18 research outputs found

    Composite kernel learning

    Get PDF
    The Support Vector Machine (SVM) is an acknowledged powerful tool for building classifiers, but it lacks flexibility, in the sense that the kernel is chosen prior to learning. Multiple Kernel Learning (MKL) enables to learn the kernel, from an ensemble of basis kernels, whose combination is optimized in the learning process. Here, we propose Composite Kernel Learning to address the situation where distinct components give rise to a group structure among kernels. Our formulation of the learning problem encompasses several setups, putting more or less emphasis on the group structure. We characterize the convexity of the learning problem, and provide a general wrapper algorithm for computing solutions. Finally, we illustrate the behavior of our method on multi-channel data where groups correpond to channels. 1

    Extracting Attempted Hand Movements from EEGs in People with Complete Hand Paralysis Following Stroke

    Get PDF
    This study examines the feasibility of using electroencephalograms (EEGs) to rapidly detect the intent to open one's hand in individuals with complete hand paralysis following a subcortical ischemic stroke. If detectable, this motor-planning activity could be used in real time to trigger a motorized hand exoskeleton or an electrical stimulation device that opens/closes the hand. While EEG-triggered movement-assist devices could restore function, they may also promote recovery by reinforcing the use of remaining cortical circuits. EEGs were recorded while participants were cued to either relax or attempt to extend their fingers. Linear-discriminant analysis was used to detect onset of finger-extension from the EEGs in a leave-one-trial-out cross-validation process. In each testing trial, the classifier was applied in pseudo-real-time starting from an initial hand-relaxed phase, through movement planning, and into the initial attempted-finger-extension phase (finger-extension phase estimated from typical time-to-movement-onset measured in the unaffected hand). The classifiers detected attempted-finger-extension at a significantly higher rate during both motor-planning and early attempted execution compared to rest. To reduce inappropriate triggering of a movement-assist device during rest, the classification threshold could be adjusted to require more certainty about one's intent to move before triggering a device. Additionally, a device could be set to activate only after multiple time samples in a row were classified as finger-extension events. These options resulted in some sessions with no false triggers while the person was resting, but moderate-to-high true trigger rates during attempted-movements

    Energy extraction method for EEG channel selection

    Get PDF
    Channel selection is an improvement technique to optimize EEG-based BCI performance. In previous studies, many channel selection methods—mostly based on spatial information of signals—have been introduced. One of these channel selection techniques is the energy calculation method. In this paper, we introduce an energy optimization calculation method, called the energy extraction method. Energy extraction is an extension of the energy calculation method, and is divided into two steps. The first step is energy calculation and the second is energy selection. In the energy calculation step, l2-norm is used to calculate channel energy, while in the energy selection method we propose three techniques: “high value” (HV), “close to mean” (CM), and “automatic”. All proposed framework schemes for energy extraction are applied in two types of datasets. Two classes of datasets i.e. motor movement (hand and foot movement) and motor imagery (imagination of left and right hand movement) were used. The system used a Common Spatial Pattern (CSP) method to extract EEG signal features and k-NN as a classification method to classify the signal features with k = 3. Based on the test results, all schemes for the proposed energy extraction method yielded improved BCI performance of up to 58%. In summary, the energy extraction approach using the CM energy selection method was found to be the best channel selection technique

    Decoding steady-state visual evoked potentials from electrocorticography

    Get PDF
    We report on a unique electrocorticography (ECoG) experiment in which Steady-State Visual Evoked Potentials (SSVEPs) to frequency-and phase-tagged stimuli were recorded from a large subdural grid covering the entire right occipital cortex of a human subject. The paradigm is popular in EEG-based Brain Computer Interfacing where selectable targets are encoded by different frequency-and/or phase-tagged stimuli. We compare the performance of two state-of-the-art SSVEP decoders on both ECoG-and scalp-recorded EEG signals, and show that ECoG-based decoding is more accurate for very short stimulation lengths (i.e., less than 1 s). Furthermore, whereas the accuracy of scalp-EEG decoding bene fi ts from a multi-electrode approach, to address interfering EEG responses and noise, ECoG decoding enjoys only a marginal improvement as even a single electrode, placed over the posterior part of the primary visual cortex, seems to suf fi ce. This study shows, for the fi rst time, that EEG-based SSVEP decoders can in principle be applied to ECoG, and can be expected to yield faster decoding speeds using less electrodes

    The classification of wink-based eeg signals by means of transfer learning models

    Get PDF
    Stroke is one of the dominant causes of impairme nt. An estimation of half post-stroke survivors suffer from a severe motor or cognitive deterioration, that affects the functionality of the affected parts of the body, which in turn, prevents the patients from carrying out Activities of Daily Living (ADL). EEG signals which contains information on the activities carried out by a human that is widely used in many applications of BCI technologies which offers a means of controlling exoskeletons or automated orthosis to facilitate their ADL. Although motor imagery signals have been used in assisting the hand grasping motion amongst others motions, nonetheless, such signals are often difficult to be generated. It is non-trivial to note that EEG-based signals for instance, winking could mitigate the aforesaid issue. Nevertheless, extracting and attaining significant features from EEG signals are also somewhat challenging. The utilization of deep learning, particularly Transfer Learning (TL), have been demonstrated in the literature to b e able to provide seamless extraction of such signals in a myria d of various applications. Hitherto, limited studies have investigated the classification of wink-based EEG signals through TL accompanied by classical Machine Learning (ML) pipelines. This study aimed to explore the performance of different pre-processing methods, namely Fast Fourier Transform, Short-Time Fourier Transform, Discrete Wavelet Transform, and Continuous Wavelet Transform (CWT) that could allow TL models to extract features from the images generated and classify through selected classical ML algorithms . These pre-processing methods were utilized to convert the digital signals into respective images of all the right and left winking EEG signals along with no winking signals that were collected from ten (6 males and 4 females, aged between 22 and 29) subjects. The implementation of pre-processing algorithms has been demonstrated to be able to mitigate the signal noises that arises from the winking signals without the need for the use signal filtering algorithms. A new form of input which consists of scalogram and spectrogram images that represents both time and frequency domains , are then introduced in the classification of wink-based EEG signals. Different TL models were exploited to extract features from the transformed EEG signals. The features extracted were then classified through three classical ML models, namely Support Vector Machine, k -Nearest Neighbour (k-NN) and Random Forest to determine the best pipeline for wink -based EEG signals. The hyperparameters of the ML models were tuned through a 5-fold crossvalidation technique via an exhaustive grid search approach. The training, validation and testing of the models were split with a stratified ratio of 60:20:20, respectively. The results obtained from the TL-ML pipelines were evaluated in terms of classification accuracy, Precision, Recall, F1-Score and confusion matrix. It was demonstrated from the simulation investigation that the CWT model could yield a better signal transformation amongst the preprocessing algorithms. In addition, amongst the eighteen TL models evaluated based on the CWT transformation, fourteen was f ound to be able to extract the features reasonable, i.e., VGG16, VGG19, ResNet101, ResNet101 V2, ResNet152, ResNet152 V2, Inception V3, Inception ResNet V2, Xception, MobileNetV2, DenseNet 121, DenseNet 169, NasNetMobile and NasNetLarge. Whilst it was observed that the optimized k-NN model based on the aforesaid pipeline could achieve a classification accuracy of 100% for the training, validation, and tes t data. Nonetheless, upon carrying out a robustness test on new data, it was demonstrated that the CWT-NasNetMobile-kNN pipeline yielded the best performance. Therefore, it could be concluded that the proposed CWT-NasNetMobile-k-NN pipeline is suitable to be adopted to classify -winkbased EEG signals for BCI applications,for instance a grasping exoskeleton

    Working Memory Classification Enhancement of EEG Activity in Dementia: A Comparative Study

    Get PDF
    The purpose of the current investigation is to distinguish between working memory ( ) in five patients with vascular dementia ( ), fifteen post-stroke patients with mild cognitive impairment ( ), and fifteen healthy control individuals ( ) based on background electroencephalography (EEG) activity. The elimination of EEG artifacts using wavelet (WT) pre-processing denoising is demonstrated in this study. In the current study, spectral entropy ( ), permutation entropy ( ), and approximation entropy ( ) were all explored. To improve the  classification using the k-nearest neighbors ( NN) classifier scheme, a comparative study of using fuzzy neighbourhood preserving analysis with -decomposition ( ) as a dimensionality reduction technique and the improved binary gravitation search ( ) optimization algorithm as a channel selection method has been conducted. The NN classification accuracy was increased from 86.67% to 88.09% and 90.52% using the  dimensionality reduction technique and the  channel selection algorithm, respectively. According to the findings,  reliably enhances  discrimination of , , and  participants. Therefore, WT, entropy features, IBGSA and NN classifiers provide a valid dementia index for looking at EEG background activity in patients with  and .
    corecore