351 research outputs found

    Robust Conditional Probability Constraint Matched Field Processing

    Get PDF
    192-200In order to improve the robustness of Adaptive Matched Field Processing (AMFP), a Conditional Probability Constraint Matched Field Processing (MFP-CPC) is proposed. The algorithm derives the posterior probability density of the source locations from Bayesian Criterion, then the main lobe of AMFP is protected and the side lobe is restricted by the posterior probability density, so MFP-CPC not only has the merit of high resolution as AMFP, but also improves the robustness. To evaluate the algorithm, the simulated and experimental data in an uncertain shallow ocean environment is used. The results show that in the uncertain ocean environment MFP-CPC is robust not only to the moored source, but also to the moving source. Meanwhile, the localization and tracking is consistent with the trajectory of the moving source

    Cross-Layer Optimization for Power-Efficient and Robust Digital Circuits and Systems

    Full text link
    With the increasing digital services demand, performance and power-efficiency become vital requirements for digital circuits and systems. However, the enabling CMOS technology scaling has been facing significant challenges of device uncertainties, such as process, voltage, and temperature variations. To ensure system reliability, worst-case corner assumptions are usually made in each design level. However, the over-pessimistic worst-case margin leads to unnecessary power waste and performance loss as high as 2.2x. Since optimizations are traditionally confined to each specific level, those safe margins can hardly be properly exploited. To tackle the challenge, it is therefore advised in this Ph.D. thesis to perform a cross-layer optimization for digital signal processing circuits and systems, to achieve a global balance of power consumption and output quality. To conclude, the traditional over-pessimistic worst-case approach leads to huge power waste. In contrast, the adaptive voltage scaling approach saves power (25% for the CORDIC application) by providing a just-needed supply voltage. The power saving is maximized (46% for CORDIC) when a more aggressive voltage over-scaling scheme is applied. These sparsely occurred circuit errors produced by aggressive voltage over-scaling are mitigated by higher level error resilient designs. For functions like FFT and CORDIC, smart error mitigation schemes were proposed to enhance reliability (soft-errors and timing-errors, respectively). Applications like Massive MIMO systems are robust against lower level errors, thanks to the intrinsically redundant antennas. This property makes it applicable to embrace digital hardware that trades quality for power savings.Comment: 190 page

    Theory and Application of Autoproducts

    Full text link
    Acoustics is a branch of physics largely governed by linear field equations. Linearity carries with it the implication that only the frequencies broadcast by acoustic sources can be measured in the surrounding acoustic medium. However, nonlinearities introduced not in the physical world, but in the mathematical and signal processing realm, have the potential to change frequency content. In this dissertation, nonlinear mathematical constructions termed ‘autoproducts’ are created which have the potential to shift frequencies from the measured, in-band frequencies to other higher or lower frequencies which may no longer be in-band. These out-of-band autoproduct fields did not physically propagate in the environment, and yet, this research has found that autoproducts can nonetheless mimic genuine out-of-band fields in a number of different acoustic environments. Approximately half of this dissertation addresses the theory of autoproducts. More specifically, mathematical analyses and simple acoustic models are used to uncover the reasons for how this frequency-shifting behavior works, and what its limitations are. It is found that there are no inherent limitations on the frequencies considered, and that in single-path environments, like plane or spherical waves, autoproducts mimic out-of-band fields in all or nearly all circumstances, respectively. However, in multipath environments, the mimicry of out-of-band fields by autoproducts is no longer so complete. Though, with bandwidth averaging techniques, it is found that the difference in time-of-arrivals of multiple paths is an important parameter: if it is larger than the inverse of the bandwidth available for averaging, then autoproducts can succeed in mimicking out-of-band fields. Other theoretical considerations include the effects of diffraction behind barriers and the effects of strong refraction. Strengths and limitations of autoproducts are assessed with a variety of simple acoustic models, and conclusions are drawn as to the predicted capabilities of autoproduct-based techniques. The other half of this dissertation covers applications of autoproducts. More specifically, it focuses on the use of autoproducts to perform physics-based source localization, especially for applications in the shallow ocean. Existing techniques are well-known to be very sensitive to uncertainties in the acoustic environment (e.g. the sound speed), especially at high frequencies (nominally greater than 1 kHz in the shallow ocean). Through the use of autoproducts, measured fields at high frequency can be shifted to much lower frequencies, where they can be processed with much more robustness to environmental uncertainties. In one of the main results of this dissertation, it is shown that a remote acoustic source broadcasting sound between 11 and 33 kHz in a 106-meter-deep, downward refracting sound channel could be localized using measurements from a sparse array located 3 km away. The data from the method suggest that autoproduct-based source localization can make physics-based array signal processing robust at arbitrarily high frequencies – a novel and important contribution to existing literature. Overall, by developing the theory for, and exploring applications of, these nonlinear mathematical constructions, the extent to which autoproducts are fundamentally limited is assessed, and new signal processing techniques are developed which have the potential to significantly improve the robustness of source localization algorithms for uncertain multipath environments. Through this study, significant portions of the necessary theoretical foundation have been laid, which will aid in the further development of robust, autoproduct-based signal processing techniques.PHDApplied PhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145865/1/bworthma_1.pd

    Containing the Nanometer “Pandora-Box”: Cross-Layer Design Techniques for Variation Aware Low Power Systems

    Get PDF
    The demand for richer multimedia services, multifunctional portable devices and high data rates can only been visioned due to the improvement in semiconductor technology. Unfortunately, sub-90 nm process nodes uncover the nanometer Pandora-box exposing the barriers of technology scaling—parameter variations, that threaten the correct operation of circuits, and increased energy consumption, that limits the operational lifetime of today’s systems. The contradictory design requirements for low-power and system robustness, is one of the most challenging design problems of today. The design efforts are further complicated due to the heterogeneous types of designs (logic, memory, mixed-signal) that are included in today’s complex systems and are characterized by different design requirements. This paper presents an overview of techniques at various levels of design abstraction that lead to low power and variation aware logic, memory and mixed-signal circuits and can potentially assist in meeting the strict power budgets and yield/quality requirements of future systems

    Design of robust ultra-low power platform for in-silicon machine learning

    Get PDF
    The rapid development of machine learning plays a key role in enabling next generation computing systems with enhanced intelligence. Present day machine learning systems adopt an "intelligence in the cloud" paradigm, resulting in heavy energy cost despite state-of-the-art performance. It is therefore of great interest to design embedded ultra-low power (ULP) platforms with in-silicon machine learning capability. A self-contained ULP platform consists of the energy delivery, sensing and information processing subsystems. This dissertation proposes techniques to design and optimize the ULP platform for in-silicon machine learning by exploring a trade-off that exists between energy-efficiency and robustness. This trade-off arises when the information processing functionality is integrated into the energy delivery, sensing, or emerging stochastic fabrics (e.g., CMOS operating in near-threshold voltage or voltage overscaling, and beyond CMOS devices). This dissertation presents the Compute VRM (C-VRM) to embed the information processing into the energy delivery subsystem. The C-VRM employs multiple voltage domain stacking and core swapping to achieve high total system energy efficiency in near/sub-threshold region. A prototype IC of the C-VRM is implemented in a 1.2 V, 130 nm CMOS process. Measured results indicate that the C-VRM has up to 44.8% savings in system-level energy per operation compared to the conventional system, and an efficiency ranging from 79% to 83% over an output voltage range of 0.52 V to 0.6 V. This dissertation further proposes the Compute Sensor approach to embed information processing into the sensing subsystem. The Compute Sensor eliminates both the traditional sensor-processor interface, and the high-SNR/high-energy digital processing by moving feature extraction and classification functions into the analog domain. Simulation results in 65 nm CMOS show that the proposed Compute Sensor can achieve a detection accuracy greater than 94.7% using the Caltech101 dataset, which is within 0.5% of that achieved by an ideal digital implementation. The performance is achieved with 7x to 17x lower energy than the conventional architecture for the same level of accuracy. To further explore the energy-efficiency vs. robustness trade-off, this dissertation explores the use of highly energy efficient but unreliable stochastic fabrics to implement in-silicon machine learning kernels. In order to perform reliable computation on the stochastic fabrics, this dissertation proposes to employ statistical error compensation (SEC) as an effective error compensation technique. This dissertation makes a contribution to the portfolio of SEC by proposing embedded algorithmic noise tolerance (E-ANT) for low overhead error compensation. E-ANT operates by reusing part of the main block as estimator and thus embedding the estimator into the main block. System level simulation results in a commercial 45 nm CMOS process show that E-ANT achieves up to 38% error tolerance and up to 51% energy savings compared with an uncompensated system. This dissertation makes a contribution to the theoretical understanding of stochastic fabrics by proposing a class of probabilistic error models that can accurately model the hardware errors on the stochastic fabrics. The models are validated in a commercial 45 nm CMOS process and employed to evaluate the performance of machine learning kernels in the presence of hardware errors. Performance prediction of a support vector machine (SVM) based classifier using these models indicates that the probability of detection P_{det} estimated using the proposed model is within 3% for timing errors due to voltage overscaling when the error rate p_η ≤ 80%, within 5% for timing errors due to process variation in near threshold-voltage (NTV) region (0.3 V-0.7 V) and within 2% for defect errors when the defect rate p_{saf} is between 10^{-3} and 20%, compared with HDL simulation results. Employing the proposed error model and evaluation methodology, this dissertation explores the use of distributed machine learning architectures, named classifier ensemble, to enhance the robustness of in-silicon machine learning kernels. Comparative study of distributed architectures (i.e., random forest (RF)) and centralized architectures (i.e., SVM) is performed in a commercial 45 nm CMOS process. Employing the UCI machine learning repository as input, it is determined that RF-based architectures are significantly more robust than SVM architectures in presence of timing errors in the NTV region (0.3 V- 0.7 V). Additionally, an error weighted voting technique that incorporates the timing error statistics of the NTV circuit fabric is proposed to further enhance the robustness of RF architectures. Simulation results confirm that the error weighted voting technique achieves a P_{det} that varies by only 1.4%, which is 12x lower compared to centralized architectures

    Voltage stacking for near/sub-threshold operation

    Get PDF

    Ultra-low Power Circuits for Internet of Things (IOT)

    Full text link
    Miniaturized sensor nodes offer an unprecedented opportunity for the semiconductor industry which led to a rapid development of the application space: the Internet of Things (IoT). IoT is a global infrastructure that interconnects physical and virtual things which have the potential to dramatically improve people's daily lives. One of key aspect that makes IoT special is that the internet is expanding into places that has been ever reachable as device form factor continue to decreases. Extremely small sensors can be placed on plants, animals, humans, and geologic features, and connected to the Internet. Several challenges, however, exist that could possibly slow the development of IoT. In this thesis, several circuit techniques as well as system level optimizations to meet the challenging power/energy requirement for the IoT design space are described. First, a fully-integrated temperature sensor for battery-operated, ultra-low power microsystems is presented. Sensor operation is based on temperature independent/dependent current sources that are used with oscillators and counters to generate a digital temperature code. Second, an ultra-low power oscillator designed for wake-up timers in compact wireless sensors is presented. The proposed topology separates the continuous comparator from the oscillation path and activates it only for short period when it is required. As a result, both low power tracking and generation of precise wake-up signal is made possible. Third, an 8-bit sub-ranging SAR ADC for biomedical applications is discussed that takes an advantage of signal characteristics. ADC uses a moving window and stores the previous MSBs voltage value on a series capacitor to achieve energy saving compared to a conventional approach while maintaining its accuracy. Finally, an ultra-low power acoustic sensing and object recognition microsystem that uses frequency domain feature extraction and classification is presented. By introducing ultra-low 8-bit SAR-ADC with 50fF input capacitance, power consumption of the frontend amplifier has been reduced to single digit nW-level. Also, serialized discrete Fourier transform (DFT) feature extraction is proposed in a digital back-end, replacing a high-power/area-consuming conventional FFT.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137157/1/seojeong_1.pd

    Advancements in Real-Time Simulation of Power and Energy Systems

    Get PDF
    Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics
    corecore