first construct the Lagrangian of ∇( Wj) using
Eq. 16

L∇ (Wj, λj, µ, v) = ∇ (Wj)− λj

(
WH

j Wj − 1
)

−
∑j−1

l=1µljRe
(
WH

l Wj

)
−
∑j−1

l=1VljIm
(
WH

l Wj

) (16)

Where λj , lj, and Vlj are real scalar parameters. Setting the gradient
of L∇( Wj, λj, µ, v) with respect to Wj to zero ∂L∇

∂W
j
=0

, we obtain
the following equations for each j:

Wj −W
′

j − λjWj −
∑j−1

l=1
BljWj = 0 (17)

Where Blj = 1
2
( µlj + iVlj) . From Eq. 17, we obtain{
λj = 1−WH

j W
′

j

Blj = −WH
l W

′

j

which gives

(1− λj)Wj = W
′

j −
∑j−1

l=1

(
WH

l W
′

j

)
Wl (18)

According to Eq. 18

Wj

(
W

′

j −
∑j−1

l=1

(
WH

l W
′

j

)
Wl

)
(c) Perform colour deconvolution

Colour deconvolution scheme is used to transform quantised RGB channels
of a histology image into a density map for each stain.
(i) Determine the stain concentration of individual stains:

C = W × Z (19)

where Z is the optical density map obtained in Eq. 3, W is the stain
matrix obtained in Eq. 18.
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The optical density maps of each stain are obtained by taking the
columns of stain matrix W and taking rows of the stain concentra-
tion matrix using the equation below:

Y = WC (20)

3.1.2 Colour transfer

Colour transfer is performed to minimise the effect of varying staining and
illumination [74]. We modified the colour transfer method in [86,57,54] to
achieve better stain normalisation results. We also introduce a weighting factor
in the colour to easily adjust the contrast and brightness of the image. Our
colour transfer involves 6 steps as follows:

(a) Let W be the stain matrix and C be the coefficient matrix from Eq. 20

Ysource = WsourceCsource, Ytarget = WtargetCtarget (21)

(b) Adjust the dynamic range of CSource so as it matches that of Ctarget

to obtain a normalized source stains Csnorm, by Calculating the 95 per-
centile of each row of the Csource and Ctarget as Cs−extreme(i) and
Ct−extreme(i) to obtain a scale matrix. The dynamic range is estimated
with a pseudo maximum (95%) as it is roburst. We used Eq. 22 instead of
Eq. 23.

Dscale( i,1) =
Cs-extreme( i)

CT-extreme( i)
(22)

Instead of

Dscale( i,1) =
Ct-extreme( i)

Cs-extreme( i)
(23)

where i = 1, ....., r which is the row number in a coefficient matrix C.
(c) Obtain the scale row of Csource using Eq. 24 instead of Eq. 25.

Cs−scaled( i, :) = Ctarget( i, :) Dscale( i,1) (24)

Instead of

Cs−scaled( i, :) = Csource( i, :) Dscale( i,1) (25)

(d) Colour transfer image in optical density space.

Ytransferred = WtargetCs-scaled (26)
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(e) Apply a weighting factor to a colour transferred image

NewYtransferred = T × Ytransferred (27)

where T ≥ 1, T can be adjusted to improve the brightness and contrast
of the normalised image. The default values of T for both H&DAB and
H&E stain images is 1.

(f) Convert the normalised image from optical density space to RGB space

Inormalised = I0exp( −NewYtransferred) (28)

where I0 = 255

4 Experiments

We tested the proposed method using 48 H&DAB image slides with dimensions
of 1920×1080 pixels from the mouse cortex, and 100 H&E stain images with
dimensions of 1539×1376 pixels provided by Dr Abhishek Vahadane. We also
used 22 H&E histology images with the dimension of 2000 × 2000 pixels of
different datasets (i.e. breast dataset, colon dataset and lung dataset) provided
by Alsubaie N et al. [1] under the support information section. H&E images
came with ground truth. Please refer to [1] for more information about the
ground truth. H&DAB images were stained on different dates. H&E images are
from different scanners (Hamamatsu scanner and Aperio scanner). To increase
reliability, more than one sample of slides were extracted from each mouse. 48
H&DAB image slides were extracted from different mice. As compared to other
colour transfer methods, a weighting factor is introduced in the colour transfer
stage. The weighting factor improves the brightness and contrast of the image
as shown in Figure 5

4.1 Validation and evaluation of stain normalisation

We evaluated results from stain separation stage and the colour transfer stage
both qualitatively and quantitatively. The accuracy of stain separation is eval-
uated using both estimated stain matrix and density maps. This is because
stain matrix represents the principal colour of each stain and each vector in the
stain matrix represents RGB values within an optical density space for each
stain colour [86,1]. An accurate stain matrix leads to better stain estimation.
In this paper, ground truth data is used during the evaluation of the estimated
stain matrix. During this stage, the root mean square error between the esti-
mated stain vector and the ground truth is used. Bar charts are used during
the comparison of our method with existing methods. The density maps rep-
resent the amount of stain absorbed at each pixel. A similarity quality metric
between the results obtained using the proposed method and the ground truth
is used to evaluate the accuracy of the proposed method. Box plots and a bar
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graph are used to compare stain separation obtained using our methods with
that of other methods (Figure 3). We used the median for easy comparison.
The quantitative results shown in Figure 4 and Figure 3, show the superior
performance of the proposed method over others.
The accuracy of colour transfer is evaluated both qualitatively as shown in Fig-
ure 6(f), Figure 7(f). Our stain normalisation method produces better results
compared to other methods.

Fig. 3 Root mean square error between the estimated stain matrices and the ground truth
data for all methods on all datasets. (1) breast dataset, (2) Colon dataset, and (3) Lungs
dataset

Table 1 SSIM Index between the stain matrices and the ground truth. The last two columns
show the median of SSIM index for all methods.

Method Breast Dataset Lung Dataset Colon Dataset Median
H E H E H E H E

Alsubaie N et al., [1] 0.697 0.879 0.722 0.797 0.714 0.758 0.705 0.811
Macenko et al., [57] 0.803 0.830 0.719 0.847 0.759 0.787 0.759 0.814
Proposed Method 0.827 0.878 0.764 0.825 0.763 0.829 0.770 0.838
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Fig. 4 Correlation between the density maps and the ground truth with associated SSIM
Index for each method with respect to H(Left) and E (right) stains in all three datasets (a)
proposed method, (b) Alsubaie N et al. [1] and (c) Macenko et al. [57]

(a) (b) (c)

(d) (e) (f)

Fig. 5 H&E and H&DAB normalised histology images at different weighting factors. First
row are H&E stain images normalised at weighting factor 1, 2 and 3 respectively, and second
row are H&DAB stain images normalised at weighting factors 1, 2, 3 respectively
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Comparison of different stain normalisation methods on H&E stain images.(a) target
image,(d) source image, (b) Reinhard et al., [68],(c) Khan et al., [41], (e) Macenko et al., [57],
(f) Proposed Method

(a) (b) (c)

(d) (e) (f)

Fig. 7 Comparison of different stain normalisation methods on H&DAB stain images.(a)
target image, (d) source image, (b) Reinhard et al., [68],(c) Khan et al., [41], (e) Macenko
et al., [57], (f) Proposed Method
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a b c

Fig. 8 Stain seperation after application of SVD, statistical blind source separation ICA
and proposed method on H&E images. (a) statistical blind source separation ICA H&E
images. (b) SVD H&E stains. (c) Proposed method
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Fig. 9 Different image slides normalized at different factors. First row are original image
slides from cortex, second row are images normalized at factor 4, and third row are images
normalized at factor 5
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Fig. 10 Different image slides normalized at different factors. First row are original image
slides from cortex, second row are images normalized at factor 2, and third row are images
normalized at factor 3.
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Fig. 11 System interface with normalised H&DAB source image

Fig. 12 System interface with normalised H&E source image
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4.2 Discussion

The qualitative and the overall quantitative results of stain separation in Fig-
ure 8, Figure 4 and Figure 3, show that the proposed method outperforms all
the other methods. The similarity metric in Figure 4 above shows that the
proposed method outperforms Alsubaie et al,. [1] by 4-13% for H for breast
dataset, colon dataset, and the lung dataset. However Alsubaie’s method [1]
outperforms the proposed method by 0.1% for E in breast datasets. The pro-
posed method still out performs Alsubaie’s method [1] by 3-7% for E in colon
and lung dataset. In comparison to Macenko’s method [57], the proposed
method outperforms Macenko’s method [57] by 2-4% and 4-5% for H&E in
all three datasets (breast and colon dataset). Like Alsubaie’s method [1], Ma-
cenko’s method [57] also outperforms the proposed method in estimating Eosin
stain. Macenko’s method [57] outperforms the proposed method by 2.2% for E
in the lung dataset. This is due to usage of low weighting factor. Figure 3 shows
that proposed method outperforms Alsubaie’s method [1] for estimated stain
matrix in both the breast dataset and lung dataset. The proposed method
also outperforms Macenko’s method [57] for estimated stain matrix in the
colon dataset but achieves the same result for estimated matrix as Macenko’s
method [57] in the lung dataset. Macenko’s method [57] achieves better results
for estimated stain matrix in breast datasets as compared to all methods.

The colour transfer stage is the final stage of stain normalisation process.
The qualitative results of the color transfer stage show that the proposed
method can be applied to both H&E stain images and H&DAB images(Figure
6 and Figure 7). Khan’s NMF method [41] and Macenko’s SVD method [57]
produces unrealistic stains when applied to H&DAB images. Khan’s NMF
method [41] and Macenko’s SVD method [57] also introduce artefacts when
applied to H&DAB images. Reinhard’s method produces slightly better re-
sults when applied on H&DAB but still not better than the proposed method.
Compared to all methods, our method produces satisfactory results when ap-
plied on both H&DAB and H&E images(Figure 10, Figure 9, Figure 12, Figure
11). With the introduction of a weighting factor in the colour transfer stage,
the contrast and brightness of the image can be adjusted. An increase in the
weighting factor results into increase in brightness of the image (Figure 5). Fur-
ther work is needed to evaluate the proposed method at different weighting
factors.

5 Conclusion

Stain normalisation is an essential step to remove inherent in-homogeneity
in histopathological images for diagnosing disease and its progression. A po-
tential drawback of such a technique is that tissue structures and texture in
the original image could be distorted after stain normalisation. In this pa-
per, a hybrid approach for stain normalisation has been developed, based on
an octree colour quantisation algorithm combined with Beer-Lambert law, a
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modified blind source separation algorithm, and a modified colour transfer ap-
proach. The hybrid method consists of two stages: the stain separation stage
and colour transfer stage. An octree colour quantisation algorithm combined
with Beer-Lambert law, and a modified blind source separation algorithm are
used during stain separation stage to computationally estimate the amount
of stain in an histology image based on its chromatic and luminous response.
A modified colour transfer algorithm is used during the colour transfer stage
to minimise the effect of varying staining and illumination. The method is
capable of addressing colour variation in both H&DAB (Haemotoxylin and
Diaminobenzidine) and H&E (Haemotoxylin and Eosin) stain image. Unlike
other colour transfer, our normalisation algorithm introduces weighting fac-
tor which allows one to adjust the brightness and contrast of the normalised
image. Both qualitative and quantitative validation demonstrate the superior
performance of the proposed stain separation and colour normalisation tech-
nique.
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