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Adaptive Backstepping Controller Design
for Stochastic Jump Systems
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Jinhui Zhang

Abstract—In this technical note, we improve the results in a paper by Shi
et al., in which problems of stochastic stability and sliding mode control for
a class of linear continuous-time systems with stochastic jumps were con-
sidered. However, the system considered is switching stochastically between
different subsystems, the dynamics of the jump system can not stay on each
sliding surface of subsystems forever, therefore, it is difficult to determine
whether the closed-loop system is stochastically stable. In this technical
note, the backstepping techniques are adopted to overcome the problem in
a paper by Shi ef al.. The resulting closed-loop system is bounded in prob-
ability. It has been shown that the adaptive control problem for the Mar-
kovian jump systems is solvable if a set of coupled linear matrix inequalities
(LMIs) have solutions. A numerical example is given to show the potential
of the proposed techniques.

Index Terms—Adaptive control, backstepping control, linear matrix in-
equality, Markovian jump system, stochastic stability.

[. INTRODUCTION

IT is well known that many physical systems have different struc-
tures due to random abrupt changes, which may be caused by random
failures and repairs of the components, changes in the interconnections
of subsystems, sudden environment changes, modification of the oper-
ating point of a linearized model of a nonlinear system, etc. The hybrid
systems, which involve both time-evolving and event-driven mecha-
nisms, may be employed to model the above problems. One special
class of hybrid systems is the so-called Markowina jump linear system
(MIJLS). A MILS is a hybrid one with many operation modes, and
every mode corresponds to a deterministic system. The system mode
switching is governed by a Markov process. A number of control prob-
lems related to MJLS systems has been analyzed by several authors;
see, e.g., [1]-[10] and the references therein.

Moreover, the sliding-mode control (SMC) has received relatively
a lot of attention since it has various attractive features such as fast
response, good transient performance, order-reduction and so on. In
particular, SMC laws are robust with respect to the so-called matched
uncertainty, see, e.g., [11]-[18]. Recently, the sliding mode control
is proposed to stabilize MJLS with matched uncertainties and distur-
bances [1]. However, system is switching stochastically between dif-
ferent subsystems, the dynamics of the jump systems can not stay on
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each sliding surface of subsystems forever, therefore, it can not be de-
termined whether the closed-loop system is stochastically stable. This
motivated us to study the above systems with Markovian jumps further.

In this technical note, we consider the problem of adaptive back-
stepping controller design for stochastic jump systems with matched
uncertainties and disturbances. The jumping parameters are treated as
continuous-time, discrete-state Markov process. Note that backstep-
ping method is one of the most popular techniques of nonlinear control
design [19]-[27]. In [22], the backstepping method is proposed to de-
sign a memoryless state feedback controller for a class of uncertain
time-delay systems, but it can not solve the control problem for system
with matched disturbances and Markov jumping. In this technical note,
adaptive backstepping controller for the system will be designed. Un-
known upper bounds of uncertainties and disturbances can be estimated
by adaptive control method ([28]-[30]). The above problems are solved
in terms of a finite set of coupled linear matrix inequalities (LMIs). Fi-
nally, a numerical example is included to demonstrate the effectiveness
of the theoretical results obtained.

Notations: The notation used in this technical note is quite standard.
In the sequel, the Euclidean norm is used for vectors. We use W"T,
W=t XN(W) , Tr(W) and ||W|| to denote, respectively, the trans-
pose, the inverse, the eigenvalues, the trace and the induced norm of any
square matrix W. We use W > 0 (>, <, < 0) to denote a symmetric
positive definite (positive semi-definite, negative, negative semi-defi-
nite) matrix W with Amin (W) and Amax (W) being the minimum and
maximum eigenvalues of W and I to denote the n X n identity matrix.
C* denotes the space of k-times continuously differentiable functions.
The Lebesgue space L2[0), T'] consists of square-integrable functions
on the interval [0, 7] equipped with the norm ||.||». £]-] stands for
mathematical expectation. Given a probability space (€2, F, P) where
Q is the sample space, F is the algebra of events and P is the proba-
bility measure defined on F. Sometimes, the arguments of a function
will be omitted in the analysis when no confusion can arise.

II. PROBLEM FORMULATION AND PRELIMINARIES
We consider a class of stochastic systems with Markovian jump pa-
rameters in a fixed probability space (2, F, P)

2(t) = A(ne)x(t) + B(ne)[u(t) + F(n)w(x, t)], t>0

O]

No =1,

where z(t) € R" is the state vector; u(t) € R™ is the control input,
w € R'is the disturbance, while {7, t € [0,7]} is a finite-state
Markovian process having a state space S = {1.2,...,v}, generator
(cv;;) with transition probability from mode 7 at time ¢ to mode j at
timet+ 6, ¢,j € S

pij =Pr(ngs =j | g =1i)
{Oc’z'j(S-FO((S), ifi #j

1—|—oz“'(5+0((5); ifi:.j @

v

> im, i 20Vij€S i#E] ()

m=1,m#t

iy = —

where § > 0 and lims o 0(6)/6 = 0.
For V(t,«) € C*, let us introduce the weak infinitesimal operator
T[] of the process {x(t),n:,t > 0} at the point {¢, x, k} [31], [32]
2%

. oV . - o
ﬁM=§+$WH;%Mm) @

For each possible value . = k, k € S, we will denote the system
matrices associated with mode ¢ by
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A(m) 2 A(k), B(m) 2 B(k).  F(n) £ F(k)

where A(k), B(k) and F(k) are known real constant matrices of ap-

propriate dimensions which describe the nominal system.
Assumption 2.1: The matched uncertainties w(x, t) are assumed to

satisfy the following condition
IF(now(e.H)ll < e+ sllz(t)] = p )

where ¢ and  are constants, but it may not be easily obtained due to
the complexity of the structure of the uncertainty.

Remark 2.1: The model of the form (1) is a hybrid system in which
one state x(¢) takes values continuously and another state 1), referred to
as the mode or operating form, takes values discretely in S. This kind
of system can be used to represent many important physical systems
subject to random failures and structure changes, such as electric power
systems [33], control systems of a solar thermal central receiver [34],
communications systems [35], aircraft flight control [36], control of
nuclear power plants [37] and manufacturing systems [38], [39].

For convenience, it is assumed that

O/TI—WVL Tt
B(n:) = { (o }

Ba (1)
where Ba(n:) € R™*™ is nonsingular. Let
y1(t) = [In—m 0]a(t)
yo(t) ==K () [In—m  0]a(®) +[0 ILn]x(t) 6)
that is
I71—777/ 0
wn=| Szn P e
I71—777/ 0
r(t) = [ o I} y(t) ™

where K (7)) is the virtual control input matrix to be determined later.
Let us recall the definition proposed in [40].
Definition 2.1: A stochastic process y(t) is said to be bounded in
probability if the random variables |y(#)| are bounded in probability
uniformly in ¢, i.e.,

lim sup P{|y(¢)| >r} =0. (8)
r—> 00 t>0
The criterion for boundedness in probability is given as follows.

Lemma 2.1: Assume that there exists a function V' € C? and pa-
rameters d. > 0 such that

EV(y) <d. )
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R—oo= Vi = inf V(y(t))— oo (10)
ly|>R
Then for any yo € R™ and ig € S, y(¢) is bounded in probability.
Proof: By Lemma 1.4.1 of [40], from (9), it follows that
EV(y(1)) d.
P t R} < —— 2 < — 11
(0] > By < 4 a3l < o (an
ly[>R
which, together with (10), means that (8) holds. |

III. MAIN RESULTS

In this section, the design results of backstepping controller will be
presented.

Taking a symmetric positive-definite matrix variable P(n(t)) €
R(»=m)x(n=m) and choosing the Lyapunov function candidate as

Vi(a,ne) = yi (HP((1))y1 ().

In order to show the stochastic stability of system, two steps will be
presented.

Step 1: To solve the virtual control K (k), k € S.

Letting (13) and (14), as shown at the bottom of the page.

Lemma 3.1: For given positive definite matrices R(k) and Q(k), if
there exist positive definite matrices P (k) and general matrices C'(k)
such that the following coupled of set of LMIs hold for each k € S

12)

O(k) Ap(k)P(k)  Wi(P)
P(k)AL (k) —Q(k) 0 <0 (15)
WL (P) 0 — Xk (P)

where @(k) = :—111(}»)1:)(}»7) -+ ‘412(k)c(k) +[r1117(k)f)(lx) +
A (BYC ()T + R(k) + agr P(k), then, K (k) = C(k)P~1(k),and
the weak infinitesimal operator §7%[-] of the process {z(t), 7, ¢t > 0}
at the point {¢, x, k}
FiDal < =yl (OPTHR)R(E) P (R)ya ()

+yz (P R)QR) P (k)ya(t).  (16)
Proof: Taking

Vi@, m) = yi (6)P(n)yi(t) (17)

applying (4) yields that (18), as shown at the bottom of the page. From
(6), it follows that we have (19), as shown at the bottom of the next
page, where

A N All(k) 4412(k)
A(k) = {Am(k) Azz@)}

N Hll(]\) P(k)fhg(k)
= [Afz(k)P(k) —Q(k) }

Iy, (k) = P(k) (A (k) + A (k) K (F))

Wi(P) = [aP(k) JawP(k) VG P(k) /@G P(k) Vi P(k)]" (13)

Xy (P) =diag {P(1), P(2),....P(k—1),P(k+1)...,P(v)} (14)

FiVil =yl PR [Lumm 01#(0) + [(Lumm 0121 P(k)ya (1) + 1 () <Z ovk]»Pm) vi(h) (18)
Jj=1
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+ (A (k) + Ao (k) K (k)" P(k)
R(k)+ Y an;P(j

Q(k) =P~ (k)Q(k)P~" (k), R(k)

P~ (k)R(k)P™' (k). (20)

Letting P(k) = ~'(k), pre- and post-multiplying TI(k) by

{f)(k) 70 ] gives
0 Pk
‘Il( k) = P(k) 0 (%) P(k)
®=1"0" sy || o
\I'n(k) A12(l-)7(71)
ot o ] b
where
‘Ifll(}{) IHH(L)
= (A1 (k) + A (k) K (k) P(k)
+ P(E)( Ay (k) 4+ Ao (B)K (k)" + R(k)
+ P(k) <Z g Pk )m) P(k). (22)

Letting C(k) = K(k)P(k), and noting that (14), ¥(k) < 0, k € S
are equivalent (15) based on Schur complement formula. It follows
from (4) that

Fil <~y (ORK)y (1) + 2 (DQ(R)ya (k). (23)
1) Step 2: To obtain control u in the following theorem. Let
Qui(k) Qi2(k)
QL (k) 0
([T O\
=(l&w )
v _I,.T B o
x<za[ S ww) I])
L O
% {K(k) Im]
['\11(71") Ara(k )]
n—m 0
=[-K(k) T]A(k) [I (k) I7n:|. (24)

Theorem 3.1: Assume the condition in Lemma 3.1 holds,
i.e., inequalities (15) have solutions P(k) € R™*™, K(k) €
Rmxn=m) 1e 8, Q(k) € R™* =™ L € &, and there exists a
constant scalar A > 0 such that the following inequalities hold

R(k) — Qi (k) = > aw; P(j) > AP(k) (25

j=1

then the following control makes the closed system is bounded in prob-
ability

u=—B5" (k)[(A11(k)+Q12(k))y1 () +(A12 (k) +Q(k))y2 (t)] + ux

(26)
_ BIya() o T N
un= 14 BTl if | Bz y2(0)lp > € N
B i | BY ya(t))p < e
and the adaptation laws as
p=ely().t)+a(y(@). Dyl (28)
(t.y) = q1(—€oé + || B3 y2(1)]]) (29)
Rt y) = e (—erk + |1Bs g2 () llly (D) (30)
where ¢1, g2, €0 and €; are design parameters.
Proof: Let us consider the function

where ¢ = ¢ — é(y(t)) and & = k — A(y(t)).
Upon applying (4) to (31) yields

FVI = 2T =K k) 1T [-K(k) T]i()

+ & (O[-Kk) 11" [ K(k) I]x(t)
+:L'T(f)<zcm[ )] —K(j) I])w(t)
+ 9P OPE) [ Tnm 0]i(t) + [Tn_m 0]a(t)] P(k)y(t)

(32)
0

T - , 1. 1 .

+ 1 () <]Z1 aAJP(J)> yit) = oe = RA.
Based on system (1), (7), and inequality (16), it follows that we have
(33), as shown at the bottom of the page, it follows from (24) that we
get (34), also shown at the bottom of the next page

If ||Bz y2(t)lp > e, y3 (t)Baun

E BB s/ IBL w0l = 1B ua(DR =] 4 ©). with the
control law defined in (26) and adaptation laws defined in (29)—(30),
we have (35), as shown at the bottom of the page.

Note that for any positive scalars §o > 1/2 and 61 > 1/2, the
following inequalities hold:

€t =ec(—c+c)

B =2 P (A0 () ]|

=yi () | P(k)(An (k) + A (k) K (k)

x yi(t) + 2yf P(k)A2(k)y
yi(t

Sy yf(t)]H(k)[ ;

y1(t)
K(k)y:1 + y2

+ (A1 (k) +

} YT ORMK) (8 + 5L (DQR)y (k)

] +yi () (Z akjp(j)> y1(t)

()

f’hz(lx)fx (

19)
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=eo(—¢" + ¢cc)
oL b, v
< _ s AP T,CR Yy _ _ By 2 T
_ED< ¢ +250L + QL > TV S =Wy (), k) — Bys y2 2q10 quf‘v +o1 (38)
—€0(280 — 1) .2 €0bo - .
= %CZ + %CZ (36)  wehave (39), as shown at the bottom of the page. If || B g2 (#)]|p% < e,
—e (2 60 ~1) S with the control law defined in (26) and adaptation laws defined in
e1kk < %/‘52 %r;?. (37)  (29)—(30), we obtain (40), as shown at the bottom of the page. From
1

(36) and (37), we have (41), shown at the bottom of the next page.
From (25), letting 3 = /\mu, Q(k)), k € S, v = min(\, 3), Lettingaconstant oz = €/44€560/2¢> + €161 /217, we have (42), as
g1 = 6ov/e0(260 — 1) = 617/€1(261 — 1) and a constant  shown at the bottom of the next page. Based on inequalities (39) and
o = F060/2c2 + €161/2K,2 and then (42), we have

Infm 0
K(k) In

([ o) (Sew [0 0) [ 2]

o1
- (7‘ R(k)y:1 () + yq (HQ(k)y2(t) + Z”kﬂ/l P(j)y(t) — —(’r - q—hh (33)
7

J=1

DRV <2y () [-K (k) I] {A(k) { } y(t) + B(E)[u(t) + F(k)w(z, t)]}

Sy H‘[ ] <1/2 (O[A11(B)y1 () + A2 (B)y2(t) + Qa2 (k)ya (t) + Ba (k) (u(t) + F(k)w(x(t),t))
+ [Aas (R (8) + Aaa (R (t) + Qua (k) () + Bz (k) (a(t) + F(k)yw(a(t), 1)) y2(t)
+ —y?(t)B(k)m(t) +yz <t>cz<wyz () + g1 (D (k)ya (1)
+ Zﬂmlh (O)P(7)y(t) — —c( — iﬁﬂ (34)

5
j=1 ¢

ORIV < =yl (O(R(E) = Q11 (B)yr () — 9 (HQ(k)ya(t) + Zmﬂh P(j)yi(t)

1=1
— s () Baun + ys (1) BaF(k)w(y(t)),t) — &(—eoé + || B y2(H)]])
— i(—eri + B3 y2 () llyl)

v

<—yi (1) <R<k> — Qui(k) - Z%Pm) yi(t) = g3 (DQ(R)ya (1))

+ B3 w2 (sllyll + ¢) = |B2 y2 (D[ (Allyll + &) — é(—eoé + || B3 w2 (D))
— R(=erh+1|Bs y2()lllyll)
= —yl () <R(k) — Qi (k) - Z%P(ﬂ) yi(t) = y3 (DQ(k)ya(1) + €océ + e1 ik (35)

j=1

PR | <V1(y1(t)-k) + 93 42 > + 01 (39)

ICI\/ B 1 f ~
V] < —(Valtay. k) + ByLyn) — M 7+ BT ()| (k] + )

— &(—eoé + || By y2(1)]]) — h(—ﬁh +[1B3 y2(H)lllyll)

Ny T ||B;)Tyz(f)||2 .2 T R s .
=—vVi(y1 (1), k) +y2 y2) — —. 1Bz y2()[|p + €oce + €1 hik

i Bl t 2 2 . .
—~ Wiy (£), k) + yL ya) — Mﬁ - ﬁ + Sy epii+ e ii (40)
NG 2 4
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VORIV < =V + 0 (43)
where 03 = max(g1,02), it results in
dE(V
V) o —vE(V) + 3. (44)

dt  —

It follows from Lemma 2.1, we know that the solution of the closed-
loop system is bounded in probability.

Remark 3.1: Note that Theorem 3.1 provides a solution to the
problem of adaptive control for stochastic system. It is worth men-
tioning that the work conducted in this technical note is the attempt
to overcome the problem arising in the sliding mode control for
Markov jumping systems and adopt adaptive backstepping controller
for systems with Markovian jump parameters. The results obtained in
this technical note could be extended to general systems with other
forms of stochastic jumps.

IV. A NUMERICAL EXAMPLE

Let us consider the following system with generator for the Markov
process governing the mode switching being

L [-14 14
ST 12 —12f”

For the two operating conditions (modes), the associated data is:

Mode 1

r—-2.9 0.3 0.4 1.2
-0.1 -0.2 0.6 1.5
Al) = 1.2 2.1 2.8 3.4
L 1 -2 =25 =25

M o 0

0 0

B(1) = —-1.0 0.5

L —0.1 0.2

w(t) =0.140.01x [|y(2)]|.

Mode 2

r—1.3 —0.1 0.21 0.3
08 0 0.2 1.2

A@2) = —-06 02 14 -09/|"
L 05 05 03 1.2
r 0 0
0 0

B2) = -0.1 0.1 |~
L 0.5 —0.2

w(t) =0.14 0.01 = ||y(¢)]].

State Responses

Time t(sec)

Fig. 1. States (y1(t), y2(t), ys(t), ya(t)).

Using Theorem 3.1 and LMI tool box in Matlab, we have

_ [ 0.7041  —0.1596
P(1) = _—0i1596 0.3';76 }
(=271 052
ciy= 1.4‘59526 —01(.]{)0?.7}
i [ 0.8125  —0.0660
P(2)= _—0.06(;)0 0.4975 }
[-4.1284 —1.03950
2 =11 6207 2200 }
Then
k0= | e Zoams)
we- [T o)

Taking F(1) = F(2) = [0.7071 0.7071]", it can be shown that
|Fw(y,t)|| < 0.1+ 0.01[|y(t)|. Letting A\ = 0.5, ¢ = 0.35, g =

0.0844, ¢; = 0.011, g1 = 0.8, g2 = 13, we have the following
simulation results.

The closed-loop dynamic responses are given in
Figs. 1-3 under the following initial conditions vy =
[—0.0003 0.0036 0.0049 O.OOSS]T, c(0) = 0.5 and
k(0) = 0.1. Fig. 1 shows that the transformed system states are

bounded in probability. Fig. 2 depicts the input control signal. The
adaptive parameters are shown in Fig. 3, it can be shown that ¢ and
/< convergent to the upper bounds of disturbances and uncertainties
¢ = 0.1 and £ = 0.01, respectively. Moreover, it should be pointed

x,e Rk ! 1 ]
Fp "V < =y <V1(z/1 (). k) +ys yo + ﬁ[‘g +
241

T,8,Ry ) ) e 1
T R P g RE
1

1 . € €0bo o €101 o
- €, %% 2, 99 41
2q2h>+4+2"+9 “h
1
42
3 50 (42)



Control Inputs

Time t(sec)
Fig. 2. Control (u1(t), u2(?)).
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Time t(sec) Time t(sec)

Fig. 3. Adaptive parameters c and .

out that the Markov switching is generated on-line. From the above
figures, we can see that the proposed control methods work well.

V. CONCLUSION

In this technical note, the well-known backstepping method is used
to overcome the problem in [1]. The adaptive backstepping controller
design problem is investigated by using LMI technique and adaptive
control approach. Numerical example has been given to demonstrate
the applicability of the theoretical results obtained in this technical
note.
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