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ABSTRACT

The rapid development of machine learning plays a key role in enabling next generation com-

puting systems with enhanced intelligence. Present day machine learning systems adopt an

�intelligence in the cloud" paradigm, resulting in heavy energy cost despite state-of-the-art

performance. It is therefore of great interest to design embedded ultra-low power (ULP)

platforms with in-silicon machine learning capability. A self-contained ULP platform con-

sists of the energy delivery, sensing and information processing subsystems. This dissertation

proposes techniques to design and optimize the ULP platform for in-silicon machine learning

by exploring a trade-o� that exists between energy-e�ciency and robustness. This trade-o�

arises when the information processing functionality is integrated into the energy delivery,

sensing, or emerging stochastic fabrics (e.g., CMOS operating in near-threshold voltage or

voltage overscaling, and beyond CMOS devices).

This dissertation presents the Compute VRM (C-VRM) to embed the information process-

ing into the energy delivery subsystem. The C-VRM employs multiple voltage domain stack-

ing and core swapping to achieve high total system energy e�ciency in near/sub-threshold

region. A prototype IC of the C-VRM is implemented in a 1.2 V, 130 nm CMOS process.

Measured results indicate that the C-VRM has up to 44.8% savings in system-level energy

per operation compared to the conventional system, and an e�ciency ranging from 79% to

83% over an output voltage range of 0.52 V to 0.6 V.

This dissertation further proposes the Compute Sensor approach to embed information

processing into the sensing subsystem. The Compute Sensor eliminates both the traditional

sensor-processor interface, and the high-SNR/high-energy digital processing by moving fea-

ture extraction and classi�cation functions into the analog domain. Simulation results in

65 nm CMOS show that the proposed Compute Sensor can achieve a detection accuracy
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greater than 94.7% using the Caltech101 dataset, which is within 0.5% of that achieved by

an ideal digital implementation. The performance is achieved with 7× to 17× lower energy

than the conventional architecture for the same level of accuracy.

To further explore the energy-e�ciency vs. robustness trade-o�, this dissertation explores

the use of highly energy e�cient but unreliable stochastic fabrics to implement in-silicon

machine learning kernels. In order to perform reliable computation on the stochastic fabrics,

this dissertation proposes to employ statistical error compensation (SEC) as an e�ective

error compensation technique. This dissertation makes a contribution to the portfolio of

SEC by proposing embedded algorithmic noise tolerance (E-ANT) for low overhead error

compensation. E-ANT operates by reusing part of the main block as estimator and thus

embedding the estimator into the main block. System level simulation results in a commer-

cial 45 nm CMOS process show that E-ANT achieves up to 38% error tolerance and up to

51% energy savings compared with an uncompensated system.

This dissertation makes a contribution to the theoretical understanding of stochastic fab-

rics by proposing a class of probabilistic error models that can accurately model the hardware

errors on the stochastic fabrics. The models are validated in a commercial 45 nm CMOS

process and employed to evaluate the performance of machine learning kernels in the pres-

ence of hardware errors. Performance prediction of a support vector machine (SVM) based

classi�er using these models indicates that the probability of detection Pdet estimated using

the proposed model is within 3% for timing errors due to voltage overscaling when the error

rate pη ≤ 80%, within 5% for timing errors due to process variation in near threshold-voltage

(NTV) region (0.3 V − 0.7 V) and within 2% for defect errors when the defect rate psaf is

between 10−3 and 20%, compared with HDL simulation results.

Employing the proposed error model and evaluation methodology, this dissertation ex-

plores the use of distributed machine learning architectures, named classi�er ensemble, to

enhance the robustness of in-silicon machine learning kernels. Comparative study of dis-

tributed architectures (i.e., random forest (RF)) and centralized architectures (i.e., SVM)

is performed in a commercial 45 nm CMOS process. Employing the UCI machine learning

repository as input, it is determined that RF-based architectures are signi�cantly more ro-

bust than SVM architectures in presence of timing errors in the NTV region (0.3 V− 0.7 V).
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Additionally, an error weighted voting technique that incorporates the timing error statistics

of the NTV circuit fabric is proposed to further enhance the robustness of RF architectures.

Simulation results con�rm that the error weighted voting technique achieves a Pdet that

varies by only 1.4%, which is 12× lower compared to centralized architectures.
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Chapter 1

INTRODUCTION

Machine learning based systems are transforming the way humans interact with the physical

world and have found wide applications in computer vision, data mining, healthcare, and

more. In many areas such as object recognition [1], machines have begun to exceed human

performance due to machine learning algorithms' capability to learn complex correlations

from large volumes of data. However, this state-of-the-art performance comes at the price

of heavy energy cost. For example, Google's AlphaGo system [2] that beat the human

Go champion employs 1202 CPUs and 176 GPUs, and consumes more than four-orders-

of-magnitude higher power compared with the much cited ∼20W power consumption of

the human brain. As a result of the intensive energy cost, most of the current machine

learning systems adopt an �intelligence in the cloud� paradigm as shown in Fig. 1.1(a). In

this paradigm, a large volume of sensory data is transferred from mobile devices to data

centers, where the bulk of machine learning algorithms are implemented on CPU and GPU-

based clusters. The extracted inference models are then transferred from the cloud back to

the device. This voluminous data transmission to the cloud leads to signi�cant energy and

latency costs. Indeed, recent projections [3] indicate that the tra�c to the cloud consumes

9× more energy than that in the data center itself, and can account for 2% of the global

electricity consumption [4]. Therefore, there is a clear need for small form factor ultra-

low-power (ULP) platforms with inference capability so that the generated data can be

processed to obtain decisions locally (see Fig. 1.1(b)). Achieving this goal requires energy

e�cient in-silicon implementation of machine learning systems.

A self-contained ULP platform for in-silicon machine learning consists of sensing, in-

formation processing, and energy delivery subsystems (see Fig. 1.2). Figure 1.2 shows a

conventional architecture for embedded vision applications. Image data is �rst acquired via
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(a)

(b)

Figure 1.1: The need for in-silicon machine learning: (a) current machine learning systems
are implemented in the cloud, requiring transmission of voluminous amount of raw data,
and (b) ultra-low-power (ULP) platforms with in-silicon machine learning can potentially
process raw data to generate decisions locally.
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an active pixel sensor (APS) array whose analog pixel values are sensed sequentially, and

converted into digital samples via analog-to-digital converters (ADCs), and then streamed

out to a back-end digital processor which implements feature extraction and classi�cation

function to obtain the �nal decision. A digital trainer block computes the hyperparameters

of the feature extractor and classi�er. The energy delivery subsystem converts the voltage

from the supply (battery or energy harvester) to the voltage level suitable for information

processing. The limited energy source and the computational complexity of learning algo-

rithms make energy e�ciency one of the primary design objectives. Several challenges arise

in designing and optimizing such a system:

Figure 1.2: Architecture of the ULP platform for in-silicon machine learning.

� The energy delivery challenge: The energy delivery subsystem typically consists

of one or more voltage regulator modules (VRMs) to convert the voltage from energy

3



Figure 1.3: The voltage conversion e�ciency of VRMs tends to decrease as the conversion
ratio increases.

source into voltage of operation. While designing VRM with high e�ciency of η > 90%

is feasible for output voltage Vdd ≥ 1 V, it is increasingly di�cult to maintain such high

e�ciency for ULP platforms that need to operate with scaled voltages for reduction of

computation energy. As shown in Fig. 1.3, the e�ciency of VRM tends to decrease as

the output load voltage decreases [5]. This poor VRM e�ciency will o�set the energy

savings provided via low-voltage design techniques such as sub/near-threshold voltage

design.

� The communication challenge: The physical separation between the sensing and

information processing subsystems leads to a large interface energy. Such a separation

is made unavoidable because sensing is intrinsically an analog process while information

processing is intrinsically digital in the conventional architecture employing digital

signal processors. The energy required to move the data over the sensor-processor
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interface (see Fig. 1.4(a)) comprising the ADC, the read-out (RD) circuitry and the

interconnect to the digital processor, can account for more than 50% of the total energy

as shown in Fig. 1.4(b).

(a) (b)

Figure 1.4: The communication challenge [6] : (a) the sensing front-end, and (b) energy
breakdown in a 65nm CMOS of an embedded vision system consisting of active pixel
sensor (APS) array as the sensing front-end and principal component analysis (PCA) and
support vector machine (SVM) digital signal processor as the back-end.

� The computation challenge: As projected in Fig. 1.5(a), the power consumption

of portable electronics is expected to keep increasing. This increase will be accelerated

if machine learning and inference capabilities were to be integrated in-silicon. Indeed,

many machine learning algorithms are computationally intensive, e.g., more than 666

million MACs are required to process one 227Ö227 image (13k MACs/pixel) in AlexNet

[7], one of the state-of-art deep learning algorithms. To reduce energy, the conventional

approach is to rely on continuous scaling of supply voltage and feature size. However,

this trend of scaling has stagnated as shown in Fig. 1.5(b) [8].

� The robustness challenge: One way to further reduce energy consumption is to

employ near/subtheshold design where the voltage is aggressively scaled down to

200 mV ∼ 500 mV. However, the resultant energy savings come with an increase

in delay variation as shown in Fig. 1.6(a) [10]. In addition, process scaling leads to

increased process-voltage-temperature (PVT) variation, leakage, soft-errors and noise

(see Fig.1.6(b) [11]). This is becoming a growing concern for reliable computing.
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(a) (b)

Figure 1.5: The computation challenge: (a) the total power for embedded devices keeps
increasing [9], and (b) supply voltage scaling for CMOS process is stagnant below 45 nm [8].

(a) (b)

Figure 1.6: The robustness challenge: (a) delay variation increases as supply voltage scales
from super to sub-threshold region [10], and (b) standard deviation of threshold voltage
increases as technology scales [11].

An estimated energy breakdown between the energy delivery, sensing, and information

processing subsystems is very helpful to identify the limitations in the conventional archi-

tectures. Employing published works in the literature, it is safe to assume that 5%-20%

of the energy is consumed in the energy delivery subsystem as power conversion loss under

low voltage operations. The energy breakdown between sensing and information processing

subsystems highly depends on the application, algorithm, and circuit architecture employed.
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As shown in Fig. 1.4(b), the sensing subsystem accounts for 59% of the system energy

(excluding the energy delivery loss), and most of this energy is consumed in the interface

circuitry. At the same time, information processing accounts for 41% of the total system

energy when employing PCA and SVM kernels as the digital backend. This suggests that

the interface circuitry and the information processing subsystem are the dominant sources

of energy consumption in the conventional architecture.

In the following part of this chapter, we provide an overview of related work to address

these challenges, and �nally present our approach to solve these problems.

1.1 Related Work

This section provides an overview about related work in the design of energy delivery and

sensing subsystems, low power design, and robust system design.

1.1.1 Energy Delivery

There are three commonly used VRM topologies: 1) linear regulator, 2) switching converter,

and 3) switched capacitor voltage regulator module (SC-VRM), as shown in Fig. 1.7. The

linear regulator (Fig. 1.7(a)) uses high-gain ampli�er and series-shunt feedback to regulate

the voltage to a desired reference level. A major problem with the linear regulator is that

its e�ciency is determined by the ratio Vout/Vin where Vout and Vin are the output and input

voltage, respectively. Hence, the linear regulator has poor e�ciency at low output voltage.

A switching converter (Fig. 1.7(b)) employes duty cycle controlled switches to convert a DC

voltage into a pulse train, followed by an LC low-pass �lter to extract its DC component.

However, the o�-chip inductor increases the form factor of the system and thus prohibits

its use in form-factor constrained ULP platforms. The switched capacitor VRM (SC-VRM)

employs a capacitor array to store and transfer charge. Voltage conversion is achieved by

transferring charge using duty cycle controlled power switches. SC-VRM can have a high

e�ciency when the output voltage is close to the ideal conversion output, but e�ciency

decreases rapidly as the output deviates from the ideal output voltage. Its compactness and
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capability to achieve high conversion ratio make SC-VRM an ideal candidate for use in ULP

platforms.

Design of high-e�ciency SC-VRM for ULP platforms is made challenging due to the large

step-down ratio [12, 5] and the light load conditions (≈ 10 nA). SC-VRMs with pulse fre-

quency modulation (PFM) control [5] and capacitance modulation [12] have been employed

to boost light load e�ciency up to 74%. A hybrid converter [13] has been proposed to ad-

dress energy delivery for loads in the range of 5 nA-to-500 nA, with e�ciency up to 56%.

Ultra low power clock generation and level shifter are employed to reduce the switching loss,

which degrades light load e�ciency. To mitigate the conversion ratio problem, the stacked

voltage domain approach [14] has been proposed where multiple cores are connected in series

to lower the step-down ratio. However, this approach needs push and pull linear regulators

in order to compensate for voltage �uctuations in the intermediate supply nodes caused by

current mismatch. Most of the conventional approaches target reducing converter losses in

existing topologies. However, SC-VRM includes intrinsic charge sharing loss [15], gate drive

loss, and other overhead, that tends to severely degrade the VRM light load e�ciency. Thus,

alternative architectures are needed to increase the VRM e�ciency for ULP platforms.

1.1.2 Sensing Subsystem

The sensing subsystem contains various types of sensors, such as image, biomedical, or

chemical sensors, to convert physical signals into electrical signals for further processing. In

applications such as CMOS image sensor based embedded vision where sensing and informa-

tion processing co-exist, the interface energy between the two subsytems can dominate. One

approach to address the resulting communication challenge is to tightly integrate sensing

and computation. Previous work in integrating computation into the CMOS image sensor

array falls into one of two categories. In the �rst, the pixel architecture is modi�ed (see Fig.

1.8(a)) to enable simple computations such as 2D convolution [16], image �ltering [17, 18],

compressive image sensing [19], matrix transformations [20], Gaussian pyramid [21], and

image decomposition [22]. These approaches su�er from a loss in �ll-factor or the spatial

resolution because the modi�ed pixel occupies an area that can be as high as 8× greater
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Figure 1.7: Three commonly used DC-DC converter topologies: (a) linear regulator, (b)
switching converter, and (c) SC-VRM.
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Figure 1.8: Integrated sensing and computing falls into two categories: (a) modi�ed pixel
architecture leading to a loss of �ll factor [17], and (b) attaching digital/analog processor
in APS peripheral for low level �ltering functions [23].

than the standard pixel architecture. In the second, very simple analog processing functions

are embedded in the periphery of the APS array (see Fig. 1.8). These include convolution

[23], random projections for compressed sensing [24], and di�erence of Gaussian (DOG) [25].

The main limitation of these approaches is the absence of learning capabilities since only

low level image processing algorithms such as �ltering are supported. This lack of learning

prevents the system from adapting model parameters to compensate for the non-idealities in

the hardware platform such as the non-linearity and noise in the sensor and the peripheral

circuitry.

1.1.3 Digital Low Power Design

Conventional approaches for power reduction rely on device level techniques such as feature

size scaling and body biasing [26]; circuit level techniques such as transistor sizing [27] and

voltage scaling [28]; and architectural level techniques such as algorithm transformation [29],

clock/power gating [30, 31], dynamic voltage and frequency scaling (DVFS) [32]. As CMOS

technology scales into sub-10 nm, these traditional knobs such as supply voltage, frequency,

and threshold voltage for energy reduction are becoming ine�ective due to leakage as well
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as power density concerns. Moreover, the conventional techniques adopt a worst-case design

methodology to ensure error free operation. The resulting large margin limits the achievable

energy e�ciency.

The work of Calhoun et al. [33] and Zhai et al. [34] leads to the discovery of the minimum

energy operation point (MEOP) in digital integrated circuits which arises from the trade-o�

between dynamic energy Edyn and leakage energy Eleak in sub-threshold domain (see Fig.

1.9(a)). Supply voltage scaling results in quadratic reduction in Edyn, and an exponential

increase in the delay and thus in Eleak. The resulting MEOP is de�ned via the tuple (V ∗dd,

f ∗clk, E
∗
op) where V

∗
dd is the optimum supply voltage, f ∗clk is the optimum clock frequency, and

E∗op is the optimum energy per operation. Operating circuits in sub-threshold might lead to

severe performance loss due to the increased delay. To compensate for the performance loss,

researchers have also proposed near-threshold operation where the supply voltage is scaled

down to 400 − 500 mV [8] (see Fig. 1.9(b)). Near-threshold computing o�ers 10× energy

bene�ts with relatively small performance loss and is considered a good trade o� between

super and sub-threshold operations. Both system level studies and IC implementations exist

for near/sub-threshold computing. Markovic et al. [35] study the impact of activity factor

and various design parameters on near-threshold operation and propose suitable logic families

for near-threshold design. The work concludes that near-threshold operation can provide a

10× throughput increase with a 20% energy increase relative to the MEOP. Dreslinski et

al. [36] study architectural optimization of parallel chip multi-processors (CMP) operating

in near-threshold. Kwong [37] provides a design methodology for sub-threshold logic with

emphasis on device sizing. Processors operating in near/sub-threshold [38, 39, 40, 41] as well

as custom digital signal processing (DSP) kernels [42, 43] have also been proposed. The wide

adoption of sub/near-threshold design is limited due to the performance loss and increased

PVT variations [11]. The conventional approach employs transistors up-sizing and extensive

veri�cation using computer aided design (CAD) design �ow [37]. This worst case design

methodology limits the achievable energy e�ciency.
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(a) (b)

Figure 1.9: Near/Sub-threshold operation: (a) MEOP exists due to the balance between
dynamic and leakage energies [33], and (b) near-threshold computing o�ers trade-o�
between throughput and energy e�ciency [8].

1.1.4 Robust System Design

Defects and errors originating from various sources necessitate robust system design for next

generation ULP platforms. Errors can be caused by imperfections in fabrication such as

scratches from wafer mishandling, mask misalignment and over/under-etching [44]. These

imperfections, referred to as defects, can cause unpredictable open or short circuits in the

fabricated chip, leading to circuit stuck-at-faults. In addition, near/sub-threshold computing

presents new challenges for robust system design. The increased PVT variations [8] lead to

higher probability of timing errors.

Robust system design dates back to the work of von Neumann [45] who showed that reliable

networks can be designed with a cascade of three input majority gates, if the component

probability of failure pe < 0.0073, and that reliable computation is impossible if pe ≥ 1
6
.

Techniques for various design abstractions have been proposed and are summarized next.

At the circuit level, yield enhancement routing [46] and �oor planning [47] techniques
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have been proposed. These techniques target improving yield at manufacturing time. In

[48], Markov random �eld (MRF) logic is proposed to enhance noise immunity under low

voltage operation. The proposed logic is able to achieve great robustness improvement, but

the overhead is prohibitive. Techniques such as transistor sizing [37] and body biasing [49]

have been proposed to reduce variations in sub/near-threshold designs. Circuit hardening

techniques [50] have been proposed to mitigate single event transients (SET) on logic circuits.

At logic and microarchitecture level, conventional robust system design methods employ

redundancy based approaches. For example, in N modular redundancy (NMR), the design is

robusti�ed by replicating the module N times followed by majority voting to obtain the �nal

results. NMR incurs large (N fold) area and energy overhead, thus is not suitable for use in

low power platforms. In [51, 52], RAZOR is proposed as a low overhead microarchitecture

level technique for detecting timing errors. RAZOR employs a specially designed shadow

latch to detect late-arriving signals and a recovery scheme to re-execute the erroneous in-

struction. RAZOR is able to achieve 44% energy savings over the worst case design point

while operating close to point of �rst failure (PoFF) with an error rate of 0.1% [51]. RA-

ZOR's deterministic error compensation makes it well-suited for applications where 100%

correctness is important. Emerging machine learning applications have a relaxed notion

of correctness that can potentially be utilized to enhance robustness and improve energy

e�ciency.

In contrast to logic or circuit level techniques, algorithm and system level techniques can

take advantage of application level performance metrics to enhance system level robustness.

Emerging machine learning applications employ performance metrics that are statistical in

nature [53]. For example, the feature extractors consisting of �lter banks employ signal-to-

noise ratio (SNR) as the design metric, and the classi�cation engines employs true positive

rate (TP rate), false positive rate (FP rate) or detection rate (Pdet) as the design metric

[54, 55]. Statistical metrics result in inherent error tolerance to small magnitude errors.

In data driven hardware resiliency (DDHR) [54], stuck-at faults and various system non-

idealities are treated as feature inputs into the machine learning algorithm. Through training

with error a�ected features, the resulting classi�cation/regression engine compensates for

these errors. The resulting engine can thus perform correct classi�cation and regression in
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the presence of errors. In [56], adaptive boosting is employed to train in the presence of

hardware errors. Data driven methods are e�ective at handling static errors such as stuck-at

faults. However, the data driven nature of these approaches requires the error statistics to

be the same during training and testing, which might not be true for dynamic errors such

as timing errors.

Statistical error compensation (SEC) [53, 57, 58, 61, 60] (see Fig. 1.10) is a class of system

level error compensation techniques that utilize signal and error statistics. SEC employs

detection and estimation theory to compensate for the errors in the main computation

block, and thus can tolerate a much higher error rate compared with logic level techniques.

Algorithmic noise-tolerance (ANT) [57] employs an explicit estimator block to compensate

for the most signi�cant bit (MSB) �rst errors in the main DSP block. ANT has been shown to

provide up to 65% energy savings with little loss of performance. Stochastic sensor-network-

on-a-chip (SSNOC) [58] employs statistically similar decomposition and robust estimation

theory to compensate for errors and achieves up to 5.8× energy savings. Soft NMR [61] makes

explicit use of error probability mass functions (PMFs) to provide up to 10× improvement

in robustness with 35% energy savings. Likelihood processing [60] utilizes bit-level error

statistics to perform inference and has been shown to provide up to 14× improvement in

robustness with 25% energy savings. In general, circuit level error resiliency techniques

[51, 62] enable operation close to point of �rst failure (PoFF) or in the low error rate (<0.1%)

regime. In comparison, system level error resiliency techniques such as SEC [53, 57, 63, 61]

can operate in the high error rate (>10%) regime. Previous studies have shown that a

reduced precision replica ANT (RPR-ANT) protected ECG processor [64] and MRF stereo

matching block [65] can be fully functional at an error rates of 58% and 21.3%, respectively.

However, the improved robustness in RPR-ANT comes at the price of 30% [64] to 40%

[65] complexity overhead due to the use of explicit estimator blocks. Thus, improved SEC

techniques need to be developed for them to be applicable to more complex signal processing

and inference kernels.
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Figure 1.10: SEC techniques (a) ANT [57], (b) SSNOC [58], (c) soft NMR [59] and (d)
likelihood processing [60].
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1.2 Dissertation Contributions and Organization

The design of ULP platforms for machine learning applications is challenging due to the en-

ergy delivery, communication and the tightly coupled computation and robustness challenges.

Conventional design approaches optimize the energy delivery, sensing, and information pro-

cessing separately. In this dissertation, we tackle these problems by (1) embedding infor-

mation processing into the energy delivery and sensing subsystem to eliminate the voltage

conversion loss and interface overhead, and (2) computing at the limits of energy e�ciency

and thus robustness, and employing SEC techniques to compensate for the resultant hard-

ware errors. The major contributions and organization of the dissertation are summarized

as follows:

Chapter 2 presents the C-VRM approach where the information processing subsystem

is embedded into the energy delivery subsystem. The C-VRM employs multiple voltage do-

main stacking and core swapping to achieve high total system energy e�ciency in near/sub-

threshold region. A prototype IC incorporating a C-VRM and an SC-VRM supplying energy

to an 8-tap fully folded FIR �lter core is implemented in a 1.2 V, 130nm CMOS process.

Measured results indicate that the C-VRM has up to 44.8% savings in system-level energy

per operation compared to the SC-VRM system, and an e�ciency ranging from 79% to 83%

over an output voltage range of 0.52 V to 0.6 V.

Chapter 3 presents an in-sensor computing architecture which (mostly) eliminates the

sensor-processor interface by embedding information processing into the noisy sensor fabric

in analog and retraining the hyperparameters in order to compensate for non-ideal computa-

tions. The resulting architecture, referred to as the Compute Sensor - a sensor that computes

in addition to sensing - represents a radical departure from the conventional. A Compute

Sensor for image data is designed by embedding both feature extraction and classi�cation

functions in the analog domain in close proximity to the CMOS active pixel sensor (APS)

array. Signi�cant gains in energy e�ciency are demonstrated using behavioral and energy

models in a commercial semiconductor process technology.

Chapter 4 presents embedded algorithmic-noise tolerance (E-ANT), a new low overhead

SEC technique aiming at enhancing the robustness and energy e�ciency of signal processing
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and machine learning kernels. E-ANT operates by reusing part of the main block operation

as estimation and thus embedding the estimator block into the main block. Such embed-

ding can be achieved at various levels. At the architecture level, we propose ARCH-ANT,

which uses data path decomposition to embed the reduced precision replica estimator into

the main block. At the algorithm level, we propose ALG-ANT, which employs additional

optimization constraints during algorithm to architecture mapping to design incremental

re�nement architectures. System level simulation results in commercial 45nm process shows

large energy e�ciency and robustness improvement.

Chapter 5 presents several probabilistic error models for machine learning kernels im-

plemented on low-SNR circuit fabrics where errors arise due to voltage overscaling (VOS),

process variations, or defects. Four di�erent variants of the additive error model are proposed

that describe the error PMF. Analytical expressions for the error PMF are derived. Per-

formance prediction of a support vector machine (SVM) based classi�er using these models

indicates that when comparing Monte Carlo with HDL simulations, probability of detection

Pdet estimated using the model is within 3% for VOS error when the error rate pη ≤ 80%,

within 5% for process variation error and within 2% for defect errors when the defect rate

(the percentage of circuit nets subject to stuck-at-faults) psaf is between 10−3 and 0.2.

Chapter 6 presents the design of error-resilient machine learning architectures by em-

ploying a distributed machine learning framework referred to as classi�er ensemble (CE). CE

combines several simple classi�ers to obtain a strong one. In contrast, centralized machine

learning employs a single complex block. The random forest (RF) and the support vector ma-

chine (SVM), which are representative techniques from the CE and centralized frameworks,

respectively, are compared. Employing the breast cancer data set in the UCI machine learn-

ing repository and architectural-level error models in a commercial 45 nm CMOS process,

it is determined that RF-based architectures are signi�cantly more robust than SVM archi-

tectures in the presence of timing errors due to process variations in near-threshold voltage

(NTV) regions (0.3 V− 0.7 V). Additionally, an error weighted voting technique that incor-

porates the timing error statistics of the NTV circuit fabric is proposed to further enhance

the robustness of RF architectures. Simulation results con�rm that the error weighted voting

achieves a Pdet that varies by only 1.4%, which is 12× lower than SVM.
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Chapter 7 concludes this dissertation and provides directions for future research activi-

ties.
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Chapter 2

COMPUTE VRM

The emerging applications in machine learning require the design of ULP platforms with

limited energy supply. Energy per operation (Eop) of such systems is equal to the energy

extracted from the battery per operation Ebat and is given by Ebat = Eop = Evrm + Ecore,

where Evrm and Ecore are the energy consumption per instruction by the VRM and the core,

respectively. The conventional approach is to design the VRM to maximize its e�ciency η

at a pre-speci�ed core supply voltage Vdd and core/load current Iload (see Fig. 2.1).

SC-VRM Core

THV*

ddV

*

coreE

/dd batV V

coreE

1
ddV

ddVbatV

Figure 2.1: Conventional design approach addresses VRM design and core design
separately. Due to the tradeo� between dynamic and leakage energy, minimum energy
operation point (MEOP) of compute cores usually lies in near or sub-threshold regime.
However, the resulting high conversion ratio often results in poor VRM e�ciency.

Sub/near-threshold computing (NTC) has been proposed [66, 67] to minimize Ecore by op-

erating the core close to its minimum energy operating point (MEOP) where Vdd is regulated

in the 400 mV-to-600 mV range. The battery voltage Vbat is typically in the range of 1.2 V to

3.6 V [68]. This large gap between Vbat and Vdd requires the voltage regulator module (VRM)
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to achieve a high step-down ratio. Among the VRM topologies, the switched capacitor VRM

(SC-VRM) is attractive as it can achieve high conversion ratio and is amenable to on-chip

integration [15, 69]. Design of high-e�ciency VRM for ULP platforms is challenging due to

the large step-down ratio [5, 12] and light load conditions due to NTC.

Various approaches have been proposed to address the e�ciency issue in SC-VRM under

light load conditions. SC-VRM with pulse frequency modulation (PFM) control [5, 12] has

been employed to boost light load e�ciency up to 74%. A hybrid converter [13] has been

proposed to address energy delivery for loads in the range of 5 nA-to-500 nA, with e�ciency

up to 56%. The stacked voltage domain approach [14] has been proposed where multiple

cores are connected in series to lower the step-down ratio. This approach needs push and pull

linear regulators in order to compensate for voltage �uctuation in the intermediate supply

nodes caused by current mismatch.

In this chapter, we propose the compute VRM (C-VRM) which exploits the similarity

between charge transfer in an SC-VRM and CMOS logic. Computation in CMOS occurs via

transfer of charge between supply/ground nodes and capacitive output nodes. This transfer

is controlled by MOS transistor switches. Energy delivery in a SC-VRM occurs in a similar

manner with power switches controlling the transfer of charge from the battery to the core.

The C-VRM exploits this similarity by replacing the power switches in a SC-VRM with

CMOS compute cores. In doing so, the proposed C-VRM provides the following advantages:

(1) eliminates driver loss, bottom plate capacitor loss, and charge transfer loss to enhance

voltage conversion e�ciency, and (2) seamlessly integrates energy delivery and computation

to provide a uni�ed platform that enables the minimization of total system (VRM+core)

energy Eop. The C-VRM concept is validated by: (a) developing energy models for the C-

VRM and the SC-VRM, and employing these in system simulations to evaluate the bene�ts

of C-VRM in energy per operation Eop and e�ciency η, and (b) implementing a prototype

IC incorporating a C-VRM and a SC-VRM supplying energy to an 8-tap folded FIR �lter

core in a 1.2 V, 130 nm CMOS process to verify the bene�ts of C-VRM via measured results.

The rest of the chapter is organized as follows: Section 2.1 describes the background of

the conventional SC-VRM and develops energy models to evaluate its e�ciency. Section

2.2 presents the C-VRM and develops energy models to compare with the conventional SC-
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VRM. Section 2.3 describes the prototype IC consisting of both the conventional SC-VRM

system and the C-VRM. Test results in Section 2.4 demonstrate the improvement in energy

and converter e�ciency. Conclusions and future work are addressed in Section 2.5.

2.1 Background

This section reviews the design of a conventional SC-VRM system. An energy model is

derived to reveal the fundamental loss mechanisms in a SC-VRM. A core energy model is

also derived for use in system simulations in the following sections.

2.1.1 Intrinsic Loss in SC-VRM

A block diagram of a 2:1 SC-VRM is shown in Fig. 2.2(a), where a set of charge trans-

fer capacitors and switches are connected in di�erent con�gurations in each clock phase to

convert the voltage. Since the charge transfer procedure involves direct connection of volt-

age sources and capacitors, the current will be impulsive and lead to an intrinsic charge

transfer loss ECTL. As pointed out in [70, 71], ECTL depends on the operational domain

of the SC-VRM, i.e., complete charge, partial-charge, or no-charge. In near/sub-threshold

operation with light load, driver loss will degrade light load e�ciency severely and should be

minimized. Thus, we assume that the SC-VRM is operating in the complete charge opera-

tion domain so as to maximize the charge transferred to the output per converter switching

cycle. Figure 2.2(b) illustrates the source of ECTL in the context of a simple 1:1 SC-VRM

where the charge is transferred from Vbat to Vdd with a �ying capacitor Csc. In Fig. 2.2(b),

it can be shown that in each phase (Φ1 and Φ2), the energy loss due to charge sharing is

1
2
Csc(Vbat − Vdd)2. Thus, the intrinsic charge transfer loss during every switching cycle is:

ECTL = Csc(Vbat − Vdd)2 (2.1)

Note that (2.1) does not depend on switch resistances R1 and R2. Therefore, ECTL in (2.1)

represents a fundamental loss mechanism in a conventional SC-VRM. The C-VRM extracts
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useful computation from this loss and thereby improves Eop.

2.1.2 SC-VRM Energy Model

In order to evaluate the converter e�ciency under di�erent load conditions, a power model

for the SC-VRM is necessary. For simplicity of analysis, we choose a 2:1 ladder SC-VRM as

shown in Fig. 2.2(a). However, the analysis method can be extended to a higher conversion

ratio. There are four major loss components in the conventional SC-VRM:

2.1.2.1 Charge Transfer Loss (ECTL)

As with any SC-VRM, there is the loss ECTL during each charge transfer. In [15, 72], SC-

VRM is modeled as an ideal transformer (see Fig. 2.2(c)) representing a conversion ratio of

N , and ECTL is captured by a series resistance Rctl, and is given by:

ECTL = I2
coreRctlTsw (2.2)

where Icore is the load current and Tsw is the switching period. Substituting Icore = 2Csc∆V
Tsw

and Rctl = 1
4Cscfsw

into (2.2), we get:

ECTL =
I2
core

4Cscfsw
Tsw = Csc(∆V )2 (2.3)

where fsw is the switching frequency of the SC-VRM, and ∆V is the di�erence between

Vbat
N

(ideal output) and regulated Vdd. Note that (2.1) and (2.3) are identical when ∆V =

Vbat − Vdd.

2.1.2.2 Gate Drive Loss (EGDL)

The SC-VRM requires explicit power switches to transfer charge. A driver circuit, such

as a super bu�er, is therefore needed, resulting in additional losses. Assuming the gate

capacitance of the power switch is Cswitch, the gate drive loss per instruction EGDL can be
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expressed as:

EGDL = CswitchV
2
batfsw/fclk−S (2.4)

where EGDL is calculated per one core clock period Tclk−S = 1/fclk−S, and fclk−S is the

core clock frequency. This de�nition of EGDL allows a direct comparison with the energy

consumption of the core Ecore.

2.1.2.3 Bottom Plate Capacitor Loss (EBPCL)

The bottom plate capacitor Cbottom is the parasitic capacitor between the bottom plate of

Csc and the substrate (see Fig. 2.2(a)). Cbottom scales with the area of Csc and can be as high

as 5% of Csc [73]. Since the bottom plate of the Csc is not always grounded, during every

switching cycle, Cbottom will be charged and discharged, as shown in Fig. 2.2(a). Assuming

the ratio of Cbottom to Csc is γ, this will lead to an energy loss given by:

EBPCL = γCscV
2
ddfsw/fclk−S (2.5)

2.1.2.4 Control Loss (ECL)

Control loss represents a constant loss in the SC-VRM and will degrade light load e�ciency.

Assuming the e�ective load capacitance of control circuit is Cctrl, and the control circuit

frequency is fctrl, the control loss can be expressed as:

ECL = CctrlV
2
batfctrl/fclk−S (2.6)

2.1.3 Core Energy Model

There are two types of energy consumption in a core operating in near/sub-threshold region:

dynamic energy and leakage energy. A uni�ed model that accounts for both components has

been proposed in [74]:

Ecore = αCcoreV
2
dd + VddIleak(Vdd)

1

fclk
(2.7)
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Figure 2.2: Conventional SC-VRM architecture: (a) block diagram of a 2:1 SC-VRM, (b)
charge sharing loss mechanism, and (c) a simpli�ed energy transfer model.
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Ileak(Vdd) = µCox
W

L
(m− 1)V 2

T e
−Vt
mVT e

−ηdVdd
mVT (1− e

−Vdd
VT ) (2.8)

where α is the core activity factor, Ccore is the load capacitance in the core, Vdd is the supply

voltage, Vt is the threshold voltage, VT is the thermal voltage, µ is the carrier mobility, Cox

is the gate capacitance per W/L, m is a constant related with sub-threshold slope factor,

and ηd is the drain induced barrier lowering (DIBL) coe�cient. This model captures the

trade-o� between the dynamic and leakage energy, which leads to the MEOP [74], as de�ned

via the 3-tuple (E∗core, V
∗
dd, f

∗
clk), where E

∗
core is the energy at MEOP, V ∗dd is the optimum

voltage, and f ∗clk is the energy optimum frequency. The core is modeled as a resistor Rcore

in parallel with a leakage current source Ileak(Vdd) (see Fig. 2.2(c)).

2.2 C-VRM System Design

This section presents the system design of the proposed C-VRM. An analytical energy model

for the C-VRM is developed to compare its e�ciency with the conventional SC-VRM system.

2.2.1 Principle of Operation of the C-VRM

C-VRM utilizes computational cores as switches to perform computation and transfer charge.

The compute cores are used as distributed power switches and perform the dual functions

of energy transfer and information processing.

The proposed C-VRM operates in principle the same as an interleaved SC-VRM. To

illustrate this, Fig. 2.3 describes the operation of an interleaved 2:1 SC-VRM and a 2:1

C-VRM. For the interleaved SC-VRM, in the �rst phase (Φ1), charge is stored in the �ying

capacitor C1 and released by C2; in the second phase (Φ2), charge is released by C1 and stored

in C2. The 2:1 C-VRM implements the same charge transfer function described above but

without explicit power switches/drivers. In Φ1, the core in the high voltage domain (CH) is

clock gated while the core in low voltage domain (CL) is active. Thus, charge is stored in C1

and released by C2. In Φ2 , CL is clock gated while CH is active, so that charge is released
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Figure 2.3: The C-VRM principle for N = 2.

by C1 and stored in C2. The C-VRM achieves improved energy e�ciency compared to the

conventional SC-VRM as the losses associated with the driver, bottom plate capacitor, and

intrinsic charge transfer are eliminated. Furthermore, it incorporates computation as an

intrinsic part of its energy delivery functionality.

The out-of-phase operation of CH and CL (core swapping) requires data transfer between

two voltage domains, as shown in Fig. 2.4. At the end of Φ1 and Φ2, data is transferred

between CL and CH by adding an extra core swapping cycle. The core swapping has

negligible e�ect on total throughput, so long as the swap frequency is low compared to C-

VRM core clock frequency fclk−C . To ensure this condition, CH and CL employ continuous

voltage and frequency scaling (CVFS), where fclk−C tracks the decaying voltage (VCH or

VCL) across the active core. The voltage of the intermediate node (Vmid) is permitted to

vary by 80 mV-200 mV. As a result, VCH and VCL varies between 500 mV and 700 mV, and

fclk−C tracks the instantaneous voltage by employing an on-chip critical path replica (CPR)

oscillator.
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Figure 2.4: Data transfer in the C-VRM during core swapping.

2.2.2 C-VRM Energy Model

An energy model of the C-VRM is necessary to compare its system level energy consump-

tion Eop with that of the SC-VRM system. The C-VRM eliminates driver loss and charge

transfer loss associated with the conventional SC-VRM system. However, the variable core

voltage results in data transfer loss and increased core energy. There are three major energy

components in the C-VRM: core energy (Ecore−C), data transfer loss (EDTL), and control

loss (ECL−C), all of which need to be characterized.

Since the Vdd across each core during its operation varies, Ecore−C is time varying, as

shown in Fig. 2.5. Assume that M operations are completed during M clock cycles that

comprise the active period. In the mth (m = 1, 2, ...M) cycle, the average voltage across

the core is denoted as Vdd(m) and the clock period during the mth operation is denoted as

Tclk−C(m). The supply voltage Vdd drops from a pre-de�ned voltage Vdd(0) to another pre-

de�ned voltage Vdd(M) over M clock cycles, as shown in Fig. 2.5. In the test chip, Vdd(0)

and Vdd(M) are chosen to be 500 mV and 700 mV, respectively, and the value of M ranges

from 96 to 131 depending on the core activity factor α. We also assume that CH and CL

see the same voltage pro�le (Vdd(m)) during active periods in order to simplify the analysis.

Thus, Ecore−C , EDTL, and ECL−C can be calculated as
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Figure 2.5: The variable supply voltage Vdd(m) results in a time varying clock period
Tclk−C(m).

Ecore−C =
1

M

M∑
m=1

[αCcoreV
2
dd(m) + Ileak(m)Vdd(m)]Tclk−C(m) (2.9)

EDTL =
Creg−CV

2
bat

M
(2.10)

ECL−C =
Cctrl−CV

2
batfctrl−C

fclk−C
(2.11)

where α is the core activity factor, Ileak(m) is the leakage current at the supply voltage

of Vdd(m), Creg−C is the total load capacitance of data transfer logic, Cctrl−C is the load

capacitance of the control circuitry, fctrl−C is the equivalent control frequency, and fclk−C is

the core clock frequency. Figure 2.6 shows a C-VRM with N cores (thus N voltage domains).

From the principle of charge conservation, the following set of equations holds:

Q = αCcoreVdd(m) (2.12)

Q
N − 1

N
=
Csc
N
Vdd(m− 1)− Csc

N
Vdd(m) (2.13)

where (2.12) describes the charge consumed by the core in the mth clock cycle, and (2.13)

describes the charge conservation at node a in Fig. 2.6. Equations (2.12) and (2.13) can be

used to solve for Vdd(m) (m = 1...,M) to obtain:

Vdd(m) = [
Csc

(N − 1)αCcore + Csc
]mVdd(0) (2.14)
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Next, substituting m = M in (2.14), we solve for M as follows:

M =
ln Vdd(M)

Vdd(0)

ln[ Csc
(N−1)Ccore+Csc

]
(2.15)

The clock period Tclk−C(m) is obtained as the average of the critical path delays at Vdd(m)

(Td(Vdd(m))) and Vdd(m− 1) (Td(Vdd(m− 1))):

Tclk−C(m) =
Td(Vdd(m)) + Td(Vdd(m− 1))

2
(2.16)

Therefore, the Eop of the conventional SC-VRM system is given by:

Eop−SC = Ecore + ECTL + EGDL + EBPCL + ECL (2.17)

where Ecore, EGDL, EBPCL, and ECL are de�ned in (2.2)-(2.7). Similarly, the Eop of the

C-VRM is obtained as:

Eop−C = Ecore−C + EDTL + ECL−C (2.18)

where Ecore−C , EDTL, and ECL−C are de�ned in (2.9)-(2.11), and Vdd, M and TC,CLK are

obtained from (2.14)-(2.16). Measured results from a prototype test chip in 130 nm CMOS

(see Fig. 2.21) indicate that (2.17) and (2.18) accurately models the energy consumption

of the SC-VRM and the C-VRM, respectively. Energy saving can be obtained if Eop−C <

Eop−SC . Next, we determine conditions under which the C-VRM is more energy e�cient, as

compared to an SC-VRM system.

2.2.3 C-VRM System Design

In the rest of this chapter, we will assume that the C-VRM has N = 2 cores to simplify

the analysis. System simulations are performed to compare the energy e�ciencies of the

C-VRM and the SC-VRM system. The battery voltage Vbat is assumed to be 1.2 V. For the

SC-VRM, we use an N = 2 ladder topology as shown in Fig. 2.2(a), with �ying capacitor Csc

chosen to be 500 pF. Cswitch is chosen such that the SC-VRM is operating in slow switching
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Figure 2.6: The principle of charge conservation in the C-VRM.

limit (SSL) and fast switching limit (FSL) boundary to balance shunt and series losses. The

bottom plate capacitance Cbottom is assumed to be 2% of Csc and Cctrl is assumed to be 1%

of Csc. For the C-VRM, we also choose the N = 2 topology as shown in Fig. 2.3. For

fairness of comparison, we constrain the total charge transfer capacitance (C1 + C2) in the

C-VRM to equal Csc in the SC-VRM. The 500 pF capacitor is split equally between C1 and

C2. Each 250 pF capacitance supplies one of the cores. We also keep the control loss of the

C-VRM the same as the SC-VRM. We assume the same 100 pF Ccore for both the SC-VRM

system and the C-VRM. The average activity factor α is assumed to be 0.3. The switching

frequency fsw is swept to generate Vdd in the range of 0.42 V to 0.6 V. Energy losses and

core energy are calculated via the energy model developed in previous sections.

To compare energy e�ciency of the SC-VRM and C-VRM, we de�ne the e�ective Vdd

(Vdd,eff ) as the Vdd under which the MAC core in the SC-VRM will give the same throughput

as the MAC core in the C-VRM, i.e., the SC-VRM clock period Tclk−S(Vdd,eff ) equals the

average C-VRM clock period:

Tclk−S (Vdd,eff ) =
1

M

M∑
i=1

Tclk−C (i) (2.19)

where Tclk−C(i) is the C-VRM clock period in the ith cycle. Substituting (2.15), (2.16) into
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(2.19) for N = 2, we obtain:

Tclk−S (Vdd,eff ) =
ln[ Csc

Ccore+Csc
]

ln[Vdd(M)
Vdd(0)

]

M∑
i=1

Td(Vdd (i)) + Td (Vdd (i− 1))

2
(2.20)

Substituting (2.14) into (2.20), we obtain the relation between Vdd,eff and Vdd(0) and

Vdd(M) as follows:

Tclk−S (Vdd,eff ) =
ln[ Csc

Ccore+Csc
]

ln[Vdd(M)
Vdd(0)

]

M∑
i=1

Td(
[

Csc
αCcore+Csc

]i
Vdd(0)) + Td

([
Csc

αCcore+Csc

]i−1

Vdd(0)

)
2

(2.21)

Under the assumption that CH and CL see the same voltage pro�le Vdd(m) during their

active periods, we can substitute Vbat
2

+ ∆V and Vbat
2
−∆V into (2.21) to obtain:

Tclk−S (Vdd,eff ) =
ln[ Csc

Ccore+Csc
]

ln[
Vbat
2
−∆V

Vbat
2

+∆V
]
×

M∑
i=1

Td(
[

Csc
αCcore+Csc

]i
(Vbat

2
+ ∆V )) + Td

([
Csc

αCcore+Csc

]i−1

(Vbat
2

+ ∆V )

)
2

For near threshold operation, it is di�cult to obtain a precise analytical expression for

this delay. Simulation results were used to extract the delay vs. Vdd curve of the critical

path and Vdd,eff can be solved numerically for di�erent values of ∆V . Figure 2.7 shows that

while the actual voltage range might go beyond Vbat/2 (0.6 V in the simulation), the e�ective

voltage is less than the ideal output voltage Vbat/2.

In the �rst experiment, we assume Creg−C is only 1% of Ccore so that the data transfer

overhead is small. Figure 2.8(a) shows the di�erent energy components for the conventional

SC-VRM as a function of Vdd. We denote ESHUNT = EGDL+EBPCL+ECL since driver loss,

bottom capacitance loss and control loss can all be denoted as parallel equivalent resistors

in Fig. 2.2(c). From Fig. 2.8(a), we can see that as Vdd increases, ECTL increases due to

reduced ∆V according to (2.3); but ESHUNT increases due to increased fsw. In the super-
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Figure 2.7: The e�ective voltage Vdd,eff as a function of ∆V = Vbat/2− Vdd(M).

threshold region, as Vdd decreases, Ecore decreases because dynamic energy dominates. As

Vdd further decreases to sub/near-threshold region, Ecore increases due to the exponential

increase of propagation delay. Due to the trade-o� between ESHUNT , ECTL and Ecore, the

system MEOP (S-MEOP) voltage V ∗dd,S−MEOP is around 0.46 V. The Eop increases as the

Vdd deviates from V ∗dd,S−MEOP .

Figure 2.8(b) shows the di�erent energy components of the C-VRM as a function of Vdd,

where EDTL and ECL−C are lumped together as ELOSS for simplicity. The Vdd value for the

C-VRM is the Vdd,eff de�ned in (2.19). Figure 2.8(b) illustrates that compared with the

conventional SC-VRM system, the C-VRM has a higher Ecore due to its variable voltage

operation. However, the C-VRM eliminates EGDL, EBPCL and ECTL associated with the

SC-VRM system. Furthermore, Fig. 2.8(b) indicates that ELOSS becomes higher when Vdd

is close to the ideal output (1
2
Vbat = 0.6 V) due to the increased data transfer frequency.

ELOSS also increases as the core enters sub-threshold region due to increased delay.

Figure 2.8(c) compares the Eop−SC and Eop−C , as de�ned in (2.17) and (2.18), and shows

that the C-VRM has lower Eop compared with the SC-VRM system across the entire oper-

ating point from 0.42 V to 0.6 V. Large energy savings can be achieved either at high Vdd

(close to ideal output of 0.6 V) due to the elimination of EGDL and EBPCL, or when Vdd is

further reduced beyond V ∗dd,S−MEOP of 0.46 V due to the elimination of ECTL.

Figure 2.8(d) shows the e�ciency comparison of the SC-VRM system and the C-VRM.
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This �gure illustrates that the C-VRM can maintain high e�ciency (ηC−V RM > 93%) across

the operating range from 0.42 V to 0.6 V, while the SC-VRM can only achieve ηSC−V RM ≈

80% at around 0.54 V. As Vdd deviates from this e�ciency maximum voltage, ηSC−V RM

drops quickly due to increased ESHUNT or ECTL.

The energy bene�t of the C-VRM depends on the assumption that the data transfer

loss EDTL is small. This assumption holds if the core swapping frequency fswap is small

compared to fclk−C , and Creg−C is small. To illustrate this point, we perform the same set

of experiments as in Fig. 2.8 but with Creg−C increased to 10% of Ccore. Figure 2.9 shows

the resulting Eop and η. Figure 2.9(a) shows that when EDTL is large, it is possible that

the Eop−C > Eop−SC . However, energy savings are preserved when Vdd is close to the ideal

output of 1
2
Vbat = 0.6 V or when Vdd is in far below V ∗dd,S−MEOP in sub-threshold. Figure

2.9(b) shows that when EDTL is large, ηC−V RM decreases dramatically when Vdd increases due

to the increased core swapping frequency. Therefore, to achieve maximum energy savings,

EDTL of the C-VRM needs to be kept to a minimum.

2.3 C-VRM Prototype IC Design

A prototype IC was designed in a 1.2 V, 130 nm CMOS process to compare the SC-VRM

system and the C-VRM. This section describes the prototype IC.

2.3.1 Chip Architecture

To enable a direct comparison between the SC-VRM system and the C-VRM, we �x the

charge transfer capacitor (Csc in Fig. 2.2(a) and C1 +C2 Fig. 2.4) to 250 pF and employ an

8-bit multiply-accumulator (MAC) as the core in both systems. The SC-VRM system and

the C-VRM are optimized to supply an Icore up to 1 mA at a nominal Vdd of 500 mV . To

reduce EDTL, a folded MAC architecture is adopted.

Figure 2.10 shows the top level chip architecture. The chip consists of a 2:1 SC-VRM

system, a 2:1 C-VRM and a test block. The 2:1 SC-VRM system consists of a ladder SC-

VRM delivering energy to a core. The core is a MAC with an 8 bit array multiplier and a
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(a) (b)

(c) (d)

Figure 2.8: Comparison of SC-VRM system and C-VRM with 1% data transfer overhead:
(a) energy vs. output Vdd of SC-VRM, (b) energy vs. Vdd of C-VRM, where EDTL and
ECL−C were lumped together as ELOSS, (c) Eop comparison of SC-VRM and C-VRM, and
(d) e�ciency comparison of SC-VRM and C-VRM.

(a) (b)

Figure 2.9: System comparison between SC-VRM system and C-VRM with 10% data
transfer overhead: (a) Eop comparison of SC-VRM and C-VRM, and (b) e�ciency
comparison of SC-VRM and C-VRM.
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Figure 2.10: The C-VRM prototype IC architecture.

ripple carry adder. It is con�gured as an 8-tap folded FIR �lter. The 2:1 C-VRM consists

of cores MAC_H and MAC_L, which are identical to the core in the 2:1 SC-VRM system.

A CPR oscillator with tunable delay is designed to continuously scale the core frequency

fclk−C with Vdd. The test block consists of a vector generator to feed input data to the cores

and level shifters to transfer output data for o�-chip processing.

2.3.2 SC-VRM Design

Figure 2.11 shows the detailed architecture of the 2:1 SC-VRM, which has a ladder topology

containing four power switches and one 250 pF on-chip MIM �ying capacitor Csc. Csc is

chosen to supply maximum Icore of 1 mA with maximum fsw of 10 MHz. The transistor M1

and M2 are chosen to be PMOS and NMOS, respectively, to remove the threshold voltage

drop. M3 and M4 are chosen to be NMOS because the regulated output Vdd is always

lower than 1
2
Vbat. The power switches are sized to balance shunt and series loss according to

[15, 75]. Figure 2.11 also shows the control loop of the SC-VRM. A hysteresis PFM control

[76] is realized via a strong ARM comparator and a current starved oscillator. The output
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Figure 2.11: The 2:1 ladder SC-VRM.

of the oscillator is passed through the driver circuitry and converted to non-overlapping

two-phase clock signals.

Figure 2.12 shows the circuit diagram of the strong ARM comparator and the current

starved oscillator. We adopt the dynamic comparator to avoid steady state current, which

degrades light load e�ciency. In the pre-charge phase, MP1-MP4 pre-charges the output

node and the drains of MN3 and MN4 to Vdd. In the evaluation phase, the drain of MN3

and MN4 are discharged at di�erent rates according to input Vip and Vin, respectively. If

Vip is higher than Vin, MN1 will turn on prior to MN2, and the positive feedback formed by

MN1, MN2, MP5 and MP6 will discharge Von and charge Vop back to Vdd. The pre-charge

transistors are kept to a minimum size to reduce the load capacitance. The input pair and

cross coupled inverter MN1, MN2, MP5 and MP6 are sized to trade o� speed and o�set. The

current starved oscillator contains mirror transistors MN1-MN3 and MP1-MP3. Transistors

MN4-MN6 and MP4-MP6 form a 3 stage ring oscillator. They are sized to minimize the

power consumption while providing su�cient driver speed.

Figure 2.13 shows the non-overlapping circuit with an embedded driver. The complemen-

tary clock signal is fed into a cross coupled NOR gate to add dead time, tp, between Φ1 and

Φ2. The tp is adjusted by changing the number of the bu�er chain stages. A superbu�er is

added at the end of the bu�er chain to drive the power switches.
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Figure 2.12: The strong ARM comparator and the current starved oscillator employed in
the 2:1 SC-VRM.

Figure 2.13: Non-overlapping driver employed in the 2:1 SC-VRM.
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2.3.3 C-VRM Design

Figure 2.14 shows the design of the C-VRM. The 2:1 C-VRM contains MAC_H and MAC_L

as the two compute cores, level shifters (LS) for data transfer, and a control block to switch

the compute cores from active to inactive modes.

Figure 2.14: The 2:1 C-VRM block diagram.

Figure 2.15(a) shows the circuit diagram of the control block. The shaded blocks operate

in the low voltage domain, while the unshaded blocks operate in the high voltage domain.

The control block consists of an RC delay based frequency detector, a latch and a pulse

generator for core swapping. Figure 2.15(b) shows the operation of the frequency detection

block. During the pre-charge phase, C2 is connected to Vmid; during the evaluation phase, C2

is discharged through the RC circuit formed by R2 and C2, with discharging time determined

by 1
2fclk

. If during this period, Va drops below the threshold, Vb will rise to Vmid and state

of the latch (ENl) will be set to 0, disabling MAC_L. The pulse generator is realized via

NOR ENl and a delayed version of the signal, so that during the 1-0 transition of ENl, a

pulse is generated. The pulse will force the state of latch in high voltage domain (ENh) to

be 1 through the pulldown transistor M1, thus enabling MAC_H by turning ENh to 1.

Figure 2.16 shows the level shifter used in the C-VRM. The level shifter will perform

bidirectional transfer of the data between MAC_H and MAC_L. The conventional level

shifter design shown in Fig. 2.16(a) is not suitable for two reasons: (1) two di�erent circuit

topologies are needed to perform high-to-low and low-to-high level conversion, respectively,
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and (2) there are direct paths current through MN1, MP1 or MN2, MP2 during shift. Both

of these will result in additional EDTL in (2.18). Therefore, we adopt a capacitor coupling

based dynamic level shifter in Fig. 2.16(b). Figure 2.16(b) also shows the operation during

high-to-low data transfer. In the pre-charge phase, the capacitor Cls is pre-charged to Vmid.

When MAC_H is disabled by changing ENh from 1 to 0, a one clock cycle pulse shift_hl

is inserted before ENl goes high. This will turn on the transmission gate and shift data_h

from MAC_H to MAC_L. After the shift operation, Cls is charged to Vmid before the next

operation. The dynamic level shifter achieves bidirectional shifting and removes the direct

path loss associated with the conventional design.

2.3.4 CPR Oscillator

The CPR oscillator we employed in this chapter is similar to the one used in [62], which is

an inverter chain based ring oscillator with tunable delay cells (See Fig. 2.17(a)). A chain

of inverters are used instead of a direct mapping of the core critical path components to

provide a near-50% duty cycle clock. The number of inverters is calculated based on a �rst-

order approximation using the Elmore delay formula for a resistor-capacitor network. In this

design, 68 inverters are used to replicate the critical path. To account for PVT variation, a

tuning circuit is added to adjust the delay margin provided by the CPR oscillator to ensure

the clock period is greater than the actual critical path. A digital control is chosen over

voltage control for simplicity and reliable bias in di�erent voltage domains. Figure 2.17(b)

shows the detail of the inverter delay cell. Each delay cell consists of a long path and a

shortpath, the selection of the paths is controlled by MUX. Each delay cell uses a single-bit

control to minimize the capacitive loading at the output of the delay cell. In the design, 4

delay cells are added to provide tuning range of 16 inverter delays.

Figure 2.18(a) shows the postlayout simulation of MAC unit critical path delay and the

CPR oscillator clock period in di�erent process corners. It can be seen that the CPR

oscillator is able to track the MAC unit critical path and ensure that the clock period is

larger than the MAC unit critical path delay across all process corners. Figure 2.18(b)

shows the CPR oscillator clock period with di�erent tuning settings. The 8 delay cells
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(a)

(b)

Figure 2.15: Control block of the C-VRM: (a) circuit schematic, and (b) principle of
operation.

(a) (b)

Figure 2.16: Bidirectional level shifter: (a) conventional design of low-to-high and
high-to-low level shifters, and (b) the proposed capacitor coupling based dynamic level
shifter.
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(a) (b)

Figure 2.17: Architecture of: (a) the CPR oscillator, and (b) the tunable delay cell.

(a) (b)

Figure 2.18: Post layout simulations showing: (a) the CPR oscillator clock period and
MAC critical path delay, and (b) the CPR oscillator clock period with di�erent delay cells
selected.

provide su�cient large tuning range to account for the delay variations.

2.4 Test Results

Figure 2.19 shows the operation of the SC-VRM during startup and steady state. During

steady state, PFM control is employed to scale the switching frequency fsw with Icore to

reduce the driver and bottom plate capacitance loss.

Figure 2.20 shows the operation of the C-VRM including core swapping and data transfer.

The startup circuitry for the C-VRM is implemented on the board. When the MAC core

voltage in one voltage domain decreases to 500 mV, core swapping is performed by employing
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Figure 2.19: Measured SC-VRM operation during start up and steady state.
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Figure 2.20: Measured C-VRM core swapping and data transfer.

the on-chip generated enable signal ENh and ENl for MAC_H and MAC_L, respectively.

During data transfer, when MAC_L is enabled by ENl, a one cycle switching signal sw_h2l

is generated to shift data from the high voltage to the low voltage domain.

Figure 2.21 compares the measured Eop and the e�ciency of the fabricated 2:1 SC-VRM

system and the 2:1 C-VRM. The simulated results according to the energy model in Section

2.2 are also shown as dashed lines to demonstrate the accuracy of the model in Section 2.2.

The e�ciency vs. Vdd is obtained by changing the reference voltage for the SC-VRM, and

by changing the RC time constant of the frequency detector in the C-VRM controller. To
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perform e�ciency measurements for the C-VRM, the compute core in the C-VRM, and the

controller and level shifter of the C-VRM are provided separate supply pins, which allows

the loss (control loss and data transfer loss) current Iloss and the core current Io to be

measured. The e�ciency is then calculated using η = Io/(Io + Iloss). As shown in Fig.

2.21(a), the C-VRM has lower Eop across all measured Vdd from 0.52 V to 0.59 V. Since

C-VRM has a continuously varying voltage, the Vdd is the e�ective output voltage delivering

the same throughput (11 MHz-to-20 MHz) as the SC-VRM system. Vdd of C-VRM cannot

extend below 0.52 V due to the limitations of the capacitively coupled level shifter. The

SC-VRM system has high system energy overhead both in high Vdd, due to increased driver

loss EGDL, and in low Vdd, due to control loss ECL and low fclk−C . This is also indicated

by the system level simulations in Fig. 2.8(a). The absence of the driver circuits and the

use of a low power frequency detection scheme enables the C-VRM to achieve a maximum

of 44.8% energy savings compared to the SC-VRM system. Figure 2.21(b) shows that the

C-VRM achieves e�ciency > 79% across the entire tested Vdd range. As a comparison, the

SC-VRM has a peak e�ciency of only 54% due to ESHUNT and ECTL. Figure 2.21(b) also

plots the e�ciency of previously published SC-VRM designs operating at power levels of

1µW-100s of µW range from [67, 13, 77].

Table 2.1 shows the design speci�cations and performance of C-VRM compared with

previously published works. The system energy per instruction/K-gate is calculated by

dividing the system EPI by the estimated number of gates for [66] and [67]. For [12] and

[13], since no compute cores are included on-chip, the system energy per instruction/K-gate

is estimated using the core EPI and gate count of our design and the e�ciency reported

in [12] and [13]. The comparison in Fig. 2.21(b) and in Table 2.1 shows that the C-VRM

achieves the highest e�ciency (83%) in the designed power level and the lowest EPI/k-gate

of 0.79 pJ.

Figure 2.22 shows the die photo of the test chip, which is fabricated in a 1.2 V, 130 nm

CMOS process and has an area of 2 mm × 2 mm. Note that the SC-VRM requires 2 nF

o�-chip decoupling capacitor. This capacitor, if integrated on-chip, will present 0.49 mm2

additional area.
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(a) (b)

Figure 2.21: The C-VRM test chip measurement results: (a) Eop comparison, and (b)
e�ciency comparison.

Figure 2.22: Die photo of the test chip.
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Table 2.1: Comparison with Previously Published Work

[67] [12] [13] [66] C-VRM

Technology 65 nm 45 nm 130 nm 180 nm 130 nm

Conversion

Ratio

1/3, 1/2,

2/3, 3/4, 1

2/3 1/5 1/6 1/2

VRM

Topology

SC-VRM SC-VRM SC-

VRM+LDO

SC-

VRM+LDO

Compute

VRM

Input

Voltage

1.2 V 1.8 V 3.6 V 3.6 V 1.2 V

Output

power

/current

level

1− 500µW 100µA-

9 mA

2.5 nW-

254 nW

550 pW-

7.7µW

1− 60µA

Csc 600 pF 534 pF 800 pF NA 250 pF

Cout NA 700 pF NA NA 0

Maximum

driver

switching

freq.

15 MHz 30 MHz 2 KHz 1.2 MHz No driver

E�ciency 75%

@Vdd=0.5 V

Io=

100µA

55%

@Vdd =

0.9 V

Io=

200µA

56%

@Vdd =

0.44 V

Io= 300 nA

41.6%

@Vdd=

0.4 V

83%

@Vdd =

0.5 V-

0.7 V

Io=

40µA

Eop/k-gate 1.09 pJ 1.19 pJ1 1.17 pJ1 0.88 pJ 0.79 pJ

1System energy per instruction is calculated based on core power of the �lter core in this work and the
reported e�ciency

46



2.5 Conclusions

In this chapter, we propose the C-VRM, a uni�ed architecture for energy delivery and

computation, to overcome the intrinsic loss and drive circuit overhead of the conventional

SC-VRM. The C-VRM employs multiple voltage domain stacking, core swapping, and CVFS

to achieve high energy e�ciency in the sub/near-threshold region. This work shows that by

combining the compute core and the energy delivery block, the system energy e�ciency

can be signi�cantly improved. It opens the possibilities of embedding more sophisticated

computational blocks into SC-VRM and other switching power delivery blocks. Further

study can be explored to develop C-VRM architectures based on multi-ratio SC-VRM or

multi-phase SC-VRM.
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Chapter 3

COMPUTE SENSOR

In the previous chapter, the energy delivery e�ciency is improved by embedding information

processing into the VRM. In this chapter, we explore a similar approach which embeds infor-

mation processing into the sensing circuits to drastically alleviate the communication chal-

lenge between the sensing and information processing subsystems. Speci�cally, we present

an in-sensor computing architecture which (mostly) eliminates the sensor-processor interface

and thus resolves the communication challenge by embedding inference computations in the

noisy sensor fabric in analog, and retraining the hyperparameters in order to compensate

for non-ideal computations. The resulting architecture, referred to as the Compute Sen-

sor - a sensor that computes in addition to sensing - represents a radical departure from

the conventional architecture. We show that a Compute Sensor for image data can be

designed by embedding both feature extraction and classi�cation functions in the analog

domain in close proximity to the CMOS active pixel sensor (APS) array. Signi�cant gains

in energy-e�ciency are demonstrated using behavioral and energy models in a commercial

semiconductor process technology. In the process, the Compute Sensor creates a unique

opportunity to develop machine learning algorithms for information extraction from data on

a noisy underlying computational fabric.

Figure 3.1(a) shows a conventional architecture of an embedded vision system. Image

data is �rst acquired via an Mr row × Mc column active pixel sensor (APS) array whose

analog pixel values are sensed sequentially in a row-wise fashion, and then converted into

digital samples by the sample-and-hold (S/H) and the analog-to-digital converter (ADC),

and then streamed out by the read-out (RD) circuitry to a back-end digital processor which

implements feature extraction and classi�cation function to obtain the �nal decision ŷ. A

digital trainer block computes the hyperparameters in supervised learning mode. This phys-
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ical separation between sensing and processing subsystems is unavoidable because sensing is

intrinsically an analog process while information processing is intrinsically digital. Exclud-

ing the energy delivery loss, the energy dissipation in such a system is dominated by two

sources:

� The energy required to move the data over the sensor-processor interface comprising

the ADC, RD and the interconnect to the digital processor, i.e., communication energy,

and

� The energy consumed in processing the data using digital circuits which by nature are

high signal-to-noise ratio (SNR), i.e., computational energy.

We employed energy data from [6] for a CMOS image sensor consisting of a 32 × 32 APS

array and the associated interface circuits, and estimated the computational energy needed to

implement a principal component analysis (PCA) [78] engine and a support vector machine

(SVM) [79] in a 65 nm CMOS process operating at a throughput of 32 frames/s. This analysis

indicates that the communication and computational energies are approximately 53% and

41%, respectively, for a combined total of 94%. An impactful solution to the energy problem

needs to reduce both components of energy - communication and computational energy.

In this chapter, we propose the Compute Sensor shown in Figure 3.1(b) - a sensory system

that senses and processes the sensed data thereby integrating both data acquisition and

information extraction functionalities. The Compute Sensor architecture consists of a data

processing engine and a training engine. The data processing engine is a cascade of: (1) the

APS array which is identical to the conventional architecture, (2) a bit-line processor (BLP)

whose physical dimensions are matched to that of the APS array in order to perform pixel-

wise operation such as sample-and-hold (S/H), scaling, and absolute di�erence but no ADC,

(3) a cross bit-line processor (CBP) to perform data dimensionality reduction operations

such as dot product, �ltering, sum-of-absolute di�erence (SAD), mean square, followed by

an ADC that operates on the reduced dimensionality data and feeds it into (4) the residual

digital processor (RDP) which implements very simple digital computations needed to obtain

the �nal decision ŷ. Unlike the conventional architecture, both the BLP and CBP in the

Compute Sensor operate in the analog domain. The trainer is digital.
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Figure 3.1: A typical embedded vision platform: (a) conventional architecture, and (b) the
proposed Compute Sensor architecture.

The Compute Sensor eliminates both the traditional sensor-processor interface, and the

high-SNR/high-energy digital processing by moving feature extraction and classi�cation

functions into the analog domain in close proximity to the APS array. The Compute Sen-

sor leverages the intrinsic ability of machine learning algorithms to extract information from

noisy and often incomplete data to provide robust inference in presence of non-ideal computa-

tions. We demonstrate a Compute Sensor that incorporates a PCA-based feature extractor

and a support vector machine (SVM). Using circuit characterized behavioral and energy

models in a 65 nm CMOS process, we show that the Compute Sensor is able to achieve a

detection accuracy greater than 94.7% using the Caltech101 dataset [80], which is within

0.5% of that achieved by an ideal digital implementation. Furthermore, the Compute Sensor

is able to compensate for variations in the electrical parameters of the transistors in the APS

array caused by �nite tolerances of the semiconductor manufacturing process by retraining

in presence of these non-idealities. As a result the Compute Sensor consumes 7× to 17×

less energy than the conventional architecture for the same level of accuracy. Thus, this pa-

per highlights the potential for conducting algorithmic research that accounts for platform

resource-constraints such as energy, storage, and computation.
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The rest of the chapter is organized as follows. Section 3.1 presents the necessary back-

ground and establishes notation. Section 3.2 presents the Compute Sensor architecture

incorporating PCA and SVM algorithms, and the behavioral and energy models in a 65 nm

CMOS processes. Simulation results are shown in Section 3.3, and discussions are provided

in Section 3.4.

3.1 Background

3.1.1 Active Pixel Sensor

Solid state imaging devices can be classi�ed into two categories, i.e., charge coupled device

(CCD) sensor and CMOS sensor. The CMOS image sensor has gained much popularity due

to its low voltage, low power operation, and compatibility with standard CMOS technologies

[81]. APS is by far the most widely employed CMOS image sensor architecture due to the

speed advantage and low noise. The architecture of the 3-transistor (3T) APS and associated

read-out (RD) circuit is shown in Fig.3.2(a) where each APS consists of a photodiode (PD)

as the optical detector and three transistors for readout. A rolling shutter operation where

the pixel array is exposed row by row is typically employed for the 3T-APS array, and the

timing diagram is shown in Fig. 3.2(b). During the reset phase, MRST is on and the charge

integrated on the photodiode is removed. During the integration phase, MRST is o� and the

photodiode converts light into current, discharging the parasitic capacitor CPD. During the

readout phase, MSEL is on, and the signal voltage VSIG is sampled to sampler S-SIG.

3.1.2 Principle Component Analysis (PCA)

PCA is a widely used method for dimensionality reduction. This reduction is accomplished

by projecting the data vector xn ∈ RM (n = 1, ..., N , is the sample index and N is the

total number of samples in the dataset) onto a set of orthonormal principal components

αk ∈ RM , k = [1, ..., K]. These principal components are the top K variance maximizing

eigenvectors of the sample covariance matrix
∑N

n=1 xnx
T
n [78]. Hence, the reduced dimension
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Figure 3.2: 3T APS: (a) pixel architecture and associated RD circuit, and (b) timing
diagram in rolling shutter operation.

(feature) vectors f ∈ RK are obtained as:

f = Ax (3.1)

where A = [α1, ...,αK ]T ∈ RK×M is the eigenmatrix, and x ∈ RM is the test data vector.

In the CMOS image sensor shown in Figure 3.1(a), x is obtained from the APS array and

M = MrMc, whereMr andMc are the number of rows and number of columns, respectively,

in the APS array.

3.1.3 Support Vector Machine (SVM)

The SVM [79] is a popular supervised learning method for classi�cation and regression. In

SVM, the trained model is represented by:

yo = wT
s f − b (3.2)

where ws ∈ RK is the optimum weight vector, and f ∈ RK is the test feature vector. It can

be shown that the optimum weight vector ws can be described in terms of feature vectors

that lie on the margins, i.e., support vectors:

ws =
Ns∑
n=1

βnynfs,n (3.3)
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where yn, Ns and fs,n are the label, the number of support vectors, and the nth support

vector, respectively. The SVM's classi�cation accuracy is denoted by pc = Pr{ŷ = y},

where ŷ = sgn(yo) is the computed label and y is the true label.

3.2 The Compute Sensor

This section presents the proposed Compute Sensor architecture for implementing the PCA

and SVM, along with architectural level functional and energy models in a 65 nm CMOS

process. These models are employed to study the e�ectiveness of retraining on compensating

for analog non-idealities, and for estimating the energy consumption.

3.2.1 Architecture

Figure 3.3: Compute Sensor implementing PCA and SVM: (a) the architecture, and (b)
the behavioral model.

The general Compute Sensor architecture in Figure 3.1(b) enforces a speci�c sequence

of functions - acquire data in the APS array of size M = MrMc, bit-line processing, cross
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bit-line processing, followed by residual digital processing. Bit-line processing involves scalar

operations while the cross bit-line processing results in dimensionality reduction. For exam-

ple, bit-line operations could be the product of scalar data values and scalar weights, while

cross bit-line processing would sum up these scalar products to generate a dot product. In

the following, we remember that M = McMr. Keeping these architectural constraints in

mind, we exploit the linearity of the PCA and SVM computations in (3.1) and (6.7) to

combine them as follows:

yo = wT
sAx− b = wTx− b (3.4)

where wT = wT
sA =

[
wT

1 , . . . ,w
T
Mr

]
∈ R1×M , wi ∈ RMc , and x ∈ RM , where xT =[

xT1 , . . . ,x
T
Mr

]
and xi ∈ RMc . The composite weight vector w can be obtained directly via

SVM training methods. The data acquisition in the APS array occurs sequentially in a

row-by-row fashion. In order to accommodate this constraint, we rewrite (3.4) as follows:

yo =
[
wT

1 , . . . ,w
T
Mr

]
x1

...

xMr

− b =
Mr∑
i=1

wT
i xi − b (3.5)

This simple step enables us to implement multiplication operations involved in computing

the dot product wT
i xi (3.5) in the BLP consisting of an array of Mc capacitive multipliers,

and the addition of these products in a charge sharing-based adder in the CBP. The Compute

Sensor's classi�cation accuracy pc = Pr{ŷ = y} is calculated in the same manner as that in

the conventional system.

3.2.2 Behavioral and Energy Models

Behavioral models describe the input-output relationship of the various blocks constituting

the Compute Sensor while accounting for circuit non-idealities. These models can be em-

ployed in system simulations to estimate the performance of algorithms implemented on the

Compute Sensor. In this chapter, the noise sources included in the behavior model are: (1)

spatial threshold mismatch in the APS array, (2) temporal noise in the APS array, and (3)
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non-linearities in the BLP. Figure 3.3(b) shows that the �rst two stages of the Compute

Sensor - the APS array and the S/H blocks - map light energy incident on the ith row of

pixels to xi as follows:

xi = xmax1− γIi + ηs,i + ηa,i (3.6)

where xi ∈ RMc is a discrete-time continuous-amplitude voltage representation of the lu-

minous exposure Ii incident on the ith row of pixels, xmax is the maximum output, 1 is a

column vector with all ones, γ is the conversion gain, ηs,i ∈ RMc is a vector of samples

from N (0, σ2
s) representing the impact of spatial mismatch in device parameters across the

APS array, and ηa,i ∈ RMc is a vector of samples from ∼ N (0, σ2
n) representing the thermal

noise in the APS array. To derive this model, we note that during the APS operation, the

exposed PD voltage is �rst sampled on the sampler in S&H block in Fig. 3.3(a) by selecting

the associated word line (WL). When the ith row is selected, the voltage on the jth sampler

VSIG can be expressed as:

VSIG,j = VPDrst − Vgs0 − [
κ1

CPD
− κ2(Vgs0 − Vgs1)]Ii,j + ∆Vth,j + Vn,j (3.7)

where VPDrst is the voltage of the PD after reset, Vgs0 and Vgs1 are the gate to source voltage

of MSF (see Fig. 3.2(a)) in dark and highest illumination condition, CPD is the parasitic

capacitance at the PD node, ∆Vth,j is the threshold mismatch, Vn,j is the output referred

RD noise, and κ1 and κ2 are �tting parameters. The model in (3.6) can be derived by noting

that:

xmax = VPDrst − Vgs0 (3.8)

γ = [
κ1

CPD
− κ2(Vgs0 − Vgs1)] (3.9)

(3.10)

and the threshold mismatch ∆Vth,j and noise Vn,j are modeled as normally distributed ran-

dom variables with variances σ2
s and σ

2
n, respectively.

The BLP scales each pixel value by the weight wi,j using a mixed-signal capacitive multi-
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plier [82] as follows:

ym,i = ρ0(xmax1− xi) ∗wi + ρ1xi + ρ2wi + ηm,i (3.11)

where ∗ represents the element-wise product of two vectors, ρ0~ρ2 captures the non-linearity

due to charge sharing based computation, and ηm,i is a vector of samples from N (0, σm)

representing the impact of reset mismatches. To derive this model, we �rst show the oper-

ation principle of the capacitive multiplier. In the Compute Sensor, the scaling operation

between input ∆VSIG,i,j = VPDrst − Vgs0 − VSIG,i,j and weight wi,j is realized in the bit-

line processor employing a mixed-signal capacitive multiplier as shown in Fig. 3.4(a). We

next drop the index (i, j) and denote the analog voltage and Bp-b digital weight as ∆VSIG

and w =
∑Bp−1

i=0 pi2
−(Bp−i), respectively, for notational simplicity. The capacitive multiplier

employs successive charge sharing to obtain a voltage Vm of:

Vm = Vpre − w(Vpre − (VPDrst − Vgs0)−∆VSIG) (3.12)

By choosing Vpre = VPDrst − Vgs0, the voltage drop ∆Vm is thus:

∆Vm = Vpre − Vm = w∆VSIG (3.13)

To account for the nonlinearity due to charge sharing based operation and the mismatch in

the reset transistors, the following model is employed:

∆Vm = ρ0∆VSIGw + ρ1VSIG + ρ2w + ηm (3.14)

The behavior in (3.11) can be obtained by noting that ym = ∆Vm and ∆VSIG = VPDrst −

Vgs0 − VSIG = xmax − x.

After the BLP, the CBP uses charge sharing-based circuits to sum up the elements of ym,i

and obtain the dot product wT
i xi:

ys,i = 1Tym,i (3.15)
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Figure 3.4: Capacitive multiplier (a) architecture and (b) timing diagram.

The residual digital processor maintains a running sum of the row-wise dot products in order

to compute the output yo =
∑

i ys,i − b in (3.5) followed by ŷ = sign(yo) as the computed

label. Equations (3.6)-(3.15) describes the behavior of the Compute Sensor. Table 3.1 lists

the model parameters values in a 65nm CMOS process. These equations can be employed

to estimate the system behavior of the Compute Sensor.

The Compute Sensor's energy consumption per decision, i.e., in processing one Mr ×Mc

image, is given by:

ECS = MrMc(Ep + Em) +Mr(2Eadc + 2Eadd) + Eadd (3.16)

where Ep, Em, Eadc, and Eadd are the energy consumptions of the pixel, capacitive multiplier,

the ADC, and a digital adder, respectively.

The conventional system needs to convert all pixel values into the digital domain then

process digitally. The energy consumption per decision is given by:

Econv = McMr(Ep + Eadc + Erd) +McMrEmac (3.17)
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where Erd and Emac are the energy per readout and multiply-accumulate (MAC) operation,

respectively. The behavioral and energy model will be employed in Section 3.3 to evaluate

the system performance and energy savings. The energy savings from Compute Sensor are

evident from (3.16) and (3.17). The key savings arise from having the ADC operate on row-

wise dot products giving rise to the multiplicative factor of 2Mr as compared to the factor

ofMcMr (Mc >> 2) for the conventional system. The second source of energy savings arises

from the analog domain multiplication in the Compute Sensor compared to digital domain

because Emac ≈ 3Em or 4Em.

3.3 Simulation Results

We �rst validate the behavioral and energy models described in Section 3.2 using the pa-

rameters of a 65 nm CMOS process. The system performance and energy savings achieved

by Compute Sensor are estimated using these models. In the following, the conventional

system is assumed to be operating with noise-free data and ideal digital computations.

The Compute Sensor architecture in this study consists of a 32×32 APS array, a capacitive

multiplier array with 5b weight, a 8 b column ADC array, and 16 b addition in the digital

domain. The conventional digital implementation has an identical APS array and ADC, but

employs a digital MAC with 8 b input, 5 b weight, and 32 b output. These precisions are the

minimum needed for the conventional architecture to achieve a classi�cation accuracy pc =

95%. The face and non-face images extracted from the Caltech101 dataset [80] consisting

of 32× 32 gray-scale images are employed. During the system simulation, a linear mapping

from the pixel values to the luminous exposure Ii is employed and used in (3.6).

3.3.1 Model Validation

Table 3.1 lists the parameter values for the behavioral model in (3.6) obtained by curve

�tting to the results of circuit simulations of a standard 3-transistor APS. The model is

found to match detailed circuit simulations to within 5.2% when the pixel output xi,j lies in

the interval [0.2, 0.9] as shown in Fig. 3.5(a). The standard deviation of spatial mismatch σs
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was found to lie in the interval [1.62× 10−2, 2× 10−2] using Monte Carlo circuit simulations

and is shown in Fig. 3.5(b). The standard deviation of output referred noise σn was found

to lie in the interval [7 × 10−4, 7.5 × 10−4]. The model parameters in (3.11) were obtained

using the methodology in [82] and are also listed in Table 3.1.

Table 3.1: Model Parameters in 65 nm CMOS

xmax(V ) γ(V/(lx · s)) σs(V ) σn(V )
0.9 4.39× 10−5 2× 10−2 7.5× 10−4

ρ0 ρ1 ρ2(V ) σm(V )
0.93 1.2× 10−2 6.68× 10−4 1.6× 10−2

Figure 3.5: Model characterization and validation: (a) linearity, and (b) standard deviation
of mismatch and noise.

3.3.2 Classi�cation Accuracy

The classi�cation accuracy of Compute Sensor is evaluated employing the models in Sec-

tion 3.3.1 with parameters from Table 3.1.

Figure 3.6(a) shows that the Compute Sensor is able to achieve a classi�cation accuracy

pc = 94.7% at the nominal values of spatial mismatch σs = 2 × 10−2, multiplier mismatch

σm = 2 × 10−2, and noise σn = 7.5 × 10−4. This accuracy is very close to the value of

95% achieved by the ideal digital implementation. In fact, the Compute Sensor is able to
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Figure 3.6: Classi�cation accuracy of the Compute Sensor wrt.: (a) APS spatial mismatch,
(b) capacitive multiplier mismatch, and (c) input peak signal-to-noise ratio (PSNR).

maintain pc ≥ 94% when σs is increased to 0.1, which is 5× more than the nominal value,

using the hyperparameters obtained with the nominal value of σs. Any further increases in

σs lead to a large reduction in pc. For example, pc decreases to 87% when σs increases to

0.5. Next, we retrain the Compute Sensor with data generated in the presence of spatial

mismatch. Figure 3.6(a) shows that the Compute Sensor achieves a pc = 92% when σs = 0.5

after retraining. This clearly indicates the e�ectiveness of retraining in order to compensate

for spatial mismatch in the APS array. Retraining can also be employed to address the com-

putational errors due to capacitive multiplier mismatch ηm. A similar study was conducted

to observe the impact of multiplier mismatch σm as shown in Figure 3.6(b) where σs and

σn were set at their nominal values. This �gure shows that the Compute Sensor achieves

pc = 90% in the presence of σm = 0.5 with retraining which is a signi�cant improvement

over case when retraining was not employed.

Classi�cation accuracy is a function of the input peak signal-to-noise ratio PSNR de�ned

as PSNR = 20 log10
xmax
σn

. A PSNR = 61 dB is obtained with the nominal values of

xmax = 0.9, σs, σn. At this value of PSNR, a classi�cation accuracy of 94.7% is achieved.

Figure 3.6(c) shows that the Compute Sensor's classi�cation accuracy decreases to 78% as

the PSNR reduces to 0 dB.

To further understand the performance of Compute Sensor, PCA is performed on the

feature vectors obtained from the behavior model in Section 3.2.2. Figure 3.7(a) shows the

distribution of the feature vectors when circuit non-idealities are absent. In this case, the

SVM chooses a hyperplane that successfully separates the two classes. However, in the
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presence of spatial and multiplier mismatch (σs = σm = 0.3), the feature vectors shift as

shown in Figure 3.7(b). The classi�cation accuracy falls if the original hyperplane is used.

However, retraining with the new set of feature vectors enables the Compute Sensor to

obtain a new separating hyperplane with a commensurate improvement in the classi�cation

accuracy as shown in Figure 3.7(c). These results indicate that the Compute Sensor may

need to adapt to changing environmental conditions such as temperature in order to ensure

that the optimal separating hyperplane is generated and employed for classi�cation.

Figure 3.7: The feature distribution and SVM separation hyper-plane when: (a)
σs = σm = 0 without retraining, (b) σs = σm = 0.3 without retraining, and (c)
σs = σm = 0.3 with retraining.

3.3.3 Energy Savings

In order to compare the energy consumption of the Compute Sensor with the conventional

architecture, we employ the energy numbers in Table 3.2 which are based on circuit simula-

tion and published energy numbers from [6, 83].

Table 3.2: Energy per Pixel Processing in 65 nm CMOS

Ep(pJ) Eadc(pJ) Erd(pJ) Em(pJ) Emac(pJ) Eadd(pJ)
2.69 20.5 5 0.77 3.2 0.1

Figure 3.8(a) shows that the proposed Compute Sensor consumes 6.2× less energy com-

pared with conventional implementation. The main source of energy savings is due to the

elimination of the per bit-line ADC and RD energy and from the use of analog dot product
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computations in the Compute Sensor. For example, the 1024-length dot product in analog

consumes 0.79 nJ, which is 4.1× less than the 3.28 nJ needed by the digital implementation.

We also studied the energy savings as a function of the array size as shown in Figure 3.8(b).

Indeed, the energy savings increases from 6.2× to 11× as the APS array size increases from

32 × 32 to 512 × 512. This is because the Compute Sensor performs ADC operations row-

wise on dot products, as compared to the conventional architecture which performs ADC

operation pixel-wise on scalars.

Another opportunity to reduce energy consumption is to reduce the APS current. How-

ever, doing so will degrade the input PSNR. Speci�cally, one of the fundamental noise

sources in APS is the thermal noise, whose noise power is described by:

σ2
n = kT/C (3.18)

where k is the Boltzmann's constant, T is the temperature, and C is the sampling capaci-

tance. The bandwidth of the APS can be approximated by:

B =
gm
C

=
Iaps
VovC

(3.19)

where Iaps is the current consumption of the APS array, Vov is the overdrive voltage and

is a �xed parameter chosen during the design. A fundamental trade-o� between noise and

bandwidth (thus speed) can be seen from (3.18) and (3.19). For �xed bandwidth, reducing

C will allow smaller Iaps thus lower energy, but will increase the noise variance σ
2
n per (3.18).

More speci�cally, the PSNR is related to the current Iaps via:

PSNR = 20log10(xmax/σn) ∝ 10log10(Iaps) (3.20)

and the energy of the APS is related with Iaps via:

Epix = VddIapsTpix (3.21)

where Vdd and Tpix is the supply voltage and the pixel access time, respectively. The degraded
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PSNR may be acceptable if retraining is employed as suggested in Figure 3.6(c). This �gure

shows that the Compute Sensor is able to achieve less than 1% performance drop from the

ideal digital performance of pc = 95% for PSNR ≥ 20 dB. This relaxed PSNR requirement

allows the APS array current to be reduced for additional energy savings. Figure 3.8(c)

shows that the energy savings increases to 17× as the PSNR decreases from the 61 dB to

20 dB.

Figure 3.8: Energy per decision: (a) energy breakdown, (b) energy savings vs. APS size,
and (c) energy savings vs. PSNR.

3.4 Discussion

We have shown the bene�ts of embedding information processing functionality into the sen-

sory substrates. We note that such embeddings are made possible due to the intrinsic ability

of machine learning algorithms to adapt to noise. Behavioral models such as those in Sec-

tion 3.2.2 can be employed to develop a variety of machine learning algorithms for Compute
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Sensor style architectures. We believe that more powerful machine learning algorithms in-

cluding deep neural networks, ensemble methods such as bagging and boosting, decision

trees, and random forest, can also potentially be embedded into the Compute Sensor. The

huge design space spanned by the Compute Sensor encompassing algorithms, architectures,

circuits, and sensors, can be a challenge when searching for energy-optimal implementations.

Another formidable challenge that we hope to address in the future is to design programmable

Compute Sensor architectures whereby a variety of algorithms can be mapped on to the same

platform. Silicon prototypes are necessary to demonstrate the bene�ts of Compute Sensor in

real world applications. An initial characterization chip (see Fig. 3.9) containing 8 di�erent

types of CMOS APS arrays in 65 nm CMOS has been taped-out. The chip allows �exible

control of the APS supply voltage, bias current, readout timing and pulse widths. It will be

employed to characterize the APS model as well as the trade-o� between performance and

energy consumption, and for future integration with various learning kernels.

Figure 3.9: Compute Sensor characterization chip in 65 nm CMOS: (a) chip architecture,
and (b) chip layout.
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Chapter 4

EMBEDDED ALGORITHMIC-NOISE TOLERANCE

In previous chapters, the energy e�ciency of in-silicon machine learning kernels is improved

by integrating information processing into the energy delivery and sensing fabrics thereby

eliminating the fundamental losses associated with the conventional architectures or the

communication overhead between sensing and computing. The resultant energy e�ciency

vs. robustness trade-o� that is exploited by retraining the hyper parameters in the ma-

chine learning algorithms to compensate for the circuit level non-idealities. Such an energy

e�ciency vs. robustness trade-o� also arises by implementing information processing subsys-

tems on stochastic fabrics, i.e., low SNR fabrics due to operating in di�erent regime or new

devices. Examples of stochastic fabrics include CMOS circuits operating with overscaled sup-

ply voltage, near/subthreshold voltage (NTV) CMOS [84] and emerging nanoscale devices

such as CNFET [85], spin [86], and others. As pointed out in Charpter 1, these stochastic

fabrics have the potential to achieve high energy e�ciency, but are subject to various kinds

of hardware errors.

Hardware errors in stochastic fabrics have unique properties and should be distinguished

from the input noise and approximation errors such as those in approximate computing

(AC) literature [87, 88, 89]. Input noise in the feature vectors occurs during the data

acquisition process. Although it has been shown that many machine learning algorithms

are robust to noise [90, 91], and that adding noise during the training might even improve

the performance [92, 93], it is always assumed that the noise power is much smaller than

the signal power [92], and that the computation is error-free. Approximation errors occur

when complex operations/circuits are replaced with simpler approximated ones and thus are

static errors. Both logic level AC [87, 88, 89], and algorithmic level AC [94, 95] have been

proposed to improve the energy e�ciency of machine learning algorithms. However, the
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(a) (b)

Figure 4.1: The error probability mass function of: (a) the approxiamtion errors in an
approximate multiplier in [96], and (b) the hardware errors (timing errors) of an 8b
mutliplier operating with scaled voltage of Vdd = 0.7 V. Unlike the approximation errors,
the hardware errors are both dynamic and large-magnitude.

performance improvement relies solely on the inherent algorithmic robustness, thus limiting

the approximation errors to be of small magnitude. Furthermore, the computation at the

circuit level is also assumed to be error-free. In contrast, hardware errors occur during

the computations on the circuit fabrics. These errors are complex functions of the circuit

state, inputs, architecture, and the process technology, and can be both dynamic and large-

magnitude (see Fig. 4.1). This is particularly the case if the errors are timing errors in

DSP data path circuits [53], since these errors are most signi�cant bit (MSB) errors and

can directly lead to decision failures [53]. As a result, hardware errors are usually far more

detrimental to the system performance compared with the input noise and approximation

errors, and cannot be compensated for via the inherent robustness of machine learning

algorithms. Therefore, statistical error compensation techniques are needed to detect and

compensate for these errors.

Starting from this chapter, we will explore the use of error resiliency techniques to com-

pensate for the hardware errors on the stochastic fabrics, so that large energy savings can

be achieved without loss of system level performance. Error resiliency techniques have been

proposed [53] to enhance energy e�ciency by reducing design margins and compensating for

the resultant errors. Large design margins arise from the need to provide robustness in the
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presence of process, voltage, and temperature variations [97], and represent an energy over-

head as high as 3×-to-4× [98]. The key to the use of error resiliency for energy reduction is

that such techniques need to be low overhead and yet e�ective in compensating for high error

rates. Classical fault-tolerance techniques such as N-modular redundancy (NMR) rely on

replication of the main computation block and as a result are ine�ective for the purposes of

energy reduction. Hence, low overhead error resiliency techniques such as RAZOR [99, 100],

error-detection sequential (EDS) [101], and con�dence driven computing (CDC) [102] have

been proposed to enhance energy e�ciency. These techniques employ rollback based error

correction, and are suitable when operating close to point of �rst failure (PoFF). Unlike

the rollback based techniques, statistical error compensation (SEC) [53] is a class of system

level error compensation techniques that utilizes signal and error statistics and hence is par-

ticularly well-suited for signal processing and machine learning systems. These techniques

include algorithmic noise tolerance (ANT), soft NMR, and stochastic sensor network on a

chip (SSNOC) [53], and have been shown to compensate for error rates ranging from 0.21

to 0.89, with a combined error detection and correction overhead ranging from 5% to 30%

resulting in energy savings ranging from 35% to 72%.

ANT [53] is a speci�c SEC technique that has been shown to be e�ective in compensating

for high error rates in signal processing and machine learning kernels. For example, the

reduced precision replica (RPR) ANT technique and prediction based ANT was employed to

compensate for error rates of 0.27 ∼ 0.58 in an ECG processor [103, 104] while delivering the

required application-level performance. The overhead in ANT ranges from 5% to 30% [103]

due to the use of explicit estimator blocks in error compensation. This overhead, though

small compared to other techniques, limits the achievable systems level energy e�ciency to

28% ∼ 41%.

In this chapter, we propose embedded algorithmic-noise tolerance (E-ANT), a new class

of statistical error compensation (SEC) techniques aiming to reduce the error compensation

complexity associated with conventional SEC techniques. E-ANT operates by reusing part

of the main block as an estimator and thus embedding it into the main block. At the archi-

tectural level, we propose ARCH-ANT, which employs data path decomposition (DPD) to

embed the RPR estimator into the main block. At the algorithmic level, we propose ALG-
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ANT, which employs additional optimization constraints during algorithm to architecture

mapping to design incremental re�nement architectures. The logic overhead of E-ANT is

reduced to below 8% from the 20%-44.1% [57, 65] overhead associated with conventional

ANT system. To evaluate the improved robustness and energy savings of the proposed tech-

nique, ARCH-ANT and ALG-ANT are applied to the design of an EEG seizure classi�cation

system consisting of a frequency selective �lter bank as the feature extractor and a support

vector machine (SVM) as the classi�er. Simulation results in a commercial 45 nm CMOS

process show that ARCH-ANT can compensate for error rates up to 0.38, and ALG-ANT

can compensate for error rates up to 0.41, while maintaining a true positive rate ptp > 0.9

and a false positive rate pfp ≤ 0.01. This error tolerance is employed to reduce energy via

the use of voltage overscaling (VOS). ARCH-ANT and ALG-ANT are able to achieve up to

51% and 44% energy savings, respectively.

The rest of the chapter is organized as follows. Section 4.1 describes the background of the

ANT technique and the SVM EEG classi�cation system architecture. Section 4.2 presents

the principle of ARCH-ANT and ALG-ANT. Section 4.3 presents the design optimization

of ARCH-ANT and ALG-ANT compute kernels and their application to the SVM EEG

classi�cation system. Conclusions are presented in Section 4.4.

4.1 Background

4.1.1 Conventional ANT

Conventional ANT incorporates a main block (M) and an estimator (E) as shown Fig. 4.2(a).

TheM-block implements the algorithm of interest and is conventionally error-free. In ANT,

the M-block is permitted to make errors, which are then compensated for by the rest of

the blocks in Fig. 4.2(a) including the E-block. In RPR ANT, the E-block is obtained by

reducing the precision of the M-block. The M-block is subject to large magnitude errors η

(e.g., timing errors due to critical path violations which typically occur in the MSBs) while

the E-block is subject to small magnitude errors e (see Fig. 4.2(b), e.g., due to quantization

noise in the LSBs), i.e.:
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ya = yo + η (4.1)

ye = yo + e (4.2)

where yo, ya, and ye are the error-free, the M, and E-block outputs, respectively. ANT

exploits the di�erence in the statistics of η and e to detect and compensate for errors to

obtain the �nal corrected output ŷ as follows:

ŷ =

 ya if |ya − ye| ≤ Th

ye otherwise
(4.3)

where Th is an application dependent threshold parameter chosen to maximize the perfor-

mance of ANT. In this paper, Th is chosen to equal max(|yo − ye|) as this ensures that the

M-block output ya will always be selected [103] when the output is error free. The error

rate pη is de�ned as:

pη = 1− Pη(0) = Pr{η 6= 0} (4.4)

where Pη(·) is the error probability mass function (PMF) of η. The errors η are most

conveniently obtained by applying voltage overscaling (VOS) where the supply voltage Vdd

is scaled as follows:

Vdd = KvosVdd−crit (4.5)

where Kvos is the voltage overscaling factor, and Vdd−crit is the minimum voltage needed for

error free operation in the M-block. Note that for the ANT system to work properly, the

E-block is not permitted to make large magnitude errors such as those arising from timing

violations. This helps maintain the di�erence in the error statistics at the output of the M

and E-block as shown in Fig. 4.2(b).

The performance improvement achieved by ANT can be evaluated by employing a system

level metric such as the signal-to-noise ratio (SNR). Assume that the error-free output in
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(a) (b)

Figure 4.2: Algorithmic noise-tolerance (ANT): (a) conventional architecture, and (b) the
error statistics in the main (M) and estimator (E) blocks.

Fig. 4.2(a) is expressed as:

yo = s+ ns (4.6)

where s and ns represent the signal and noise components in the error-free output yo, re-

spectively. At the application level, one is interested in the ratio of the signal power σ2
s to

the noise powers at the outputs of the M, the E-block, and the ANT system. Thus, the

following application level SNRs can be de�ned:

SNRM,a = 10log10(
σ2
s

σ2
ns + σ2

η

) (4.7)

SNRE,a = 10log10(
σ2
s

σ2
ns + σ2

e

) (4.8)

SNRANT,a = 10log10(
σ2
s

σ2
ns + σ2

nr

) (4.9)

where σ2
s , σ

2
ns , σ

2
η, σ

2
e , σ

2
yo and σ

2
nr are the variances of the signal s, noise ns,M-block hardware

error η, E-block estimation error e, error-free output yo, and residual error nr = yo − ŷ,

respectively. It is also of interest to evaluate how `noisy' the circuit fabric is with respect to

an error-free (conventional) architecture. By de�nition, the output of such an architecture
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is yo. Thus, we de�ne the circuit level SNRs as follows:

SNRM,c = 10log10(
σ2
yo

σ2
η

) (4.10)

SNRE,c = 10log10(
σ2
yo

σ2
e

) (4.11)

SNRANT,c = 10log10(
σ2
yo

σ2
nr

) (4.12)

If error detection is ideal, then nr ∈ {0, e}, and its probability mass function (PMF)

Pηr(nr) is given by:

Pηr(nr) =

1− pη if nr = 0

pη if nr = e

and

σ2
nr = pησ

2
e

where pη is the error rate of the M-block de�ned in (4.4). Therefore, (4.9) and (4.12) can

be expressed as:

SNRANT,a = 10log10(
σ2
s

σ2
n + pησ2

e

) (4.13)

SNRANT,c = 10log10(
σ2
yo

pησ2
e

) (4.14)

Since e is the small magnitude LSB error and η is the large magnitude MSB error, pησ
2
e �

σ2
e � σ2

η. This further implies that SNRANT,a � SNRE,a � SNRM,a, and SNRANT,c �

SNRE,c � SNRM,c. Thus, the output SNR of the ANT system is signi�cantly greater than

the SNR at the output of either the M or E-block. This phenomenon occurs in spite of the

fact that the ANT system output ŷ ∈ {ya, ye} (see Fig. 4.2(a)), i.e., ŷ equals the output of

either the M or E-block. The reason for this unique feature of ANT is that it exploits the

di�erence in the error statistics (see Fig. 4.2(b)) at the output of the M and E-block.
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4.1.2 EEG Classi�cation System using SVM

Portable health monitoring is an important class of applications that can bene�t from the

design of energy e�cient machine learning kernels. It has been shown [105] that epileptic

seizures can be e�ciently detected by analyzing the EEG signal using an SVM kernel. The

EEG seizure classi�cation system [105] shown in Fig. 4.3(a) consists of a frequency selective

�lter bank to extract signal energy in the 0 − 20 Hz range and a SVM classi�er. The �lter

bank has passband of 3 Hz with a transition band of 1.5 Hz. Eight channels are employed to

cover the entire frequency range [105].

SVM [79] is a popular supervised learning method for classi�cation and regression. An

SVM operates by �rst training the model (the training phase) followed by classi�cation (the

classi�cation phase). During the training phase, feature vectors with labels are used to

train the model. During the classi�cation phase, the SVM produces a predictive label when

provided with a new feature vector. The SVM training can be formulated as the following

optimization problem to determine the maximum margin classi�er [79] (see Fig. 4.3(b)):

min 1
2
‖w‖2 + C

∑
i

ξi

s.t.

yi(w
Txi−b) ≥ 1−ξi

ξi ≥ 0

(4.15)

where C is the cost factor, ξi is the soft margin, xi is the feature vector, yi is the label

corresponding to the feature vector xi, w is the weight vector, and b is the bias. The trained

model is represented by:

y = wT
o x− b (4.16)

where wo are the optimized weights. It can be shown that the optimum weights are repre-

sented as a linear combination of the feature vectors that lie on the margins (see Fig. 4.3(b)),

i.e., support vectors:
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(a) (b)

Figure 4.3: EEG seizure classi�er with SVM: (a) system architecture, and (b) principle of
SVM.

wo =
Ns∑
n=1

αnynxs,n (4.17)

where Ns and xs,n are the number of support vectors and nth support vector, respectively.

The linear model can thus be represented as:

y =
Ns∑
n=1

αnynx
T
s,nx− b (4.18)

The linear SVM in (4.18) can be easily extended into non-linear SVM by employing the

kernel trick [79], resulting in:

y =
Ns∑
n=1

αnynK(xs,n,x)− b (4.19)

where K(xs,n,x) is a kernel function. Popular kernel functions include polynomial, radial

basis function (RBF), and others [106].

4.2 Proposed E-ANT

E-ANT reuses part of the main block M to generate an estimate of its error free output

yo. This is in contrast to conventional SEC techniques, where an explicit estimator is re-

quired. Such embedding of the estimator can be performed either at the architectural or the

algorithmic level. At the architectural level, data path decomposition can be employed to

transform an existing architecture into an error resilient architecture, leading to the proposed
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ARCH-ANT technique. At the algorithm level, traditional algorithm transforms search over

the design space for optimum parameters suitable for hardware implementations. Additional

training/optimization constraints can be employed to trade o� performance and error re-

siliency, leading to the proposed ALG-ANT technique. Both techniques will be presented in

this section.

4.2.1 ARCH-ANT

In RPR ANT, the M and E-blocks process the same data but with di�erent precisions.

This redundancy can be exploited to embed the E-block into the M-block via DPD. In

particular, DPD decomposes the M-block into MSB and LSB components, and employs

the output of the MSB component as an estimate of the error-free M-block output yo. By

ensuring that the critical path of the MSB block is always shorter than that of theM-block,

the requirements on the error statistics (see Fig. 4.2(b)) on theM and E-block are satis�ed.

Let ya = f(x) denote theM-block functionality, where x and ya are the input and output of

theM-block, respectively. A Bx-bit input x = x0x1...xBx−1 can be written in 2's complement

form [107], as follows:

x = −x0 +
Bx−1∑
i=1

xi2
−i = xM + xL2−(Bmsb−1) (4.20)

where xM is the value of Bmsb MSB bits, and xL is the value of Bx − Bmsb LSB bits, as

shown below:

xM = −x0 +

Bmsb−1∑
i=1

xi2
−i (4.21)

xL =
Bx−1∑
i=Bmsb

xi2
−(i−Bmsb+1) (4.22)

Therefore, the M-block output is expressed as:
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ya = f(x) = f(xM + xL2−(Bmsb−1))

In E-ANT, we decompose f(x) as follows:

ya = f(x)

= f(xM + xL2−(Bmsb−1))

= g(fM(xM), fL(xM , xL)) (4.23)

where fM(xM) and fL(xM , xL) are functions that are combined by the operator g(·) to

generate the �nal output ya. Since this decomposition utilizes the �nite precision nature of

arithmetic units, it is referred to as DPD. We show that DPD exists if f(x) is n-times di�er-

entiable or can be piecewise approximated. An E-ANT system can be obtained via DPD by

ensuring that: (1) the critical path of fM(xM) is shorter than that of g(fM(xM), fL(xM , xL)),

and (2) fM(xM) generates an estimate ye of the error-free output yo. The operation of DPD

based E-ANT is described as follows:

ya = g(fM(xM), fL(xM , xL))

ye = fM(xM)

ŷ =

 ya if |ya − ye| ≤ Th

ye otherwise

where Th is the error detection threshold as in (4.3). Next, we describe several methods to

achieve DPD.

4.2.2 DPD via Taylor Expansion

Taylor expansion can be employed to achieve DPD. If f(x) is n-times di�erentiable in the

input range x ∈ [xl, xu]. The DPD for f(x) using Taylor expansion is given by:
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f(x) ≈ fM(xM) + fL(xM , xL) (4.24)

where

fM(xM) = f(x0) +
n∑
k=1

k∑
i=0

[
f (k)(x0)

k!
(
k

i
)(−x0)k−i]xi,M

fL(xM , xL) =
n∑
k=1

k∑
i=0

[
f (k)(x0)

k!
(
k

i
)(−x0)k−i]xi,L

xi,M = xiM

xi,L =
i−1∑
j=0

(
i

j
)xjM(xL2−(Bmsb−1))i−j

where xM and xL are de�ned in (4.21) and (4.22), respectively.

As a special case, when a �rst order Taylor expansion is employed at x0 = 1
2
(xl +xu), i.e.,

at center of the input dynamic range, (4.24) simpli�es into:

f(x) ≈ f(x0) + f ′(x0)(x− x0) (4.25)

where f ′(x0) is the �rst order derivative of f(x) at x0. Substituting (4.20) into (4.25), we

obtain the DPD of f(x) as follows:

f(x) ≈ f(x0) + f ′(x0)(xM + xL2−(Bmsb−1) − x0,M − x0,L2−(Bmsb−1))

= fM(xM) + fL(xL)2−(Bmsb−1) (4.26)

where
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fM(xM) = f(x0) + f ′(x0)(xM − x0,M)

fL(xL) = f ′(x0)(xL − x0,L)

and fM(xM) can be used as the E-block. Note that in the decomposition in (4.26), only x is

decomposed into MSB and LSB components and the factor f ′(x0) remains in full precision.

If a simpler E-block is required, f ′(x0) can also be decomposed into MSB and LSB parts,

as shown in Section 4.2.4. The pivot point x0 should be chosen such that the error metric,

e.g., the mean square error, between the original and the E-ANT kernel is minimized.

4.2.3 DPD via Piecewise Linear (PWL) Approximation

The PWL approximation can be employed when f(x) (x ∈ [xl, xu]) is non-di�erentiable or

the input dynamic range is large.

The PWL approximation employs N + 1 points (xk, f(xk)) where xk = xl + k
N

(xu − xl)

and k = 0, 1, ..., N to approximate f(x) as:

f(x) ≈
N∑
k=1

pk(x)

pk(x) =

akx+ bk xk ≤ x < xk+1

0 otherwise

(4.27)

where x0 = xl, xN = xu, ak = f(xk+1)−f(xk)

xk+1−xk
, and bk = xk+1f(xk)−xkf(xk+1)

xk+1−xk
. Each segment pk(x)

can be decomposed by noting that for a linear function p(x), substituting for x from (4.20),

we have

p(x) = p(xM + xL2−(Bmsb−1)) = p(xM) + p(xL)2−(Bmsb−1) (4.28)

Therefore, substituting (4.20) into (4.27), we obtain:
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pk(x) =

pk,M(xM) + pk,L(xL)2−(Bmsb−1) xk ≤ x < xk+1

0 otherwise

(4.29)

where

pk,M(xM) = akxM + bk

pk,L(xL) = akxL

and pk,M(xM) can be employed as the E-block.

Note that other piecewise approximation methods such as spline interpolation [108] where

each segment is approximated with a low order polynomial can also be employed for DPD.

Each low order polynomial can be decomposed in a manner similar to (4.24).

Next, we apply DPD to obtain E-ANT architectures for arithmetic units and compute

kernels commonly used in signal processing and machine learning.

4.2.4 E-ANT Arithmetic Unit Architectures

4.2.4.1 E-ANT Adder

The output of a two-operand adder is given by:

ya = x1 + x2

where x1 and x2 are the input operands. We �rst decompose the operands into MSB and

LSB components according to (4.20):

x1 = x1M + x1L2−(Bmsb−1)

x2 = x2M + x2L2−(Bmsb−1)
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(a) (b)

Figure 4.4: E-ANT Adder: (a) DFG, and (b) symbol.

where xiM and xiL are de�ned in (4.21) and (4.22), respectively.

Since addition is a linear function, DPD can be easily obtained from (4.28) as follows:

ya = x1M + x2M + x1L2−(Bmsb−1) + x2L2−(Bmsb−1)

= fM + fL2−(Bmsb−1) (4.30)

where fM = x1M + x2M and fL = x1L + x2L. The data �ow graph (DFG) and the symbol of

the E-ANT adder are shown in Fig. 4.4(a) and Fig. 4.4(b), respectively.

4.2.4.2 E-ANT Multiplier

Employing the DPD in (4.21)-(4.23), the E-ANT multiplier can be derived as follows:

ya = x1x2

= (x1M + x1L2−(Bmsb−1))(x2M + x2L2−(Bmsb−1))

= fM + fL2−(Bmsb−1) (4.31)

where fM = x1Mx2M and fL = x1Lx2M + x1x2L. Figure 4.5(a) and Fig. 4.5(b) show the

DFG and symbol of the E-ANT multiplier.
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(a) (b)

Figure 4.5: E-ANT multiplier: (a) DFG, and (b) symbol.

4.2.4.3 E-ANT Multiply-accumulator (MAC)

MAC operation is described as:

ya[n] = x[n]w[n] + ya[n− 1] (4.32)

We �rst decompose x[n], w[n] and y[n− 1] according to (4.20):

x[n] = xM [n] + xL[n]2−(Bmsb−1) (4.33)

w[n] = wM [n] + wL[n]2−(Bmsb−1) (4.34)

ya[n− 1] = ya,M [n− 1] + ya,L[n− 1]2−2(Bmsb−1) (4.35)

The E-ANT MAC can be obtained by substituting (4.33)-(4.35) into (4.32), and employing

(4.30)-(4.31) to decompose ya[n] as follows:
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(a) (b)

Figure 4.6: E-ANT MAC unit: (a) DFG, and (b) symbol.

ya[n] = xM [n]wM [n] + ya,M [n− 1] + (xL[n]wM [n] + (xM [n] + xL[n]2−(Bmsb−1))wL[n]

+ ya,L[n− 1]2−(Bmsb−1))2−(Bmsb−1)

= xM [n]wM [n] + ya,M [n− 1] + (xL[n]wM [n] + x[n]wL[n]

+ ya,L[n− 1]2−(Bmsb−1))2−(Bmsb−1)

= fM + fL2−(Bmsb−1) + ya,L[n− 1]2−(Bmsb−1))2−(Bmsb−1)

where fM = xM [n]wM [n] + ya,M [n − 1] and fL = xL[n]wM [n] + x[n]wL[n] + ya,L[n −

1]2−(Bmsb−1). Figure 4.6(a) and Fig. 4.6(b) show the DFG and the symbol of the E-ANT

MAC.

4.2.5 E-ANT Signal Processing and Machine Learning Kernels

Complex E-ANT kernels can be derived by employing the E-ANT arithmetic units derived

in section 4.2.4.

4.2.5.1 E-ANT FIR Filter

One of the most important kernels in information processing is �ltering/convolution. We

can derive an E-ANT FIR �lter by employing (4.30)-(4.31) as follows:

81



(a) (b)

Figure 4.7: E-ANT FIR �lter: (a) the DFG of direct form FIR �lter, and (b) the DFG of
transposed form FIR �lter.

ya[n] =
N−1∑
i=0

w[i]x[n− i] =
N−1∑
i=0

fiM +
∑
i

fiL2−(Bmsb−1)

where fiM = xM [n − i]wM [i] and fiL = xL[n − i]wM [i] + x[n − i]wL[i] for i = 0...N − 1.

Figure 4.7 shows the DFGs of the direct form and transposed form E-ANT FIR �lter where

we make use of the symbols in Fig. 4.4(b), 4.5(b), and 4.6(b) to simplify the DFGs.

4.2.5.2 E-ANT Fast Fourier Transform (FFT) Butter�y Unit (BU)

BU is the main data processing unit in FFT processors. A general BU implements the

following function:

y1r,a = x1r + x2r, y1i,a = x1i + x2i

d = x1 − x2

y2r,a = drWr − diWi, y2i,a = drWi + diWr

where x1 and x2 are the inputs, y1 and y2 are the outputs, and W is the twiddle factor. The

real and imaginary parts are denoted by r and i subscripts, respectively. E-ANT FFT BU

can be derived as shown in Table 4.1.
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Figure 4.8: DFG of the E-ANT FFT butter�y unit.

Table 4.1: DPD for FFT BU

y1r,a = x1r + x2r = y1r,M + y1r,L2−(Bmsb−1),where y1r,M = x1r,M + x2r,M and

y1r,L = x1r,L + x2r,L.

y1i,a = x1i + x2i = y1i,M + y1i,L2−(Bmsb−1), where y1i,M = x1i,M + x2i,M and

y1i,L = x1i,L + x2i,L.

y2r,a = drWr − diWi = y2r,M + y2r,L2−(Bmsb−1), where y2r,M = dr,MWr,M − di,MWi,M

and y2r,L = dr,LWr,M + drWr,L − (di,LWi,M + diWi,L).

y2i,a = drWi + diWr = y2i,M + y2i,L2−(Bmsb−1), where y2i,M = dr,MWi,M + di,MWr,M

and y2i,L = dr,LWi,M + drWi,L + di,LWr,M + diWr,L

The DFG of the E-ANT FFT BU is shown in Fig. 4.8.

4.2.5.3 E-ANT Exponential Kernel

Exponential kernel (e−x) is a critical component in many machine learning algorithms such

as kernel SVM [105, 109], Gaussian mixture model [110], and others [111, 112]. Taylor

expansion in Section 4.2.2 and PWL approximation in Section 4.2.3 can be employed to

obtain E-ANT exponential kernels.

Assuming that the input dynamic range is scaled to [0,1], a 2nd order Taylor expansion
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leads to:

ya = e−x ≈ e−x0 − e−x0 × (x− x0) +
e−x0(x− x0)2

2
(4.36)

When x0 = 0.5, (4.36) simpli�es to

ya ≈ ax2 + bx+ c (4.37)

where a = 0.3033, b = −0.9098, and c = 0.9856. The Taylor expansion based E-ANT

exponential block can thus be derived from (4.24) as follows:

ya ≈ fM + fL2−(Bmsb−1)

where

fM = ax2
M + bxM + c

fL = a(2xMxL + x2
L2−(Bmsb−1)) + bxL

The DFG is shown in Fig. 4.9(a).

Alternatively, PWL approximation can be employed to obtain an E-ANT exponential

kernel. Assume that two linear functions on [0, 0.5] and [0.5, 1] are used to approximate the

exponential function on the interval [0, 1]; then according to (4.27):

ya = e−x ≈

 a1x+ b1 0 ≤ x < 0.5

a2x+ b2 0.5 ≤ x < 1

where a1 = −0.7869, b1 = 1, a2 = −0.4773 and b2 = 0.8452. We �rst decompose ai, bi

(i = 1, 2) according to (4.20):
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Figure 4.9: DFG of the E-ANT exponential kernel: (a) Taylor expansion based, and (b)
PWL approximation based.

ai = ai,M + ai,L2−(Bmsb−1)

bi = bi,M + bi,L2−2(Bmsb−1)

Since each segment is linear, they can be decomposed by using (4.28):

ya,i = aix+ bi = fi,M + fi,L2−(Bmsb−1)

where

fi,M = ai,MxM + bi,M

fi,L = ai,MxL + ai,Lx+ bi,L2−(Bmsb−1)

The resultant E-ANT exponential kernel has a recon�gurable architecture where di�erent

approximations are chosen according to the input values. The DFG of the PWL based

E-ANT exponential kernel is shown in Fig. 4.9(b).
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Figure 4.10: ALG-ANT FIR �lter structure.

4.2.6 ALG-ANT

Low complexity estimation can also be achieved by changing the algorithm into an incre-

mental re�nement structure through algorithm transformation. Unlike architecture level

techniques, ALG-ANT is algorithm speci�c. We next derive two ALG-ANT techniques -

one for the FIR �lter kernel and another for the dot product kernel.

4.2.7 ALG-ANT FIR Filter Kernel

The FIR �lter is a commonly used kernel in signal processing and machine learning. The

conventional FIR �lter design method employs algorithms such as the weighted least square

(WLS) method [113], which formulates the �lter design as an optimization problem. Let

H(ejω) andHd(e
jω) denote the designed and the ideal �lter frequency responses, respectively,

and W (ejω) be a non-negative error weighting function. The WLS method minimizes the

L2 norm of the weighted di�erence between H(ejω) and Hd(e
jω) as follows:

min 1
2π

´ π
−π [W (ejω)H(ejω)−W (ejω)Hd(e

jω)]
2
dω (4.38)
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Let h = [h[0], ..., h[M ]]T , d = [d[0], ..., d[N − 1]]T be the pulse response of the (M + 1)-tap

�lter H(ejω) and the IDFT of W (ejω)Hd(e
jw), respectively, and let the N by M + 1 matrix

W be de�ned as W[n, l] = w[n − l] where w[n] is the IDFT of W (ejω). The optimization

can be reduced to:

min ‖Wh− d‖2 (4.39)

and has solution h∗ = W†d, where W† is the Moore-Penrose pseudo inverse.

In ALG-ANT, the optimization in (4.39) is modi�ed to include architectural level con-

straints. In particular, we employ the �lter architecture in Fig. 4.10 where the center

M + 1− 2Kf �lter taps are employed to obtain the estimator output ye[n] (see Fig. 4.2(a)).

Here Kf is a design parameter that determines the estimator length. The rationale for using

the center taps of an FIR �lter to obtain an estimate of its �nal output yo[n] is that for

linear phase FIR �lter, the center taps of the �lter can provide a good estimate of the �lter

response [114]. Doing so embeds the estimator completely into the main block. To achieve

this, we reformulate the objective function in (4.39) as follows:

min(1− γ)‖Wh− d‖2 + γ
∥∥∥W̃h

∥∥∥2

(4.40)

where W̃ =


IKf×Kf 0Kf×K̂f 0Kf×Kf

0K̂f×Kf 0K̂f×K̂f 0K̂f×Kf

0Kf×Kf 0Kf×K̂f IKf×Kf

, K̂f = M + 1 − 2Kf and the parameter γ (0 ≤

γ < 1) is used to control the relative strength of the two optimization terms. Doing so

constrains the magnitude of the outer taps of the �lter. The optimization in (4.40) can

be solved by setting the derivative of the loss function in (4.40) to zero, resulting in the

following �lter:

h∗ = ((1− γ)WTW + γW̃TW̃)−1((1− γ)WTd) (4.41)

where h∗ is the optimum ALG-ANT �lter coe�cients. In practice, γ and Kf are design

parameters that can be employed to trade o� the two optimization terms in (4.40). A large
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Figure 4.11: ALG-ANT linear SVM: the dot product result is unaltered when the order of
the multiply-accumulates (MACs) is varied.

γ will weigh more on the estimator design, leading to a more accurate estimator. However, a

large γ tends to decrease the performance of the main block since the resulting �lter deviates

from the ideal �lter d. A small Kf (thus larger estimator length) will lead to a more accurate

estimator because more coe�cients can be employed, but a small value of Kf will limit the

amount by which VOS can be applied before the estimator begins to exhibit large magnitude

timing violations. Thus, in this design, as expected, the accuracy of the estimator and the

main block trade o� with each other, and so does the extent of VOS that can be applied.

In Section 4.3.6, Kf is determined by the error rate pη (thus Kvos) and γ is optimized via a

grid search.

4.2.8 ALG-ANT Dot Product Kernel

We next derive ALG-ANT for the dot product kernel, another widely used kernel in machine

learning. The dot product kernel is employed in the linear SVM (see Fig. 4.3(a)), which

provides good classi�cation performance and results in a particularly simple architecture

[115]. In the dot product kernel (see Fig. 4.11), the input vector x and the weight vector w

are multiplied element-wise and the resulting products are added up.

One observation in (4.16) is that it is only the �nal dot product that contributes to the

classi�cation result, not the order in which computation is done. This suggests that we
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can implement the dot product kernel via dimension reordering (DR) which will reorder

the dimensions of the inputs x and w in the classi�cation engine and use more important

weights �rst during the dot product evaluation.

The reordered weight vector ŵ can be calculated via a simple sorting operation:

ŵ = [ŵ1, ŵ2, ...ŵn]

where |ŵi| ≥ |ŵj| for i < j. In other words, we reorder the calculation of the dot product

according to the importance of weights wi in these dimensions. The resulting incremental

re�nement architecture enables us to employ the intermediate stage output as the estimator

output ye[n], as shown in Fig. 4.11. As the estimator length Kc increases, the classi�cation

results will improve but the extent to which VOS can be applied will reduce. This trade-o�

is explored in the next section.

4.3 Simulation Results

This section presents the design optimization of the proposed ARCH-ANT and ALG-ANT

technique, and shows the simulation results in a 45 nm CMOS process when they are applied

to an SVM EEG classi�cation system.

4.3.1 Methodology

Figure 4.12(a) shows the evaluation methodology employed to quantify system-level per-

formance metrics and to estimate system-level energy consumption that integrates circuit,

architecture, and system level design variables. The methodology consists of two parts:

1) system-level error injection, and 2) system-level energy estimation. Comparison of the

proposed E-ANT with conventional approach (no error compensation) and retraining based

approach in [54] is done using a commercial 45 nm CMOS process.

System-level error injection is done as follows:

1. Characterize delay vs. Vdd of basic gates such as AND and XOR using HSPICE for
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0.2 V ≤ Vdd ≤ 1.2 V.

2. Develop structural Verilog HDL models of key kernels needed in the EEG classi�cation

system using the basic gates characterized in Step 1. These kernels are a 12 b input,

8 b coe�cient, and 16 b output, 44-tap FIR �lter (used in the FE) and a 8 b input, 8 b

coe�cient, and 19 b output vector-matrix multiplication kernel (used in the polynomial

kernel SVM CE).

3. HDL simulations of these kernels were conducted at di�erent voltages by including the

appropriate voltage-speci�c delay numbers obtained in Step 1 into the HDL model.

The error PMFs of these kernels and error rates pη are obtained for di�erent supply

voltages (and thus voltage overscaling factor Kvos).

4. System performance evaluation and design optimization are done by injecting errors

into a �xed point MATLAB-model of the EEG classi�cation system. The errors are

obtained by sampling the error PMFs obtained in Step 3.

Figure 4.12(c) shows the error PMF Pη(η) of the 44-tap low pass FIR �lter used in the

FE at Vdd = 0.9 V (fclk = 76 MHz) which corresponds to a Kvos = 0.75 and an error rate

pη = 0.05, and Fig. 4.12(d) shows the error rate pη increases from 10−5 at Vdd = 1.15 V to

0.99 at Vdd = 0.5 V as the voltage scales down.

System-level energy estimation is done as follows:

1. Obtain a full adder (FA) count NFA of the kernel being analyzed.

2. Conduct a one-time characterization of the energy consumption of a FA incorporating

both dynamic and leakage energies as follows:

EFA = CFAV
2
dd + VddIleak(Vdd)

1

fclk
(4.42)

with

Ileak(Vdd) = µCox
W

L
(m− 1)V 2

T e
−Vt
mVT e

−ηdVdd
mVT (1− e

−Vdd
VT ) (4.43)

where CFA is the e�ective load capacitance of the FA and is extracted from HSPICE,

Vdd is the supply voltage, Vt, VT , µ, Cox, and ηd are the threshold voltage, the thermal
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Figure 4.12: Evaluation methodology: (a) simulation setup, and (b) comparison of the
energy model and HSPICE simulations in a 45 nm CMOS process, (c) error PMF at
Vdd = 0.9 V, and (d) error rate pη vs. Vdd for the 44-tap low pass �lter employed in the FE,
the CHB-MIT EEG data set [54] is employed as input.

voltage, the carrier mobility, the gate capacitance per unitW/L, and the drain induced

barrier lowering (DIBL) coe�cient, respectively, obtained from the process �les, and

m is a constant related to the sub-threshold slope factor and is a �tting parameter.

3. The energy estimate of the kernel is obtained as Eop = NFAEFA.

Figure 4.12(b) shows the modeling results of the FA and ripple carry adder (RCA) for

various bit widths demonstrating the accuracy and scalability of the energy model. The

energy model is within 5% (for 0.2 V ≤ Vdd ≤ 1.2 V) of circuit simulation results.
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Algorithm 1 Energy optimization algorithm for E-ANT
1. Initialize K∗vos = 1, B∗msb = 0, E∗op = energy of conventional MAC, MSEreq = speci�ed
MSE requirement.
2. Kvos = Kvos−∆, Bmsb = 0. Obtain maximum E-block precision Bmax to ensure error-free
E-block operation.
3. Bmsb = Bmsb + 1. If Bmsb > Bmax, then exit, else compute MSE according to (23).
4. If MSE < MSEreq, then calculate energy E(Kvos) according to (21), else go to step 3
5. If E∗op > E(Kvos), then E

∗
op = E(Kvos), and B

∗
msb = Bmsb

6. Go to step 2

4.3.2 ARCH-ANT Design Optimization

The methodology in Fig. 4.12(a) is employed to perform optimization for the E-ANT kernels

proposed in Sect. 4.2, and the E-ANT MAC kernel in Fig. 4.6(a) is used as an example.

Since we adopt VOS to obtain di�erent error rates, the parameters to be optimized are

the voltage overscaling factor Kvos and the E-block bit width Bmsb, where we assume that

Bx,msb = Bw,msb = Bmsb. The optimization framework is general enough to include the case

when Bx,msb 6= Bw,msb. A grid search algorithm is employed to systematically determine the

optimum setting K∗vos and B
∗
msb satisfying the performance metric, as shown in Algorithm 1

below. We adopt mean squared error (MSE) with respect to the �oating point kernel as the

performance metric:

MSE = E(ŷ − yfl)2 (4.44)

where ŷ and yfl indicate the E-ANT and �oating point output, respectively. The maximum

E-block length Bmax under which the E-block does not make errors is determined by Kvos.

The optimization routine gives the optimum E-ANT con�guration, including K∗vos, B
∗
msb and

minimum energy E∗op, at the output.

Algorithm 1 is employed to optimize E-ANT MAC for 8b and 16b precision with MSE

requirements of 10−2 ∼ 10−5. The iso-MSE plots in the Bmsb and pη plane (see Fig. 4.13(a)

and Fig. 4.13(c)) indicate that the optimum Bmsb increases as the error rate pη increases

because a higher precision E-block is needed to compensate for the M-block errors. Figure

4.13(b) shows that the 8 bit E-ANT MAC achieves energy savings of 16% ∼ 69%, while

as the 8 bit ANT MAC fails to achieve energy savings at the tight MSE requirement of
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Figure 4.13: Optimization of E-ANT MAC; the dashed line illustrates that the maximum
E-block precision Bmax decreases as pη increases, indicating that to ensure error-free
E-block operation, the E-block bit width is upper bounded. The solid lines show the
optimum Bmsb con�guration for each pη at di�erent MSE requirements, with the circle
marker indicating the (B∗msb, p

∗
η) pair achieving the MSE requirements with minimum Eop:

(a) optimization results of an 8× 8 E-ANT MAC for di�erent MSE requirements, (b)
normalized energy of an 8× 8 conventional MAC, ANT MAC and E-ANT MAC, (c)
optimization results of a 16× 16 E-ANT MAC for di�erent MSE requirements, and (d)
normalized energy of a 16× 16 conventional MAC, ANT MAC, and E-ANT MAC.

10−5 due to E-block overheads. Figure 4.13(d) shows that the 16 bit E-ANT MAC achieves

59% energy savings compared with the conventional MAC. The overhead of the E-ANT

architecture is below 8% compared with the 36.4% and 13.9% overheads for the 8 bit and

16 bit ANT architecture, respectively.

Figure 4.14 shows that the energy savings increase as the MSE requirement increases for a
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Figure 4.14: Energy savings vs. input precision and MSE.

�xed Bx. This is because a larger MSE requirement allows the MAC to operate at a higher

pη and can thus reduce the E-block overheads. This is also con�rmed in Fig. 4.13(b) and

Fig. 4.13(d). Additionally, the energy savings increase as Bx increases for a �xed MSE

requirement because a large Bx tends to tolerate more LSB errors, thus enabling the MAC

to operate at a higher pη.

4.3.3 ARCH-ANT System Performance

To evaluate the performance of E-ANT, the �lter kernel in the FE and the vector-matrix

multiplication kernel in the SVM CE shown in Fig. 4.15 are implemented employing the

E-ANT MAC as shown in Fig. 4.6, and are characterized via the procedure described in

Section 4.3.2. For the �lter bank in the FE, we use an input of 12 bit, with the MSB 8 bit

taken as the E-block. For the CE, the input precisions of the two MACs are chosen to be 8

bit, and E-block precisions are 4 bit.

We employ the CHB-MIT EEG data set [54] to train the SVM and use leave-one-out cross

validations to evaluate the system performance. The system performance metric employed

is the true positive (TP) rate ptp and false positive/alarm (FP) rate pfp, de�ned as:
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Figure 4.15: Second order polynomial kernel SVM EEG classi�cation system architecture.

ptp =
TP

TP + FN

pfp =
FP

FP + TN

where TP , FN , FP , and TN are the number of true positives, false negatives, false positives,

and true negatives, respectively. A good classi�er achieves high values of ptp ( > 0.9) at a

small constant false alarm rate pfp (<0.01).

Three implementations are considered: the uncompensated system (denoted as CONV),

the system which performs retraining with erroneous features, similar to the one proposed

in [54] (denoted as RETRAIN), and the system with E-ANT (denoted as E-ANT). In the

retraining method [54], the classi�er is trained with features extracted in the presence of

VOS errors. Unlike in the retraining method [54] where the CE needs to be error-free, E-

ANT can tolerate errors in both the FE and CE. Therefore, two setups are considered in our

experiment: (1) errors in FE only, and (2) errors in both FE and CE. The maximum value

of the error rate pη for which ptp > 0.9 and pfp < 0.01 is referred to as the error tolerance

pη−max of the architecture. In the �rst setup, pη−max is the error rate in the FE, and in the

second setup, pη−max is the maximum of the error rate in the FE and CE.
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(a) (b)

Figure 4.16: SNR at the output of the FE: (a) application level SNR, and (b) circuit level
SNR.

4.3.4 SNR Performance

Figure 4.16(a) shows that the improvement in the application level SNR (see (4.7)-(4.9))

achieved by E-ANT at the FE output is signi�cant. In particular, the SNR of the M-block

(also the SNR of the conventional system with errors), SNRM,a, drops catastrophically from

42 dB to 10 dB for values of pη as low as 8 × 10−4. The SNR of the E-block, SNRE,a,

is constant at 23 dB for pη ≤ 0.42. This is because the E-block makes small magnitude

estimation errors e. For pη > 0.42, SNRE,a drops catastrophically as the E-block also starts

to make large magnitude timing errors. In contrast, the ANT system SNR, SNRANT,a, is

at least 10 dB higher than either SNRE,a or SNRM,a for values of pη as high as 0.1, and

approaches the E-block SNR as pη increases.

The circuit level SNRs (see (4.10) - (4.12)) also exhibit a similar trend in Fig. 4.16(b).

Furthermore, the SNR analysis in Section 4.1.1 is validated by plotting (4.13) and (4.14) in

Fig. 4.16(a) and Fig. 4.16(b), respectively.

4.3.5 Classi�cation Performance and Energy Savings

As shown in Fig. 4.17(a), ptp drops sharply as circuit error rate increases in CONV system

where no SEC is applied. The RETRAIN system does slightly better than the CONV system

because the classi�er is retrained to adapt to the error a�ected features. However, pη−max is
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still only around 10−3. This is due to the fact that the errors under investigation are timing

errors. Unlike the stuck-at faults in [54], timing errors are dynamic and depend on the state

of circuit, so the error pattern observed during training might not be the same as during

the test. In contrast, when E-ANT is applied, ptp degrades gracefully as pη increases. As

a result, the E-ANT system can achieve pη−max as high as 0.38. Figure 4.17(a) also shows

that the ptp is always lower than 0.9 when only E-block is employed, i.e., the E-block on

its own is unable to meet the performance speci�cations. Similarly, when errors present in

both FE and CE (Fig. 4.17(b)), both the CONV system and RETRAIN system achieve

pη−max < 10−3, while E-ANT achieves a pη−max of 0.17. These are of 2 orders of magnitude

(errors in FE only) and 3 orders of magnitude (errors in both FE and CE) greater than

the existing systems. The receiver operating characteristic (ROC) curve at pη−max is shown

in Fig. 4.17(c) when errors are in FE only, and in Fig. 4.17(d) when errors are in both

FE and CE. In both experiments, the ROC of the CONV as well as the RETRAIN system

approaches the ROC of a random classi�er which outputs ±1 with equal probability, while

the ROC of the E-ANT system (w/ or w/o retraining) remains close to the ROC of an ideal

classi�er.

Principle component analysis (PCA) is performed on the feature vectors to understand the

reason why CONV system fails but E-ANT system is able to maintain good performance.

Figure 4.17(e) shows that when no SEC is applied, circuit errors have two e�ects on the

feature vectors: (1) errors make it harder to separate the positive and negative samples, and

(2) the entire feature space is shifted due to the accumulation block in the FE. The SVM fails

to correctly perform classi�cation without knowledge of the error statistics. Figure 4.17(f)

shows that the large magnitude errors are compensated and converted to small residual

errors when E-ANT is applied. This will cause a very small shift in the feature space. As

a result, the SVM classi�er can still perform correct classi�cation. One way to improve E-

ANT further is to incorporate retraining. In this method, the classi�er is trained employing

features that are subject to residual errors after the correction via E-ANT. However, as

shown in Fig. 4.17(a), the improvement is minor due to the fact that the residual errors are

typically small.

Table 4.2 compares the pη−max, FE energy/feature (EF ), and CE energy/decision (EC)
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Figure 4.17: Simulation results: (a) ptp of CONV, RETRAIN and E-ANT with pfp = 0.01
when errors are in FE only, (b) ptp of CONV, RETRAIN and E-ANT with pfp = 0.01 when
errors are in both FE and CE, (c) ROC curve of CONV, RETRAIN and E-ANT at pη−max
when errors are in FE only, (d) ROC curve of CONV, RETRAIN and E-ANT at pη−max
when errors are in both FE and CE, (e) PCA results of error-free and erroneous features
for CONV, and (f) PCA results of error-free and erroneous features for E-ANT.
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of the three systems. The E-ANT system can achieve pη−max of 0.38 when errors are in

FE only, and 0.17 when errors are in both FE and CE. When VOS is applied for energy

saving, the E-ANT system is able to achieve 51% energy savings when errors are in FE only

compared with the CONV system. When both FE and CE are in error, the E-ANT system

is able to achieve 43% and 29% energy savings in the FE and CE, respectively.

4.3.6 ALG-ANT Design Optimization

The FE and CE in an ALG-ANT based system have a number of design parameters that

need to be selected for optimal system performance. For the FE, (4.40) indicates that Kf

determines the estimator complexity. Hence, Kf places a lower bound on the supply voltage

because the estimator needs to be free of timing violations. Similarly, γ indicates how

closely the main block approximates the ideal frequency response. Thus, the accuracies of

the estimator and the main block trade o� with each other, which suggests that an optimum

value for γ and Kf , i.e., γ
∗ and K∗f , exists. To explore the trade-o� between main block

and estimator performance, the application level ALG-ANT �lter SNR is de�ned. Let yo, ŷ

denote the error-free main �lter output and ALG-ANT �lter output, and let yd denote the

error-free ideal �lter (with coe�cient d) output. The ALG-ANT �lter SNR is de�ned as

SNRALG−ANT = 10log10(
σ2
yo

σ2
ae + σ2

he

) (4.45)

where σ2
ae = E(yo − yd)2 is the variance of approximation error and σ2

he = E(yo − ŷ)2 is the

variance of hardware error.

In order to determine these SNR-optimum values, K∗f is �rst determined by choosing the

maximum estimator length at a given supply voltage Vdd, and hence error rate pη (thus

Kvos). In particular, K∗f increases with pη as shown in Fig. 4.18(a). Next, γ∗ is obtained

via sweeping its value and observing the SNRALG−ANT . Figure 4.18(a) shows that when

pη is low, i.e. K
∗
f is small, γ∗ is small because the approximation error σ2

ae dominates. On

the other hand, when pη is high, i.e., K∗f is large, γ∗ is large because the hardware error

σ2
he dominates, and the optimization procedure will strive for a more accurate estimator, as
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Figure 4.18: ALG-ANT applied to the �lter design problem: (a) SNRALG−ANT vs. γ for
various pη, and (b) approximation error σ2

ae, hardware error σ
2
he and total error (σ2

ae + σ2
he)

vs. γ at pη = 0.1, the CHB-MIT EEG data set [54] is employed as input, error variances
are normalized w.r.t. total error variance at γ = 0.

shown in (4.40). Figure 4.18(b) shows this trade-o� for a speci�c value of pη, where it can

be seen that as γ increases, σ2
ae increases because the overall �lter no longer minimizes the

di�erence between ideal �lter and main block; at the same time, σ2
he decreases because the

estimator gives better approximations.

For the linear SVM, DR is applied. We employ the CHB-MIT EEG data set [54] to

train the SVM and use leave-one-out cross validations to evaluate the classi�er performance.

The system performance metric employed is the true positive (TP) rate ptp and false posi-

tive/alarm (FP) rate pfp, as de�ned in Sect. 4.3.3.

Figure 4.19 studies the impact of DR in the SVM classi�er in an error-free condition and

a pfp ≤ 0.01. It indicates that the TP rate in the absence of DR (ptp−nro) increases non-

monotonically with Kc (the estimator complexity). In particular, ptp−nro ≤ 0.5 for Kc ≤ 45,

and ptp−nro ≥ 0.9 only when Kc ≥ 112. In contrast, when DR is employed the TP rate ptp−ro

increases monotonically with Kc, and ptp−ro ≥ 0.9 when Kc ≥ 64, which is 43% smaller

than when DR is not used. Note that DR needs to be performed only once during the

training and thus does not incur overhead during classi�cation. Figure 4.19(b) shows that

without DR, the large magnitude weights are scattered across the dimensions, leading to

poor classi�cation results unless the value of Kc is su�ciently large. DR uses the important

weights �rst (see Fig. 4.19(c)), and thus can produce acceptable results with much smaller
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Figure 4.19: Comparison of classi�cation results with and without DR; feature vectors
extracted with FE are employed as input: (a) ptp (with pfp ≤ 0.01) of the SVM classi�er
vs. estimator length Kc where the estimator is directly obtained by using the �rst Kc taps
of the dot product kernel; the results with DR are denoted as ptp−ro, while the results of
directly using the reduced dimension classi�er is denoted as ptp−nro. (b) The weights
without DR. (c) The weights with DR.

values of Kc.

4.3.7 ALG-ANT System Performance

The system architecture of the SVM EEG classi�cation system is shown in Fig. 4.20 where

the feature extractor employs the design parameters from [54, 55], with an input of 12 b

for the �lter bank and 8 b bit for the SVM classi�er. Three architectures are considered:
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ŷ

D D
cK

BPF0

BPF1

BPFn







.

.

.

Filter bank

|   |.

|   |.

|   |.

Absolute sum

Feature extractor

SVM classifier

( ) 'f x b w x

D

D

D

Buffer

Figure 4.20: ALG-ANT based SVM EEG classi�cation system architecture.

the conventional classi�er (denoted as CONV), the classi�er with retraining [54] (denoted

as RETRAIN), and the classi�er with ALG-ANT (denoted as ALG-ANT). In the retraining

method [54], the classi�er is trained with features extracted in the presence of VOS errors.

Unlike in the retraining method [54] where CE needs to be error free, ALG-ANT can tolerate

errors in both FE and CE. Therefore, two setups are considered in our experiment: (1) errors

in FE only and (2) errors in both FE and CE. The max value of error rate pη for which

ptp > 0.9 and pfp < 0.01 is referred to as the error tolerance metric pη−max of the architecture.

In the �rst setup, pη−max is the error rate in the FE, and in the second setup, pη−max is the

maximum of the error rate in FE and CE.

Figure 4.21(a) shows that when errors are in FE only, ptp for the conventional system drops

sharply and pη−max is as low as 1.5 × 10−4. Retraining does slightly better as the classi�er

is retrained to adapt to the error a�ected features. However, the error tolerance pη−max is

below 10−3. This is most likely due to the fact that unlike stuck-at faults studied in [54],

timing errors due to VOS are dynamic and depend on the state of circuit. In contrast, when

ALG-ANT is applied, ptp has a graceful degradation as pη increases and pη−max is improved

to 0.41. The performance of the conventional ANT system was found to be similar to the
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ALG-ANT system, and thus is not shown. Figure 4.21(a) also shows that the ptp is always

lower than 0.9 when only estimator is employed. Similarly, when errors present in both FE

and CE (see Fig. 4.21(b)), ALG-ANT classi�er achieves pη−max = 0.19. These are both 3

orders of magnitude greater than the existing systems.

Principle component analysis (PCA) is performed on the feature vectors to understand

the reason why the conventional system fails and ALG-ANT is able to maintain good per-

formance. Figure 4.21(c) shows that in the conventional system, circuit errors have two

e�ects on the feature vectors: (1) errors make it harder to separate the positive and nega-

tive samples, and (2) the entire feature space is shifted. The SVM fails to correctly perform

classi�cation without knowledge of the error statistics. Figure 4.21(d) shows the large magni-

tude error is compensated and converted to small residual errors when ALG-ANT is applied,

which will cause a very small shift in the feature space. As a result, the SVM classi�er can

still perform correct classi�cation.

Table 4.3 compares the error tolerance pη−max, feature extraction energy/feature (EF ),

and classi�cation energy/decision (EC) of three classi�ers. When VOS is applied for energy

savings, compared with the conventional classi�er, the ALG-ANT classi�er is able to achieve

44.3% energy savings when errors are in FE only. When both FE and CE are in error, the

ALG-ANT classi�er is able to achieve 37.1% and 36.9% energy savings in the FE and CE,

respectively. The energy savings are due to: (1) the elimination of an explicit estimator, and

(2) the scaling of supply voltage.

4.4 Conclusions

In this chapter, we propose E-ANT, where the estimator is embedded into the main block via

proper architecture and algorithm level transforms, resulting in a low overhead architecture

with the same error compensation functionality. At the architecture level, ARCH-ANT uses

data path decomposition to embed a reduced precision replica estimator into the main block.

The data path decomposition is general and can be derived for a wide class of compute ker-

nels. At the algorithm level ALG-ANT employs additional optimization constraints during

the algorithm to architecture mapping to embed the estimator into the main block. The
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Figure 4.21: Simulation results: (a) ptp of conventional, retraining, and ALG-ANT classi�er
with pfp ≤ 0.01 when errors are in feature extractor only, (b) ptp of conventional, retraining,
and ALG-ANT system with pfp ≤ 0.01 when errors are in both the feature extractor and
the classi�er, (c) PCA results of error free and erroneous features for conventional
classi�er, and (d) PCA results of error free and erroneous features for ALG-ANT classi�er.

result is a single architecture that can be used to obtain both the estimator and main block

outputs as in ANT systems. The e�ectiveness of the proposed ARCH-ANT and ALG-ANT

technique has been demonstrated through the design of a SVM EEG seizure classi�cation

system where simulation results in a commercial 45 nm CMOS process show that ARCH-

ANT achieves up to 38% error tolerance and up to 50.6% energy savings compared with

an uncompensated system. ALG-ANT achieves up to 41% error tolerance and up to 44.3%
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energy savings compared with uncompensated system.

This work shows that by exploring architectural and algorithmic level transforms, it is

possible to design architectures that are inherently error resilient without explicit estimator

blocks. It opens up a few research directions to extend or generalize existing SEC techniques.

In particular, E-ANT techniques for other SEC techniques such as SSNOC [63] and soft-

NMR [61] can be derived. Moreover, with the adoption of near/sub-threshold voltage design

and continued scaling of the CMOS process, PVT-induced and defect-induced errors are

becoming a growing concern for the design of ULP platforms. E-ANT techniques, and in

general SEC techniques, can be applied in the near-threshold region to enhance system

robustness in the presence of these new error models.
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Chapter 5

PROBABILISTIC ERROR MODELS FOR MACHINE

LEARNING KERNELS IMPLEMENTED ON

STOCHASTIC NANOSCALE FABRICS

Systematic design of ML kernels on stochastic nanoscale fabrics requires one to e�ciently

predict the behavior of such implementations. For this, high-level error models of key ML

building blocks need to be developed. The error models of such kernels need to capture

the stochastic behavior of the underlying fabric such as voltage overscaling (VOS), process

variations, and defects. Compact analytical models of kernel behavior in the presence of

errors are very desirable as these can be employed to: (1) characterize the inherent error

resiliency of ML algorithms, and (2) evaluate the e�ectiveness of error resiliency techniques

in compensating for these errors.

The error behavior of computational kernels can be fully captured in terms of their joint

probability mass functions (PMFs). To date, not much work has been done on this topic.

Analytical models for logic errors [116], transient errors [117], and timing errors [118] have

been proposed. These models focus on obtaining expressions for the error rate/magnitude.

In approximate computing, theoretical models have been proposed to model the inaccuracy

of circuits [119]. However, the models are architecture speci�c. Interval-based approaches

(interval arithmetic or a�ne arithmetic) [120] have been proposed to model and propagate

PMFs. These approaches need to store the entire error PMF. A lookup table based technique

[121] has been proposed to characterize the statistical properties of approximate hardware.

These models only capture the standard deviations of basic circuit building blocks rather

than the error PMF. In signature analysis based testing, symmetrical error model [122] and

independent error model [123] are employed to model the output error PMF. Additionally, in

all the models for approximate computing, the errors are due to imprecise but deterministic

circuits, not dynamic errors due to VOS and process variations.

In this chapter, we propose a probabilistic additive error model capable of modeling er-
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rors due to sources such as VOS, process variations, and defects. Four di�erent variants of

the additive error model are studied: additive over Reals Error Model with independent

Bernoulli RVs (REM-i), additive over Reals Error Model with joint Bernoulli RVs (REM-

j), additive over Galois �eld Error Model with independent Bernoulli RVs (GEM-i), and

additive over Galois �eld Error Model with joint Bernoulli RVs (GEM-j). Analytical ex-

pressions for the error PMFs are derived. Kernel level model validation is accomplished by

comparing the Jensen-Shannon divergence DJS between the modeled PMF and the PMFs

obtained via HDL simulations in a commercial 45 nm CMOS process of MAC units used in

a support vector machine (SVM) to classify the UCI machine learning dataset [124]. Results

indicate that at the MAC unit level, DJS for the GEM models are 2 orders of magnitude

lower (better) than the REM models for VOS, and 1 order of magnitude lower for process

variation errors. However, when considering errors due to defects, DJS for REM-j is between

1 and 2 orders of magnitude lower than the others. Performance (probability of detection

Pdet) prediction of a 2nd order polynomial SVM classi�er is conducted using the proposed

model and compared with HDL simulations. We �nd that Pdet estimated using GEM-j is

within 3% for VOS errors when the error rate pη ≤ 80%, and within 5% for process variation

errors when supply voltage Vdd is between 0.3 V and 0.7 V. In addition, Pdet using REM-j is

within 2% for defect errors when the defect rate (the percentage of circuit nets subject to

stuck-at-faults) psaf is between 10−3 and 0.2.

The rest of the chapter is organized as follows. Section 5.1 describes the framework for the

error analysis and the distance measure employed to compare models. Section 5.2 presents

the proposed models, and derives analytical expressions for the PMF of the errors. Section

5.3 presents the error characterization/simulation methodology, and model validation results

at kernel level and system level. Conclusions are presented in Section 5.4.
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5.1 Modeling Framework and Accuracy Measure

5.1.1 Error Modeling Framework

In this chapter, we employ capital letters and small letters to denote a RV Y and its real-

ization y, respectively. The proposed error modeling framework (see Fig. 5.1) captures the

spatio-temporal distribution of errors. This is required as certain error sources such as defect

and process variations result in an error RV whose PMF is determined by the statistics of

the input and the spatial distribution across physical instantiations of the computational

block. The following notation is employed in this chapter: let Ik (k = 1, 2...,M) denote the

kth instance of the system/kernel subject to errors, and let xk[n], yo,k[n], ηk[n], and ya,k[n]

denote the samples corresponding to the input, error free output, error, and the �nal output

of Ik, with time index n, respectively.

5.1.2 Additive Error Models

For notational simplicity, we drop the index n and k. We consider the additive error model

as shown in Fig. 5.1:

ya = yo ⊕F η (5.1)

where ⊕F denotes addition over �eld F , η is the error and is a realization of the RV N with

PMF P (η). The models (REM-i,j and GEM-i,j) proposed in this paper focus on modeling

P (η).

In REM-i,j, addition in (5.1) is taken over the �eld of reals R. Thus, (5.1) can be written

as

ya = yo + η (5.2)

where ya, yo and η are reals expressed in the 2's complement form. For example, η is written

in the 2's complement form as:
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η = −ηb0 +

Bη−1∑
i=1

ηbi2
−i (5.3)

and ηbi ∈ {0, 1} and Bη are the i
th bit and bit precision of η, respectively. The 2's complement

form of ya and yo can be expressed similarly.

In GEM-i,j, addition in (5.1) is taken over the Galois �eld of 2 (GF(2)). Thus, (5.1) can

be written as:

ya = yo ⊕ η (5.4)

where ya,yo and η are the bit vectors representing ya, yo and η, respectively, and ⊕ is the

bitwise XOR operator. For example, η is given by the vectorized form as:

η = [ηb0, ....η
b
Bη−1]T (5.5)

and is a realization of RV N = [N b
0 , N

b
1 , ..., N

b
Bη−1]. The vectorized form of ya and yo can

be expressed similarly. Note that the 2's complement form and the vectorized form of η are

equivalent.

Figure 5.1: Error modeling framework.
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5.1.3 Model Accuracy Metric

To quantify model accuracy, we employ the commonly employed Jensen-Shannon (JS) diver-

gence DJS [125] as the measure of the distance between two distributions. The JS divergence

between two PMFs P and Q is de�ned as:

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M) (5.6)

where M(·) = 1
2
P (·) + 1

2
Q(·), and DKL is the Kullback�Leibler (KL) divergence de�ned as:

DKL(P ||Q) =
∑
i

P (i)log2

(
P (i)

Q(i)

)
(5.7)

The reason for choosing the JS divergence as the distance measure is that it is symmetric

(DJS(P ||Q) = DJS(Q||P )) and bounded (0 ≤ DJS ≤ 1) [125], unlike KL divergence.

5.2 Error Model Derivation

The challenges in modeling error N lie in the fact that: (1) N is a discrete RV and is

restricted to certain error magnitudes (especially when error rate is low), and (2) the PMF

is not smooth. Instead of modeling the error magnitude directly, we propose to model the

bits N b
i of N as joint RVs. Four di�erent variants of the additive error model are studied:

REM-i, REM-j, GEM-i, and GEM-j.

5.2.1 REM-i: Additive over Real Error Model with Independent Bernoulli
RVs

In REM-i (see (5.2)), N b
i (i = 0, 1..., Bη − 1) is modeled as a Bernoulli RV so the PMF of

N b
i can be written as:

PNb
i
(x) =

pi if x = 1

1− pi if x = 0

(5.8)
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and N b
i (i = 0, 1..., Bη − 1) are assumed to be independent. Thus, under REM-i, the PMF

P (η) can be obtained from (5.8) as:

P (η) =

Bη−1∏
i=0

p
ηbi
i (1− pi)1−ηbi (5.9)

Statistical metrics such as the mean and variance of N can be easily derived from (5.3)

and (5.9). The modeling complexity, de�ned as the number of parameters to be estimated,

is O(Bη) for REM-i, as shown in (5.9).

5.2.2 REM-j: Additive over Real Error Model with Joint Bernoulli RVs

The pairwise covariance between N b
i and N

b
j can be included to improve the modeling accu-

racy. In REM-j, the PMF of N is parametrized by the mean vector µη = [p0, p1, ..., pBη−1]T

and the covariance matrix Cη, where Cη(i, j) = cov(N b
i , N

b
j ) is the covariance between N

b
i

and N b
j for i, j = 0, 1, ..., Bη − 1.

The dichotomized Gaussian (DG) distribution [126] can be used to obtain the PMF

of N . It is shown that [126] for any N , there exists a latent multivariate Gaussian

U = [U0, U1, ..., UBη−1]T with mean vector µu and covariance matrix Cu such that after

dichotomizing U , i.e.

N̂ b
i =

1 Ui ≥ 0

0 Ui < 0

for (i = 0, 1..., Bη − 1) (5.10)

the obtained RV N̂ = [N̂ b
0 , N̂

b
1 .., N̂

b
Bη−1]T can have identical �rst and second order statistics

as N . Therefore, as shown in Section 5.5, REM-j can be obtained as:

P (η) = PN ([N b
0 , ....N

b
Bη−1]T = [ηb0, ..., η

b
i ]
T )

= Φ([0, ...0]T ;Dµu,DCuD
T ) (5.11)

where
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D =


(−1)η

b
0 0 0

0
. . . 0

0 0 (−1)
ηbBη−1

 (5.12)

and Φ([0, ...0]T ;Dµu,DCuD
T ) is the CDF of the joint Gaussian with mean Dµu and co-

variance matrix DCuD
T evaluated at [0, 0...0]T .

The mean and variance of N can be calculated using (5.3) and (5.11). In REM-j, the

parameters to be estimated are the mean vector µu and the covariance matrix Cu. Thus,

the modeling complexity is O(B2
η) as shown in (5.11).

5.2.3 GEM-i and GEM-j

The main di�erence between GEM-i,j (see (5.4)) and REM-i,j (see (5.2)) is that in GEM-i,j,

the error is de�ned using addition over GF(2) instead of real addition. Since the vectorized

form N and the 2's complement form N are equivalent, GEM-i,j can be derived in the same

manner as REM-i,j. Therefore, the PMF P (η) under GEM-i and GEM-j has the same form

as in (5.9) and (5.11), respectively. Note that the independent error model [123] is a special

case (pi = p,∀i) of the GEM-i model. The modeling complexities for GEM-i and GEM-j

are O(Bη) and O(B2
η), respectively.

5.3 Model Validation

The proposed models are validated and compared at both the kernel and system levels. Ker-

nel level validation aims at comparing the JS divergence DJS between the proposed models

and the PMFs obtained via HDL simulation. System level validation aims at validating the

accuracy of the proposed models in predicting system level performance metric S. As shown

in Fig. 5.1, S can be obtained via averaging over the spatio-temporal domain. However,

we employ the following procedure in order to evaluate the performance yield: (1) For each

instance Ik, the system level performance metric for Ik is obtained by averaging over the

input X, i.e., Sk = E(S|Ik), where Sk is a RV, and (2) statistical measures such as the mean
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and standard deviation of Sk can be obtained by performing spatial averaging.

5.3.1 Error Characterization and Injection Methodology

Figure 5.2: Model validation: (a) error characterization and injection methodology, and (b)
2nd order polynomial kernel SVM classi�er.

Figure 5.2(a) shows the error characterization and injection methodology for VOS, process

variation, and defect errors in a common framework. In this paper, an SVM classi�er as

shown in Fig. 5.2(b) is employed to validate the models. The SVM classi�er consists of two

types of multiply accumulator (MAC) kernels: MAC1 is an 8 b input, 8 b coe�cient, and

22 b output MAC used in the �rst stage, and MAC2 is a 10 b input, 8 b coe�cient, and 24 b

output MAC used in the second stage. Simulation results are obtained using a commercial

45 nm CMOS process.

VOS error characterization and injection are done as follows:

1. Characterize delay vs. Vdd of basic gates such as AND and XOR using HSPICE for

0.3 V ≤ Vdd ≤ 1.2 V.

2. Develop structural Verilog HDL models for the SVM classi�er using the basic gates

characterized in Step 1.
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3. Run HDL (bit and clock accurate) simulations using a characterization dataset to

obtain error samples η and classi�cation accuracy Pdet−h. The characterization dataset

is obtained via sampling with replacement from the application level data to emulate

the input statistics. Note that we treate the detection accuracy pdet = P (Ŷa = c) a

RV, which we denote as Pdet.

4. During kernel level validation, analytical models P (η) were built using REM-i,j and

GEM-i,j (see (5.9) and (5.11)). The JS divergence between the models and the char-

acterized error PMFs were calculated according to (5.6).

5. During system level validation, run �xed-point MATLAB simulations using P (η) to

inject errors using the UCI dataset to obtain detection accuracy Pdet−s. Compare

Pdet−s with Pdet−h.

Process variation error characterization and injection are done as follows:

1. Characterize the gate delay distribution vs. operating voltage Vdd of basic gates such

as AND and XOR using HSPICE in the NTV range 0.3 V-0.7 V.

2. Implement the SVM architecture using structural Verilog HDL using the basic gates

characterized in Step 1.

3. Emulate process variations at NTV by generating multiple (30) architectural instances

and assigning random gate delays obtained via sampling the gate delay distributions

obtained in Step 1.

4. Kernel and system level model validations were conducted following the same procedure

as in the VOS methodology.

Defect error characterization and injection are done as follows:

1. Develop structural Verilog HDL models for the SVM classifeir.

2. During HDL simulation, multiple instances (30) were generated, and defects (stuck-

at-one and stuck-at-zero errors) with di�erent defect error rate psaf were injected to

randomly selected nets in the Verilog netlist using custom scripts.
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3. Kernel and system level model validations were conducted following the same procedure

as in the VOS methodology.

5.3.2 Kernel Level Model Validation

Figure 5.3 shows the JS divergence comparison at di�erent voltage overscaling factor Kvos =

Vdd/Vdd,crit where Vdd−crit is the minimum voltage needed for error free operation. It shows

that for VOS errors, GEM-j achieves the lowest DJS which is below 10−2 for 0.5 ≤ Kvos ≤

0.95, and both GEM-i and GEM-j achieve up to two-orders-of-magnitude smaller DJS com-

pared with REM-i and REM-j. Additionally, Figure 5.3 shows that the DJS of the symmet-

rical error model [122] and independent error model [123] is higher than the GEM models.

For all modeling methods, the PMF modeling accuracy decreases as Kvos decreases (thus

error rate pη increases).

Figure 5.3: JS divergence comparison of the proposed models for VOS errors for MAC1
used in the SVM classi�er. The JS divergence is calculated between the proposed models
and the error PMFs obtained via HDL simulation. The results for MAC2 are similar.

Figure 5.4 shows that in the case of process variation errors, GEM-j achieves the lowest

DJS which is below 0.03 for 0.3 V ≤ Vdd ≤ 0.7 V, and both GEM-i and GEM-j achieve up

to 10× smaller DJS compared with REM-i and REM-j. Additionally, Figure 5.4 shows that

the DJS of the symmetrical error model [122] and independent error model [123] are higher

than the GEM models. This is expected due to the fact that process variation errors are
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indeed timing errors. For all modeling methods, the PMF modeling accuracy decreases with

Vdd.

Figure 5.4: JS divergence comparison of the proposed models for process variation errors
for MAC1 used in the SVM classi�er. The JS divergence is calculated between the
proposed models and error PMFs obtained via HDL simulation for M = 30 instances. The
mean DJS is shown in the �gure. The results for MAC2 are similar.

Figure 5.5 shows that unlike timing errors caused by VOS or process variations, in the

case of defects, REM-j achieves the lowest DJS which is below 0.05 for 10−3 ≤ psaf ≤ 0.2

compared with other models. This indicates that the error statistics of defect errors are

di�erent from timing errors, and di�erent model should be employed. In addition, Figure

5.5 shows the DJS of the symmetrical error model [122] and independent error model [123] is

higher than any of the proposed models. Figure 5.5 also shows that PMF modeling accuracy

decreases at higher psaf for all modeling methods.

5.3.3 System Level Simulation

To evaluate the model, we employ the probabilistic models in system simulation and compare

them with HDL results following the procedure in Section 5.3.1. We employ the Breast

Cancer Wisconsin dataset from the UCI machine learning repository [124] which consists

of labeled feature vectors (benign vs. malignant) constructed from digitized images of �ne

needle aspirates (FNA) of patient tissue, and use the SVM classi�er to perform classi�cation.

118



Figure 5.5: JS divergence comparison of the proposed models for defect errors for MAC1
used in the SVM classi�er. The JS divergence is calculated between the proposed models
and error PMFs obtained via HDL simulation for M = 30 instances. The mean DJS is
shown in the �gure. The results for MAC2 are similar.

Figure 5.6 plots the Pdet in presence of VOS errors, and shows that GEM-i and GEM-j

are more accurate than REM-i and REM-j. The di�erence between the estimated Pdet using

GEM-j and HDL error statistics is within 3% for error rate pη ≤ 80%.

Figure 5.7 shows the distribution of Pdet in presence of process variation errors, and demon-

strates that GEM-i and GEM-j are more accurate than REM-i and REM-j, similar to the

case of VOS errors. The di�erence between the estimated Pdet using GEM-j and HDL error

statistics is within 5% for 0.3 V ≤ Vdd ≤ 0.7 V.

Figure 5.8 shows the distribution of Pdet in presence of defect errors, and demonstrates

that REM-j achieves higher accuracy than other models, unlike the case of VOS and process

variation errors. The di�erence between the estimated Pdet using REM-j and HDL error

statistics is within 2% for 10−3 ≤ psaf ≤ 0.2.

5.4 Conclusion

In this chapter, probabilistic additive models for circuit errors due to VOS, process variation,

and defects were proposed to e�ectively predict the performance of ML kernels in presence
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Figure 5.6: System simulation results in presence of VOS errors for the SVM classi�er
comparing the proposed models with HDL simulation results.

of hardware errors. Four models were compared, and analytical expressions for the PMF

were derived. In addition, error characterization/injection methodologies were proposed and

employed to validate the models. Kernel level validation showed that the GEM-j is the most

accurate for VOS and process variation errors, but REM-j is the most accurate for defect

errors. System level simulation using a 2nd order polynomial SVM classi�er further con�rms

the validity of the models.

5.5 Derivation of REM-j

In this section, we derive (5.11). Use vectorized notation η in (5.5), the P (η) can be expressed

as:

P (η)

= P ([N b
0 , ....N

b
Bη−1]T = [ηb0, ..., η

b
i ]
T )

= PU ((−1)η0U0 < 0, .., (−1)ηBη−1UBη−1 < 0)

(5.13)

where U = [U0, U1, ..., UBη−1]T is the latent Gaussian that can be dichotomized to obtain η

according to (5.10). We further de�ne Û = DU where D is de�ned in (5.12). Hence, the

mean and variance of Û can be calculated as E(Û) = Dµu and Cov(Û) = DCuD
T , where
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Figure 5.7: System simulation results in presence of process variation errors for the SVM
classi�er comparing the HDL simulation results with (a) REM-i, (b) REM-j, (c) GEM-i,
and (d) GEM-j. Simulations are performed for 30 instances, the box plot shows the
median, 25%, and 75% quartile of the prediction accuracy Pdet, the dashed line shows the
median Pdet.
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Figure 5.8: System simulation results in presence of defect errors for the SVM classi�er
comparing the HDL simulation results with (a) REM-i, (b) REM-j, (c) GEM-i, and (d)
GEM-j. Simulations are performed for 30 instances, the box plot shows the median, 25%,
and 75% quartile of the prediction accuracy Pdet, the dashed line shows the median Pdet.
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µu and Cu are the mean vector and covariance matrix of the latent Gaussian U . The PMF

P (η) can then be obtained as:

P (η) = Φ([0, ...0]T ;Dµu,DCuD
T )

where Φ([0, ...0]T ;Dµu,DCuD
T ) is the CDF of the joint GaussianU evaluated at [0, 0..., 0]T .
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Chapter 6

ERROR-RESILIENT MACHINE LEARNING IN

NEAR THRESHOLD VOLTAGE VIA CLASSIFIER

ENSEMBLE

In this chapter, we present the design of error-resilient machine learning architectures by em-

ploying a distributed machine learning framework referred to as classi�er ensemble (CE). The

most common machine learning architecture is the centralized architecture (see Fig. 6.1(a))

where a complex block such as the support vector machine (SVM) is employed to process all

the input data. However, the computational complexity of centralized architecture increases

dramatically as a function of the non-linearity of the decision boundary [54]. The CE (see

Fig. 6.1(b)) is a distributed architecture for machine learning which combines several weak

(low-complexity) classi�ers to form a strong classi�er. CE enables on-chip training due to

its distributed nature, and exhibits robustness to feature/label noise. Thus, it is of great

importance to compare the robustness and energy e�ciency of distributed machine learning

architectures designed using CE with centralized architectures such as SVM. Speci�cally, we

hypothesize that architectures based on distributed algorithms are more robust than those

based on centralized ones in presence of timing errors due to NTV operations. We compare

a CE method - random forest (RF) - with SVM using architectural-level error models [127]

in a commercial 45 nm CMOS process on the breast cancer data set in the UCI machine

learning repository [124]. We show that RF achieves a detection accuracy (Pdet) that varies

by 3.2% while maintaining a median Pdet ≥ 0.9 when operating with a gate level delay

variation of 28.9%. This is 5× lower as compared to SVM which exhibits a Pdet that varies

by 16.8% under identical conditions. We further propose a new error weighted voting to

enhance the robustness of RF by employing the timing error statistics of the NTV circuit

fabric. Simulation results con�rm that the proposed method leads to a Pdet that varies by

only 1.4%, which is 12× lower compared to SVM.

The rest of the chapter is organized as follows. Section 6.1 provides the background
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for CE, SVM. Section 6.2 describes dedicated architectures for RF and SVM classi�ers.

Section 6.3 presents simulation results validating the error models in a 45 nm CMOS process,

and employs these models to compare the detection accuracy of SVM, RF, and proposed

RF with error weighted voting scheme. Conclusions are presented in Section 6.4.

Figure 6.1: Two distinct machine learning frameworks: (a) centralized machine learning,
and (b) classi�er ensemble.

6.1 Background

6.1.1 Classi�er Ensemble (CE)

Classi�er ensemble (also referred to as multiple classi�er system) has been employed to

enhance the performance of single classi�er system [128]. A wide variety of CE methods

exist. In bootstrap aggregating (bagging) [129], multiple training sets are generated from

the original training set via random sampling with replacement, in order to train multiple

classi�ers. Adaboost [130] is another popular method for ensemble generation. The training

samples are re-weighted after each iteration so that the mis-classi�ed samples get higher

weights. Other methods such as randomness injection, random subspace and output coding

[128] also exist.

RF is a CE method that combines random subspace and bagging, while employing an

ensemble of decision trees (DTs) as weak classi�ers. It is a popular technique for classi�ca-

tion, prediction, and variable selection, and yielded results superior to those of other linear

and non-linear predictive modeling techniques [131]. Advantages include parallel training,
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robustness to over�tting, ease of design, the capability of getting out-of-bag (OOB) error

estimate, and others.

In RF, the training set for each individual DT is generated using bagging. During the

training of each DT, a random subset of features is selected, and the best feature is selected

to split the DT according to an appropriate criterion. Several variations of RF exist based

on the type of DT used as base classi�ers. Classi�cation and regression tree (CART) [131]

employs the Gini index as a measure of the impurity of nodes. ID3 [132] employs information

gain as the criterion. C4.5 [132] improves ID3 by using the information gain ratio.

6.1.2 Support Vector Machine

Support vector machine (SVM) [133] is a popular supervised learning method for classi�ca-

tion and regression. SVM operates by �rst training a model (the training phase) followed

by test/classi�cation (the test phase). During the training phase, labeled feature vectors

are used to train a model. During the test phase, SVM produces a predictive label when

provided with a new (test) feature vector. SVM training can be formulated as the solution

to the following optimization problem [133]:

min 1
2
‖w‖2 + C

∑
i

ξi

s.t.

ci(w
Txi−b) ≥ 1−ξi

ξi ≥ 0

where C is the cost factor, ξi is the soft margin, xi is the feature vector, ci is the label

corresponding to the feature vector xi, w is the weight vector, and b is the bias. It can

be shown that the optimum weights are a linear combination of the feature vectors that lie

on the margins, i.e., support vectors. Kernel tricks can be employed to realize non-linear

decision boundaries [133].
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6.2 System Architecture

In this section, we present system architectures for RF and SVM classi�ers.

6.2.1 The RF Architecture

The RF classi�er is implemented using an ensemble of L two-stage DT classi�ers (weak

learners) shown in Fig. 6.2(a). The lth DT is trained from a bootstrapped training set Sl
obtained from the original training set S, and processes the Ml-dimensional data vector

xl = [xl,1, xl,2, . . . , xl,Ml
]T obtained from the M -dimensional test data vector x (M �Ml).

Stage 1 of the lth DT consists of a comparator array that computes sgn(xl,i − Tl,i) (l =

1, 2, . . . , L, and i = 1, 2, . . . ,Ml) where Tl,is are the thresholds obtained via training. Stage

2 consists of a look up table (LUT) which encodes the decision of each root-to-leaf path into

a 1-bit output ya,l ∈ {0, 1}. The outputs of the L DTs are combined via a voter block to

generate the �nal decision. Each DT is trained using the Gini index [131] as the training

criterion.

Conventionally, a majority voter is employed to combine the outputs from all DTs as

follows:

ŷa = maj(ya,1, ya,2, ..., ya,L)

where ŷa ∈ {0, 1} is the majority voter output, and ya,l is the l
th DT output given by:

ya,l = yo,l ⊕ ηl

where yo,l ∈ {0, 1} is the error-free output and ηl ∈ {0, 1} is the timing error of the lth

DT. The RF with majority voter is denoted as RF-M. In case of binary classi�cation, the

majority voter can be implemented as shown in Fig. 6.2(b).

In order to enhance the robustness of RF in presence of timing errors, we propose an error

weighted voting scheme where the timing error statistics are incorporated during the decision
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(a)

(b) (c)

Figure 6.2: System architecture for: (a) the RF classi�er with L DTs, (b) the majority
voter, and (c) the weighted voter.

process. In order to do so, we employ the maximum-a-posterior (MAP) criterion, i.e.:

ŷa = arg max
∀c∈C

P (c|x) (6.1)

where C is the label set, and P (c|x) is the posterior probability of class label c conditioned

on the test data x. Thus:
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P (c|x) =
L∑
l=1

P (c|Rl,x)P (Rl|x) (6.2)

=
L∑
l=1

P (c|Rl,x)P (Rl) (6.3)

≈
L∑
l=1

1{ya,l = c}pl (6.4)

where P (c|Rl,x) denotes the posterior probability of the class label, Rl is the event of the

lth DT being correct during the training phase, pl = P (Rl) is the probability of the event Rl,

and 1{·} denotes the indicator function. Equation (6.2) implies (6.3) because the test data

x and event Rl are independent, and (6.3) implies (6.4) because we assume the DT output

has a probability mass of 1 at the selected class label. The �nal decision ŷa is obtained

from (6.1) by choosing the label c that maximizes (6.4). Note that pl represents the decision

accuracy of the lth DT in presence of timing errors.

In the case of binary classi�cation, one can simplify (6.1) using (6.4) into:

ŷa =

1 if
∑L

l=1 1{ya,l = 1}p′l > 1
2

0 otherwise

where p′l = pl∑L
l=1 pl

and the voter can be implemented as shown in Fig. 6.2(c).

To incorporate the timing error statistics of each DT, we express pl in (6.4) as follows:

pl =
1∑

ηl=0

P (Rl, ηl) =
1∑

ηl=0

P (Rl|ηl)P (ηl) (6.5)

where P (Rl|ηl) is the probability of correct decision of the lth DT conditioned on ηl. The

probabilities P (Rl|ηl) and P (ηl) can be obtained during the training phase for each DT. For

a RF binary classi�er, (6.5) can be simpli�ed into (see Section 6.5.1):

pl = P (Rl|ηl = 0)(1− pηl) + (1− P (Rl|ηl = 0))pηl (6.6)

129



where P (Rl|ηl = 0) can be obtained via performing validation using out-of-bag samples, and

pηl = P (ηl 6= 0) is the error rate of the lth DT. We denote RF with error weighted voting

scheme as RF-EW.

When error rate pηl = 0, the error weighted voting scheme reduces to the conventional

weighted voter [128] where pl = P (Rl|ηl = 0). The RF with conventional weighted voter is

denoted as RF-W.

The performance of RF-EW improves when the DTs exhibit uncorrelated errors, i.e., the

DT outputs exhibit diversity in terms of error statistics. It is possible to enhance DT diversity

by designing each DT to have di�erent: (1) algorithm (algorithmic diversity), (2) architecture

(architectural diversity), and (3) data-path precision (precisional diversity), across the DT

ensemble. Precision has a signi�cant impact on the timing error statistics since the hardware

errors under investigation are due to timing violations. Therefore, in this paper, the precision

of each DT data-path in the RF-EW is randomly assigned uniformly between 4b and 8b,

leading to di�erent critical path delays among the DTs, and hence uncorrelated errors.

6.2.2 The SVM Architecture

The centralized machine learning algorithm employed in this paper is a second-order poly-

nomial kernel SVM described as:

ŷa = sgn(ya)

ya =
N∑
i=1

(βsTi x + γ)
2
αi + b (6.7)

where x = [x1, x2, ..., xM ]T is the M dimensional test data vector, si = [s1, s2, ..., sM ]T is the

ith support vector, αi is the weight associated with si, b is the bias, β and γ are parameters

of the polynomial kernel, and N is the total number of support vectors (typically N �M).

Direct computation of (6.7) requires O(NM) multiply-accumulate (MAC) operations. The
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following reformulation [134] reduces the number of MAC operations to O(M2):

ya = x̃TW̃x̃ + b (6.8)

W̃ =
N∑
i=1

αis̃is̃i
T

where W̃ is a precomputed weight matrix, x̃ =

 1

x

, and s̃i =

 γ

βsi

. Figure 6.3 shows
a folded SVM architecture implementing (6.8) where Stage 1 computes W̃x̃, and Stage 2

computes the dot product between x̃ and Stage 1 output, and adds the bias term b.

Figure 6.3: System architecture for a second-order polynomial kernel SVM classi�er.

6.2.3 System Analysis

The potential robustness improvement achieved by RF can be analyzed by inspecting the

generalized error E
[(
C − 1

L

∑L
l=1 Ŷa,l

)2]
where C is the label and 1

L

∑L
l=1 Ŷa,l is the RF

output where equal weights in the voter are assumed for simplicity of analysis. Here the

expectation is taken over the distribution of the label C, the training set S, and the timing

error N1, ..., NL.

We start by deriving the generalized error for a single DT de�ned as E[(C − Ŷa)2] where

Ŷa is the DT output. It can be shown that (see Section 6.5.2):

E
[(
C − Ŷa

)2]
= σ2

C + b2 + σ2
Ŷa

(6.9)
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where σ2
C = E

[(
C − E[C]

)2]
is the irreducible error (noise), b2 = (E[C] − E[Ŷa])

2 is the

bias term and σ2
Ŷa

= E
[(
E[Ŷa]− Ŷa

)2]
is the variance of Ŷa. Such a decomposition identi�es

the contribution of di�erent error sources and allows one to understand the e�ect of CE in

reducing these errors.

For CE, it can further be shown that the noise σ2
C,RF and the bias b2

RF (corresponding

to the �rst two terms in (6.9)) do not change, i.e., σ2
C,RF = σ2

C and b2
RF = b2, respectively.

However, the output variance σ2
RF can be expressed as (see Section 6.5.3):

σ2
RF =

1

L
σ2
Ŷa

(6.10)

We can see from (6.10) that σ2
RF is reduced by a factor of 1

L
from σ2

Ŷa
, and that for the RF

to achieve a lower variance, σ2
Ŷa

should be less than L times the variance of the centralized

system. The reduction of variance leads to reduced generalized error and mis-classi�cation

rate.

6.3 Simulation Results

In section 6.3.1 the detection accuracies of the SVM and RF architectures are compared

using the validated error models and methodology from Chapter 5. We employ the Breast

Cancer Wisconsin dataset from the UCI machine learning repository [124] which consists

of labeled feature vectors (benign vs. malignant) constructed from digitized images of �ne

needle aspirates (FNA) of patient tissue.

The SVM architecture being considered in this study consists of two types of MACs:

Stage 1 employs 8 b input, 8 b coe�cient, and 22 b output MACs, and Stage 2 employs 10 b

input, 8 b coe�cient, and 24 b output MACs. The conventional RF architecture employing

majority and weighted voter has Stage 1 consisting of comparator arrays with 8 b input and

8 b thresholds, and LUTs implemented as logic networks during the architecture generation.

In the proposed RF-EW, each DT is implemented using a randomly selected precision uni-

formly distributed between 4 b and 8 b for both the input and the thresholds. In all cases,

the parameters of SVM and RF were trained assuming no timing errors. These precisions
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were chosen to obtain less than 0.5% degradation in Pdet compared to a �oating point imple-

mentation. The complexities of the SVM and RF (with ensemble size L = 10) were found

to be 1.63K and 1.47K 2-input NAND gate equivalents, respectively.

6.3.1 Comparison of SVM and RF

6.3.1.1 Comparison of Timing Error Rates

We �rst compare the timing error rates pη = P (η 6= 0) of SVM and RF obtained via HDL

simulations as the voltage decreases in NTV. Figure 6.4 shows that the median timing error

rate p̄η increases by 500× from 2.1× 10−3 to 0.99, and from 1.1× 10−3 to 0.61 for SVM and

RF, respectively, as the voltage Vdd decreases from 0.7 V to 0.3 V, indicating that the RF

architecture has up to 4.5× lower timing error rate compared with SVM. The error rate of

RF architecture is lower because it has comparator blocks which have a much simpler data

path compared with the MAC units in SVM. Figure 6.4 also demonstrates that the gate

level delay variation (σ/µ)d increases by 12× from 2.8% to 33% as the voltage Vdd decreases

from 0.7 V to 0.3 V.

Next, we employ P (η) to inject errors in �xed-point MATLAB simulations of SVM and

RF architectures to compare their robustness to timing errors in NTV. All comparisons

henceforth are in terms of Pdet−s. Hence, we simplify the subscript and denote the detec-

tion accuracy as Pdet. Four architectures are compared: (1) SVM, (2) RF with majority

voter [131] (RF-M), (3) RF with weighted majority voter [128] (RF-W), and (4) RF with

the proposed error weighted voter (RF-EW). We will compare the four architectures in terms

of median (p̄det) and standard deviation (σpdet) of detection accuracy Pdet.

6.3.1.2 Comparison of p̄det

Figure 6.5(a) shows that RF has higher p̄det than SVM when the ensemble size L is su�ciently

large. Speci�cally, RF-M is able to maintain p̄det ≥ 0.9 for (σ/µ)d ≤ 28.9% with L = 10,

whereas SVM can only maintain the same performance for (σ/µ)d ≤ 11.7%. Additionally,

RF-EW achieves up to 3% higher p̄det compared with RF-W and RF-EW, and is able to
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maintain p̄det ≥ 0.93 for (σ/µ)d ≤ 29.6%. Finally, Figure 6.5(a) further shows that RF with

L = 10 is able to maintain detection performance even at (σ/µ)d of 28.9%. This indicates

that RF architectures have a higher robustness to timing errors compared with SVM in spite

of its complexity being lower by 10% when L = 10.

Figure 6.4: Median error rate p̄η and gate level delay variation (σ/µ)d of SVM and RF
architecture in NTV region of 0.3 V ≤ Vdd ≤ 0.7 V.

(a) (b)

Figure 6.5: Robustness comparison in: (a) the median detection accuracy p̄det , and (b) the
standard deviation of detection accuracy σpdet for SVM classi�er, RF-M with L = 1 (i.e.
single DT), and RF-M (L = 10), RF-W (L = 10), and RF-EW (L = 10). Simulations were
performed over 30 instances.
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6.3.1.3 Comparison of σpdet

Figure 6.5(b) shows that σpdet is signi�cantly reduced as L increases. RF-M achieves σpdet ≤

3.5 × 10−2 when L = 10, which is 5X lower compared to SVM or RF-M with L = 1. This

further demonstrates that distributed architectures are inherently more robust to timing

errors than centralized ones. Figure 6.5(b) also shows that RF-EW achieves σpdet ≤ 1.4 ×

10−2 when (σ/µ)d ≤ 29.6%, which is 12× and 3.5× lower compared to SVM and RF-W,

respectively. This demonstrates that incorporating timing error statistics into the decision

making process enhances robustness. When (σ/µ)d ≥ 30%, σpdet of RF-EW is higher than

that of RF-M and RF-W because all instances of RF-M and RF-W achieve a low Pdet ≈ 0.6,

whereas some instances of RF-EW can still achieve a Pdet ≥ 0.9, leading to increased σpdet .

To further understand the robustness improvement achieved by RF, Fig. 6.6 shows that

the RF output variance σ2
RF reduces from 0.16 to 0.02 as L increases from 1 to 25 when no

precision diversity is employed. The variance reduction is more signi�cant when the ensemble

size L is small, and slows down as L further increases. This is because the independence

assumption across the DTs is violated for large L. Figure 6.6 also shows that σ2
RF can be

further reduced to 0.01 due to more uncorrelated error statistics when precision diversity is

employed as in the RF-EW.

Figure 6.6: The variance of RF output when (σ/µ)d = 29%.
.
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6.4 Conclusion

In this chapter, the inherent robustness of CE and centralized machine learning architectures

in presence of timing violations is compared. It is shown that distributed architectures em-

ploying CE are inherently more robust to timing errors than centralized ones. Furthermore,

it is shown that the algorithm itself can be adapted to further enhance the robustness. Such

enhancement is achieved by using error weighted voting during the decision combination, and

employing precision diversity in the architecture data path. The results demonstrate that in

the CE framework, architectural level information can be incorporated at the system level

to achieve enhanced robustness. In the future, architectural and algorithmic level diversity

techniques can be employed to improve the robustness of CE. In addition, the robustness of

CE in presence of defects errors (stuck-at-faults) can also be evaluated.

6.5 Derivations

6.5.1 Derivation of (6.6)

In this subsection, we derive (6.6). From the theorem of total probability:

pl = P (Rl|ηl = 0)P (ηl = 0) + P (Rl|ηl = 1)P (ηl 6= 0)

= P (Rl|ηl = 0)(1− pηl) + P (Rl|ηl = 1)pηl (6.11)

We need to show P (Rl|ηl = 1) = 1 − P (Rl|ηl = 0). In binary classi�cation, the erroneous

output of the lth DT can be expressed as:

ya,l = c⊕ ηl ⊕ el (6.12)
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where c, ηl, el denote the true label, timing error, and error due to noise in data, respectively.

Thus, the event Rl = {el ⊕ ηl = 0}, and we have:

P (Rl|ηl = 1) = P (el ⊕ ηl = 0|ηl = 1)

= P (el = 1|ηl = 1) (6.13)

= P (el = 1) (6.14)

= P (el = 1|ηl = 0)

= P (el ⊕ ηl = 1|ηl = 0)

= 1− P (el ⊕ ηl = 0|ηl = 0)

= 1− P (Rl|ηl = 0) (6.15)

where (6.13) to (6.14) comes from the independence of el and ηl. Substituting (6.15) into

(6.11) leads to (6.6) thereby completing the proof of (6.6).

6.5.2 Derivation of (6.9)

In this subsection, we derive (6.9). In deriving the generalized error E[(C − Ŷa)
2], the

expectation is taken over label C, the training set S, and the timing error N . Here S and

N are independent. Without loss of generality, we assume a �xed input X = x as suggested

by [135] for notational simplicity. Thus, (6.9) can be expressed as:

E
[(
C − Ŷa

)2]
= E

[(
C − E[C] + E[C]− Ŷa

)2]
= E

[
(C − E[C])2

]
+ E

[
(E[C]− Ŷa)2

]
(6.16)
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where we use the fact that

E
[(
C − E[C]

)(
E[C]− Ŷa

)]
= E

[
E
[
(C − E[C])(E[C]− Ŷa)|S,N

]]
= 0 (6.17)

The �rst term in (6.16) E
[
(C − E[C])2

]
is the noise σ2

C . The second term in (6.16) can be

further decomposed as:

E
[(
E[C]− Ŷa

)2]
= E

[(
E[C]− E[Ŷa] + E[Ŷa]− Ŷa

)2]
(6.18)

= (E[C]− E[Ŷa])
2 + E

[(
E[Ŷa]− Ŷa

)2]
(6.19)

= b2 + σ2
Ŷa

(6.20)

where in going from (6.18) to (6.19) we use the fact that

E
[(
E[C]− E[Ŷa]

)(
E[Ŷa]− Ŷa

)]
=

(
E[C]− E[Ŷa]

)
E
[
E[Ŷa]− Ŷa]

]
= 0 (6.21)

This completes the proof of (6.9).

6.5.3 Derivation of (6.10)

In this subsection, we derive (6.10). In deriving the generalized error E[(C − 1
L

∑L
l=1 Ŷa,l)

2],

the expectation is taken over C,S, and the timing error of the L DTs N1, . . . , NL. The

generalized error can be decomposed similarly to (6.16) and (6.20) as follows:

E
[(
C − 1

L

L∑
l=1

Ŷa,l
)2]

= σ2
C + b2

RF + σ2
RF
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where σ2
C = E

[(
C − E[C]

)2]
is the noise term same as the �rst term in (6.16). Assuming

Ŷa,l are i.i.d with the same distribution as in the single DT Ŷa, the bias term b2
RF can be

simpli�ed into:

b2
RF =

(
E[C]− E[

1

L

L∑
l=1

Ŷa,l]
)2

=
(
E[C]− E[Ŷa]

)2

which is the same as the �rst term in (6.20), and σ2
RF can be simpli�ed as follows:

σ2
RF = E

[(
E[

1

L

L∑
l=1

Ŷa,l]−
1

L

L∑
l=1

Ŷa,l
)2
]

=
1

L2
E
[( L∑

l=1

(E[Ŷa,l]− Ŷa,l)
)2
]

(6.22)

=
1

L2

L∑
l=1

E
[(
E[Ŷa,l]− Ŷa,l

)2
]

(6.23)

=
1

L
σ2
Ŷa

(6.24)

where (6.22) to (6.23) comes from the assumption on the independence of Ŷa,l. This completes

the proof of (6.10).
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Chapter 7

CONCLUSION AND FUTURE WORK

Moving towards the age of ubiquitous computing, ULP platforms for in-silicon machine

learning will be the key enabler for pervasive intelligence in our daily lives. The quest for

energy e�cient in-silicon machine learning is made challenging due to the energy delivery,

communication, computation and robustness challenges. This dissertation explores design

approaches that represent a radical change from the conventional design methodology by

embedding computation into the energy delivery, sensing, and emerging stochastic fabrics.

7.1 Dissertation Contributions

The Compute Voltage Regulator Module (C-VRM) has been proposed to embed information

processing into the energy delivery subsystem. The C-VRM eliminates the loss associated

with conventional switched capacitor based energy delivery circuits. Measured results of

a prototype IC show more than 40% savings in system-level energy per operation, and an

e�ciency ranging from 79% to 83%.

The Compute Sensor approach has been proposed to embed information processing and

learning into the sensing front-end. The Compute Sensor eliminates both the traditional

sensor-processor interface, and the high-SNR/high-energy digital processing by moving fea-

ture extraction and classi�cation functions into the analog domain in close proximity to the

APS array. The Compute Sensor designed in 65 nm CMOS is shown to achieve a detection

accuracy greater than 94.7% using the Caltech101 dataset [80], which is within 0.5% of that

achieved by an ideal digital implementation. The performance is achieved with 7× to 17×

lower energy than the conventional architecture for the same level of accuracy.

This dissertation proposes a new SEC technique well-suited for machine learning appli-
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cations, i.e., embedded algorithmic-noise tolerance (E-ANT). E-ANT at the architectural

and algorithmic level are applied to EEG seizure detection systems. Simulation results in a

commercial 45 nm CMOS process show that ARCH-ANT can compensate for error rates up

to 0.38, and ALG-ANT can compensate for error rates up to 0.41, while maintaining a true

positive rate ptp > 0.9 and a false positive rate pfp ≤ 0.01. This error tolerance is employed

to reduce energy via the use of voltage overscaling (VOS). ARCH-ANT and ALG-ANT are

able to achieve up to 51% and 44% energy savings, respectively.

This dissertation makes contribution in theoretical analysis of SEC by proposing a class

of probabilistic error models that can accurately model the error distribution on the noisy

hardware fabrics. The models are validated in a commercial 45 nm CMOS process and

employed to evaluate the performance of machine learning kernels in presence of hardware

errors. Performance prediction of a support vector machine (SVM) based classi�er using

these models indicates that when comparing Monte Carlo with HDL simulations, probability

of detection Pdet estimated using the model is within 3% for VOS error when the error rate

pη ≤ 80%, within 5% for process variation error and within 2% for defect errors when the

defect rate (the percentage of circuit nets subject to stuck-at-faults) psaf is between 10−3

and 0.2.

Finally, SEC techniques have been extended into distributed machine learning algorithms

by proposing error resilient classi�er ensemble. Employing the breast cancer data set in

the UCI machine learning repository and architectural-level error models in a commercial

45 nm CMOS process, it is determined that RF-based architectures are signi�cantly more

robust than SVM architectures in presence of timing errors due to process variations in

near-threshold voltage (NTV) regions (0.3 V−0.7 V). Additionally, an error weighted voting

technique that incorporates the timing error statistics of the NTV circuit fabric is proposed

to further enhance the robustness of RF architectures. Simulation results con�rm that the

error weighted voting achieves a Pdet that varies by only 1.4%, which is 12× lower compared

to SVM.
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7.2 Future Work

7.2.1 System Design

System optimization and design space exploration play a crucial role in designing energy

e�cient and robust ULP platforms for in-silicon machine learning. To date, an ad-hoc

approach is adopted for the design space exploration. The search for energy minimum

realization of in-silicon machine learning systems needs to be done in a systematic manner,

much as it is done in the area of low power signal processing and communication systems and

ICs [136, 29]. Many machine learning algorithms are inherently formulated as optimization

problems, i.e., minimizing certain loss functions subject to constraints such as the form

of the functions (linear, quadratic, multi-layer, etc), the sparsity of solutions, and others.

This optimization formulation opens many opportunities where the architecture/circuit level

performance metrics can be incorporated so as to introduce new constraints in the original

optimization problem. Such a resource constrained optimization allows the systematic design

of ULP platforms for machine learning. In fact, the ALG-ANT based FIR �lter in Chapter 4

is one example where we introduce additional constraints during the WLS �lter optimization

to enhance the robustness of the design. Some possible constraints to consider are the

precision requirements in the data path, the error rate/error statistics in the underlying

circuit fabric, the storage/communication cost for data transfer, and others.

7.2.2 Architecture

New architectures are needed for energy minimum realization of in-silicon machine learning

systems. Conventionally, the design of in-silicon machine learning is treated as yet another

problem of e�cient computing. As a result, reliable circuit operations are guaranteed by

adopting a worst case design methodology and use of large design margins, limiting the

achievable energy e�ciency. In contrast, new architectures should embrace both the prob-

abilistic nature of the performance metric, and the statistical behavior in the computing

fabric. To this end, the architectures explored in this dissertation o�er several future direc-

tions to be extended.
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In-sensor machine learning points to an opportunity to achieve large energy savings by the

elimination of interface overhead. At the same time, the non-idealities resulting from mixed

signal implementation require error resilient computing. The proposed Compute Sensor of-

fers a general framework to map di�erent algorithms such as decision trees, kernel SVMs,

and ensembles of these classi�ers, because the bit-line and cross bit-line processors perform

element-wise and dimensionality reduction operations which are common in many of these

algorithms. Feature selection techniques, such as the focus-of-attention mechanisms used

in many vision algorithms [137], can also be embedded into the sensor. These techniques

employ a cascade of simple classi�ers, and can rapidly discard images/samples that are

not informative. Therefore, further energy savings can be achieved by avoiding the access

of non-informative pixels. In addition, programmable in-sensor machine learning architec-

tures can also be explored to con�gure the bit-line and cross bit-line processors to achieve

various inference tasks. Another interesting direction is the combination of in-sensor and re-

cently proposed in-memory computing [82] architectures so that inference task is partitioned

between the two systems, completely eliminating the need for conventional von Neumann

architectures.

Machine learning in stochastic fabrics, such as those operating with voltage scaling, process

variation or defects, o�ers another opportunity where architectural design can be explored

to tolerate device/circuit errors and to enhance energy e�ciency. Many machine learning

algorithms are iterative and possess inherent tolerance for certain error statistics. New SEC

techniques can be explored for in-silicon machine learning systems. Error compensation

such as retraining can also be explored to develop architectures that have on-line training

capabilities. Such architectures are of great interest in applications where the data statistics

are time varying.

7.2.3 Circuit and Devices

Circuit level techniques should be explored in combination with the architectural level tech-

niques. Speci�cally, machine learning algorithms o�er relaxed precision/linearity require-

ment for the underlying circuit. This new degree of freedom can be explored to design
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circuits that have tolerable non-ideality, but at the same time o�er large energy bene�ts.

Circuit level techniques that can engineer the error statistics to favor error compensation

should also be explored for wide application of SEC techniques. At the device level, many

emerging devices such as CNFET [85], spin devices [86], and others have the potential for

large energy saving or density improvement, but su�er from various hardware errors such as

defects and noise. This inherent statistical behavior o�ers an opportunity to employ SEC

to design reliable systems on emerging beyond CMOS technologies.

7.2.4 Theoretical Limits

Theoretical foundations for in-silicon machine learning need to be investigated. The sys-

tem performance in presence of errors/non-idealities should be further analyzed to reveal

the impact of di�erent error statistics. Performance bounds when hardware constraints are

incorporated need to be derived to guide the design of resource-constrained machine learn-

ing systems. Such theoretical limits will provide guidance in the quest for energy e�cient

realizations of in-silicon machine learning systems.
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