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Lille-Nord Europe, France

(v3.5 released August 2008)

An output feedback based sliding mode control design methodology for discrete time systems is considered in this paper. In pre-
vious work, it has been shown that by identifying a minimal set of current and past outputs, an augmented system can be obtained
which permits the design of a sliding surface based upon output information only, if the invariant zeros of this augmented system
are stable. In this work, a procedure for realizing discrete time controllers via a particular set of extended outputs is presented
for non square systems with uncertainties. This method is applicable when unstable invariant zeros are present in the original
system. The conditions for existence of a sliding manifold guaranteeing a stable sliding motion are given. A procedure to obtain
a Lyapunov matrix, which simultaneously satisfies both a Riccati inequality and a structural constraint, is used to formulate the
corresponding control to solve the reachability problem. A numerical method using linear matrix inequalities is suggested to
obtain the Lyapunov matrix. Finally, the design approach given in the paper is applied to an aircraft problem and the use of the
method as a reconfigurable control strategy in the presence of sensor failure is demonstrated.

Keywords: sliding modes; output feedback; discrete time implementation; reconfigurable control

Index to information contained in this guide

1. Introduction
2. Motivation
3. The Existence Problem
4. Closed loop stability analysis
5. Existence of a sliding mode
6. Motivational Example
7. Conclusion

1 Introduction

Early contributions in the area of sliding mode control were developed in a framework in which all
the system states are assumed available. This approach may not be realistic for practical engineering
problems and has motivated the need to develop output feedback controllers. A number of algorithms
have been developed for robust stabilization of uncertain systems which are based on sliding surfaces
and output feedback control schemes (see, for example, Zak and Hui 1993, Edwards and Spurgeon
1995). A geometric condition has been developed to guarantee the existence of the sliding surface and
the stability of the reduced order sliding motion (Zak and Hui 1993). An algorithm which is convenient
for practical use has been derived in Edwards and Spurgeon (1995, 1998). Based on the work given
in Zak and Hui (1993), some dynamic feedback sliding mode controllers have been proposed (Kwan
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2001, Shyu et al. 2001). In all the above output feedback sliding mode control schemes, it is an a priori
requirement that the system under consideration is minimum phase and relative degree one and that a
particular sub-system must be output feedback stabilisable (Edwards and Spurgeon 1998).

Compared with continuous time sliding mode control strategies, the design problem in discrete time
is much less mature. Other than the early work in Sira-Ramirez (1991), much of the literature assumes
all states are available (Furuta and Pan 2000, Hui and Zak 1999, Tang and Misawa 2002). Discrete
sliding mode control schemes which have restricted themselves to output measurements alone have
often been observer based schemes, with or without disturbance estimation (Lee and Lee 1999, Tang
and Misawa 2000). Recent exceptions have been the work in Monsees (2002) which considers both
static and dynamic output feedback problems, and the discrete time versions of certain higher-order
sliding-mode control schemes (Bartolini et al. 2001, 2000).

For continuous time systems, it was shown in Floquet et al. (2007) that the relative degree condition as-
sociated with the solution of the existence problem can be weakened if a classical sliding mode observer
is combined with sliding mode exact differentiators to generate additional independent output signals
from the available measurements. In the discrete case, it was shown that by using the output signal at
the current time instant together with a limited amount of information from previous sample instants,
the class of discrete time systems for which an output feedback based sliding mode controller can be
developed is significantly broadened (Govindaswamy et al. 2008, 2009). It has been shown that with this
approach, discrete time output feedback based sliding mode control for systems with unstable invariant
zeros is possible. It has also been shown that, by extending the outputs, the relative degree condition
associated with the solution of the existence problem can be relaxed for output feedback based sliding
mode control. This notion is further developed here, by designing discrete time sliding mode controllers
for uncertain systems using the extended outputs.

The conditions for realizing the discrete state feedback min-max control law via the output have been
treated in (Magana and Zak 1988, Sharav-Schapiro et al. 1998). In particular, it has been stated that
a Riccati min-max control law can be realized via the outputs if the discrete algebraic Riccati equation
satisfies a particular constraint (Sharav-Schapiro et al. 1998). It has been shown that the realization of the
output feedback min-max control law is equivalent to the discrete positive realness of an auxiliary system
generated from the original plant triple (Sharav-Schapiro et al. 1998). In Sharav-Schapiro et al. (1998) a
simple existence condition for the output feedback min-max control has been given for square systems.
For non square systems, a procedure for synthesizing a min-max controller using the measured outputs
has been given in Lai et al. (2004). An explicit procedure to obtain a Lyapunov matrix that satisfies the
discrete Riccati equation and simultaneously satisfies the constraint has also been given.

In this paper, by solving an algebraic Riccati equation that satisfies a particular constraint, it is shown
that discrete time sliding mode control using output feedback can be performed for non square uncertain
systems. Using the extended outputs, it is first shown that the sliding dynamics is a function of the
disturbance and that the ideal sliding mode as defined for a nominal system is not possible. In this
case, the reduced order dynamics is shown to be bounded about a region around the sliding surface.
An additional criteria for choosing the extended outputs is given which will minimize the effect of the
disturbance on the sliding surface. The required control law can be realized via the extended outputs
provided a Lyapunov matrix exists that solves a constrained Riccati equation. The conditions for the
existence of the control law are given.

The paper is structured as follows. Section 2 gives the problem motivation. The existence problem
is given in Section 3 and the closed loop stability analysis is dealt with in Section 4. The reachability
problem is dealt with in Section 5. A motivational problem using an aircraft system is presented to
illustrate the methodology. The motivational problem will consider sensor failures. An augmented output
will be created by extending the available outputs, such that the resulting plant triple has stable or no
invariant zeros. In addition to the above criteria, the extended output will be chosen such that the effect
of the disturbance on the sliding surface will be minimized. A reconfigurable control design will then be
performed in the presence of sensor failure.
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2 Motivation

Consider the uncertain discrete, linear, time invariant state space system representation with uncertainties
as given below:

xk+1 = Axk +Buk +Bddk (1)

yk = [(y1)k...(yp)k]T = Cxk,(yi)k = Cixk (2)

where xk ∈ Rn is the state vector, yk ∈ Rp is the output vector, uk ∈ Rm is the control input and dk ∈ Rq

is the disturbance vector. It is assumed that m ≤ p, the pair (A,B) is controllable and without loss of
generality, that rank(C) = p and that column rank(B) = m. Assume that the uncertainties are lumped in
dk and are such that for some real ρ0 > 0 and ρ1 > 0, ‖dk‖ < ρ0‖xk‖+ ρ1. It is also assumed that the
usual matching condition rank(B|Bd) = rank(B) is not satisfied. The nominal part of the plant (1)-(2) is
defined as the representation when the disturbance dk = 0 . If the sliding surface s is defined as:

s = {x ∈ Rn : FCxk = 0} (3)

for some selected matrix F ∈ Rm×p then it is well known that for a unique equivalent control to exist,
the matrix FCB ∈ Rm×m must have full rank. As

rank(FCB)≤ min{rank(F), rank(CB)} (4)

it follows that both F and CB must have full rank. As F is a design parameter, it can be chosen to be
full rank. A necessary condition for FCB to be full rank, and thus for solvability of the output feedback
sliding mode design problem, becomes that CB must have rank m. If this rank condition holds and any
invariant zeros of the triple (A,B,C) lie in the unit disk, then the existence of a matrix F defining the
surface (3), which provides a stable sliding motion with a unique equivalent control is determined from
the stabilisability by output feedback of a specific, well-defined subsystem of the plant (Edwards and
Spurgeon 1998). The aim here is to extend the existing results such that a sliding mode control based
on output measurements can be designed for the system (1)-(2) when rank(CB) < m and/or unstable
invariant zeros are present in the triple (A,B,C). It will be assumed that the matrix A is invertible. Such
a property often occurs in discrete-time linear system representations and thus the assumption is not
limiting. For instance, consider the continuous, linear, time invariant system

ż(t) = Nz(t)+Gu(t) (5)

If the nominal part of the system (1)-(2) is the discretized form of the continuous time system (5) under
sampling i.e,

A = eNt ,B =
∫ T

0
eNtdτG (6)

then it is shown by Rugh (1996) (page 386) that the state space matrix A is invertible.
An extended output matrix C̃ is then constructed without any a priori assumptions on the system
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(1)-(2) relating to the stability of the invariant zeros

C̃ =



C1
...

Cp
...

C1A−µ1+1

...
CpA−µp+1


(7)

where this C̃ is full rank, rank(C̃B) = rank(B), and any invariant zeros of the triple (A,B,C̃) lie inside
the unit disk. Also, the µi are chosen such that p̃ = ∑

p
i=1 µi is minimal. Note that C̃ = C means that the

original system is output feedback stabilisable using existing methods (see the work of Edwards and
Spurgeon (1998)).

It is now important to show the relationship between the invariant zeros of the original system triple
(A ,B ,C) and the invariant zeros of the augmented system triple (A ,B ,C̃). For the triple (A ,B ,C) in
(1)-(2) define z as an invariant zero of (1)-(2) iff there exist vectors 0 6= xz ∈ Cn and uz ∈ Cm, such that
the triple z,xz,uz satisfies

[
zI−A B

C 0

][
xz
uz

]
= 0 (8)

where, I is the usual identity matrix of dimension n. Here, xz is called the state zero direction and uz
is called the input zero direction. It has been shown by Govindaswamy et al. (2008), that any invariant
zeros of the triple (A,B,C̃) are amongst the invariant zeros of the triple (A,B,C). It can be shown that
if an appropriate choice of extended outputs is available, the invariant zeros from the original triple
(A,B,C) may disappear from the augmented system. This is particularly useful if any of the invariant
zeros of (A,B,C) are unstable. The choice of augmented outputs to remove transmission zeros is
described in the lemma below.

Lemma 2.1 : Let z be the invariant zero of the original triple (A,B,C) with zero direction xz. Assume
the zero direction xT

z is spanned by the rows of the augmented output matrix C̃. Then the invariant zero z
is not present in the augmented triple (A,B,C̃).(Govindaswamy et al. 2009)

Note that by augmenting the number of outputs to the dimension of the state, the transmission zeros
may all be removed if the system is observable. However, the objective of this paper is to augment the
outputs only sufficiently so that C̃B is full rank and any transmission zeros are stable. In general it is
not required, and indeed may not be desirable, to augment the outputs to the dimension of the state; the
greater the number of states the greater the complexity of the resulting controller. The next section will
develop and analyze the sliding surface and the resulting sliding mode dynamics.

3 The Existence Problem

Assume that it is possible to choose C̃ as stated in (7). The problem now becomes one of finding a
suitable sliding variable sk that is a function of the augmented outputs only. Choose a set of past outputs
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along with the present outputs, and form a new extended output vector ỹk as shown below:

ỹk =



(y1)k
...

(yp)k
...

(y1)k−µ1+1
...

(yp)k−µp+1


(9)

From the system (1)-(2), it can be computed that:

xk = A−1(xk+1−Buk−Bddk) (10)

yk = Cxk (11)

From the above equations the following relation between ỹ, x and u can be derived. One has:

yk = Cxk

yk−1 = CA−1(xk−Buk−1−Bddk−1)

...

yk− j = CA− jxk−CA− jBuk−1−·· ·−CA−1Buk− j−CA− jBddk−1−·· ·−CA−1Bddk− j

= CA− jxk−
j

∑
l=1

CA−lBuk− j+l−1−
j

∑
l=1

CA−lBddk− j+l−1

Thus

ỹk = C̃xk−
[

0p×l1
M(p̃−p)×l1

]
ū1
ū2
...

ūp

−[ 0p×q1
Md(p̃−p)×q1

]
d̄1
d̄2
...

d̄p


with l1 = m(p̃− p) and q1 = q(p̃− p)

Uk =


ū1
ū2
...

ūp

 ∈ Rl1 , Dk =


d̄1
d̄2
...

d̄p

 ∈ Rq1 (12)

and, for i = 1, ..., p :

ūi =


uk−1
uk−2

...
uk−µi+1

and d̄i =


dk−1
dk−2

...
dk−µi+1

 (13)

M = diag
{

M1, ...,Mp
}

Mi =



CiA−1B 0 . . . . . . 0

CiA−2B CiA−1B
. . .

...
...

. . . 0
...

... CiA−1B 0
CiA−µi+1B . . . . . . CiA−2B CiA−1B


∈ R(µi−1)×(m(µi−1))
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and the matrix Md is

Md = diag
{

Md1, ...,Md p
}

Mdi =



CiA−1Bd 0 . . . . . . 0

CiA−2Bd CiA−1Bd
. . .

...
...

. . . 0
...

... CiA−1Bd 0
CiA−µi+1Bd . . . . . . CiA−2Bd CiA−1Bd


∈ R(µi−1)×(q(µi−1))

Defining the sliding manifold in terms of known variables gives:

sk = Fỹk +F
[

0p×l1
M(p̃−p)×l1

]
Uk (14)

= FC̃xk−F
[

0p×q1
Md(p̃−p)×q1

]
Dk (15)

Now to analyze the stability of the sliding motion, it is convenient to introduce a coordinate transfor-
mation x→ T̂ x = x̂ to the usual regular form, making the final p̃ states of the system directly dependent
on the extended outputs (Edwards and Spurgeon 1998). The system (1)-(2) in this case will be given as:

Â =
[

Â11 Â12
Â21 Â22

]
, B̂ =

[
0

B2

]
, B̂d =

[
B̂d1

B̂d2

]
, Ĉ =

[
0 T

]
(16)

x̂ =
[

x̂1
x̂2

]
where T ∈R p̃×p̃ is an orthogonal matrix, Â11 ∈R(n−m)×(n−m) and the remaining sub-blocks in the system
matrix are partitioned accordingly.

The corresponding switching surface matrix is given by

p̃−m↔ m↔
[ F1 F2 ] = FT

(17)

where T is the matrix from equation (16). As a result

FĈ = [ F1C f F2 ] (18)

where

C f =
[

0(p̃−m)×(n−p̃) I(p̃−m)
]

(19)

Therefore FĈB̂ = F2B2 and the square matrix F2 is nonsingular. Let the disturbance distribution matrix
be defined as:

Γ = F
[

0p×q1
Md(p̃−p)×q1

]
In the new coordinates Γ will be of the form

q1−m↔ m↔[
Γ̂1 Γ̂2

]
= Γ̂

(20)

Consider the nominal plant for the system (1)-(2), when dk = 0, in the new coordinate system. The
canonical form in (16) can then be viewed as a special case of the regular form normally used in sliding
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mode controller design, and it can be shown that the reduced order sliding motion in this is governed by
a free motion with system matrix

Âs
11 = Â11− Â12KC f (21)

which must therefore be stable and the gain K ∈ Rm×(p̃−m) is defined as K = F−1
2 F1. It should be

emphasized that (21) describes the ideal sliding mode dynamics which are defined by the nominal system
representation. However, for the system (1)-(2) in the presence of uncertainty, the sliding surface (15) is
perturbed by the disturbance term and hence it is clear that the ideal sliding motion as given in (21) is not
possible. Hence, it is necessary to show that the reduced order motion in the presence of the disturbance
will be confined within an acceptable region around the sliding surface ŝ. To show this, let:

ŝk = 0 (22)

so that

(x̂2)k = F−1
2 (−F1C f (x̂1)k + Γ̂D̂k) (23)

Substituting for (x̂2)k in (x̂1)k+1, one can obtain

(x̂1)k+1 = (Â11− Â12F−1
2 F1C f )(x̂1)k + Â12F−1

2 Γ̂D̂k + B̂d1 d̂k

(x̂1)k+1 = Âs
11(x̂1)k + Â12F−1

2 Γ̂D̂k + B̂d1 d̂k

The solution for (x̂1)k+1 is:

(x̂1)k = (Âs
11)

k(x̂1)o +
k−1

∑
j=0

(Âs
11)

k− j−1(Â12F−1
2 Γ̂D̂ j + B̂d1 d̂ j) (24)

and thus

‖(x̂1)k‖ ≤ ‖(Âs
11)

k‖‖(x̂1)o‖+‖
k−1

∑
j=0

(Âs
11)

k− j−1‖(‖Â12‖‖F−1
2 ‖‖Γ̂‖‖D̂ j‖+‖B̂d1‖‖d̂ j‖) (25)

If Âs
11 is designed by the choice of F1 such that it has eigenvalues within the unit circle, then it can be

shown that
‖(Âs

11)
k‖ ≤ γλ

k

where γ > 0 and 0 < λ < 1. It can further be shown that:

k− j−1

∑
j=0
‖(Âs

11)
j‖ ≤ γ

k− j−1

∑
j=0

λ
j

≤ γ

∞

∑
j=0

λ
j

≤ γ

1−λ

Using the standard definition of a supremum, define ρ2 = sup
k>0
‖D̂k‖ and ρ3 = sup

k>0
‖d̂k‖, where ρ2 and ρ3

are the smallest constants such that ‖D̂k‖< ρ2 and ‖d̂k‖< ρ3 ∀k > 0. Hence bounds on ‖(x̂1)k‖ can be
written as:

‖(x̂1)k‖ ≤ γλ
k‖(x̂1)o‖+

γ

1−λ
(‖Â12‖‖F−1

2 ‖‖Γ̂k‖ρ2 +‖B̂d1‖ρ3) (26)

and the reduced order sliding motion will then be uniformly ultimately bounded by
γ

1−λ
(‖Â12‖‖F−1

2 ‖‖Γ̂‖ρ2 +‖B̂d1‖ρ3). Note that the band can be further minimised if the extended outputs are
chosen so that the ideal sliding mode dynamics are minimally affected by the disturbance as described
below.

Consider the matrix Md in the new coordinate system. The ith block of M̂d can be written as
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M̂di =



ĈiÂ−1 0 . . . . . . 0

ĈiÂ−2 ĈiÂ−1 . . .
...

...
. . . 0

...
... ĈiÂ−1 0

ĈiÂ−µi+1 . . . . . . ĈiÂ−2 ĈiÂ−1




B̂d
B̂d
...
...

B̂d


The effect of the disturbance d̂k on the sliding surface ŝk and hence the sliding mode dynamics can

be nullified in certain cases by choosing the extended outputs such that the columns of the matrix
[B̂T

d B̂T
d . . . . . . B̂T

d ]T span the null space of the lower triangular matrix



ĈiÂ−1 0 . . . . . . 0

ĈiÂ−2 ĈiÂ−1 . . .
...

...
. . . 0

...
... ĈiÂ−1 0

ĈiÂ−µi+1 . . . . . . ĈiÂ−2 ĈiÂ−1



The above condition is restrictive and it is possible that not all disturbance channels span the null
space of the above lower triangular matrix. In this case it is necessary to choose the extended outputs so
that the direct effect of the disturbance on the extended output, and hence the sliding mode dynamics, is
minimized. In this work, the main criteria for choosing the extended outputs are that

(i) The resulting triple (Â, B̂,Ĉ) has stable or no invariant zeros
(ii) The effect of the disturbance on the sliding surface ŝk is minimized

If the extended outputs are chosen with respect to the above criteria, the sliding surface ŝk will be

ŝk = F ˆ̃yk +F
[

0p×l1
M̂(p̃−p)×l1

]
Ûk (27)

= FĈx̂k (28)

For the above sliding surface, from (26), the reduced order sliding motion can be computed to be
uniformly ultimately bounded as γ

1−λ
(‖B̂d1‖ρ3). It is important to note that, given the class of uncertainty

considered this represents the behavior of the system in the ideal sliding mode i.e when ŝk is identically
zero.

Note that, for the existence of a stable bounded sliding motion, Âs
11 = Â11− Â12KC f must be stable,

which implies that the pair (Â11, Â12) is controllable and (Â11,C f ) is observable. The former is ensured
as (Â, B̂) is controllable. The observability of (Â11,C f ), is not so straightforward, but can be investigated
by considering the canonical form below.

Lemma 3.1 : Let (Â, B̂,Ĉ) be a linear system with p̃ > m and rank(ĈB̂) = m. Then a change of coordi-
nates x̂→ T́ x̂ = x́ exists so that the system triple with respect to the new coordinates has the following
structure:

• The system matrix can be written as

Á =
[

Á11 Á12
Á21 Á22

]
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where Á11 ∈ R(n−m)×(n−m) and the sub-block Á11 when partitioned has the structure

Á11 =

 Áo
11 Áo

12
0 Áo

22
Ám

12

0 Áo
21 Ám

22


where Áo

11 ∈ Rr×r, Áo
22 ∈ R(n−p̃−r)×(n−p̃−r) and Áo

21 ∈ R(p̃−m)×(n−p̃−r) for some r ≥ 0 and the pair
(Áo

22, Á
o
21) is completely observable.

• The input distribution matrix B́ and the output distribution matrix Ć have the structure in (16).

For a proof and a constructive algorithm to obtain this canonical form see the work of Edwards and
Spurgeon (1995). In the case where r > 0, the intention is to construct a new system (Ã11, Á122,C̃ f )
which is both controllable and observable with the property that

λ (Ás
11) = λ (Áo

11)∪λ (Ã11− Á122KC̃ f ).

To this end, as in (Edwards and Spurgeon 1995), partition the matrices Á12 and Ám
12 as

Á12 =
[

Á121
Á122

]
and Ám

12 =
[

Ám
121

Ám
122

]

where Á122 ∈ R(n−m−r)×m and Ám
122 ∈ R(n−p̃−r)×(p̃−m) and form a new sub-system represented by the

triple (Ã11, Á122,C̃ f ) where

Ã11 =
[

Áo
22 Ám

122
Áo

21 Ám
22

]
C̃ f =

[
0(p̃−m)×(n−p̃−r) I(p̃−m)

]
(29)

It follows that the spectrum of Ás
11 decomposes as

λ (Á11− Á12KC f ) = λ (Áo
11)∪λ (Ã11− Á122KC̃ f )

Lemma 3.2 : The spectrum of Áo
11 represents the invariant zeros of (A,B,C̃).(Edwards and Spurgeon

1995)

It follows directly that for a stable sliding motion, the invariant zeros of the system (Á, B́,Ć) must lie
inside the unit disk and the triple (Ã11, Á122,C̃ f ) must be stabilisable with respect to output feedback.
The matrix Á122 is not necessarily full rank. Suppose rank(Á122) = m′ then, as in Edwards and Spurgeon
(1995), it is possible to construct a matrix of elementary column operations Tm′ ∈ Rm×m such that

Á122Tm′ =
[

B̃1 0
]

(30)

where B̃1 ∈ R(n−m−r)×m′ and is of full rank. If Km′ = T−1
m′ K and Km′ is partitioned compatibly as

Km′ =
[

K1
K2

]
lm′

lm−m′

then

Ã11− Á122KC̃ f = Ã11−
[

B̃1 0
]

Km′C̃ f

= Ã11− B̃1K1C̃ f
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and (Ã11, Á122,C̃ f ) is stabilisable by output feedback if and only if (Ã11, B̃1,C̃ f ) is stabilisable by out-
put feedback. From the original controllability assumption, Lemma 3.1 and the construction (29), the
arguments from Edwards and Spurgeon (1995) can be used to prove:

Lemma 3.3 : The pair (Ã11, B̃1) is completely controllable and (Ã11,C̃ f ) is completely observable.

As can be seen, the triple (Ã11, B̃1,C̃ f ) is both completely controllable and observable as required to
realise an output feedback based controller. To design the sliding surface consider the method for the
design of a static output feedback gain as given in Mehdi et al. (2004). It is important to note that the
work of Mehdi et al. (2004) assumes observability of the system matrices. The technique in Mehdi et al.
(2004) introduces slack variables to decouple the Lyapunov matrix and the static output feedback gain.
With the additional slack variables and a chosen state space variable, an LMI problem is solved to obtain
the static output feedback controller. The following theorem is required to formulate the design of the
sliding surface using this method.

Theorem 3.4 : Let the matrix Ao be defined as Ao = Ã11 + Á122Ko. A static output feedback gain K is
stabilising for the triple (Ã11, Á122,C̃ f ) if and only if there exist a positive definite matrix Ξ = ΞT > 0 in
Rn×n, non singular matrices G1 ∈ Rm×m and E4 ∈ Rn×n, non-null matrices E1 ∈ Rn×n and L ∈ Rm×p

and arbitrary matrices E2 ∈ Rn×n, E3 ∈ Rm×n such that the following LMI:
E1Ao +AT

o ET
1 −Ξ ∗ ∗ ∗

E2Ao −Ξ ∗ ∗
E3Ao + ÁT

122ET
1 +(LC̃ f −G1Ko) ÁT

122ET
2 E3Á122 + ÁT

122ET
3 − (G1 +GT

1 ) ∗
E4Ao−ET

1 Ξ−ET
2 E4Á122−ET

3 −E4−ET
4

< 0 (31)

is feasible for a given state feedback gain Ko that stabilises the pair (Ã11, Á122) with the static output
feedback gain given by

K = G−1
1 L (32)

For a conclusive proof of the above theorem, refer to (Mehdi et al. 2004). The section below will now
consider selection of a suitable control law to stabilise the closed loop dynamics of the plant.

4 Closed loop stability analysis

Introduce a nonsingular state transformation of the form x́→ T̄ x́ where T̄ is given as :

T̄ =
[

In−m 0
−KC f Im

]
(33)

where the matrices In−m and Im are identity matrices of dimension n−m and m respectively and the
matrix KC f ∈ Rm×(n−m). With the above transformation, the system (1)-(2) is of the form:

Ā =
[

Ā11 Ā12
Ā21 Ā22

]
, B̄ =

[
0

B2

]
, B̄d =

[
B̄d1
B̄d2

]
FC̄ = [ 0 F2 ] (34)

Here, Ā11 = Ās
11 = Á11− Á12KC f with Ā11 ∈ R(n−m)×(n−m) and is stable by construction. The rest of

the sub-matrices in the matrix Ā are conformably partitioned. The control law uk is chosen here as a
function of the known signals ỹk and Uk and has the form :

uk =−(BT PB)−1sk (35)

where the matrix P is symmetric positive definite and with P ∈ Rn×n. In the new coordinate system
given in (34), the corresponding control ūk is:

ūk =−(B̄T P̄B̄)−1s̄k (36)
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In the case of a discrete-time, uncertain system it is necessary to consider closed loop analysis of the
full-order system. In continuous time, where infinite switching is assumed, it is possible to enforce the
sliding mode condition so that s̄k is identically zero after some finite time. This behavior will not be
replicated in discrete time where motion close to s̄k = 0 is the best that can be achieved in the uncertain
case. In this paper it will be demonstrated that s̄k can be constrained to within some acceptably small
region of s̄k = 0 after a finite number of steps.

To show that the control ūk stabilizes the system (34), define the Lyapunov candidate :

V̄k = x̄T
k P̄x̄k (37)

with P→ T̄−T T́−T T̂−T PT̂−1T́−1T̄−1 =: P̄. The Lyapunov matrix P̄ is chosen such that

P̄ =

[
P̄1 P̄2

P̄T
2 P̄3

]
(38)

with P̄1 ∈ R(n−m)×(n−m) and the rest of the sub matrices of P̄ conformably partitioned. The forward
difference of the Lyapunov function (37), ∆V̄k in the new coordinates is given as:

∆V̄k = x̄T
k+1P̄x̄k+1− x̄T

k P̄x̄k (39)

The stability analysis of the system given in (34) together with the control (36) will now be considered.
Before deriving the stability condition, the result from Yan et al. (2009) will be stated here without the
proof, for use in the main result.

Lemma 4.1 : Let there be a matrix N1 ∈ Rm×n and let there be vectors w ∈ Rm and r ∈ Rn. Then the
inequality

wT N1r ≤ 1
2ε

wT N1N−1
2 NT

1 w+
ε

2
rT N2r

holds for any symmetric positive definite matrix N2 ∈ Rn×n and any positive constant ε

Now the main result can be stated in the theorem given below.

Theorem 4.2 : If there exists a matrix F ∈ Rm×p̃, a symmetric positive definite matrix P̄ ∈ Rn, a sym-
metric positive definite matrix Q̄ ∈ Rn×n that simultaneously solves the discrete Riccati equation

ĀT P̄Ā− P̄− ĀT P̄B̄(B̄T P̄B̄)−1B̄T P̄Ā =−Q̄ (40)

and the linear constraint:
FC̄ = B̄T P̄Ā (41)

then the control law (36) stabilizes the system (34) iff

λ (Q̄1)
1
2 > ρ0

(1
ε
‖P̄−

1
2 ĀT ĒB̄d‖2 +‖P̄

1
2 B̄d‖2

) 1
2

(42)

where λ (Q̄1) is the minimum eigenvalue of Q̄1, and the matrix Q̄1 is defined as

ĀT P̄Ā− (1− ε)P̄− ĀT P̄B̄(B̄T P̄B̄)−1B̄T P̄Ā =−Q̄1 (43)

where ε is some scalar with ε > 0 and the matrix Ē ∈ Rn. Also the system states will be uniformly
ultimately bounded with respect to the ellipsoid ξ (r1) with parameter

r1 = ε1 +
(

λ (Q̄1)
1
2 −ρ0(

1
ε
‖P̄−

1
2 ĀT ĒB̄d‖2 +‖P̄

1
2 B̄d‖2)

1
2

)−2((1
ε
‖P̄−

1
2 ĀT ĒB̄d‖2 +‖P̄

1
2 B̄d‖2

)
ρ

2
1

)
λ (P̄) (44)

with ε1 > 0 and arbitrarily small.
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Proof: Using the above control law given in (36), the forward difference ∆V̄k can be shown to be:

∆V̄k = (x̄T
k ĀT + ūT

k B̄T + d̄T
k B̄T

d )P̄(Āx̄+ B̄ūk + B̄d d̄k)− x̄T
k P̄x̄k (45)

= x̄T
k (ĀT P̄Ā− P̄− ĀT P̄B̄(B̄T P̄B̄)−1B̄T P̄Ā)x̄k−2d̄T

k B̄T
d P̄B̄(B̄T P̄B̄)−1B̄T P̄Āx̄k (46)

+2d̄T
k B̄T

d P̄Āx̄k + d̄T
k B̄T

d P̄B̄d d̄k

= −x̄T
k Q̄x̄k +2d̄T

k B̄T
d P̄Āx̄k−2d̄T

k B̄T
d P̄B̄(B̄T P̄B̄)−1B̄T P̄Āx̄k + d̄T

k B̄T
d P̄B̄d d̄k

where the matrix Q̄ is as defined in (42). The above equation can be further reduced to

= −x̄T
k Q̄x̄k +2d̄T

k B̄T
d (P̄− P̄B̄(B̄T P̄B̄)−1B̄T P̄)Āx̄k + d̄T

k B̄T
d P̄B̄d d̄k (47)

= −x̄T
k Q̄x̄k +2d̄T

k B̄T
d (P̄− P̄B̄(BT

2 P̄3B2)−1B̄T P̄)Āx̄k + d̄T
k B̄T

d P̄B̄d d̄k (48)

= −x̄T
k Q̄x̄k +2d̄T

k B̄T
d (P̄− P̄B̄(BT

2 P̄3B2)−1B̄T P̄)Āx̄k + d̄T
k B̄T

d P̄B̄d d̄k (49)

= −x̄T
k Q̄x̄k +2d̄T

k B̄T
d ĒĀx̄k + d̄T

k B̄T
d P̄B̄d d̄k (50)

where the matrix Ē can be computed from P̄− P̄B̄(BT
2 P̄3B2)−1B̄T P̄ as

Ē =
[

P̄1− P̄2P̄−1
3 P̄T

2 0
0 0

]
using lemma (4.1) with N1 = B̄T

d ĒĀ, w = d̄k and r = x̄k. Equation (50) can now be written as

∆V̄k = −x̄T
k Q̄x̄k +2d̄T

k B̄T
d ĒĀx̄k + d̄T

k B̄T
d P̄B̄d d̄k (51)

≤ −x̄T
k Q̄x̄k + ε x̄kP̄x̄k +

1
ε

d̄T
k B̄T

d ĒĀP̄−1ĀT ĒB̄d d̄k + d̄T
k B̄T

d P̄B̄d d̄k (52)

≤ −x̄T
k Q̄1x̄k +

1
ε

d̄T
k B̄T

d ĒĀP̄−1ĀT ĒB̄d d̄k + d̄T
k B̄T

d P̄B̄d d̄k (53)

where Q̄1 is defined as in (43). Using the assumption that ‖d̄k‖< ρ0‖x̄k‖+ρ1 in (53) gives

∆V̄k ≤ −λ (Q̄1)‖x̄‖2 +
(1

ε
‖P̄−

1
2 ĀT ĒB̄d‖2 +‖P̄

1
2 B̄d‖2

)
‖d̄k‖2 (54)

≤ −λ (Q̄1)‖x̄k‖2 +
(1

ε
‖P̄−

1
2 ĀT ĒB̄d‖2 +‖P̄

1
2 B̄d‖2

)
(ρ0‖x̄k‖+ρ1)2 (55)

As stated before, λ (Q̄1) is the minimum eigenvalue of Q̄1. Hence the condition for stability can now be
written as:

0 >−λ (Q̄1)‖x̄k‖2 +(
1
ε
‖P̄−

1
2 ĀT ĒB̄d‖2 +‖P̄

1
2 B̄d‖2)(ρ0‖x̄k‖+ρ1)2 (56)(

λ (Q̄1)
1
2 −ρ0(

1
ε
‖P̄−

1
2 ĀT ĒB̄d‖2 +‖P̄

1
2 B̄d‖2)

1
2

)
‖x̄k‖>

(1
ε
‖P̄−

1
2 ĀT ĒB̄d‖2 +‖P̄

1
2 B̄d‖2

) 1
2
ρ1 (57)

Hence

λ (Q̄1)
1
2 > ρ0(

1
ε
‖P̄−

1
2 ĀT ĒB̄d‖2 +‖P̄

1
2 B̄d‖2)

1
2 (58)

Also,

‖x̄k‖ >
(

λ (Q̄1)
1
2 −ρ0(

1
ε
‖P̄−

1
2 ĀT ĒB̄d‖2 +‖P̄

1
2 B̄d‖2)

1
2

)−1(1
ε
‖P̄−

1
2 ĀT ĒB̄d‖2 +‖P̄

1
2 B̄d‖2

) 1
2
ρ1 (59)

Hence the states x̄ will ultimately enter an ellipsoid after a finite time k depending on the initial condition
x̄0 and will thereafter remain within the ellipsoid which is given by

ξ (r1) = {ξ ∈ Rn : V̄ (ξ ) < r1} (60)
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where r1

r1 = ε1 +
(

λ (Q̄1)
1
2 −ρ0(

1
ε
‖P̄−

1
2 ĀT ĒB̄d‖2 +‖P̄

1
2 B̄d‖2)

1
2

)−2((1
ε
‖P̄−

1
2 ĀT ĒB̄d‖2 +‖P̄

1
2 B̄d‖2

)
ρ

2
1

)
λ (P̄) (61)

with ε1 > 0 and is arbitrarily small.
Now consider the stability condition given in (58)

λ (Q̄1)
1
2 > ρ0(

1
ε
‖P̄−

1
2 ĀT ĒB̄d‖2 +‖P̄

1
2 B̄d‖2)

1
2 (62)

⇒ 0 > (−λ (Q̄1)Iq +ρ
2
0

1
ε

B̄T
d ĒĀP̄−1ĀT ĒB̄d +ρ

2
0 B̄T

d P̄B̄d) (63)

⇐⇒

0 >

 −λ (Q̄1)Iq ρ0

√
1
ε

B̄T
d ĒĀ ρ0B̄T

d P̄

ρ0

√
1
ε

ĀT ĒB̄T
d − P̄ 0

ρ0P̄B̄d 0 −P̄

 (64)

where the second inequality follows from taking the schur complements, with the matrix −P̄ < 0.
The variable ε in the above equation can be considered as a design variable and can be fixed for control
design.

For the above matrix inequality (64) to be satisfied, it is pertinent that a matrix P̄ exist that satisfies the
constrained Riccati equation (40). Consider the linear constraint FC̄ = B̄T P̄Ā together with the canonical
structure given in (34). It can be seen that

[ 0 F2 ] = B̄T P̄Ā (65)

[
0 F2

]
=
[

0
B2

]T [ P̄1 P̄2
P̄T

2 P̄3

][
Ā11 Ā12
Ā21 Ā22

]
(66)

=
[

BT
2 P̄T

2 Ā11 +BT
2 P̄3Ā21 BT

2 P̄T
2 Ā12 +BT

2 P̄3Ā22
]

(67)

For the relation (65) to be satisfied, it can be seen that:

P̄T
2 Ā11 + P̄3Ā21 = 0 =⇒ P̄T

2 =−P̄3Ā21Ā−1
11 (68)

and

F2 = BT
2 P̄T

2 Ā12 +BT
2 P̄3Ā22 (69)

Using the results given above the matrix Q̄ can be computed as:

Q̄ =
[

P̄1− ĀT
11P̄1Ā11 + ĀT

21P̄3Ā21 (−P̄3Ā21Ā−1
11 − ĀT

12P̄1Ā11 + ĀT
12Ā−T

11 ĀT
21P̄3Ā21)T

∗ P̄3 + ĀT
12Ā−T

11 ĀT
12P̄3Ā21Ā−1

11 Ā12− ĀT
12P̄1Ā12

]
(70)

Also the closed loop matrix for the system (34) with the feedback control law (36) can be computed as:

Ācl =
[

Ā11 Ā12
Ā21 Ā22

]
−
[

0
B2

]
([ 0 F2 ] Ā−1

[
0

B2

]
)−1 [ 0 F2 ] (71)

where the inverse of the matrix Ā can be written as :

Ā−1 =
[

Ā11 + Ā−1
11 Ā12(Ā22− Ā21Ā−1

11 Ā12)−1Ā21Ā−1
11 −Ā−1

11 Ā12(Ā22− Ā21Ā−1
11 Ā12)−1

−(Ā22− Ā21Ā−1
11 Ā12)−1Ā21Ā−1

11 (Ā22− Ā21Ā−1
11 Ā12)−1

]
(72)
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Hence

Ācl =
[

Ā11 Ā12
Ā21 Ā22

]
−
[

0
B2

]
(F2(Ā22− Ā21Ā−1

11 Ā12)−1B2)−1 [ 0 F2 ] (73)

Ācl =

[
Ā11 Ā12

Ā21 Ā21Ā−1
11 Ā12

]
(74)

The relation between the matrix Q̄ and the closed loop matrix Ācl is shown to be Q̄ = P̄− ĀT
clP̄Ācl .

Hence, if the matrix Ācl is stable, it can be noticed that a P̄ that satisfies the above closed loop Lyapunov
equation, will also satisfy the open loop Riccati equation (40). The existence of a positive definite matrix
P̄ is guaranteed if the closed loop matrix Ācl is stable. Hence the necessary condition for the existence
of a matrix P̄ is to find a matrix K that would stabilize Ācl . As in the previous section, the gain K is
computed from the algorithm given in (Mehdi et al. 2004). For obtaining an optimum P, where P =
T̂ T T́ T T̄ T P̄T̄ T́ T̂ , the lower bound for the matrix Q̄ is fixed as In and the following set of linear matrix
inequalities is formulated:

Q̄ > I (75) −λ (Q̄1)Iq ρ0

√
1
ε

B̄T
d ĒĀ ρ0B̄T

d P̄

ρ0

√
1
ε

ĀT ĒB̄T
d − P̄ 0

ρ0P̄B̄d 0 −P̄

 < 0 (76)

P̄ > 0 (77)

with P̄1 and P̄3, as the decision variables. The unknown variable F2 can be computed from (69). It can be
shown that the control law (36) is dependent only on the parameter K and not on F2. By simple algebraic
manipulation it can be shown that:

ūk = −(B̄T P̄B̄)−1s̄k (78)

From (41) it can be shown that FC̄Ā−1B̄ = B̄T P̄B̄ and using this in the above equation gives:

ūk = −(FC̄Ā−1B̄)−1(F ¯̃yk +FM̄Ūk) (79)

= −([K Im]C̄Ā−1B̄)−1([K Im] ¯̃yk +[K Im] M̄Ūk) (80)

The above control law can be used for feedback control, but it will be necessary to show the existence
of a positive definite P̄ and a negative definite Q̄ that will satisfy the conditions of theorem (4.2) to prove
stability.
To show that the nominal closed loop dynamics where the system contains no uncertainty, are a reduced
order dynamics introduce a new change of coordinates of the form x̄→ Tcx̄ = xc, where Tc has the form

Tc =

[
In−m − Ā−1

11 Ā12

0 Im

]
(81)

The nominal closed loop matrix Ac
cl in the new coordinates can be written as

Ac
cl =

[
Ā11 + Ā−1

11 Ā12Ā21 0
Ā21 0

]
The nominal closed loop eigenvalues in this case are clearly seen to be the eigenvalues of the matrix

Ā11 + Ā−1
11 Ā12Ā21. Hence stability of the closed loop implies the stability of the matrix Ā11 + Ā−1

11 Ā12Ā21.
It is now necessary to show that control (36) forces the state trajectories towards the sliding surface
sk from any initial condition and that the sliding dynamics are bounded within a region of the sliding
surface in finite time.
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5 Existence of a sliding mode

To show that the control law (36) forces the states of the uncertain system towards the sliding surface sk,
consider s̄k+1.

s̄k+1 = FC̄Ācl x̄k +FC̄B̄d d̄k (82)

Let φ = F2Ā21Ā−1
11 Ā12F−1

2 . The term FC̄Ācl x̄k can be written as

FC̄Ācl x̄k = F2Ā21(x̄1)k +φ s̄k

Hence s̄k+1 can be written as

s̄k+1 = F2Ā21(x̄1)k +φ s̄k +FC̄B̄d d̄k (83)

Consider the sliding surface at the instant s̄k−1. Then

s̄k−1 = FC̄x̄k−1 (84)

s̄k−1 = FC̄Ā−1x̄k−FC̄Ā−1B̄ūk−1−FC̄Ā−1B̄d d̄k−1 (85)

(86)

Substituting for ūk−1 in the above equation gives

s̄k−1 = FC̄Ā−1x̄k +FC̄Ā−1B̄(FC̄Ā−1B̄)−1s̄k−1−FC̄Ā−1B̄d d̄k−1 (87)

s̄k−1 = FC̄Ā−1x̄k + s̄k−1−FC̄Ā−1B̄d d̄k−1 (88)

FC̄Ā−1x̄k = FC̄Ā−1B̄d d̄k−1 (89)

Expanding (89) gives

−F2(Ā22− Ā21Ā−1
11 Ā12)−1Ā21Ā−1

11 (x̄1)k +F2(Ā22− Ā21Ā−1
11 Ā12)−1(x̄2)k = F2(Ā22− Ā21Ā−1

11 )−1

.[−Ā21Ā−1
11 Im]B̄d d̄k−1 (90)

−Ā21Ā−1
11 (x̄1)k +(x̄2)k = [−Ā21Ā−1

11 Im]B̄d d̄k−1 (91)

⇒ F−1
2 s̄k = Ā21Ā−1

11 (x̄1)k +[−Ā21Ā−1
11 Im]B̄d d̄k−1 (92)

s̄k = F2Ā21Ā−1
11 (x̄1)k−F2[Ā21Ā−1

11 − Im]B̄d d̄k−1 (93)

Substituting the above value for s̄k in (83) and taking norms gives

‖s̄k+1‖ ≤ (‖F2Ā21 +φF2Ā21Ā−1
11 ‖)‖(x̄1)k‖−‖φF2[Ā21Ā−1

11 − Im]B̄d‖‖d̄k−1‖+‖FC̄B̄d‖‖d̄k‖ (94)

≤ (‖F2Ā21 +φF2Ā21Ā−1
11 ‖)‖x̄k‖−‖φF2[Ā21Ā−1

11 − Im]B̄d‖‖d̄k−1‖+‖FC̄B̄d‖‖d̄k‖ (95)

The stability and uniform ultimate boundedness of s̄k+1 follows from the stability and uniform ultimate
boundedness of x̄k and the boundedness of the disturbance term d̄k. Note that equation (59) claims that
the states x̄k enter an ellipsoid ξ (r1) in a finite time k. Let k̂ be the time instant at which the states enter
the ellipsoid ξ (r1). Let ‖xk̂‖= ε at δ (ξ (r)1). Then equation (94), at the instant k̂ +1 can be written as

‖s̄k̂+1‖ ≤ (‖F2Ā21 +φF2Ā21Ā−1
11 ‖)‖ε‖−‖φF2[Ā21Ā−1

11 − Im]B̄d‖‖d̄k−1‖+‖FC̄B̄d‖(ρ0ε +ρ1) (96)

As can be seen the right hand side of the above equation will be bounded from above by a constant
∀k > k̂ +2. Hence

‖s̄k‖ ≤ ρ4 ∀k > k̂ +2
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where

ρ4 = (‖F2Ā21 +φF2Ā21Ā−1
11 ‖)‖ε‖− (‖φF2[Ā21Ā−1

11 − Im]B̄d‖−‖FC̄B̄d‖)(ρ0ε +ρ1)

It is clear from (96) that the properties of F2 determine how close the system dynamics are to the ideal
sliding mode dynamics. From (69) the matrix F2 is seen to be a function of the matrix P̄3. Hence to make
‖sk‖ small, it is necessary for the matrix P̄3 to be as small as possible. This can be done by introducing
a constraint on the upper bound of F2 such that ‖F2‖ < γ1 for some scalar γ1 > 0. Hence, considering
‖F2‖< γ1 and taking the schur complements gives

FT
2 F2 < γ1Im (97)[

γ1Im FT
2

F2 Im

]
> 0 (98)

The above linear matrix inequality with F2 from (69), along with linear matrix inequalities (75)-(77) can
then be solved for obtaining an optimum P̄ with P̄1, P̄3, γ1 as decision variables.

The above control design paradigm will now be applied to an aircraft problem in the below section and
it will be shown that it is a useful for reconfigurable control. The example will be used to show the band
on the finite time k̂ required to attain an acceptable boundary of the sliding dynamics can be supported
in practice.

6 Motivational Example

Consider the aircraft system from (Edwards and Spurgeon 1998) given below. The plant model rep-
resents the fifth-order lateral dynamics of an L-1011 fixed wing aircraft, with the actuator dynamics
removed. The nominal plant system triple is given by:

A =


0 0 1 0 0
0 −0.154 −0.0042 1.54 0
0 0.249 −1.000 −5.20 0

0.0386 −0.996 −0.0003 −0.117 0
0 0.500 0 0 −0.5

B =


0 0

−0.744 −0.032
0.337 −1.1200
0.02 0

0 0

C =

0 1 0 0 −1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0



with the disturbance matrix Bd taken as [0 0 0 0 0.5]. The plant states are

x =


φ bank angle (rad)
r yaw rate (rad/sec)
p roll rate (rad/sec)

β side slip angle (rad)
x5 washed-out filter state


with inputs

u =
[

δr rudder deflection (rad)
δa aileron deflection (rad)

]
and outputs

y =

 rwo washed out yaw rate (rad)
p roll rate (rad)

β sideslip angle (rad)
φ bank angle (rad)


The sampling rate chosen for discretizing the plant was t = 0.1s. Assume that the aircraft has lost the

side slip angle and roll rate measurements. The invariant zeros for the resulting plant triple (A,B,C)
are at [1.00 0.9929 − 0.9671] and thus the resulting sliding mode dynamics is unstable with only the
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remaining two outputs. Notice here that the invariant zero at 1.00 has the state zero direction

xT
z = [−0.0000 0.0154 0.0000 −0.2135 0.0154]

It is desirable that the columns of the disturbance distribution matrix Bd should span the null space of
C̃. With this assumption it can be shown that the disturbance distribution matrix Bd spans the null space
of C4A−1 and C4A−2 where C4 is the fourth row in the output distribution matrix and corresponds to the
bank angle. Hence for this particular example the augmented matrix Γ is chosen by augmenting the bank
angle twice. The augmented matrix C̃ in this case is given as

C̃ =

0.0000 1.0000 0.0000 0.0000 −1.0000
1.0000 0.0000 0.0000 0.0000 0.0000
1.0000 0.000402 −0.1052 −0.02702 0.0000
1.0003 −0.00198 −0.2214 −0.11213 0.0000


Also as stated in Lemma 1 the chosen augmented outputs are such that xz spans C̃ and it can be checked
that C̃xz 6= 0 and hence it is possible to remove the unstable invariant zero from the triple (A,B,C̃).
Now introduce a transformation such that the triple (A,B,C̃) is in the form (16). Here the orthogonal
transformation matrix T is

T =

 −0.0012 −0.000379 −0.08412 −0.9964
0.9166 0.2919 −0.2722 0.02179
−0.21021 0.93304 0.29090 −0.024685
0.33999 −0.210211 0.91335 −0.07750


and the subsystem (Ã11,A122,C̃ f ) obtained for the sliding surface design is

Ã11 =

[ 1.0032 0.09729 −0.07168
0.00322 2.9840 −1.5281
0.00102 1.9340 −0.49194

]

A122 =

[−0.037824 −0.072574
−0.560571 0.040835
−0.54337 0.04266

]
C̃ f =

[
0 1 0
0 0 1

]

The initial state feedback gain Ko is obtained by pole placement and the poles are placed at
[ 0.98 0.90 0.83 ]. Using the algorithm given by Mehdi et al. (2004), the gain K for the reduced or-
der subsystem (Ã11,A122,C̃ f ) is calculated as by

K =
[

5.35302 −2.28322
15.68429 3.72875

]
with λ (Ã11−A122KC̃ f ) at [0.55255 0.99107+0.00958i 0.99107+0.00958i]. The plant was then transformed
to the canonical form given in (34). The design constant ε was chosen as .05 and the matrices P̄1 and P̄3
were computed by applying the LMI solver to the feasibility problem (75)-(77) and were obtained as

P̄1 =

[
.39968 −9.03852 8.96266
−9.03852 517.34801 −510.53449
8.96266 −510.53449 557.29478

]
, P̄3 =

[
10.62381 −1.35066
−1.35066 .353600

]

P̄ =


.39968 −9.03852 8.96266 .031528 .010857
−9.03852 517.34801 −510.53449 33.94485 −7.211998
8.96266 −510.53449 557.29478 −35.45336 4.92901
.031528 33.94485 −35.45336 10.6238 −1.35066
.010857 −7.211998 4.92901 −1.35066 .353600


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Figure 1. Response of the states xk in the presence of uncertainty

and the matrix Q̄ is obtained as

Q̄ =


−.016055 .4995 −.33542 .046864 −.01913

.4995 −139.29522 100.21783 −20.66627 5.47405
−.33542 100.21783 −101.7237 15.15744 −2.67452
.046864 −20.66627 15.15744 −4.69744 .82527
−.01913 5.47405 −2.67452 .82527 −.29562


The value of γ1 is 0.46055 and the matrix F2 was computed from (69) as

F2 =
[

.163961 .00417
.17486 −.02176

]
The output feedback gain F is then obtained as

F2 [ K I ] T T =
[
−.01697 −.80418 .58063 −.24663
.00748 −.45302 .62464 −.14181

]

and the matrix φ is given as

φ =
[
−.34098 −.79723
.05901 −.09818

]

The simulations were performed with the control law given in (36) and with the initial conditions
[0 0.05 0 0 0]T . The disturbance is a slowly varying disturbance of the form (sin(ωt)). Here, ω was
chosen as 1 rad/sec, while the peak to peak amplitude for the sine wave was chosen as 0.04 rad. The
values of the disturbance bounds ρ0 and ρ1 is taken as .02 and .02 respectively. Here ‖x̄‖ from (59) is
computed as .034533. Using this value in (96) gives a value of ρ4 = .027225. The actual bounds on
x̄k and s̄k obtained from the simulations are .017974 and .000104. Hence, the values of the computed
theoretical bounds on x̄k and s̄k are conservative, especially so for the sliding surface. The simulation
results are shown in Figures 1 and 2. It is seen that despite the presence of the unstable invariant zero
following sensor failure, the reconfigurable control strategy developed here is able to stabilise the plant,
whilst minimising the ultimate bound on the switching function.



April 26, 2011 17:28 International Journal of Control OutputFeedbackDisTimeSMC˙Reply˙ver1

REFERENCES 19

0 5 10 15
−10

−8

−6

−4

−2

0

2

4
x 10

−4 Evolution of the Sliding Surface in the presence of uncertainty

t (sec)

S
lid

in
g 

su
rf

ac
e 

s

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8
Control input u(k)

t (sec)

u(
k)

0 5 10 15
−0.02

0

0.02

0.04

0.06

t (sec)

Y
(k

)

 

 
y

1
(k)

y
2
(k)

Figure 2. The control input uk , sliding surface sk and the plant output yk

7 Conclusion

An output feedback based sliding mode control design for discrete time systems has been developed in
this paper. It has been shown that discrete time controllers can be realized via the extended outputs for
non square systems with uncertainties. The conditions for the existence of such controllers have been
given and a procedure to obtain a Lyapunov matrix, which solves a constrained Riccati inequality has
been given. A numerical solution to obtain the Lyapunov matrix using linear matrix inequalities has
been suggested and the design approach given in the paper has been applied to an aircraft problem. It is
shown that in the presence of sensor failure the methodology yields an effective reconfigurable control
approach.
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