
Indian Journal of Geo Marine Sciences 
Vol. 49 (02), February 2020, pp. 192-200 
 
 
 
 
 
 

Robust Conditional Probability Constraint Matched Field Processing 
Guolei Zhu, Yingmin Wang and Qi Wang* 

School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710 072, China 

[E-mail: flyingscott@nwpu.edu.cn; ywang@nwpu.edu.cn] 

Received 07 August 2018; revised 05 October 2018 

In order to improve the robustness of Adaptive Matched Field Processing (AMFP), a Conditional Probability Constraint 
Matched Field Processing (MFP-CPC) is proposed. The algorithm derives the posterior probability density of the source 
locations from Bayesian Criterion, then the main lobe of AMFP is protected and the side lobe is restricted by the posterior 
probability density, so MFP-CPC not only has the merit of high resolution as AMFP, but also improves the robustness.  
To evaluate the algorithm, the simulated and experimental data in an uncertain shallow ocean environment is used.  
The results show that in the uncertain ocean environment MFP-CPC is robust not only to the moored source, but also to the 
moving source. Meanwhile, the localization and tracking is consistent with the trajectory of the moving source. 

[Keywords: Adaptive Matched Field Processing (AMFP); Posterior probability density; Robustness; Underwater signal 
processing] 

Introduction 
Matched field processing (MFP) technology can 

combine the physical characteristics of underwater 
acoustic channel and the traditional signal processing 
algorithm successfully, thus it is widely used in the 
underwater target passive location and also used in the 
underwater acoustic parameters inversion, etc. The 
main method is to use sound propagation model1 (such 
as the normal mode model, the parabolic equation, and 
the ray, etc.) to build a replica vector of the field in the 
observation sea area, and then match the measured 
field with the replica to estimate the location of the 
source or the channel information2,3. MFP is mainly 
divided into two categories: one is the conventional 
matching field processor (Conventional MFP, CMFP4), 
also known as the Bartlett processor; another is 
adaptive matched field processor (Adaptive MFP, 
AMFP), the representative is the minimum variance 
distortionless response (MVDR) processor5,6. Bartlett is 
robust but with higher sidelobe and it is difficult to 
separate from mainlobe and sidelobe. MVDR provides 
maximum array gain in theory, and excellent sidelobe 
suppression characteristics, but it’s performance drop 
sharply when the underwater acoustic channel model is 
different with the actual conditions. 

In order to get the maximum array gain and 
improve the robustness of the algorithm at the same 
time, the domestic and foreign scholars have proposed 
many tolerance AMFP method based on the MVDR7-10, 

such as: the Minimum Variance-Neighborhood 
Location Constraints (MV-NLC), the Minimum 
Variance-Environmental Perturbation Constraints 
(MV-EPC) and the Sector Focusing (SF), etc. 

MV-NLC protects the main lobe and overcome the 
environment mismatch with small-scale position 
constraints, but the effectiveness of the algorithm 
relies on the similar degree of the environment 
mismatch and the position change of the sound 
source. In waveguide with same sound velocity, the 
deep sea error often corresponds to the sound source 
location changes. But other types of environmental 
mismatch such as sound velocity profile and 
geoacoustic parameters mismatch is not similar, in 
this case, the MV-NLC will fail; MV-EPC protect the 
main lobe by using the first and second order 
statistical properties of the replica of signal 
correlation matrix within the scope of environmental 
parameter perturbation, with heavy computation. SF 
constructed a projection matrix by multiple replicas in 
some area, using the projection matrix to eliminate the 
influence to the MFP made by noise and environment 
mismatch, but it’s difficult to choose the sector size. 
In addition there are some other robust AMFP 
algorithms, such as reduced-order MV-EPC, 
environment perturbation constraints SF, etc. 

In order to improve the robustness of the AMFP 
algorithm, we use Bayesian criterion to deduce 
posterior probability estimates of location parameters, 
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then use the posterior probability density to constrain 
the AMFP, so we can provide a certain degree of 
main lobe protection and sidelobe suppression to the 
AMFP, and obtained good tolerance in mismatch 
environment. We verify the performance of our 
algorithm by the simulation data of typical mismatch 
environment “genlmis”, which is published in the 
Naval Research Laboratory seminar in 199311. 
Finally, through the processing and analysis with the 
ocean experimental data from SACLANT Research 
Center in 1993, making comparison of the Bartlett, 
MVDR and MFP-CPC location capability, verifying 
the validity and robustness of the MFP-CPC 
algorithm in the uncertain environment. 
 
Robust MFP in the uncertain environment 
Data Model 

Assume is the frequency of sound source,  is 
the position parameter(including distance and  
depth ), and the sound propagation channel 
parameter set is , then the sound pressure vector 
which is received by vertical linear array of N sensors 
in the frequency domain can be expressed as: 

 

  ...(1) 
 

Where, is the noise vector, assumes it’s zero 
mean additive white gaussian noise,  is the 
amplitude of the complex signal,  is the 
channel transmission function. From the Normal 
mode theory12-13can get the function as below： 
 

  ...(2) 

 
2.2 MVDR 

Generally, the output of the MFP  is 
composed of sampling covariance matrix  and 
weight vector . 
 

 ...(3) 
 

Where the sampling covariance matrix  can be 
expressed by maximum likelihood estimation of  
frequency snapshots like data model of Eq.(1) 
 

  ...(4) 
 

In order to suppress sidelobe and improve the 
resolution, an AMFP method is introduced in the 
paper5,14,15, known as the minimum variance 

distortionless response (MVDR) processor. Its 
mathematical expression is: 

 

, s.t.   ...(5) 
 

Here, the is  dimension replica 
vector of the observation direction. As can be seen 
from mathematical expression of the algorithm, it’s 
structure, a unity gain weight vector of the 
observation direction to minimize the weighted array 
output in the other direction, so as to inhibit sidelobe 
and improve the resolution. 

Using Lagrange multiplier method to solve this 
optimization problem, get the weight vector and the 
power output of the MVDR are show as below: 

 

  ...(6) 

 

  ...(7) 

 

The MVDR not only has better array gain but also 
has better mainlobe and sidelobe than the Bartlett, but 
during underwater acoustic environment perturbation, 
especially under the condition of high SNR, the 
AMFP is easy to have a serious “target suppression” 
phenomenon, so it’s much less robustness than the 
Bartlett. 
 

MFP-CPC 
According to the Bayesian criterion, the posterior 

PDF of the sound source location parameters can be 
expressed as16

： 
 

  ...(8) 
 

Where,  and  are respectively, the PDF of 
the sound source location  and the PDF of the 
measurement field . When the measurement field 

 is known, conditional probability density  
is the function of the location parameter . 

For the data model shown in Eq. (1), since the 
noise of every element of the vertical linear array of N 
sensors is an independent identically distributed 
additive white gaussian noise, so we can get the 
conditional probability density , that is the 
likelihood function as expressed below: 

 

  ...(9) 
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Where  is the power of noise. 
Let  got the maximum likelihood 

estimation of  shown as below: 
 

  ...(10) 

 

Substituting Eq.(10) into Eq.(9) and put  
shorthand for , yields the likelihood function: 

 

  ...(11) 

 

Now, get the posterior probability density 
function(PDF) by Bayesian criterion: 

 

  ...(12) 

 

Assume that in the observation sea area, the 
appearance probability of the target is equal, that is 

is constant. When the prior PDF  is 
unknown, in order to ensure the integral of the 
posterior PDF equal to 1, that is: 

 

 | 1
m
p m x    …(13) 

 

We defined a normalization constant , then get 
the constant as below: 
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So after we got the posterior PDF of the location 
parameters, we can construct the MFP as Eq.(15), 
named as MFP with Conditional Probability 
Constraint(MFP-CPC): 
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Where,  is the power output of AMFP. From the 
output expression of MFP-CPC, it’s clear that the 
MFP-CPC uses prior knowledge about the 
environment and introduce the Bayesian criteria to the 
algorithm, is a kind of combining method by data 
driven and the base model; Take the AMFP as the 
basic unit, the algorithm has general expression. In 
this paper, in the subsequent simulation using classic 

MVDR as  of Eq. (15), that is the  of the 
Eq.(7). 
 
Simulation and analysis 
Simulation Model 

In May 1993, the Naval Research Laboratory 
presented several typical shallow sea environment 
models and the simulation data for the researchers to 
use during the seminar11. Its purpose is in order to be 
able to compare performance of the different 
environment matched field inversion and positioning 
algorithm objectively and fairly. "Genlmis" is used to 
verify the performance of the algorithm in the 
presence of colored noise environment and with 
parameter mismatch; it is a simulation case of severe 
mismatch. In this paper, the simulation and analysis is 
based on the data. 

A vertical linear array with 20 sensors is used to 
receive signal in the simulation, the sound source 
frequency is 250 Hz. The depth of first sensor is 5 m, 
the depth of last sensor is 100 m, with 5 m equal 
spacing. The Kraken normal mode model is used to 
calculate the replica vector. The distance of the 
observation area from 5 km to 10 km, distance step  
20 m; depth from 1m to 100 m, depth step 1m. 

The real environment parameter model “genlmis” 
is shown in Figure 1, that iuses this environment 
model to construct measured field. There are 3 kinds 
of sound source under this environment: (1) sound 
source is located at (6.2 km, 92 m), SNR is 40 dB;  
(2) sound source is located at (9.0 km, 74 m), SNR is 
10 dB; (3) sound source is located at (7.2 km, 16 m), 
SNR is -5 dB. 
 
Simulation result without environment mismatch 

Assume the sound source is located at (9.0 km,  
74 m), the SNR is 10 dB, the accurate environment 
parameter model is shown in Figure 1. The Bartlett, 
MVDR and MFP-CPC is used to do match field 
processing respectively, the slices of the source is 
show in Figure 2.These 3 kinds of MFP can pinpoint 
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Fig. 1 — GENLMIS real environment model 
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the target successful according to the results in  
Figure 2, the MVDR and MFP-CPC has the more 
narrow mainlobe and lower sidelobe. When the 
number of sensors N  is 20 and exactly match the 
theory output power of the MFP is 10 lg( ) 13dBN   , 
in figure 2(a) and 2(c), the output power of Bartlett 
and MVDR at (9.0 km,74 m) are approximate 13 dB, 
agree with the theoretical value. But the output power 
of MFP-CPC is far less than the two before, the main 
reason is that the posteriori probability has an 
influence on the output of MFP. 

The comparison for the results after amplitude 
normalization of the three kinds of processor is shown in 
Figure 2 b and d. The mainlobe of MFP-CPC and 
MVDR coincide, the -3d B mainlobe width for the 
distance is all 20 m, the -3d B mainlobe width for the 
depth are all 1.5 m, but the Bartlett’s mainlobe width for 
the distance and depth is 100 m and 7 m respectively. In 
Figure 2(b), for the distance, the highest sidelobe of 
MVDR is about 35dB less than the Bartlett and the 
highest sidelobe of MFP-CPC is about 6 dB less than 
MVDR; In Figure 2(d), for the depth, the sidelobe of 
MVDR and MFP-CPC are not able to be distinguished, 
they are lost in the background. The background of 
MVDR is about 24 dB less than the highest sidelobe of 
Bartlett and the background of MFP-CPC is about 8 dB 
less than the background of MVDR. 

From the simulation result without environment 
mismatch，it is clear that the localization 
performance of MFP-CPC is much better than the 
Bartlett, the mainlobe of MFP-CPC is same as 
MVDR, and the sidelobe of MFP-CPC is about  6  dB  

 

 

Fig. 3 — GENLMIS environment model with mismatch 
 
less than MVDR, the background of MFP-CPC is 
about 8 dB less than MVDR. 
 
Simulation result with environment mismatch 

The measured field is still calculated by the 
environment parameter model as shown in Figure 1. 
We assume the geoacoustic parameters are unknown 
and only the prior knowledge about the environment 
parameters are empirically estimated, as shown in 
Figure 3. Compared with the real environment model 
shown in Figure 1, the sound velocity of the surface 
of ocean mismatch is -0.1 m/s, the sound velocity of 
the bottom of ocean mismatch is -1.3 m/s, the sound 
velocity of the upper surface of ocean basement 
mismatch is -26 m/s, the sound velocity of the middle 
of ocean basement mismatch is -56 m/s, the sound 
velocity of the bottom of ocean basement mismatch is 
-56 m/s, the attenuation coefficient of the ocean 
basement mismatch is -0.01d B/λ, the density of the 
ocean basement mismatch is -0.01 g/cm3, depth of the 
sea mismatch is 4.9 m, and there is colored noise in 
the measured field data of “genlmis” model. 

 
Fig. 2 — Slices of localization results for the 3 MFP methods 
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Under the “genlmis” model with environment 
parameters mismatch, the ambiguity surface of the 
location result by the 3 kinds of MFP for the 3 sound 
sources as introduced in simulation model section and 
is shown in Figure 4. Classified according to the type 
of MFP: Figure 4 (a,b,c) are the location results of 
Bartlett; Figure 4 (d,e,f) are the location results of 
MVDR; Figure 4 (g,h,i) are the location results of 
MFP-CPC. Classified according to the sound source: 
Figure 4 (a,d,g) are the location results of first sound 
source with 40 dB SNR; Figure 4 (b,e,h) are the 
location results of second sound source with 10 dB 
SNR; Figure 4 (c,f,i) are the location results of third 
sound source with -5 dB SNR. The mainlobe value in 
the small rectangular box in each sub image is the 
estimation of sound source location by the 3 kinds of 
MFP in Figure 4. 

When the SNR is 40 dB and 10 dB, the Bartlett and 
MFP-CPC give the correct location results, but in the 
ambiguity surface of Bartlett, there is many sidelobe’s 
amplitude close to the mainlobe’s. In Figure 4(a) the 
mainlobe at (6.2 km, 92 m) is bigger than the 
maximum sidelobe at (8.2 km, 92 m) less than 2 dB; 
and in Figure 4(b) the mainlobe at (9.1 km, 72 m) is 
bigger than the maximum sidelobe at (7.2 km, 70 m) 
less than 1dB, and thus it is very hard to distinguish. 
But in Figure 4(g), the mainlobe of MFP-CPC is 
about 6dB bigger than the maximum sidelobe.  
In Figure 4(h), the maximum sidelobe is located at 

(7.7 km, 16 m), and is not same as the position of the 
maximum sidelobe in Figure 4(b), as it can be seen 
because of the infulence of MVDR from Figure 4(e); 
and in Figure 4(h), the mainlobe at (9.1 km, 71 m) is 
still about 3 dB bigger than the maximum sidelobe 
indicating obviously that the MFP-CPC’s sidelobe 
compression performance is better. MVDR has severe 
"suppression" phenomenon under the condition of the 
2 kinds of SNR, there are many peaks that appear at 
the surface of the sea suggecting that the MVDR is 
most sensitive to environmental mismatch, but the 
good thing is that the peak still can be seen at the real 
sound source location. When the SNR is -5 dB, and 
all the 3 kinds of MFP failure occur at this time, the 
influence of colored noise and environmental 
mismatch is most obvious, and the positioning of the 
false target is blurred by MVDR. Although the 
Bartlett and MFP-CPC only have false targets at  
(6.5 km, 16 m), but the false targets are clear. In 
contrast the location results of Bartlett and MFP-CPC 
can be seen such that even in serious mismatch cases, 
their ambiguity of the location results near the real 
target also have a certain similarity, that is they have 
similar robustness. 
 

Verification by ocean experimental data 
Experiment parameter 

The ocean near the north island of Elba of the west 
coast of Italy is a typical shallow water environment, 

 

Fig. 4 — Localization results for the 3 MFP methods under GENLMIS environment model 
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On October 26 and 27, 1993, the SACLANT 
Research Center did ocean experiment for two days at 
the ocean17. In this paper, we use the experimental 
data to do processing and analysis. The array and 
environment parameters for the experiment are 
described in Figure 5. The bathymetry (125.5-128.5 m); 
upper sediment sound-speed (1450-1550 m/s); lower 
sediment sound-speed (1500-1600 m/s); sediment 
density (1.2-2.2 g/cm3); sediment attenuation (0.0-0.4 
dB/λ); sediment thickness (0.0-0.6 m); sub-bottom 
sound-speed (1550-1650 m/s); sub-bottom density 
(1.2-2.2 g/cm3); sub-bottom attenuation (0.0-0.4 
dB/λ). 

During the experiment on October 26, sound 
source moored in 5500 ± 200 m distance from the 
receiving array, the depth is about 79 m. On October 27, 
sound source was towed by a tugboat with 3 km 
speed, navigation in a straight line. The depth is about 
65 m, the initial distance from the receiving array is 
about 5.9 km. The experiment collected the signals 
received from the linear array for 10 minutes. During 
the two days experiment, the acoustic signal models 
were slightly different. On October 26, the signal was 
continuous, and on October 27, the signals were not 
continuous. They were on for 30 out of every 60 sec. 
We used the experimental data to verify the 
performance of the MFP-CPC. 

According the Eq. (4), we used the data of first  
25 seconds to make 25 snapshots, the average of these 
snapshots is the maximum likelihood estimation of 
sampling covariance matrix. The length of the 
snapshot is 2 seconds, the overlap between the two 
snapshots is 50 %, for 1 kHz sampling rate, each 
snapshot contains 2000 sampling points. 
 
Results of experimental data 

The location result of the moored source at the first 
minute is shown in Figure 6. The rectangle area is the 
position of the peak amplitude on the ambiguity 

surface, it is also the location result of the MFP, the 
ellipse area is the position of real target, and we only 
draw a rectangle when the ellipse and rectangle 
overlapped. If the peak amplitude position of the 
ambiguity surface is near the real target (depth around 
± 10 m, distance around ± 500 m), that suggests the 
localization success. 

It is clear that the location result of Bartlett is 
wrong in Figure 6(a), the error result is (104.7 m, 
7450 m), and there is also a peak at the real position. 
The location result (73.5 m, 5300 m) of MVDR is 
shown in Figure 6(b), it is correct, but the amplitude 
of the sidelobe is a little bit higher, only around 1 dB 
lower than the mainlobe. Figure 6(c) is the ambiguity 
surface of MFP-CPC, where we can clearly find the 
target and there is no confusion between the target 
and sidelobe. 

The slices of the moored sources at the first minute 
are shown in Figure 7, under the real uncertain 
environment, the Bartlett is failed to localize, thus we 
only compare the results of MVDR and MFP-CPC. 

 
 

Fig. 5 — Environmental model in shallow water 
 

 
Fig. 6 — Ambiguity surfaces of moored source at the first minute 
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From the Figure 7 (a,b), it is clear that the MFP-CPC 
has more narrow mainlobe and lower sidelobe. The 
location results of 2 to 10 minutes are similar to the 
result of first minute, the main difference is that the 
Bartlett give the correct results at 2, 5, 7, 8 minutes, 
the location results are all around (76.1 m,5300 m). 
Both MVDR and MFP-CPC give the correct results 
during the 10 minutes, the results are same as in first 
minute. 

In order to make quantitative evaluation for the 
three kinds of MFP, we introduce two parameters for 
performance evaluation, one is signal to interference 
noise ratio (SINR), the other is peak to background 
ratio (PBR). The SINR quantize the differentiation 
between the mainlobe and sidelobe, it will be easier to 
distinguish mainlobe from sidelobe when the SINR is 
bigger; the PBR quantize the differentiation between 
the mainlobe and background, it will be easier to find 
out the mainlobe when the PBR is bigger. 

We make quantitive comparison for the location 
results of the three kinds of MFP at the second minute 
in Table 1. For the depth localization, the result of 
Bartlett is more close to the target depth, but the result 
difference to the other two processors is only a depth 
of a grid. For the distance localization, the results are 
same for the three processors, but the SINR and PBR 

of the MVDR are about 1 dB higher than the Bartlett, 
and the SINR and PBR of the MFP-CPC are about 2.5 
dB higher than the MVDR. From the numerical 
results of the moored source at the second minute, we 
can see that MFP-CPC has optimal localization 
performance, followed by the MVDR, and the Bartlett 
is the worst. 

The curve of localization results of the moving 
source in 10 minutes on October 27 is shown in 
Figure 8. During the 10 minutes, the Bartlett give the 
correct results at 2, 3, 5, 6, 7, 8 minutes, other time 
failed, the error localization results are not shown in 
Figure 8. The MVDR and MFP-CPC give the correct 
results in the whole 10 minutes, and we can see that 
the motion curve of MFP-CPC is more like a uniform 
linear motion as shown in Figure 8.The slope of the 
curve of MFP-CPC is about 1.6 m/s, and the MFP-
CPC is best consistent with the speed and trajectory of 
the moving source. 

The distance localization result is around 500 m 
closer than the real target as shown in Figure 8(a), 
perhaps due to the reason that the water depth around 
source is 13 m deep than 127 m as discussed in details 
in the article17. The distance localization result of this 
article is equal to the article17. In Figure 8(b), the 
depth localization results of the three processors at 
first minute are around 71 m, 6 m error, at 6th minute, 
the error of MVDR is about 3 m, the error of the other 
two processor is 1m, at the other time, the depth 
localization error of the three processors are all within 
2 m. Because the moving source is towed behind the 
ship, for the first and second minutes, at the beginning 
of the movement, the tension of the cable which 
connect the source is too small and unstable, thus 
causes the deep source. During this period, the depth 

 
 

Fig. 7 — Slices of the moored source at the first minute 
 

Table 1 — Results of the moored source at the second minute 

Processor 
Location results 

z(m) r(m) SINR(dB) PBR(dB) 
CMFP 76.1 5300 10.70 5.41 

MV-EPC 74.8 5300 11.57 6.49 
MFP-PPC 74.8 5350 14.32 9.16 

 

 
 

Fig. 8 — Tracking of the moving source in the whole ten minutes 
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localizaiton results of the three processors are same, 
so we can consider that the depth of source is about 
71m. For the 6th and 9th minute, since the tugboat was 
moving smoothly, the depth localization difference of 
the three processors is mainly due to the ups and 
downs of sea waves; the uncertainty of the 
environment and array element position error. Under 
this condition, the localization performance is heavily 
dependent on the robustness of the algorithm. It is 
clear that the localization result of MFP-CPC is more 
accurate than MVDR, and the Bartlett is failed at 9th 
minute. 

The SINR curve for the moving source in the  
10 minutes is shown in Figure 9(a), when given the 
correct localization results, the SINR of MVDR is 
about 1.5 dB higher than Bartlett, and the SINR of 
MFP-CPC is about 3 dB higher than MVDR. The 
PBR curve for the moving source in the 10 minutes is 
shown in Figure 9(b), the PBR of MVDR is about 1.7 
dB higher than Bartlett, the PBR of MFP-CPC is 
about 3 dB higher than MVDR. So not only it is 
easiest to distinguish mainlobe from sidelobe by the 
MFP-CPC, but also the mainlobe and background 
difference is largest in MFP-CPC. It is clear that the 
MFP-PCPC has the best localization performance as 
shown in Figure 9. 
 

Conclusion 
It is easy to appear mismatch between the building 

environment model and the real environment when 
doing MFP because of the uncertainty of prior 
environment information, that eventually lead to 
serious performance loss of MFP, especially when 
doing AMFP. In order to solve this problem, a 

Conditional Probability Constraint Matched Field 
Processing (MFP-CPC) is proposed. The MFP-CPC 
algorithm derives the posterior probability density of 
the source locations by the field measurement data 
received by the vertical array, and then use the 
posterior probability density to protect the mainlobe 
of AMFP and restrict the sidelobe. From the 
simulation results without environment mismatch，it 
is clear that the mainlobe width of MFP-CPC is same 
as MVDR, and the sidelobe of MFP-CPC is about  
6-8 dB less than MVDR. From the simulation results 
with environment mismatch，it is clear that the  
MFP-CPC and Bartlett have similar robustness.  

For typical uncertain shallow environment, the 
analysis result of ocean experimental data of the 
moving sound source showed that: MFP-CPC can 
restrain location errors which are caused by physical 
factors like the wind and waves, the array element 
position, and movement of the source, especially in 
the process of tracking for 10 minutes, the range and 
position curve accord well with the moving trail of the 
sound source. 

In addition, the conditional probability constraints 
algorithm is relatively simple, and the expression is 
versatile and general, the adaptive unit of the 
algorithm can be replaced by the other adaptive 
algorithm, so as to further improve the robustness of 
the algorithm. But when calculating the posterior 
probability estimates that still needed to use a priori 
environmental information, so the mismatch problems 
also exist, and as compared to the AMFP used in the 
algorithm, the robustness is improved. 
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