33,955 research outputs found

    Adaptive Discrete Second Order Sliding Mode Control with Application to Nonlinear Automotive Systems

    Full text link
    Sliding mode control (SMC) is a robust and computationally efficient model-based controller design technique for highly nonlinear systems, in the presence of model and external uncertainties. However, the implementation of the conventional continuous-time SMC on digital computers is limited, due to the imprecisions caused by data sampling and quantization, and the chattering phenomena, which results in high frequency oscillations. One effective solution to minimize the effects of data sampling and quantization imprecisions is the use of higher order sliding modes. To this end, in this paper, a new formulation of an adaptive second order discrete sliding mode control (DSMC) is presented for a general class of multi-input multi-output (MIMO) uncertain nonlinear systems. Based on a Lyapunov stability argument and by invoking the new Invariance Principle, not only the asymptotic stability of the controller is guaranteed, but also the adaptation law is derived to remove the uncertainties within the nonlinear plant dynamics. The proposed adaptive tracking controller is designed and tested in real-time for a highly nonlinear control problem in spark ignition combustion engine during transient operating conditions. The simulation and real-time processor-in-the-loop (PIL) test results show that the second order single-input single-output (SISO) DSMC can improve the tracking performances up to 90%, compared to a first order SISO DSMC under sampling and quantization imprecisions, in the presence of modeling uncertainties. Moreover, it is observed that by converting the engine SISO controllers to a MIMO structure, the overall controller performance can be enhanced by 25%, compared to the SISO second order DSMC, because of the dynamics coupling consideration within the MIMO DSMC formulation.Comment: 12 pages, 7 figures, 1 tabl

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    Scaled bilateral teleoperation using discrete-time sliding mode controller

    Get PDF
    In this paper, the design of a discrete-time slidingmode controller based on Lyapunov theory is presented along with a robust disturbance observer and is applied to a piezostage for high-precision motion. A linear model of a piezostage was used with nominal parameters to compensate the disturbance acting on the system in order to achieve nanometer accuracy. The effectiveness of the controller and disturbance observer is validated in terms of closed-loop position performance for nanometer references. The control structure has been applied to a scaled bilateral structure for the custom-built telemicromanipulation setup. A piezoresistive atomic force microscope cantilever with a built-in Wheatstone bridge is utilized to achieve the nanonewtonlevel interaction forces between the piezoresistive probe tip and the environment. Experimental results are provided for the nanonewton-range force sensing, and good agreement between the experimental data and the theoretical estimates has been demonstrated. Force/position tracking and transparency between the master and the slave has been clearly demonstrated after necessary scalin

    Robust Simulation for Hybrid Systems: Chattering Path Avoidance

    Get PDF
    The sliding mode approach is recognized as an efficient tool for treating the chattering behavior in hybrid systems. However, the amplitude of chattering, by its nature, is proportional to magnitude of discontinuous control. A possible scenario is that the solution trajectories may successively enter and exit as well as slide on switching mani-folds of different dimensions. Naturally, this arises in dynamical systems and control applications whenever there are multiple discontinuous control variables. The main contribution of this paper is to provide a robust computational framework for the most general way to extend a flow map on the intersection of p intersected (n--1)-dimensional switching manifolds in at least p dimensions. We explore a new formulation to which we can define unique solutions for such particular behavior in hybrid systems and investigate its efficient computation/simulation. We illustrate the concepts with examples throughout the paper.Comment: The 56th Conference on Simulation and Modelling (SIMS 56), Oct 2015, Link\"oping, Sweden. 2015, Link\"oping University Pres

    Adaptive Backstepping Controller Design for Stochastic Jump Systems

    Get PDF
    In this technical note, we improve the results in a paper by Shi et al., in which problems of stochastic stability and sliding mode control for a class of linear continuous-time systems with stochastic jumps were considered. However, the system considered is switching stochastically between different subsystems, the dynamics of the jump system can not stay on each sliding surface of subsystems forever, therefore, it is difficult to determine whether the closed-loop system is stochastically stable. In this technical note, the backstepping techniques are adopted to overcome the problem in a paper by Shi et al.. The resulting closed-loop system is bounded in probability. It has been shown that the adaptive control problem for the Markovian jump systems is solvable if a set of coupled linear matrix inequalities (LMIs) have solutions. A numerical example is given to show the potential of the proposed techniques

    Cooling panel wall system with difference types of cooling mediums

    Get PDF
    Global warming has caused worldwide average surface temperature to rise about 0.74oC during the past 100 years, which is partly aggravated by air-conditioning that releases chlorofluorocarbons (CFCs) and forming a vicious cycle. This paper proposes a cooling house system that can promote thermal comfort in buildings without air-conditioning. The cooling panel wall forms a part of an Integrated Building System (IBS), and is essentially made of tubes filled with either water or glycerin as the coolant. Target strength for the panel wall was designed based on the Malaysian Standard (MS) while the building ventilation system followed the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) standard. The results are reported based on indoor and outdoor temperature difference together with relative humidity to identify the best performing house model and also coolant. The outcome of this research is expected to add value to heritage house design concepts with a better promotion of air flow and circulation in the building, without over-usage of natural resources and higher building cost to achieve the same objective

    Discrete-time output feedback sliding-mode control design for uncertain systems using linear matrix inequalities

    Get PDF
    An output feedback-based sliding-mode control design methodology for discrete-time systems is considered in this article. In previous work, it has been shown that by identifying a minimal set of current and past outputs, an augmented system can be obtained which permits the design of a sliding surface based upon output information only, if the invariant zeros of this augmented system are stable. In this work, a procedure for realising discrete-time controllers via a particular set of extended outputs is presented for non-square systems with uncertainties. This method is applicable when unstable invariant zeros are present in the original system. The conditions for existence of a sliding manifold guaranteeing a stable sliding motion are given. A procedure to obtain a Lyapunov matrix, which simultaneously satisfies both a Riccati inequality and a structural constraint, is used to formulate the corresponding control to solve the reachability problem. A numerical method using linear matrix inequalities is suggested to obtain the Lyapunov matrix. Finally, the design approach given in this article is applied to an aircraft problem and the use of the method as a reconfigurable control strategy in the presence of sensor failure is demonstrated
    • 

    corecore