52 research outputs found

    Heartwave biometric authentication using machine learning algorithms

    Get PDF
    PhD ThesisThe advancement of IoT, cloud services and technologies have prompted heighten IT access security. Many products and solutions have implemented biometric solution to address the security concern. Heartwave as biometric mode offers the potential due to the inability to falsify the signal and ease of signal acquisition from fingers. However the highly variated heartrate signal, due to heartrate has imposed much headwinds in the development of heartwave based biometric authentications. The thesis first review the state-of-the-arts in the domains of heartwave segmentation and feature extraction, and identifying discriminating features and classifications. In particular this thesis proposed a methodology of Discrete Wavelet Transformation integrated with heartrate dependent parameters to extract discriminating features reliably and accurately. In addition, statistical methodology using Gaussian Mixture Model-Hidden Markov Model integrated with user specific threshold and heartrate have been proposed and developed to provide classification of individual under varying heartrates. This investigation has led to the understanding that individual discriminating feature is a variable against heartrate. Similarly, the neural network based methodology leverages on ensemble-Deep Belief Network (DBN) with stacked DBN coded using Multiview Spectral Embedding has been explored and achieved good performance in classification. Importantly, the amount of data required for training is significantly reduce

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    The 9th Conference of PhD Students in Computer Science

    Get PDF

    Extraction of ECGs for twin pregnancies

    Get PDF
    The wellbeing of a fetus or fetuses can be monitored by the fetal heart rate (fHR). There are several proposed methods for fHR monitoring; these include fetal phonocardiography (fPCG), fetal cardiography (fCTG) and fetal magnetocardiogram (fMCG). Although, according to the research reviewed, none of these methods are ideal for monitoring or estimating fHR. The fPCG method is highly sensitive to noise and can only be used late in the pregnancy. With fCTG, the ultrasound transducer used for measuring the fHR needs to be properly aligned, otherwise the maternal heart rate (mHR) can be recorded instead of the fHR. In addition, the ultrasound high frequency exposure is not completely proven to be safe for the fetus. fMCG can detect fHR very accurately in comparison to the other methods but the method is unwieldy and expensive; thus not widely used in a clinical environment. Therefore, there is a need for technology which would be able to provide more information about the cardiac health of a fetus, delivered in a cost-effective, streamlined manner. Based on the research reviewed and captured within this dissertation, non-invasive fetal electrocardiography (fECG) has been identified as a promising fetal cardiac monitoring method and if researched further, has the potential to become the next mainstream approach for monitoring fetal health. Within this dissertation, the fECG extraction methods have been explored and the findings captured. The research revealed that the fECG method can be used from early stages of pregnancy (20 weeks gestational age onwards). It is relatively low cost and does not necessarily require a highly skilled user. Continuous monitoring is also possible. The main challenge identified when using the non-invasive fECG extraction method is poor Signal-to-Noise Ratio (SNR) of the fECG signal on the abdominal signal which consists of fECG, maternal ECG (mECG) and noise. Eleven different fECG extraction methods were tested as part of this dissertation. The extraction methods were based on Adaptive Methods (AM), Template Subtraction (TS)or Blind Source Separation (BSS). Synthetic test signals were used for the testing the methods. The test signals included five different noise levels across seven different single pregnancy physiological cases and one twin pregnancy case. Each recording included 34 channels (32 abdominal and two maternal reference channels). For single pregnancy cases all of the extraction methods were able to extract the fECG from the test signals with varying degrees of success. Overall, the BSS-JADE method was the top performing method for single pregnancy cases getting a median F1 score of 99.85%. Furthermore, the twin pregnancy case was tested using BSS methods. The BSS FastICA algorithm using symmetric approach was the top performing method for the twin pregnancy case receiving a median F1 score of 99.93%

    Blind Source Separation for the Processing of Contact-Less Biosignals

    Get PDF
    (Spatio-temporale) Blind Source Separation (BSS) eignet sich für die Verarbeitung von Multikanal-Messungen im Bereich der kontaktlosen Biosignalerfassung. Ziel der BSS ist dabei die Trennung von (z.B. kardialen) Nutzsignalen und Störsignalen typisch für die kontaktlosen Messtechniken. Das Potential der BSS kann praktisch nur ausgeschöpft werden, wenn (1) ein geeignetes BSS-Modell verwendet wird, welches der Komplexität der Multikanal-Messung gerecht wird und (2) die unbestimmte Permutation unter den BSS-Ausgangssignalen gelöst wird, d.h. das Nutzsignal praktisch automatisiert identifiziert werden kann. Die vorliegende Arbeit entwirft ein Framework, mit dessen Hilfe die Effizienz von BSS-Algorithmen im Kontext des kamera-basierten Photoplethysmogramms bewertet werden kann. Empfehlungen zur Auswahl bestimmter Algorithmen im Zusammenhang mit spezifischen Signal-Charakteristiken werden abgeleitet. Außerdem werden im Rahmen der Arbeit Konzepte für die automatisierte Kanalauswahl nach BSS im Bereich der kontaktlosen Messung des Elektrokardiogramms entwickelt und bewertet. Neuartige Algorithmen basierend auf Sparse Coding erwiesen sich dabei als besonders effizient im Vergleich zu Standard-Methoden.(Spatio-temporal) Blind Source Separation (BSS) provides a large potential to process distorted multichannel biosignal measurements in the context of novel contact-less recording techniques for separating distortions from the cardiac signal of interest. This potential can only be practically utilized (1) if a BSS model is applied that matches the complexity of the measurement, i.e. the signal mixture and (2) if permutation indeterminacy is solved among the BSS output components, i.e the component of interest can be practically selected. The present work, first, designs a framework to assess the efficacy of BSS algorithms in the context of the camera-based photoplethysmogram (cbPPG) and characterizes multiple BSS algorithms, accordingly. Algorithm selection recommendations for certain mixture characteristics are derived. Second, the present work develops and evaluates concepts to solve permutation indeterminacy for BSS outputs of contact-less electrocardiogram (ECG) recordings. The novel approach based on sparse coding is shown to outperform the existing concepts of higher order moments and frequency-domain features

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Artificial Intelligence for Multimedia Signal Processing

    Get PDF
    Artificial intelligence technologies are also actively applied to broadcasting and multimedia processing technologies. A lot of research has been conducted in a wide variety of fields, such as content creation, transmission, and security, and these attempts have been made in the past two to three years to improve image, video, speech, and other data compression efficiency in areas related to MPEG media processing technology. Additionally, technologies such as media creation, processing, editing, and creating scenarios are very important areas of research in multimedia processing and engineering. This book contains a collection of some topics broadly across advanced computational intelligence algorithms and technologies for emerging multimedia signal processing as: Computer vision field, speech/sound/text processing, and content analysis/information mining

    Temperature aware power optimization for multicore floating-point units

    Full text link
    • …
    corecore