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Abstract: Images are considered to be natural carriers of information, and a large 

number of images are created, exchanged and are made available online. Apart from 

creating new images, the availability of number of duplicate copies of images is a 

critical problem. Hashing based image copy detection techniques are a promising 

alternative to address this problem. In this approach, a hash is constructed by using 

a set of unique features extracted from the image for identification. This article 

provides a comprehensive review of the state-of-the-art image hashing techniques. 

The reviewed techniques are categorized by the mechanism used and compared 

across a set of functional & performance parameters. The article finally highlights 

the current issues faced by such systems and possible future directions to motivate 

further research work. 

Keywords: Image forensics, Digital watermarking, Image copy detection, Hashing 

based image copy detection.  

1. Introduction 

The unauthorized generation of duplicate multimedia content has always been far 

ahead of sophisticated copy detection techniques [1, 2]. Various easy to use image 

processing software’s can do manipulations in the original images [3] and 

consequently it is very common to find the number of unauthorized duplicate copies 

of an original image. These duplicated images may have the same visual content as 

the original image, but their digital representations may be different. Due to this easy 

to copy nature of images, it is important to protect the copyright of an image [4] and 

therefore the identification of duplicate copies of an image is an important issue of 

digital rights management [5]. In many circumstances, it becomes imperative that the 

authenticity of the image must be verified before it is accepted. Image authentication 

techniques are used to prove that a received image is original and is not a duplicate 

copy [6]. This put us in the area of Image forensics [7], which uses a number of 

techniques not only to verify the authenticity of an image but also to detect 

unauthorized copies. 
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One of the most commonly used approaches in Image forensics is digital 

watermarking. In general, watermarking can be considered as the introduction of a 

signature, within an image before it is distributed [4] and its ownership can then be 

determined by verifying the signature [8]. A significant drawback of this scheme is 

that applying one or more image processing operations can easily distort or even 

destroy the watermark. Secondly, certain applications do not permit the embedding 

of a watermark since it usually leads to irreversible changes within the image, which 

may not be perceptual. In addition, watermark-based systems are rendered ineffective 

if the original image is disseminated before embedding the watermark, which might 

be the case in most situations. In such a situation, we require techniques that can 

address the drawbacks of watermarking techniques [9]. 

Content-based image copy detection is an image forensic technique that has 

gathered attention from researchers as an alternative to digital watermarking [10, 11]. 

Unlike watermarking, content-based copy detection techniques do not depend on 

embedding any mark within the image instead, the characteristics of the multimedia 

content itself can be used to identify its ownership [12]. The basic idea of image copy 

detection lies in extracting a unique image-based feature, which can be used to 

represent the entire image [13]. To verify the authenticity of the received image, the 

same set of features are extracted from both the original and the received image and 

compared [14]. Copy detection techniques are usually designed to be robust against 

image processing attacks and hence are preferred over other techniques used for 

image ownership and identification [15]. The applications of copy detection include 

authentication, usage tracking, copyright violation enforcement, etc. As an example, 

consider the three images shown in Fig. 1. The image shown in Fig. 1b is a copy of 

the image shown in Fig. 1a as it has been obtained by applying an image processing 

function. However, the image shown in Fig. 1c is a different image and is not a copy 

of either Fig. 1a or b, though perceptually similar [16]. For this example, a perfect 

image copy detection mechanism should detect image 1b as a copy of image 1a and 

treat image 1c as a different image [17]. More recently, researchers have begun to 

focus on hashing-based image copy detection techniques, which is the next logical 

step after content-based image copy detection [18, 19]. This paper, therefore, 

provides a comprehensive review of the state-of-the-art hashing-based image copy 

detection techniques. The reviewed techniques are compared by using different 

performance parameters to provide an overview of best-performing hashing based 

copy detection technique. 

 
Fig. 1. Original image  (a); Hue changed of image (b); Different image (c) 
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Rest of the paper is organized as follows: Section 2 gives the general scenario of 

hashing-based image copy detection system. Section 3 reviews various hashing-

based image copy detection algorithms. Section 4 gives the various functional blocks 

used within the reviewed algorithms. Performance evaluation parameters are 

discussed in Section 5. Section 6 presents a comparison of the state-of-art techniques. 

Section 7 finally presents discussion and conclusions. 

2. Hashing based image copy detection 

Hashing-based image copy detection techniques are based on the underlying principle 

of content-based image copy detection. However, features are here compressed to 

form a short binary code termed as an image hash. Researchers used different ways 

to convert a feature to its corresponding image hash namely quantization, binary 

representation, vector distance etc. This image hash serves as a signature for the 

original image [20]. After extracting a similar signature from a test image, the 

signature of both original and the test image is compared. A copy detection system is 

expected to find a set of matching images for a given original image when the 

difference between their hash values is lesser than a pre-defined threshold [21, 22].  

 

 
Fig. 2. Hashing based image copy detection system 

 

However, if the threshold is too low, then a copy that has undergone minor 

changes will likely be skipped as being different. On the other hand, if the threshold 

is too high, then images which are similar but not copies will also be falsely matched 

and categorized as copies. Therefore, an optimal threshold value needs to be found 

such that a hashing mechanism results in a copy detection system that has a high true 

positive rate and a low false positive rate [23]. A block diagram illustrating the 

working of a typical hashing-based image copy detection is shown in Fig. 2.  

The original image is here firstly pre-processed under operations such as 

resizing, filtering and color space conversion. Next, the unique features of the image 

are extracted by using any of the feature extraction mechanisms like DCT. Lastly, 
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extracted features are compressed to form a binary hash, H. The same feature 

extraction mechanism is then applied to the modified image to generate its hash H. 

H and H are then compared using a similarity metric, and a threshold value is used 

to define the outcome of a similarity metric [20]. To make the hash secure, the 

generated hash can be encrypted using a secure key. This ensures that the hash is key-

dependent and can only be used by an authorized user for verification [24]. In general, 

an ideal image hash function should satisfy two basic properties – robustness and 

discriminability [18]. In robustness, visually identical images should produce similar 

hashes irrespective of their digital representation. For discriminability, different 

images must return a significantly different hash. Generally, these two properties 

conflict with each other. Therefore, to balance these properties, an optimum threshold 

value must be choosen so that the system can differentiate between images that are 

copies and those that are different [25].  

3. Categorization of hashing-based image copy detection techniques 

A good number of articles have been published proposing hashing-based image copy 

detection techniques. These techniques vary in terms of the key methodology 

employed as well as the overall mechanism. To provide a comprehensive review of 

these techniques, it is helpful to classify them into different categories depending 

upon the mechanism used for extracting the image features [26]. The techniques are 

grouped by the basic transformations used along with a few other categories  

(Table 1). It is worth pointing out that a few of the reviewed techniques employ more 

than one mechanism. In such cases, the techniques were placed in the category that 

it used the most. 
 

Table 1. Categories of reviewed hashing based image copy detection algorithms 

Category 

Used in 

research 

papers 

Brief description 

DCT [18, 27-30] Performs well in classification and in detecting duplicate copies 

DFT [31-33] 
Resistant to content-preserving alterations while preserving  

low collision probability 

DWT [34-42] 
Robustness against non-malicious distortions such  

as low-pass and high-pass filtering 

Radon [23, 43-47] 
Robust against rotation, scaling and translation attacks  

but are weak against geometric transformations 

SIFT [48-50] Resistant to rotation [44], but exhibit a large size vector 

Other 
[20, 45, 51-

54] 

Robust against large angle rotations. Wave-atom approaches  

outperform DCT and DWT techniques 

Block-based [19, 21, 55] 
Robust against common image manipulations  

like JPEG compression 

Dimensionality-

reduction 
[56-61] 

Techniques are used to reduce  

the size of feature matrices 

Feature-based [62-65] Giving more emphasis to local features over global features. 

Moment-based [25, 66-68] 
Used widely in classification, image matching  

and authentication systems 

Ring-based [24, 69-71] Performs well specially against rotation 

Other algorithms [22, 72-82] Rest of the image hashing algorithms. 
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Discrete Cosine Transform (DCT) based. Algorithms that employ DCT 

coefficients performed well in classification and in detecting duplicate copies [18]. 

T a n g  et al. [18] proposed image hashing based on dominant DCT coefficients for 

image identification. K a i l a s a n a t h a n, N a i n i  and O g u n b o n a  [27] proposed 

a compression-tolerant DCT image hash where the hash is constructed by considering 

the wavelet basis. R o o v e r  et al. [28] proposed hashing in which radial projections 

of the pixel luminance values based on DCT coefficients are used for hash generation. 

Results indicate that RASH vectors are specific to a particular image. T a n g, W a n  

and Z h a n g  [29] proposed a technique based on a dictionary and Non-negative 

Matrix Factorization (NMF) to generate image hash for identification. The proposed 

mechanism has a low collision probability. Longjiang et al. used a robust approach 

based on sign extraction of the DCT coefficients matrix of each rectangle to generate 

the final hash. The advantage of using DCT for feature generation is its simplicity 

and reduction of the DCT feature vector. However, DCT-based techniques fail 

against geometric transformations [26]. 

Discrete Fourier Transform (DFT) based. The main advantage of using DFT-

based techniques is their resilience to content-preserving modifications like 

geometric and filtering distortions [32]. Q i n  and C h a n g  [31] proposed a hashing 

technique based on DFT and non-uniform sampling. The proposed technique is 

robust to elementary image processing operations. S w a m i n a t h a n  [32] proposed 

an algorithm for hash generation using DFT features and controlled randomization. 

The hash is claimed to be secure against estimation and forgery. DFT-based 

techniques are resilient to various content-preserving operations while having low 

collision probability though the algorithms in this category are more complex than 

DCT-based algorithms [32]. S w a m i n a t h a n, M a o  and W u  [33] proposed an 

image hashing approach in which DFT is applied to the preprocessed image, which 

later quantized and compressed to get the final hash. The proposed approach is 

claimed to be resilient to common geometric and filtering operations.  

Discrete Wavelet Transform (DWT) based. The algorithms discussed in this 

section have been proven to exhibit good time-frequency localization property. 

A h m e d, S i y a l  and A b b a s  [34] proposed a secure and robust hash-based scheme 

based on DWT where permutation sequence is used to obtain the final hash. Proposed 

algorithms offer robustness against non-malicious distortions such as low-pass and 

high-pass filtering [34]. L u  and H s u  [35] and L u  et al. [36] proposed hashing in 

which DWT is applied to the original image and Lowest frequency sub-band (LL) is 

selected for further hash generation. L u  and H s u  [35] extend their work given in 

[36] where extensive analysis of hashing is done for robustness, discrimination, error 

analysis and complexity. M i c h a k  and V e n k a t e s a n  [38] proposed a robust 

image hash based on iterative geometric techniques. M e x i n e r  and U h l  [37] 

extend image hashing proposed by [38] where pseudorandom number generator is 

used to produce the secure hash. M o n g a  and E v a n s  [39] used feature points to 

generate an image hash, which works well for by avoiding misclassification. 

V e n k a t e s a n  et al. [40] proposed a novel indexing technique in which, each sub-

band of the wavelet decomposition is randomly tiled into small rectangles to generate 

the image hash. Y a n g  and C h e n  [41] proposed a novel image hash based on the 
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locations of significant wavelet coefficients. K a r s h, L a s k a r  and A d i t i  [42] 

propose image hashing based on DWT-SVD (DWT-Singular Value Decomposition) 

where V component of HSV color space is used for hash generation. In summary, 

image-hashing systems based on the LL sub-band wavelet coefficients are not robust 

to change in brightness, contrast enhancement, etc. Discarding the LL-band 

coefficients can improve the robustness and at times it may fail to detect tampering 

that involves modification of gray values [34].  

Radon Transform (RT) based. The algorithms in this category are based on 

the Radon transform in which values of the projection signal is used to generate the 

image features which are robust to translation, scaling and rotation [23]. L e i, W a n g  

and H u a n g  [23] proposed a novel image hashing technique based on the Discrete 

Cosine Transform (DFT) and Radon transform. The algorithm performs well in 

detecting image copies with a small size of hash. L e f e b v r e, C r y z  and M a c q  

[43] proposed a robust approach based on the Radon transform and Principal 

Component Analysis (PCA). L e f e b v r e, M a c q  and L e g a t  [44] present a 

compression and collision resilient algorithm based on the Radon transform named 

as RASH. S e o et al. [46] generated image fingerprints by using Radon 

transformation. W u, Z h o u  and N i u  [47] propose a hash algorithm based on radon 

and wavelet transform. The proposed mechanism shows resistance towards content 

changes. O u  and R h e e [88] proposed a five-step hashing technique based on the 

Radon transform. The mechanism claims to be robust and exhibits high 

discriminability while using a small hash of 240 bits. Unfortunately, Radon transform 

is not resistant to all the geometric transformations such as shifting, shearing, etc. 

[47]. However, this can be tolerated keeping in view that Radon transform works well 

for rotation, scaling and translation. 

Scale Invariant Feature Transform (SIFT) based. SIFT-based techniques 

have proven to be more robust and effective compared to other techniques. However, 

their most significant drawback is the large size of the feature vector, which slows 

down the copy detection process [48]. Generating smaller SIFT features is a potential 

solution to such a problem. C h e n  and H s i e h  [48] proposed an algorithm where 

128-dimensional SIFT features are applied to the pre-processed image to produce the 

image hash. The proposed technique considerably reduces the execution time with a 

minor loss in accuracy as compared to the plain SIFT. H e f e i  L i n g  et al. [49] 

proposed a unique image hashing technique based on the fingerprint of local visual 

words. The technique surpasses similar mechanisms in terms of precision and 

efficiency. L v  and W a n g  [50] propose an algorithm similar to [49] where Harris 

detector is used to select the most stable key-points, which are less susceptible to 

image processing attacks after applying SIFT. To inherit the security of hash 

functions, a secret key is incorporated into either feature extraction or compression 

or both to make the hashes more unpredictable. SIFT-based hashing methods exhibit 

encouraging performance under rotation attacks and change in brightness but exhibit 

less-than-satisfactory performance against additive noise, blurring and compression 

[50]. 

Other transformations. The algorithms in this category are based on different 

transformations like Log-polar transformation that is robust to large angle rotation 
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operations. Wave-atom transform outperforms DCT and DWT based schemes in 

distinguishing spiteful tampering from non-spiteful tampering [52]. Gabor filters can 

be used to produce a robust and rotation-invariant hash. O u y a n g, C o a t r i e u x  and 

S h u  [20] propose the use of Quaternion Discrete Fourier Transform (QDFT) and 

Log-Polar Transform (LPT) for hashing. The proposed mechanism performs well as 

compared to similar techniques in terms of robustness against content-preserving 

operations and shows good sensitivity to non-authorized image content alterations. 

M a l k i n  and V e n k a t e s a n  [45] proposed image hashing approach based on 

Randlet transform to produce a key-based randomized digest. Randlet transform is 

built with structured randomness and hence gives good performance compared to the 

wavelet transform for image identification [45]. L i  et al. [51] proposed a robust 

image hashing method based on random Gabor filter and dithered lattice vector 

quantization, where the gray code is employed to enhance the robustness of the hash 

function. L i u  et al. [52] use image hashing where an input image is decomposed 

into five scale bands through wave atom transform. The mechanism performs better 

as compared to DCT and DWT based techniques. L i u  and X i a o  [53] proposed an 

image hashing approach based on Log-polar mapping and Contourlet transform for 

identification. W a n g  et al. [54] proposed a robust perceptual hashing technique 

using Gabor filters by using three reference matrices. 

Block-based. The algorithms in this category are based on creating blocks 

within images for extracting image features. T a n g  et al. [19] proposed a robust 

hashing technique for color images, where Euclidean distance is used to generate an 

n-integer-based hash value. T a n g  et al. [21] also proposed block-based robust 

image hashing based on color-vector angles and DWT. The proposed mechanism is 

robust to normal digital operations including rotation up to 5o. Y a n g, G u  and N i u  

[55] proposed four hashing algorithms wherein the first two algorithms are based on 

normalized block mean values while the next two utilize the rotation operation. The 

proposed mechanism works well against rotation up to 10o except some basic image 

processing attacks. Algorithms in this category are robust against common image 

manipulations including watermark embedding, JPEG compression, contrast 

adjustment, brightness adjustment, Gaussian blur, gamma correction, scaling and 

small angle rotation [19]. 

Dimensionality-reduction based. This section includes techniques based on 

three different types of mechanisms, Non-negative Matrix Factorization (NMF), 

Singular Value Decomposition (SVD) and Fast Johnson-Lindenstrauss Transform 

(FJLT). H e r n a n d e z  and K u r k o s k i  [56] proposed image hashing in which after 

preprocessing, SVD is applied to get U S V components for hash generation. K o z a t, 

V e n k a t e s a n  and M i c h a k  [57] present two different scenarios of a generic 

hashing scheme known as SVD-SVD and DCT-SVD hashing. L v  and W a n g  [58] 

proposed a novel image hash algorithm based on the variation of FJLT named as RI-

FJLT to improve the performance under rotation attacks. M o n g a  and M i c h a k  

[59] proposed two image hashing techniques named as NMF-NMF and NMF-NMF-

SQ. The proposed techniques give outstanding security and robustness against a good 

number of image processing operations. T a n g  et al. [60] proposed a robust hashing 

method based on NMF, which exhibits a low collision probability. K a r s h, L a s k a r  



 10 

and R i c h h a r i y a  [61] proposed image hashing based on ring-based projected 

gradient-NMF and local features. The method is robust to content preserving 

operations and is capable of localizing the counterfeit area. Primarily SVD and NMF 

are applied to reduce the size of the feature matrices and to generate the final hash. 

SVD specially increases robustness against rotation and scaling. Fourier-Mellin 

transform is combined with FJLT to improve the performance towards rotation [58].  

Feature-based. Algorithms in this category are based on structural features, 

visual model features, local features, and feature points. To extract structural features, 

a reference pattern is generated [64]. Some algorithms use Watson’s visual model to 

extract visually complex features. Local features and feature point methods are also 

used to prove their relevance in copy detection. M o n g a  and E v a n s  [62] use an 

iterative feature detector to extract important geometry preserving feature points. 

Probabilistic quantization is further used on the derived features to enhance 

perceptual robustness. R o y  and S u  [63] proposed a robust hash mechanism for 

detecting image tampering. T a n g  et al. [64] constructed a perceptual image hash 

based on structural image features. The mechanism is sensitive to visually 

unacceptable alterations of the image and has a low collision probability. 

X i a o f e n g  et al. [65] proposed a visual model based on perceptual image hashing. 

This category makes an important contribution to the body of literature in that it 

proves the advantage of selecting local features over global features for copy 

detection. 

Moment-based. Algorithms in this category use translation, scale, and rotation 

invariant Tchebichef and Zernike moments for hash generation. Moment-based 

techniques have proved to be robust against translation, scaling, and rotation and 

hence are widely used in classification, image matching, character recognition and 

authentication systems [25]. T a n g, D a i  and Z h a n g  [25] proposed a perceptual 

hashing method for color images using invariant moments, which are invariant to 

translation, scaling and rotation and have been widely used in image classification 

and image matching. C h e n, Y u  and F e n g  [66] proposed a novel image hashing 

based on magnitudes of radial Tchebichef moments, which is resilient to image 

rotation. Z h a o  et al. [67] proposed perceptual image in which Zernike moments of 

Y and (Cb-Cr) color components are calculated to produce the final hash. Z h a o  and 

W e i  [68] proposed image hashing based on Zernike moments where bits of all 

different blocks are combined to form the intermediate hash, which is finally pseudo-

randomly permuted to produce the final hash. 

Ring-based. The algorithms in this category are grouped with a reason that the 

image pixels of each ring is almost unchanged after rotation [70]. Different 

mechanisms such as image histogram, entropy, and NMF are used to generate the 

unique hash. T a n g  et al. [24] proposed an image hashing based on ring partition and 

invariant vector distance. Here, the L* component of L*a*b* color model is used for 

hash generation. T a n g  et al. [69] proposed the use of multiple histograms for 

hashing. The normalized image is divided into different rings with equal area, and 

ring-based histogram features are extracted to make the hash resilient to rotation. The 

proposed mechanism is resilient to rotation of any arbitrary angle. T a n g  et al. [70] 

proposed another important hashing based on ring-based entropies. The proposed 
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technique performs well as compared to others in terms of time complexity. T a n g, 

X. Z h a n g  and S. Z h a n g  [71] proposed a perceptual robust hashing based on ring 

partition and NMF. Here, the Y component of the image is divided into seven rings 

to form a secondary image which is used to compute the image hash. These 

algorithms show good robustness against rotation and good discriminative capability 

apart from being robust to basic image processing attacks [71]. 

Other algorithms. This category contains algorithms which are based on a wide 

variety of mechanisms such as Locally Linear Embedding (LLE), Non-negative 

sparse coding, distributed compression, image histogram, quantization step analysis, 

compressive sensing, etc., G e r o l d  and A n d r e a s  [72] proposed a robust image 

hashing based on JPEG-2000 bit stream. H a d m i  et al. [73] proposed a secure 

perceptual hashing method based on quantization step analysis. The proposed 

mechanism is resilient to content-preserving manipulations. J o h n s o n  and 

R a m c h a n d r a n  [74] proposed a dither-based secure image hashing for image 

identification. K a n g, L u  and H s u  [75] proposed a robust image hashing based on 

compressive image sensing. The key benefits of this mechanism include small and 

computationally secure image hash. K h e l i f i  and J i a n g  [76] proposed robust 

hashing in which a simple high-pass filter is applied horizontally and vertically to the 

input image to generate its filtered versions. L v  and W a n g  [77] proposed a semi-

Supervised Spectral Embedding (SSE) mechanism for compressing real-valued 

intermediate image hashes into short robust binary image hashes. S u n, Y a n  and 

D i n g  [79] and T a n g  et al. [22] proposed the use of LLE for formulating an image 

hash, which is used for image identification. X i a n g, K i m  and H u a n g  [80] 

proposed an image hashing algorithm based on image histogram. Z o u  et al. [81] 

proposed an image copy detection framework which consists of both online and 

offline stages for hash generation based on non-negative sparse coding. T a n g  et al. 

[82] proposed image hashing based on color vector angle and canny operator.  

4. Functional blocks of hashing based copy detection system 

A copy detection system will invariably include a number of functional blocks. This 

section provides an overview of various functional blocks used in different image 

hashing techniques. The different functional blocks include image pre-processing 

functions, dataset, similarity metrics, benchmark images, and image processing 

attacks. In the following subsections, the overview of each of these functional blocks 

is given. 

4.1. Image pre-processing functions 

The input images are pre-processed under operations such as resizing, filtering and 

color space conversion. During image resizing, the image is rescaled to a standard 

size to ensure that images with different sizes have the same hash length [19]. Image 

filtering is used to alleviate minor modification artifacts such as noise contamination, 

JPEG compression, etc. To extract unique color-based features, different color 

models are used. Table 2 gives a list of all the techniques used in different pre-
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processing steps across different image hashing techniques. It is evident from Table 

2 that most of the techniques used bilinear interpolation for image resizing, Gaussian 

low-pass filtering for image filtering and YCbCr as a color model for a hash 

generation. 

Table 2. Image resizing models used by different hashing algorithms 

Pre-

processing 

function 

Technique 
Used in research 

paper(s) 
Description 

Image 

resizing 

Bi-cubic  

interpolation 
[21, 22, 25, 38, 69, 82] 

Bi-cubic interpolation is an extension of 

cubic interpolation for interpolating data 

points on a two-dimensional regular grid 

Bilinear  

interpolation 

[18, 19, 23, 24, 29, 31, 

60, 61, 64, 66, 67, 68, 

70, 71]  

Bi-linear interpolation is an extension of 

linear interpolation for interpolating 

functions of two variables 

– 
[20, 33, 41, 42, 45, 48, 

51]  
Resizing techniques not specified 

Image  

filtering 

Averaging [20] 

It is used to replace each pixel value in an 

image with the average value of its 

neighbors including itself 

Gaussian  

low-pass 

[18, 21, 25, 29, 32, 33, 

42, 51, 53, 60, 64, 66, 

69-71, 79, 80, 82] 

Gaussian filtering is used to blur images 

and remove noise & detail 

Linear  

high-pass 
[67] 

The filter passes signals with a frequency 

higher than a certain cutoff frequency and 

attenuates signals with frequencies lower 

than the cutoff frequency 

Non-linear [31] 
The linear filter is not a linear function of 

its output 

Color  

model 

CIE L*a*b* [22, 24] 
In this model L* is color lightness, a* and 

b* are chromaticity coordinates 

HSI [25, 19] 

The HSI color model describes a color in 

terms of how it is perceived by the human 

eye [41]. Here HSI indicates hue, saturation 

and luminance respectively 

HSV [42] 
In this model H is hue, S saturation and V  

is value 

RGB [21, 82] 

It is a basic color model which represents 

an image into three color components, i.e. 

Red, Green and Blue 

YCbCr 
[18, 29, 31, 38, 45, 48, 

60, 64, 66-71, 79] 

In YCbCr color model, Y, which is 

luminance, is used 

YCbCr [19, 25, 41, 61] 

The YCbCr color model Y is luminance. Cb 

blue-difference chroma and Cr red-

difference chroma 

4.2. Image dataset 

A wide range of image benchmarking dataset is available which can be used for 

performance evaluation of the hashing techniques under various attributes such as 

robustness, discriminability, etc. Each dataset contains images of a particular type 

such as textured images, aerial images, etc. Multiple datasets may be usually 

employed by researchers to verify the effectiveness of their techniques across a wide 
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array of different images. Table 3 above provides a list of such datasets used by 

different hashing algorithms. Some of the most popular datasets used among the 

reviewed technique are Ground Truth and USC-SIPI datasets. 
 

Table 3. Summary of the dataset used by different hashing algorithms 

Dataset 
Used in  

research paper(s) 
Web-link 

Berkeley [41] www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/  

BOWS2 [23] http://bow2.gipsa-lab.inpr.fr  

Caltech 101 [81] http://www.vision.caltech.edu/Image_Datasets/Caltech10/ 

Caltech 256 [49] http://www.vision.caltech.edu/Image_Datasets/Caltech256/ 

CEA CLIC [49] http://www.irit.fr/RFIEC/CLIC/CLIC_kernel/CLIC_kernel.zip  

CIFAR-10 [81] https://www.cs.toronto.edu/~kriz/cifar.html  

Columbia  

University 
[65] http://www.cs.columbia.edu/CAVE/databases/ 

Corel 1000 [49] http://wang.ist.psu.edu/docs/related.shtml  

Corel Image [36, 35] https://archive.ics.uci.edu/ml/datasets/Corel+Image+Features  

Ground Truth 

[18, 19, 21, 22, 24, 

29, 51, 58, 60, 61, 

64, 69, 65, 70, 71]  

http://www.cs.washington.edu/research/imagedatabase/groundtruth/ 

Image Net [51] http://image-net.org/  

INRIA Copydays [48] https://lear.inrialpes.fr/~jegou/data.php#copydays  

McGill Calibrated  

Color 
[23, 80] images. http://tabby.vision.mcgill.ca/ 

MNIST [81] http://yann.lecun.com/exdb/mnist/ 

NIST FERET [47] http://www.nist.gov/itl/iad/ig/colorferet.cfm  

Oliva & Torralba [79] http://people.csail.mit.edu/torralba/code/spatialenvelope/ 

Photography [51] http://www.stat.psu.edu/jiali/index.download.html  

TINY [81] http://horatio.cs.nyu.edu/mit/tiny/data/ 

UCID 
[23, 20, 31, 51, 65, 

66]  
http://homepages.lboro.ac.uk/~cogs/datasets/ucid/ucid.html  

USC-SIPI 

[18, 19, 21, 22, 24, 

28, 42, 43, 47, 61, 

63, 65, 70, 71, 82] 

http://sipi.usc.edu./database/ 

4.3. Similarity metrics 

The similarity or distance metric is used to measure the performance of image 

hashing techniques by calculating the difference between the features of two images 

under comparison. Studies have shown that an appropriately chosen distance metric 

can significantly improve the feature matching performance of a copy detection 

system.  

Table 4 gives a list of similarity metrics used in the reviewed techniques. 

Majority of hashing algorithms used normalized hamming distance, hamming 

distance and euclidean distance as its similarity metric for comparison. 

 

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://bow2.gipsa-lab.inpr.fr/
http://www.irit.fr/RFIEC/CLIC/CLIC_kernel/CLIC_kernel.zip
https://www.cs.toronto.edu/~kriz/cifar.html
http://wang.ist.psu.edu/docs/related.shtml
https://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
http://image-net.org/
https://lear.inrialpes.fr/~jegou/data.php#copydays
http://www.nist.gov/itl/iad/ig/colorferet.cfm
http://www.stat.psu.edu/jiali/index.download.html
http://homepages.lboro.ac.uk/~cogs/datasets/ucid/ucid.html
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Table 4. Similarity metrics used by different hashing algorithms 

Similarity metric Used in research papers 

Bit error rate [3, 4] 

Correlation coefficient [61, 76, 86] 

Cross-correlation [33] 

Hamming distance [1, 2, 16, 18, 19, 21-23, 25, 31, 39, 74, 75, 82, 91] 

Histogram intersection [42] 

Hit rate [4] 

L1 norm [32] 

L2 Norm/euclidean distance [5, 7, 20, 27, 35, 36, 49, 51, 77, 89, 90] 

Mean square error [33] 

Min/Max based ratio [45] 

Normalized hamming distance [17, 28, 37, 44, 52, 53, 57-59, 62, 63, 69, 79, 85, 87, 88] 

Normalized L1 norm [43] 

Peak Signal to Noise Ratio(PSNR) [64] 

4.4. Benchmark images 

This section discusses the benchmark images used for evaluating the performance of 

different hashing algorithms. Table 5 below gives a list of the benchmark images 

used by various image hashing algorithms. It can be seen that Lena is the most 

popular image used for evaluating the robustness of different algorithms, followed 

by Baboon, Peppers, Airplane, House [72, 79, 80]. All the reviewed techniques 

employ more than one benchmark image which is given in Table 5. 
 

Table 5. Benchmark images used by different hashing algorithms 

Image Used in research paper(s) 
Airplane [18- 22, 24, 25, 29-31, 35, 36, 41, 42, 48, 55, 60, 64, 66, 68-71, 75, 76, 82] 

Baboon 
[18, 19, 21, 22, 24, 25, 29, 31, 32, 34-38, 40-43, 48, 53, 55, 58, 60, 64, 66, 68-71, 

75, 79, 80, 82, 88] 

Barbara [37, 53, 55, 74, 80, 88] 

Boat [30, 37, 41, 52, 74, 76]  

Bridge [35, 36, 39] 

Cameraman [34] 

Clinton [39, 59] 

Clock [35, 36] 

Couple [31] 

Escher [78] 

Goldhill [31, 35, 36, 41, 57, 72, 74, 86]  

House [18, 19, 21, 22, 24, 25, 29, 42, 48, 60, 61, 64, 68-71, 82] 

Lena 
[18-25, 29-33, 35-38, 40-43, 46, 48, 52, 53, 55, 57-60, 64, 66, 69-72, 74, 75, 78-80, 

82, 88, 91]  

Peppers [18-22, 24, 25, 29-32, 35-37, 41-43, 48, 53, 58, 60, 64, 66, 69-71, 74, 75, 80, 82, 88] 

Sailboat [20, 35, 36, 41, 61, 66, 80]  

Splash [35, 41, 61] 

Tank [31, 35, 41] 

Toys [39] 

Truck [37] 
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4.5. Image processing attacks 

It is obvious that to test a copy detection system, a number of benchmark images are 

required along with a set of images which are close copies of each other. Copies can 

be created by applying a number of image processing attacks. The duplicate copies 

are basically used for evaluating the robustness of any of the proposed techniques. 

Table 6 below lists various image processing manipulations that have been employed 

within reported literature in order to generate duplicate copies. The image processing 

functions used extensively across the different reviewed technique are JPEG 

compression, Image rescaling, Gaussian low-pass filtering, Image rotation, Gaussian 

noise (additive), Cropping and Median filter.  
 

Table 6. Image processing attacks used by different hashing algorithms 
Attack Used in research papers 

Brightness 
adjustment 

[18-22, 24, 25, 29, 37, 42, 47, 55, 61, 64, 68-71, 82] 

Contrast adjustment [18-22, 24, 25, 29, 34, 39, 42, 52, 61, 62, 64, 69-71, 79, 82] 

cropping 
[20, 23, 30, 32, 35, 38-41, 43, 45, 46, 48, 50, 54, 55, 57, 58, 62, 63, 67, 

74, 76, 77, 80, 88] 
Gamma correction [18-25, 29, 32, 33, 42, 50, 61, 64-67, 69-71, 77, 82] 
Gaussian low-pass 

filtering 
[18-25, 28, 29, 31, 34, 36, 38, 39, 41-43, 46, 52, 55, 61, 62, 64, 66, 68-71, 

73, 74, 79-82, 88] 
Gaussian noise 

(additive) 
[20, 23, 29, 31-33, 35, 37-39, 45, 47, 50-52, 54, 55, 58, 60, 62, 64-68, 73, 

76, 77, 79, 80, 88] 

Image rescaling 
[18-25, 28, 29, 32, 35, 36, 38-43, 45-47, 50, 53-55, 58, 60-62, 64-71, 74, 

76, 77, 79-82, 88] 

Image rotation 
[18, 20, 23-25, 28, 31, 32, 35, 38-40, 42, 43, 45, 46, 50, 52, 54, 57, 58, 

62, 63, 65-67, 74, 76, 77, 79-81, 88] 
JPEG compression [2, 18-25, 28, 29, 31-43, 45-47, 50, 51, 53-55, 57, 60-71, 73, 76-82, 88] 

Median filter 
[20, 23, 32, 33, 35, 36, 38-41, 46, 47, 51-53, 55, 62, 66, 74, 76, 79-81, 

88] 
Salt & pepper noise [22-24, 31, 42, 50, 52, 53, 55, 58, 65, 66, 77, 88] 

Shearing [23, 30, 32, 35, 38, 39, 41, 50, 55, 62, 76, 77, 80, 81] 
Watermark 
embedding 

[18, 19, 21, 22, 24, 25, 29, 42, 60, 61, 64, 66, 69-71, 79, 81, 82, 88] 

5. Performance parameters 

This section examines the various performance parameters that are used to evaluate 

the algorithms that have been reviewed in this article. Different performance 

parameters like robustness, discrimination and Receiver Operating Characteristics 

(ROC) are discussed in the following subsections. 

5.1. Robustness 

Robustness of the hashing algorithm is evaluated to determine its capability to resist 

various types of image preprocessing attacks. A perfect image-hashing algorithm 

identifies all its preprocessed variants as multiple copies of the original image. Table 

7 shows the robustness parameters generated by the reviewed hashing algorithms, 

which are obtained by calculating the difference between the hash values of original 

images and its duplicate copies. It includes parameters such as maximum, minimum, 

mean and standard deviation. The table also includes a column named as the next 

highest value and visual identification. The next highest value corresponds to the 
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second highest maximum difference value between the original image and its 

preprocessed variant(s) while visual identification represents the percentage of 

visually identical images correctly identified as similar images. It is quite obvious 

that a lower mean along with a lower standard deviation implies that the difference 

between the hash values is small and they exist in the vicinity of the mean. Such an 

observation can lead to the deduction that various attacks performed on the original 

image have been largely ineffective and that the attacked images are very similar to 

the original image.  

To perform a fair comparison, a normalized mean and normalized standard 

deviation is employed which is shown in Table 7. Normalized values are obtained by 

dividing the mean and standard deviation of the techniques with their threshold value. 

From Table 7, it is clear that [24] has the lowest normalized mean along with a low 

value of normalized standard deviation. This indicates that the difference between the 

hash values of the original image and its attacked version is small and thus we can 

say that technique reported in [24] is resilient to most of the image processing attacks. 

In contrast, the technique in [22] returns a large value of the normalized mean, which 

implies that the images underwent significant changes as a result of various attacks. 

Also, the mechanism which returns a higher percentage of true positives and a low 

percentage of false positives considered ideal. The visual identification parameters 

are calculated by selecting an appropriate threshold value. Based upon the values 

given for visual identification in Table 7 [24] again claims to produce the best 

performance. 

5.2. Discriminability 

Discriminability is used to measure the performance of hashing algorithms when 

dissimilar and visually different images are compared to the original image. [20, 23]. 

Theoretically, the discrimination parameter should have a higher normalized mean & 

higher minimum and maximum difference values as compared to the robustness 

parameter. Table 8 gives the discrimination values for some of the most popular 

hashing techniques that have been reported in the literature. It can be seen from  

Table 8 that all the parameters for discrimination are much higher compared to 

robustness for the reviewed techniques listed in Table 7.  

Table 7. Robustness parameters generated by various reported techniques. Table gives average values 

for different processing operations: Norm. – Normalized; Thre. – Threshold; VI – Visual Identification 

Paper Max 
Next highest 

value 
Min Mean Std. Dev. Thre. 

Norm. 
Mean 

Norm. 
Std. Mean 

VI 
(in %) 

[18] 14 6 0 2.1525 2.07889 10 0.2151 0.2078 98.5 
[19] 8.14 5.46 0 1.40875 0.97571 5 0.2817 0.1951 92.58 
[21] 13866 12217 0 3632.25 2064.88 10000 0.3632 0.2064 97.74 
[22] 1 0.999 0.4572 0.96244 0.02842 0.7 1.3749 0.0406 99.53 
[24] 260.52 215 0 33.991 27.218 200 0.1699 0.1360 99.56 
[25] 12.05 7.32 0.01 3.55625 1.3425 8 0.4445 0.1678 93 
[31] 0.2467 0.2184 0.026 0.1158 – 0.2 0.5790 – – 
[69] 246784 47988 13 10992.1 14006 48000 0.2290 0.2917 – 
[70] – – – 0.997 0.0056 0.95 1.0494 0.0058 99.43 

 

For example, the normalized mean values for discrimination and robustness for 

[18, 19, 21, 24, 25, 69] are 2.78, 2.87, 2.16, 3.20, 2.80, 7.17 and 0.21, 0.28, 0.36, 

0.16, 0.44, 0.22 respectively. It is evident that discrimination values are much higher 
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compared to robustness values, which is a good indicator of the performance of the 

reviewed techniques. In particular, the technique proposed in [69] exhibits the best 

performance. It is important here to clarify that the range of robustness values should 

be lower than the range for discrimination. The larger the gap between them, better 

is the performance. A technique exhibiting such behavior is considered to be the most 

promising. However, these two ranges tend to overlap due to the presence of outliers 

in the analyzed data.  
 

Table 8. Discriminability exhibited by various reported techniques. Values are taken from robustness 

table 

Paper Max Min Mean Std. Dev. Threshold* Normalized 
Mean 

Normalized  
Std. Dev. 

[18] 46 6 27.8 5.23 10 2.78000 0.52300 
[19] 35.19 5.41 14.37 3.43 5 2.87400 0.68600 
[21] 62460 3628 21630 9157 10000 2.16300 0.91570 
[22] 0.6967 –0.6891 0.0066 0.1905 0.7 0.00943 0.27214 
[24] 1329.71 204.9 640.17 154.53 200 3.20085 0.77265 
[25] 51.36 6.46 22.46 7.37 8 2.80750 0.92125 
[31] – – 0.443 0.027 –   
[69] 4041011 9920 344567 636826.05 48000 7.17848 13.26721 
[70] 0.9828 –0.9625 0.2091 0.4584 0.95 0.22011 0.48253 

 

To perform a more consistent analysis, we considered the second largest value 

for robustness in Table 7 (column 3). The second largest robustness values and the 

minimum discrimination values (Table 8) in [18, 19, 24]. [25] are 6, 5.46, 215, 7.32 

and 6, 5.41, 204.9, 6.46, respectively. It is evident that these values only overlap 

slightly, which is acceptable. Among the reviewed techniques [18] returns the best 

performance as it is having 6 as its next highest value for robustness and minimum 

value for discrimination, which clearly shows the separation between robustness and 

discrimination. Similarly, the maximum (Max) difference values for robustness 

(Table 7) and discrimination (Table 8) for [18, 19, 21, 24, 25, 69] are 14, 8.14, 13866, 

260.52, 12.05, 246784 and 46, 35.19, 62460, 1329.71, 51.36, 4041011, respectively. 

It can be seen that the maximum difference values of discrimination of most of the 

reviewed techniques are almost three times the maximum difference values of 

robustness except in [22]. This again serves as a good indicator for the performance 

of these algorithms. Based on the values given above, [69] again claims to exhibit the 

best performance. 

5.3. Receiver Operating Characteristics (ROC) 

Majority of hashing algorithms employ the ROC curve to indicate classification 

performance between robustness and discrimination. However, parameters used to 

draw the ROC curve along with the thresholds can vary [18, 48, 70, 79]. Table 9 

below lists the different ROC parameters adopted by various image hashing 

techniques reviewed in this paper. It is important here to emphasize that different 

authors used different terms for the same set of parameters. From the table, it is 

evident that most of the reported techniques employed TPR vs FPR values to draw 

the ROC curve for different thresholds. Ideally, the ROC curve should pass through 

(0, 1) where 0 is for false positive rate and 1 is for true positive rate. Consequently 

[22, 19, 24, 54] exhibit the best ROC curves among the reviewed techniques. 
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Table 9. ROC parameters used by reviewed algorithms. n1 is the number of different images detected 

as identical images; n2 is the number of identical images detected as different images; n3 is the number 

of similar images considered as visually identical images; N1 is the total number of different images; 

N2 is the total number of identical images. 
ROC parameter Research paper(s) Formula 

False Positive Rate (FPR) / False 
Negative Rate (FNR) 

[34, 39, 45, 47, 52, 55, 59, 
65-67, 79]  FAR = (

𝑛1

𝑁1
)&FRR=(

𝑛2

𝑁2
) 

 

 

 
 

False Accept Rate (FAR) / False 
Reject Rate (FRR) 

Probability of False Positive / 
Probability of False Negative 

Probability of False Alarm / 
Probability of Miss 

Prob. of Correct Detection (TPR) 
/False Rejection Rate (FRR) 

[51] TPR = (
𝑛3

𝑁2
)&FRR=(

𝑛2

𝑁2
) 

Recall Rate (RR)/ 
Precision Rate (PR) 

[35, 48, 49, 81] RR = (
𝑛3

𝑛3+𝑛2
)&PR=(

𝑛3

𝑛3+𝑛1
) 

 

False Positive Rate (FPR) / True 
Positive Rate (TPR) 

[18-25, 32, 33, 42, 50, 58, 
61, 63, 69-71, 76, 77, 82] 

FPR = (
𝑛1

𝑁1
)&TPR=(

𝑛3

𝑁2
) 

 

 

Probability of False Alarm / 
Probability of Correct Detection 

Probability of False Alarm / 
Probability of True Detection 

6. Comparison with the state-of-the-art techniques 

Table 10. State-of-the-art techniques used for comparison by reviewed hashing algorithms 
Ref.  
No 

Technique used Used by research paper(s) 

[48] Used for identification of audio clips and database lookups  [73] 

[72] Color vector angles and Discrete wavelet transform  [22] 

[71] Color vector angles [82] 

[51] Geometry preserving feature points [54] 

[34] Random Gabor filtering and dithered lattice vector quantization [18, 21, 22, 24, 71, 82] 

[30] Color images based on hypercomplex representation [85] 

[68] Fourier transform and controlled randomization [23, 42, 47, 63] 

[70] Invariant moments [24, 71] 

[49] Iterative geometric techniques [32, 33] 

[67] Locally linear embedding [22] 

[66] Content feature extraction and cryptographic concepts [73] 

[73] Multiple histogram [18, 21] 

[78] Non-negative matrix factorization [29, 61, 67] 

[52] Non-negative matrix factorization and weight vectors 
[24, 29, 47, 50, 58, 60, 61, 64, 65, 67, 

70, 71, 76]  

[14] 
Probabilistic quantization based on discrete wavelet transform and 

Radon transform 
[88] 

[61] Radial projection of image pixels [29, 31, 60, 63, 64, 71] 

[81] Ring-based entropies [24] 

[84] Randomized signal processing [32, 33, 42, 52, 63, 66, 76] 

[83] Ring partition and non-negative matrix factorization [20, 42] 

[82] Ring partition and invariant vector distance [42] 

[54] Radon transform and DCT [18, 19, 21-24, 69, 70, 82]  

[33] 
Image hashing based on Radon transform and Discrete Fourier 

transform 
[24, 71] 

[53] Salient feature points and Hausdorff distance measure [63, 76] 

[29] Singular value decomposition 
[19, 21, 25, 42, 52, 59, 63, 66, 69, 70, 

71, 76] 

[95] Zernike moments and local features [20, 42, 61, 65] 
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Performance evaluation and comparison with the state-of-the-art is an essential 

step in verifying the efficacy of a proposed technique. This comparison can be either 

based on all performance parameters mentioned above or on a subset of them. The 

performance of reviewed hashing algorithms is evaluated by comparing it with some 

of the state-of-the-art techniques [57, 59, 88]. Table 10 above gives a list of state-of-

the-art techniques used by the reviewed techniques for comparison. It can be 

observed that the techniques NMF-NMF-SQ and SVD-SVD are most frequently used 

as a benchmark for comparative analysis. 

6.1. Accuracy 

To measure the performance of the hashing techniques, ROC curves are the most 

popularly used metric. The True Positive Rate (TPR) and the False Positive Rate 

(FPR) are used to draw the ROC curve where TPR and FPR correspond to robustness 

and discrimination respectively. The optimal TPR values when FPR is 0 and optimal 

FPR values when TPR is 1 are depicted in Table 11 for the reviewed hashing 

algorithms across various processing environments. Here, the processing 

environment represents the simulated environment that is used by the authors for 

executing their implementation along with the execution of state-of-the-art 

techniques for comparison. The processing environment varies depending on the 

processor type, size of RAM and the simulation software employed. The ideal 

optimal FPR and TPR values for any technique should be 0 and 1, respectively. It is 

evident from Table 11 that technique which has given processing environment, 

performs well among all compared techniques. 

Table 11. Optimal TPR and FPR values generated by the reviewed techniques 

Reference  

No 

Optimal TPR when FPR=0 Optimal FPR when TPR=1 

Processing environments given by Processing environments given by 

Tech. [18] [19] [21] [22] [24] [69] [70] [71] [18] [19] [21] [22] [24] [69] [70] [71] 

[18] 0.969               0.012               

[19]   0.98               0.007             

[21]     0.8 0.941             0.16 0.103         

[22]       0.995               0.009         

[23]         0.976     0.877         0.145     0.145 

[24]         0.999               0.001       

[25]         0.959   0.945 0.93         0.031   0.031 0.031 

[28]               0.91               0.269 

[51] 0.623   0.53 0.783 0.725     0.517 0.448   0.91 0.704 0.911     0.911 

[57]   0.4 0.4     0.11 0.733 0.126   0.82 0.82     0.95 0.823 0.945 

[59]         0.932   0.91 0.813         0.142   0.142 0.535 

[69] 0.676   0.7     0.767     0.797   0.74     0.62     
[70]         0.972   0.976           0.041   0.008   

[71]               0.983               0.001 

[79]       0.896               0.557         

[88] 0.637 0.6 0.6 0.702 0.638 0.55 0.518   1 1 1 0.996 1 1 1   

6.2. Execution time 

In this section, the execution time for generating the image hashes of the compared 

algorithms are given. The time taken to extract image hashes of 200 images for the 

discriminative analysis is noted for each of the algorithms and then the average time 

for generating an image hash is found. Table 12 shows different reviewed algorithms 
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along with their execution time (seconds) on eight different processing environments. 

The comparison was made by using a dataset of 200 images which consists of 67 

internet-based images, 33 images taken from a digital camera and 100 images from 

the Ground truth database. It is important here to specify that dataset is same for all 

the processing environments but we obtained different execution values for the same 

reviewed techniques. This could be due to a combination of factors such as varying 

hardware configurations, different versions of simulation software and the lack of 

exact specifications for the images within the dataset. Different techniques excel in 

their execution performance in different processing environments. Techniques 

reported by [69, 21, 69, 79, 70, 24, 60, 70, 51] exhibit the best execution results in 

processing environments [18, 21, 22, 24, 42, 61, 70, 71], respectively. All the papers 

have represented computational complexity in terms of execution time except [47] 

whose computational complexity is O(N2lg N). 

Table 12. Execution time (in seconds) of reviewed hashing algorithms 

Reference 

No  

Processing environments given by 

[18] [21] [22] [24] [42] [61] [70] [71] 

[18] 0.162               

[21]   0.1 0.27           

[22]     0.61           

[23]       3.422       12.8 

[24]       0.286 0.28       

[25]       0.616     1.429 2.6 

[28]               9.6 

[40]         2.4       

[42]         2.1       

[51] 0.285 0.67 0.42 0.903       0.67 

[57]   0.28     1.5   0.65 1.5 

[59]       0.926   2.98 1.153 2.4 

[60]           0.93     

[61]           2.1     

[67]         2.12 2.4     

[69] 0.137 0.1             

[70]       0.098     0.437   

[71]         2.8     2.8 

[76]           2.6     

[79]     0.04           

[88] 0.455 4.58 3.04 3.333     6.51   

6.3. Size of feature vector 

The size of the feature vector of the resulting hash is one of the important parameters 

for any of the hashing system. Generally, a large hash size implies that a longer 

processing time is needed for comparison [24]. Also, storing large-sized hash for each 

of the images of the dataset will involve a significant storage overhead [49]. 

Therefore, it is desirable to have a small hash size to ensure optimum performance of 

the algorithm while also optimizing other affected parameters. Table 13 provides the 

hash sizes for the different algorithms reviewed in this paper.  
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Table 13. Hash sizes of reviewed hashing algorithms 

Category 
Reviewed 

techniques 
Hash size 

DCT [18, 29, 30] 64 bits, 512 bits, 512 bits 

DFT [31, 32] 444 bits, 420 bits 

DWT [34-36, 40, 42] 896 bytes, 240 bits, 805 bits, 80 digits, 64 bits 

Radon [23, 46, 88] 150 bits, 440 bits, 240 bits 

SIFT [49, 50] 32 bits, 320 bits 

Other transformations [20, 45, 51, 52]  224 bits, 300 bits, 120 bits, 405 bits 

Block-based [19, 21]  64 bits, 960 bits 

Dimensionality-

reduction  
[57, 59-61] 64 digits, 320 bits, 848 bits, 1600 digits 

Feature-based  [63, 64] 920 bits, 896 bits 

Moment-based [25, 66-68] 42 digits, 140 bits, 560 bits, 3528 bits 

Ring-based  [24, 69-71] 40 digits, 16 digits, 64 digits, 64 digits 

Others [22, 75-77, 79, 80] 550 bits, 368 bits, 250 bits, 320 bits, 300 bits, 435 bits 
 

SIFT [49] has the smallest hash size of 32 bits; however, other performance 

parameters were not very encouraging. It is important to note that the table below 

consists of hash size in two different units, i.e., binary [18, 29, 30] and decimal digits 

[24, 69, 70]. Ideally, an attempt is made to realize the smallest hash size possible 

without compromising on various performance parameters. 

6.4. Key dependence 

To view the key-dependent performance of hashing algorithms, different key values 

are used to generate hashes keeping rest of the parameters unchanged. It is important 

here to specify that out of the entire set of keys used for hash generation, one is correct 

while the rest of the keys are incorrect. The distance between the image hash with the 

correct key and incorrect keys are calculated to give the outcome. Table 14 lists the 

various parameters related to key dependence.  
 

Table 14. Key dependence parameters generated by reviewed hashing algorithms. * Indicates average 

values for different image processing attacks except for rotation. ** Indicates highest of mean values 

for different image processing attacks. 

Parameters 
Research papers No 

[18] [20] [21] [24] [31] [34] [46] [52] [72] 

Threshold 10 0.2 10000 200 0.2 48 0.1928** 0.1859* >0.1 

Minimum of 

difference of hash 

value after 

changing the key 

>15 >0.2 18514 625 
Close 

to 0.2 
240 0.4 

0.4222-

0.5630 
>0.2 

 

Here, Threshold indicates the difference of hash values between two images, 

which is used in robustness analysis (Table 7), which indicates that below which 

images are the same. The Min hash value after changing the key is a parameter that 

is used to define the minimum difference between the hash values of an image based 

on the original key and number of incorrect keys. It can be seen that in most of the 

cases, the minimum difference between the hash values after changing the key is very 

large as compared to its threshold value [18, 21, 24, and 34]. This result indicates that 

given image hashing techniques are highly key dependent and hence it is very 
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difficult for an attacker to estimate the hash value without knowing the correct key. 

The technique in [34] exhibits the best performance as it returns the largest difference 

of the hash value after changing the key compared to the threshold. 

7. Discussion and conclusion 

This paper has presented a comprehensive review of hashing based image copy 

detection techniques for image identification. Firstly, the study presented a general 

framework which most of the copy detection techniques have adopted over the last 

few years. Secondly, the reviewed techniques are categorized and discussed on the 

basis of basic transformation employed. Lastly, different functional and performance 

parameters of the reviewed techniques are presented. In this review, research has 

proceeded along the following directions: (1) Reducing the complexity of the 

algorithm, which can be achieved by generating a feature vector of a smaller hash 

size; (2) Increasing the robustness of the algorithms, which can be achieved by using 

strong features that are invariant to a wide range of image processing operations;  

(3) Introducing the concept of key dependence to make the hash generation process 

key-dependent and hence more secure. The review also indicates that the techniques 

that employ block-based features and ring-based features returned better functional 

and performance parameters. 

During the course of this review, some drawbacks were also noticed. Many 

techniques are unable to handle all types of images such as heavily textured images. 

Some of the algorithms are heavily dependent on various parameters and the setting 

of different thresholds. Most of the algorithms are not giving promising result against 

a specific image processing operation “rotation”. The review also identified the lack 

of a single standardized benchmark image dataset for performance evaluation. 

Another hurdle that made comparative analysis difficult is the lack of a single 

standardized metric for calculating the similarity and the lack of a common parameter 

to draw the Receiver Operating Characteristics (ROC) curve. Finally, it is expected 

that classy and reliable copy detection algorithms will be developed by overcoming 

the drawbacks and challenges mentioned above. 
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