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A B S T R AC T

(Spatio-temporal) Blind Source Separation (BSS) provides a large potential to process dis-
torted multichannel biosignal measurements in the context of novel contact-less recording
techniques for separating distortions from the cardiac signal of interest. This potential
can only be practically utilized (1) if a BSS model is applied that matches the complexity
of the measurement, i.e. the signal mixture and (2) if permutation indeterminacy is solved
among the BSS output components, i.e the component of interest can be practically se-
lected. The present work, first, designs a framework to assess the efficacy of BSS algorithms
in the context of the camera-based photoplethysmogram (cbPPG) and characterizes multi-
ple BSS algorithms, accordingly. Algorithm selection recommendations for certain mixture
characteristics are derived. Second, the present work develops and evaluates concepts to
solve permutation indeterminacy for BSS outputs of contact-less electrocardiogram (ECG)
recordings. The novel approach based on sparse coding is shown to outperform the existing
concepts of higher order moments and frequency-domain features.

Z U S A M M E N FA S S U N G

(Spatio-temporale) Blind Source Separation (BSS) eignet sich für die Verarbeitung von
Multikanal-Messungen im Bereich der kontaktlosen Biosignalerfassung. Ziel der BSS ist
dabei die Trennung von (z.B. kardialen) Nutzsignalen und Störsignalen typisch für die
kontaktlosen Messtechniken. Das Potential der BSS kann praktisch nur ausgeschöpft wer-
den, wenn (1) ein geeignetes BSS-Modell verwendet wird, welches der Komplexität der
Multikanal-Messung gerecht wird und (2) die unbestimmte Permutation unter den BSS-
Ausgangssignalen gelöst wird, d.h. das Nutzsignal praktisch automatisiert identifiziert
werden kann. Die vorliegende Arbeit entwirft ein Framework, mit dessen Hilfe die Ef-
fizienz von BSS-Algorithmen im Kontext des kamera-basierten Photoplethysmogramms
bewertet werden kann. Empfehlungen zur Auswahl bestimmter Algorithmen im Zusam-
menhang mit spezifischen Signal-Charakteristiken werden abgeleitet. Außerdem werden
im Rahmen der Arbeit Konzepte für die automatisierte Kanalauswahl nach BSS im Bereich
der kontaktlosen Messung des Elektrokardiograms entwickelt und bewertet. Neuartige Al-
gorithmen basierend auf Sparse Coding erwiesen sich dabei als besonders effizient im
Vergleich zu Standard-Methoden.
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Too many strange faces, Tyrion thought, too many new players.
The game changed while I lay rotting in my bed,
and no one will tell me the rules.
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Ser Jorah: "I would not linger here long, my queen.
I mislike the very smell of this place."
Dany smiled. "Perhaps, it’s the camels you’re smelling.
The Quarteen themselves seem sweet enough to my nose."
— George R.R. Martin in A Clash of Kings p.425, A Song of Ice and Fire (1998)

1
I N T RO D U C T I O N

1.1 background and motivation

Telemedical monitoring provides major opportunities for reorganizing an increasingly ex-
pensive healthcare system. Moreover, the ambulatory monitoring of health and stress
offers new applications regarding safety-critical tasks, e.g. driving vehicles [111, 271]. In
this context, the contact-less acquisition of vital signs allows a convenient medical assess-
ment and is of high interest.

Various systems and principles for contact-less measurements have been introduced in
recent years [33, 308]. Thereby, the term "contact-less" refers to the usage of measurement
techniques that cope without sensors strictly fixed to the body at defined measurement
locations. In particular, one has to distinguish between non-contact techniques where
no sensor is directly attached to the body surface, i.e. the skin, and minimum-contact
techniques where e.g. a textile sensor integration ensures flexible skin contact [303].

Available measurement techniques include dry-contact (minimum-contact) and non-
contact biopotential electrodes [51]. Electrode implementations like textile or polymeric
electrodes for wearable sensing or capacitive electrodes for seat-integrated sensing through
clothes have been successfully proven to record the electrocardiogram (ECG) [111, 271,
290]. However, the obtained ECG is of non-standard nature when compared to its clini-
cal counterpart. Moreover, the minimal-conductive measurement principle, which allows
flexible health monitoring, is strongly affected by movement artifacts [51]. The resulting
decreased coverage and accuracy of a single channel can be addressed by exploiting the
redundancy of a multichannel setup [15, 290].

Amongst the non-contact approaches, the usage of cameras, referred to as camera-based
photoplethysmography or photoplethysmography imaging, is one promising solution to
assess the cardiac pulse in a very user-friendly setting. The acquisition of the cardiac
pulse using cameras was firstly demonstrated by Hülsbusch et al. [117] 2002. Meanwhile,
many researchers have addressed the camera-based photoplethysmogram (cbPPG), most
often to assess the heartrate [20, 55, 79, 113, 212, 265, 293]. The most important drawback
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2 introduction

of the technique is its susceptibility to artifacts induced by movements and changes in
illumination. Sophisticated image and signal processing techniques are required to cope
with such factors and facilitate the camera-based assessment of the cardiac pulse even
under real world conditions. Comparable to the contact-less ECG recording techniques,
the cbPPG image sensor typically also serves a multichannel setup.

Blind Source Separation (BSS) is a signal processing technique suitable for multichannel
processing meanwhile aiming at the separation of signal mixtures (e.g. mixtures of ECG

or cbPPG and distortions) into its components [123]. Whereas the standard BSS such as
Independent Component Analysis (ICA) determines a purely spatial filter for processing
multiple (spatially distributed) channels, the spatio-temporal BSS adds finite impulse re-
sponse (FIR) filters to the multichannel processing by adding a temporal dimension [203,
290]. In the research community, BSS techniques are widely applied to clinical and contact-
less ECG recordings for the removal of artifacts and noise [49, 290]. Poh et al. [212] were
the first to use BSS algorithms in the context of the cbPPG. Since then BSS algorithms
became a core part of signal processing schemes to extract the heartrate from cbPPG

recordings [55, 94, 95, 112, 113, 153, 166, 174, 181, 212, 213, 259, 297, 307].
Despite the frequent BSS use in the cbPPG domain and high capacity of BSS on the one

hand, there is no consensus on performance improvements, i.e. signal quality improve-
ments by using BSS techniques, on the other hand. In particular, Christinaki et al. [55],
Kwon et al. [153] and Feng et al. [79] reported also oppositional findings for standard
cbPPG BSS usage as proposed by Poh et al. [212].

Moreover, especially in BSS settings for electrophysiologic biomedical signal analysis, it
is likely that the number of measured channels exceeds the number of underlying sources
[131]. This is particularly relevant for multi-sensor setups of typcial contact-less record-
ing techniques. Most common BSS algorithms compute a symmetrical transformation, i.e.,
ensure the same number of input and output channels [131]. Since BSS is typically only
solved up to a permutation (i.e. separated components are available but the output is
unordered which is referred to as permutation indeterminacy), the desired output com-
ponent (e.g. the cardiac component) has to be selected automatically. This selection is
particularly important when processing a large number of channels as in spatio-temporal
ICA, which adds time-lagged channels during the processing [203, 204, 281].

Besides the existing diversified approaches to component selection [4, 70, 98, 101, 150–
152, 189, 218, 222, 258, 290], the evaluation of their actual selection performance is rare.
Moreover, the available approaches typically address component selection only in mod-
erate selection scenarios, i.e. a very limited amount of output components. Identifying
a robust component selector capable of handling also a large amount of output compo-
nents would allow powerful techniques as spatio-temporal BSS to become applicable for
multichannel biosignal processing.
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1.2 aim of this work

The focus of this doctoral work is the development of algorithms for the beneficial uti-
lization of Blind Source Separation for the processing of contact-less biosignal recordings
for cardiac signal acquisition. The topic is here divided into two main aspects, which are
addressed in this dissertation, as follows:

• BSS application aims at increasing the signal quality of the signals of interest, i.e
the cardiac signal. In order to facilitate beneficial BSS usage, particular BSS algo-
rithms and configurations need to be identified that match the characteristics of
contact-less cardiac signal recordings and allow for improvements of the signal qual-
ity. Accordingly, available BSS algorithms are identified and characterized in the
(cb)PPG domain.

• For the exploitation of any BSS potential (i.e. the improvement of signal quality) in
practice, permutation indeterminacy needs to be solved. Specifically, an automated
selection of the best available BSS output component is required. Accordingly, algo-
rithms to solve permutation indeterminacy for contact-less biosignal recordings are
developed and characterized in the ECG domain.

1.3 dissertation outline

In Chapter 2, the medical background of cardiac activity is described. Further in Chap-
ter 3, the current technical state-of-the-art of cardiac signal acquisition as well as of
minimum-contact and non-contact measurement techniques is presented. Moreover, the
processing of multichannel biosignal recordings by means of data fusion techniques is dis-
cussed where Blind Source Separation algorithms are presented in detail. In addition, the
application of BSS to biomedical signals (i.e. ECG and (cb)PPG) is discussed. In Chapter 4,
methods for characterizing BSS algorithms in the context of contact-less biosignal record-
ings are presented as well as novel methodologies for solving permutation indeterminacy
are described. Chapter 5 presents the synthesized, recorded and collected data material
used throughout this work for characterizing the selected methodologies. Chapter 6 depicts
the results based on the experiments defined in Chapter 4 whereas Chapter 7 provides
the according discussion. Last, conclusions are drawn for future works in Chapter 8.
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Bran: When a man was hurt you took him to the maester,
but what could you do when your maester was hurt?
— George R.R. Martin in A Clash of Kings p.967, A Song of Ice and Fire (1998)

2
M E D I C A L B AC KG RO U N D

Biosignal acquisition and processing addresses physiological processes and possible patho-
logical changes for gathering information on a subject’s health condition. This chapter
provides background information on the physiological processes of interest and their ex-
pressions, on which this doctoral work is built. For that purpose, section 2.1 provides
information on bioelectrical (electrophysiologic) and biomechanical (cardiovascular) phe-
nomena and systems under normal healthy conditions, which work as a biological signal
generator. Section 2.2 discusses pathological changes in the above described systems and
how they affect the measured entities.

2.1 physiology

2.1.1 Cardiac Electrophysiology

Electrophysiologic phenomena inside the human body facilitate muscle contractions re-
sponsible e.g. for the heart beat constitution. Such cell excitation processes are based on
ions as charge carriers. These charge carriers form spatially separated intra- and extracel-
lular ion concentrations thus generating potentials across ion-selective cellular membranes.
Membrane potentials are altered by ion transport processes. On the one hand, this be-
comes possible by ion transport through the membrane and by electrochemical driving
forces on the other hand. The chemical force thereby is given by the ion concentration
gradient between intra- and extracellular area whereas the electrical force originates from
the electrical potential difference across the membrane by the ionic charge carriers. Both
driving forces can form an electrochemical equilibrium, if they coexist in opposite direc-
tion and equal level. At the equilibrium state the Nernst potential EI determines the
equilibrium potential of a given ion I

EI = − R · T
zI · F · ln [I ]intra

[I ]extra
(1)

5
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with [I ]intra the intra- and [I ]extra the extracellular ion concentration and R the universal
gas constant, T the absolute temperature, F the Boltzmann constant, and zI the ion va-
lence. Primarily relevant ions for electrophysiologic equilibrium are the cations of sodium
(Na+) with main extracellular proportion and potassium (K+) with main intracellular pro-
portion. Anions are negatively charged proteins (mainly intracellular) and extracellular
chlorine ions (Cl−). At rest, the membrane’s lipid bilayer is practically impermeable for
ions. Despite ion channels for passive transport, special transmembrane transport proteins
realize the ion transport for the constitution of the equilibrium state mostly for Na+ and
K+. Thereby, they are responsible for the preservation of the imbalance of respective ions
between intra- and extracellular area. Thus, Na+ ions of the electrochemical ion influx
are carried out whereas K+ ions of the ion efflux are carried in. [120, p.21f],[208, p.49f]

The equilibrium potentials of all involved ions in membrane proximity form the resting
potential of the membrane EM . The Goldmann-Hodgin-Katz equation describes relevant
ions together with the membrane’s respective ion permeability PI [208, p.91]

EM = −R · T
F · ln

(
PK+ · [K+]intra + PNa+ · [Na+]intra + PCl− · [Cl−]extra
PK+ · [K+]extra + PNa+ · [Na+]extra + PCl− · [Cl−]intra

)
. (2)

Due to the relatively high membrane permeability for potassium ions at rest, the equilib-
rium potential of K+ dominates EM which causes a resting potential of around −80 mV
to −60 mV for most cells (EM ≈ −85 mV for the myocardium). [120, p.23],[208, p.89f,191]

Some cells (e.g. neural, sensual and muscle cells) are capable of rapidly changing their
membrane potential by altering the ion permeability on short-term basis. This is referred
to as action potential. During an action potential, membranes’ voltage-dependent Na+

channels open (causing a Na+ influx) while K+ channels close which cause a shift in
the membrane potential (depolarization) due to the temporarily dominating equilibrium
potential of Na+. Heart muscle cells have a threshold potential of around −65 mV for
the initiation of this reaction. The potential shift also causes voltage-dependent calcium
(Ca2+) channels to open. In the myocardium, calcium influx causes a contraction of the
heart muscle cells. As long as K+ channels are inhibited during the action potential,
the cell remains depolarized which is known as refractory period. Especially heart muscle
cells show a distinct refractory period where the action potential develops a plateau phase
before the repolarization. Figure 1 illustrates the indicated aspects of an action potential
cycle of a myocardium cell. During the refractory period, a cell is not excitable, which
allows for a structured conduction of the depolarization in larger groups of cells (e.g. the
contraction of the myocardium). [120, p.23,52f],[208, p.92f,191f]

Specialized heart cells show no stable resting potential but exhibit spontaneous action
potentials, whereby they drive a regular heart rhythm even without external depolariza-
tion. Such cells are denoted pacemaker cells whereas the human heart holds three levels.
The first and fastest natural rhythm shows the sinus node located superior of the heart’s
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Figure 1: The action potential of a heart muscle cell and the cell membrane’s predominant ion
permeabilities (right side). Redrawn and modified from [208, p.191, Fig. 5.21].

right atrium which depolarizes about 70 times per minute. Further down in the plane
between atrium and ventricles finds the secondary pacemaker atrioventricular (AV) node
with an intrinsic pace of 40-50 beats per minute (bpm). Thus, in physiologic condition, the
AV node gets depolarized through the stimulus originated from the sinus node before its
intrinsic depolarization. The same holds for the third pacemaker (Purkinje fibers) located
in the walls of the ventricle generating a pace of 25-40 bpm. [120, p.51f],[208, p.92,198f]

The stimulus conduction inside the heart is based on extracellular and intracellular
propagation. The latter bases on gap junctions that ensure electrical coupling between
the heart cells. Accordingly, one depolarization (e.g. of a pacemaker cell) progressively
spreads across the whole heart. Moreover, there exist specialized heart structures that de-
celerate or on the other hand accelerate stimulus conduction. The connective tissue-based
valve layer between atrium and ventricle can only be electrically passed at the AV node
at lower conduction speed. Accelerating fibers like the bundle of His, Tawara branches
and Purkinje fibers facilitate especially fast stimulus conduction in ventricles’ branches
and wall. These factors, which influence the stimulus conduction, ensure a coordinated
contraction of heart muscle even in partly pathological conditions. Slow and restricted
stimulus conduction at the AV node allows for temporally prior excitation of the atrium
in physiological conditions (supporting the filling of the ventricle with blood previously
accumulated in the atrium) and blocks too fast stimuli occurring e.g. under pathologi-
cal conditions like atrial fibrillation (AF). Fast stimulus conduction through the bundle
branches supports the uniform contraction of the working myocardium triggering the ejec-
tion performance of the heart. The whole stimulus conduction from the sinus node to the
ventricle’s myocardium lasts around 150 ms, which is clearly below the duration of the
action potential of around 300 ms. This ensures that the stimulus conduction has finished
before the end of the refractory period. [120, p.51f],[208, p.197ff]

During the depolarization of the heart muscle cell, the membrane potential gets com-
mutated and thus, acts as a dipole from an intra- to extracellular perspective. Moreover,
a functional and structural union of multiple heart muscle cells (e.g. a fiber) with de-
polarized cells as well as cells in rest acts as a dipole also from a purely extracellular
perspective. A union of heart muscle cells or even the whole heart can be considered as
one single dipole which forms a resulting overall electrical vector as a sum of the partial
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Figure 2: The stimulus conduction through the human heart (right side) as the source of the ECG
waveform measured by a standard Einthoven lead (Einthoven lead system on the left
side). Redrawn and modified from [120, p.56, Fig. 3.4] and [120, p.57, Fig. 3.6].

vectors (dipoles including its potential difference). The vector is quantified by the sum
of its underlying potential differences. Thus, it equals zero, if all cells are simultaneously
depolarized or in rest. The direction of the vector is constituted by the direction of the
stimulus conduction. Around an electrical dipole, an electrical field develops. The electric
field lines and respective isopotential lines are expressed according to the electric prop-
erties of the surrounding tissue. However, at the body surface the electrical field can be
detected, which serves as basis of the superficial ECG. [120, p.55],[208, p.200f]

Figure 2 shows the stimulus conduction through the human heart alongside the ECG

waveform as it is measured by the standard Einthoven limb lead II. The gathered partial
and characteristic waveforms are denoted P-, QRS- and T-wave including its connecting
sections PQ-, ST- and TP-segment. The P-wave characterizes the depolarization propaga-
tion of the atrium followed by the PQ-segment with fully depolarized atrium (showing no
change in depolarization and thus, an isoelectric line) and the transition of the stimulus
through the AV-node. The depolarization of the ventricle is characterized by an initial
stimulus traveling in direction of the ventricle basis (Q-wave), being further directed to
the ventricle apex (R-wave), and again upwards along the subepicardial parts especially
of the left ventricle (S-wave). The QRS-complex is followed by the isoelectric ST-segment
marking a fully depolarized ventricle. The T-wave further represents the ventricle repo-
larization whereas the TP-segment (sometimes showing an U-wave) comprises the phase
until the next heart beat gets initiated. [120, p.56]

By using the Einthoven limb lead electrodes, as indicted in Figure 2, also the Goldberger
lead system can be derived. Whereas the Einthoven leads are bipolar and measure a
limb potential difference each between two limb locations (with respect to the reference
potential gathered at the right leg), the Goldberger leads are unipolar. Accordingly, for
each Goldberger lead (aVR, aVL, aVF) a pair of two limb potentials are interconnected
to form an indifferent electrode, which is measured against the remaining limb potential.
For instance, aVR constitutes the interconnected potentials of left arm and left foot
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measured against the right arm. The limb leads are especially used to assess the heart
rhythm and the heart’s electrical axis. Furthermore, the unipolar chest leads of Wilson
(V1-V6) are derived from electrodes directly placed at given chest locations, whereas the
limb leads are interconnected to form the indifferent electrode. The Wilson leads depict
the horizontal plane of stimulus conduction. Other supplementary ECG lead systems for
special medical question are e.g. defined by Nehb addressing the heart’s back wall and the
corrected orthogonal lead system by Frank for a three-dimensional excitation assessment
and vectorcardiographic questions [237, p.424f]. [120, p.55ff],[208, p.200ff]

2.1.2 Cardiovascular System

The cardiovascular system is a complex transport system of the human body which con-
sists of the heart as main active blood pump and a network of blood vessels. Thereby,
the heart delivers the cardiac output, which is fed into the vessel network. The cardiac
output is the primary indicator of the functional capacity of the blood circulation to meet
the demands of the supplied functional systems of the human body [54]. It is constituted
of the stroke volume (the blood volume ejected by the heart during one stroke) and the
heart rate. The transported blood volume realizes the mass transfer of gas (O2, CO2),
nutrients and metabolic products between the blood and the organs. The transport mech-
anism is mainly passive (diffusion) and its main part takes place in the capillaries and
the post-capillary venules each merging some capillaries. The capillaries are the blood
vessels with smallest single diameter but highest cross sectional area taking into account
the amount of vessels in parallel. There, respiratory gas molecules can easily pass the
membranes of the vascular endothelium such that the diffusion is limited primary by the
vessel perfusion. Other exchanged substances as fluids use other transport mechanism like
filtration and re-absorption which are controlled by intra-/extra-capillary pressure ratios
and membrane permeability. [120, p.82],[208, p.233]

Whereas the blood volume flow in the capillaries, which is mainly responsible for the
mass transfer, is nearly continuous due to increasing flow resistance with decreasing vessel
diameter [208, p.232], the blood volume is rhythmically fed into the vessel network by the
heart’s ejection.

The rhythm is controlled by the two main branches of the vegetative nervous system,
the parasympathetic and the sympathetic nervous system. The parasympathetic system
innervates the sinus and AV node as well as the atrium. By increasing the permeability
for K+ ions in these parts, the spontaneous sinus node depolarization rate and thus,
the heart frequency gets decreased, the conduction time in the AV node gets increased
and the general excitability decreases. An example for parasympathetic rhythm influence
is the respiratory sinus arrhythmia (RSA), i.e. a respiration-synchronous heart rhythm
alteration. Pressure receptors modulating the parasympathetic tone are involved in this
mechanism. The sympathetic system innervates the whole heart including the ventricle. Its
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Figure 3: The cardiovascular circulatory system. Redrawn from [208, p.172, Fig. 5.2].

effect is based on the activation of Ca2+ channels that increase the contractile force while
accelerating the muscle relaxation, which improves the transportation capacity. Moreover,
the spontaneous sinus node depolarization rate (heart rate) gets increased, the conduction
time of the AV node gets decreased and the general excitability increases. An example for
sympathetic rhythm influence is the increase in organ’s oxygen demand (e.g. by sports
activities). [120, p.68],[208, p.180,206]

Along with the rhythm, the heart’s pumping capacity and thus, the cardiac output is
determined by active and passive mechanisms. Whereas the vegetative nervous system,
as described above, actively affects the capacity by rhythm and contractile force, there
also exist passive regulatory mechanisms. They can compensate for short-term alterations
in pressure and volume most importantly to ensure equal blood volume ejection by both
ventricles, which is necessary to prevent edema. Therefore, the Frank-Starling-mechanism
regulates the heart’s pre- and afterload. The preload represents the blood volume to
be pumped, which has accumulated at the end of the ventricle’s filling phase (diastole)
and which is determined by venous filling pressure. Thereby an increased filling volume
induces an increased pre-strain of the myocardium. During the ejection phase (systole),
this enables the ventricle to increase the ejected volume (at equal afterload). The afterload
represents the pressure in the subsequent vessels (i.e. the aorta) against which the heart
pumps. The ventricle output valve to the aorta opens later in case of increased afterload.
This reduces the ejected volume, which increases the remaining volume in turn affecting
the preload of the next heart beat. Thus, the cardiac output can be kept constant up to
a limited extent even for higher pressures. [120, p.67],[208, p.177ff]

As indicated above, each heartbeat’s cycle involves processes altering the blood volumes
and pressures inside the heart as well as in the appended vessels. The heart itself thereby
functionally consists of two separate pumping systems, whereas both pumps are arranged
in succession thus forming a circulatory system. See Figure 3 for an illustration. The right
heart pumps the venous blood (deoxygenated, carrying CO2) into the pulmonary circu-
lation where gas exchange causes the re-oxygenation of blood and the expiration of CO2
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Figure 4: The high-pressure and low-pressure system of the body circulation system including
blood pressure and blood flow velocity characteristics for the high-pressure system. Re-
drawn and modified from [120, p.78, Fig. 4.3] and [208, p.216, Fig. 6.1].

out of the lungs. The left heart pumps the oxygenated blood into the systemic circula-
tion of the body supplying all (peripherally) connected tissues. Both heart parts contract
simultaneously following the cycle first filling the ventricles during the diastole. There,
the relaxing ventricles cause an decreasing ventricular pressure further causing a passive
opening (by the pressure gradient) of the atrioventricular valves with subsequent blood
volume transfer from the atria into the ventricles. Second, during systole and ventricle
contraction the atrioventricular valves close again (preventing backflow of blood) and a
ventricular pressure exceeding the arterial pressure behind passively opens the semilunar
valves and leads to ejection of 60-70% of the ventricles’ blood volume (≈ 70–90 ml for both
ventricles). When the ventricle pressure falls below the arterial pressure, the semilunar
valves to close again. [120, p.62f],[208, p.171ff]
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The overall circulatory system covers a blood volume of around 5 l. Accordingly, the
volume ejected at each heartbeat only represents a small fraction of the overall volume.
The main part of the blood volume (≈ 85%) is buffered in the low-pressure system of the
circulatory system, which comprises the capillaries, the complete venous system and the
pulmonary circulation. Besides hydrostatically induced pressure increases, a mean pres-
sure of 0-25 mmHg is typical and the blood vessels are thin-walled and highly dilatable
(high compliance) such that volume changes barely effect the pressure. The left ventri-
cle pumps blood into the high-pressure system. The high-pressure system consists of an
arterial Windkessel by the aorta and the larger arteries and the subsequent resistance ves-
sels (smaller arteries and arterioles) which supply the exchange vessels (capillaries). The
pressure difference between high- and low-pressure system (arterio-venous pressure differ-
ence) drives the blood flow through the peripheral resistance. See Figure 4 for a graphical
illustration of the high- and low-pressure system including the pressure and blood flow
velocity conditions in the high-pressure system. The Windkessel function of the aorta and
larger arteries is realized by relatively thick, highly elastic vascular walls. During systole,
only half of the ejected blood volume flows directly into the arteries. The aorta buffers the
remaining volume which is pressed into the arteries during diastole due to elastic resilience.
This smooths flow and pressure peaks of the blood ejection. Subsequent to Windkessel
and conduction vessels the resistance vessels are arranged. They reduce blood pressure
before the blood flow’s entrance into the capillary system. A flexible resistance thereby
allows for demand-based blood supply in favor of certain organs, mainly by adjusting the
vascular diameter in the arterioles by vascular muscle tone adaptation. Ohm’s law and
Hagen-Poiseuille law

Q̇ =
∆P

R
= ∆P · π

8 η
· r4

l
(3)

state the relationship between the flow volume per unit time (current Q̇) and the driving
pressure difference ∆P together with the flow resistance R, the vessel radius r and length
l as well as the fluid (blood) viscosity η. The fourth power highlights the predominant role
of the vessel diameter for the flow control. Moreover, changes in the flow resistance in the
arterioles also effect the pressure difference across the resistance and thus, the pressure in
the appended exchange vessels (capillaries). In addition to resistance control, precapillary
sphincter can occlude single capillaries, which especially happens in rest to a large fraction
of capillaries [156, p.34]. [120, p.77ff],[208, p.215-228]

At the junction of vessels as well at points of changing properties (wave resistance)
of the vascular walls, the rhythmical blood pulse wave gets reflected. Reflected waves
superimpose peripherally directed waves and cause addition of pressures pulses as well as
subtraction of volumetric flow pulsation (see Figure 4). The superposition of the reflected
pressure pulse causes an exaltation of the first causal pressure pulse in peripheral direction.
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The reflected pulse wave again get’s reflected in peripheral direction which cause a second
less pronounced pulse wave (dicrotic wave). Because of the alternation of forward and
backward pressure spread, the volumetric flow pulsation shows two positive peaks. Due
to decreasing flow velocity, the volumetric flow pulsation also decreases in direction of
the periphery. In the capillaries, the flow velocity reaches its minimum (� 1 cm/s) and
the volumetric flow pulsation is almost attenuated. On the contrary, the velocity of the
pressure pulse (pulse wave velocity) is highest in the periphery (≈ 800-1200 cm/s) because
of the decreasing vascular profile with increasingly rigid vascular walls. Oscillations of the
blood pressure within a single heart beat are referred to as first order blood pressure
oscillations. Moreover, respiration and periodic peripheral tone oscillations induce short-
term blood pressure oscillations of second and third order, respectively. [120, p.78f],[208,
p.231f]

The circulatory system is centrally controlled by the circulatory center. Regulatory in-
tervention addresses the regulation of blood pressure as well as the organ perfusion on a
short-term (seconds up to minutes) or mid- to long-term basis. The short-term regulation,
e.g. the preservation of a circulatory homeostasis, is realized by sympathetic vasoconstric-
tive fibers via nerval or humoral activation. Baroreceptors, which are mainly located in
the aorta and carotid artery, operate as pressure sensors. They act both inhibitory on
the sympathetic nervous system as well as with a parasympathetic activation upon in-
creasing the transmural pressure. Thereafter, the heart frequency decreases together with
the overall peripheral resistance and vessel tone of the low-pressure system. Accordingly,
the low-pressure system can absorb more blood volume such that the filling pressure of
the heart (preload) and the stroke volume decreases, which causes a decrease in blood
pressure. On the contrary, reduced baroreceptor activity due to decreasing transmural
pressure increases the sympathetic as well as decreases the parasympathetic tone. As a
consequence, the heart rate and ventricle contractility gets increased as well as the total
peripheral resistance and the tone of storage vessels of the low pressure system. That in-
creases the mobilized blood volume and thus, the heart’s preload and the blood pressure.
Together with the baroreceptors, other sensors respond to mechanical effects (i.e. pres-
sure/strain) at different locations (e.g. the atrium) or chemical indicators as pH-value or
adrenaline level to regulate vasoconstriction as well as fluid balance. Whereas short-term
circulatory regulation mainly operates on a sympathetic/parasympathetic and thus blood
pressure-regulating basis, the mid-/long-term regulation mainly operates on the volume
regulation by affecting the fluid and electrolyte balance. Thereby, the renin-angiotensin-
aldosterone system and other humoral regulators affect the blood pressure by fluid and
Na+ retention and excretion via the kidney which is partly supplemented by vasoconstric-
tive effects. Besides the global regulation of blood pressure and volume, the local blood
supply of every organ, which largely differs for different organs even in rest, is regulated
by a large number of local neuronal and humoral regulatory mechanisms. Auto-regulative
effects as vasoconstriction in case of increased transmural pressure ensure homeostatic
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blood flow e.g. in the brain and the kidney. In the pulmonary artery, the auto-regulation
works in opposite direction thus ensuring almost homeostatic blood pressure. An increased
stroke volume accordingly causes a more-extensive lung perfusion. Such auto-regulative
effects are myogenic or chemically mediated. Moreover, chemical regulation (e.g. partial
pressure of O2 and CO2) together with humoral (e.g. adrenalin) and nerval (predominant
sympathetic) regulation affect local supply differences as a consequence of demand. Ner-
val vasoconstrictive (sympathetic) activations thereby can be superimposed by stronger
humoral vasodilative effects which e.g. can combine a sympathetically increased heart fre-
quency with an improved organ perfusion by vasodilation. [120, p.83-89],[208, pp.238-251]

2.2 pathology

2.2.1 Electrophysiology of Cardiac Diseases

As a consequence of temporary disturbance or pathological changes of the electrophysi-
ologic processes in the heart, disorders of excitation formation, conduction and recovery
occur and express themselves in the ECG. Thus, the ECG possesses a high informative
value on electrophysiologic disorders, i.e. for the assessment of cardiac diseases. Common
disorders of excitation formation and conduction significantly affect the heart rhythm and
thus, are even properly apparent in simple ECG lead systems as the Einthoven leads also
under modifiable measurement locations. Rhythm disturbance can be categorized into
intermittent and persistent disturbances.

Intermittent rhythm disorders due to disturbed formation occur in case of depolariza-
tion originating not from the regular pacemakers but in ectopic pacemakers (e.g. perfusion-
deprived myocardial cells). Supraventricular extrasystoles emerge superior from the bun-
dle of His mostly from the atrium. Regular stimulus conduction through the AV node
yields a regular QRS complex but reduced beat-to-beat interval (RRI). See Figure 5a1
for an example. A ventricular extrasystole emerges from the ventricle. The irregular stim-
ulus conduction through the heart changes the QRS-morphology (see Fig. 5a2). If the
irregular ventricle excitation state coincides with a subsequent regular (sinus) depolariza-
tion, the refractory period inhibits the regular excitation, which causes a compensatory
pause (increased distance between the extrasystolic and the next regular QRS complex).
Whereas a disturbed stimulus conduction in the ventricle (e.g. bundle branch block) not
necessarily contributes to rhythm disorder but rather to QRS morphology changes [146,
p.102], rhythm disorders due to disturbed stimulus conduction can originate from an ab-
normal atrioventricular stimulus conduction (AV-block). There is a distinction between
three degrees of severity. The first degree denotes a prolonged atrioventricular stimulus
conduction > 0.2 s (see Fig. 5b1). An AV-block of second degree denotes an incomplete
stimulus conduction such that not every atrial depolarization is conducted to the ventricle
(see Fig. 5b2) and single P-waves appear. If the atrioventricular stimulus conduction is
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Figure 5: Arrhythmic ECG types. a: extrasystoles, a1: supraventricular extrasystole, a2: ventricular
extrasystole, b: AV-block, b1: first degree, b2: second degree (Mobitz I), c: AV-block third
degree, d: atrial fibrillation, e: ventricular fibrillation. Redrawn and modified from [120,
p.60, Fig. 3.12 and p.61, Fig. 3.13 & 3.14].

completely inhibited (AV-block of third degree), both atrial and ventricular depolariza-
tion appear independently of each other regarding their respective pacemaker without
rhythmic synchronization of P-Wave and QRS-complex (see Fig. 5c). [120, p.60f],[208,
p.207f]

An AV-block of third degree might represent a persistent rhythm disorder that effects
each heart beat constitution. Sinus bradycardia (heart frequency < 60 bpm) and sinus
tachycardia (heart frequency > 100 bpm) are persistent rhythm disorders which are mor-
phologically unobtrusive and pathological only for sudden (paroxysmal) and non-causal
(e.g. tachycardia in resting condition) appearance [146, p.153f]. Fibrillation and flutter,
however, represent critical rhythm disorders. In case of atrial flutter (depolarization rate
220-350/min.) and atrial fibrillation (depolarization rate 350-600/min.) the stimulus con-
duction is disturbed such that neighboring areas are depolarized independently of each
other. Because of the frequency-selective stimulus conduction through the AV node, atrial
depolarization is only irregularly conducted to the ventricle (see Fig. 5d). An absolute ar-
rhythmia with irregular rhythm and a ventricle depolarization of around 120-150 bpm be-
come apparent. During ventricular fibrillation, the ventricle depolarizes in a high-frequent
uncoordinated fashion (see Fig. 5e). This is frequently caused by an extrasystole during re-
polarization (T-wave), where parts of the myocardium are already repolarized and another
depolarization can induce a circulating depolarization between several ectopic excitation
centers, which inhibits ventricle’s filling and pump function. Functional, this is equivalent
to a cardiac arrest. A ventricular fibrillation can be interrupted by defibrillation. [120,
p.61],[208, p.208]

Disorders of excitation recovery can be categorized into primary and secondary disor-
ders. While secondary excitation recovery disorders follow a disturbed excitation conduc-
tion, primary excitation recovery disorders occur independently. Specific primary disorders
affect the ST-segment in terms of its elevation or depression and isolated changes of the



16 medical background

T-wave (e.g. negation), respectively. Such disorders are caused e.g. by myocardial infarc-
tion and its precursors as well as heart muscle inflammation (myocarditis, pericarditis).
[146, p.132f]

2.2.2 Cardiovascular Disorders

Cardiovascular disorders typically originate from a loss of the circulatory system’s ability
to properly adapt to changing blood pressures and blood flow demands. They are often
induced by sclerosis (induration) and stenosis of blood vessels. Induration of functionally
elastic vessels as the aorta (Windkessel) increases the systolic blood pressure. Also, as
indicated by equation (3), a vascular stenosis decreases the vascular radius and has a
major effect on the blood flow resistance (increase). Impeded peripheral blood effluent
increases the diastolic blood pressure. A prominent example for severe vascular stenosis is
cardiac infarction, where blood perfusion in a coronary artery is inhibited (ischemia) by
vascular occlusion. This causes the appended myocardial section to fail which decreases
the pumping capacity of the heart and hampers the stimulus conduction in the affected
area [208, p.208]. Thereby, the occlusion of arterial vessels can be caused by a progres-
sive stenosis as well as a thrombus (embolism). The venous system can also be source
of cardiovascular disorders. Venous valves physiologically close during venous pressure in-
crease by inspiration or leg muscle contraction. This prevents peripherally directed venous
blood flow and supports venous return. Also, peripheral blood is attracted by respiration-
induced thoracic pressure changes. These functionalities provide 1/3 of the energy of the
circulatory system with respect to the venous return and are disturbed by venous valve
insufficiency. Valve insufficiency (reflux) besides valve stenosis (increased flow resistance)
also has a major haemodynamic effect at the heart’s four valves with respect to pressure
and flow conditions characterizing the cardiac output [156, p.17f]. An arteriovenous fistula
bypasses the arterioles and exchange vessels. Because of the pressure-dependence on the
vascular resistance given a certain flow, such fistula decreases the arterial pressure. This
has to be compensated by increased stroke volume (flow), however, the blood perfusion
of downstream tissues behind the fistula nevertheless is decreased. [156, p.35ff]

Despite a physical modification of vascular properties, pressure sensors (e.g. barore-
ceptors) and volume sensors (e.g. in the atrium), which are operating in the short-term
cardiovascular control, can be misaligned due to habituation effects under persistent ir-
regular conditions. In this context, nerval control instants of the circulatory system which
react to stress and fear can affect blood pressure increases and vascular dilation as re-
flexive "fight and flight reaction". A persistent increase in blood pressure (hypertension)
again cause a physical harm of the vessels which impair e.g. long-term blood pressure
regulation systems in the kidneys. [156, p.45f,53]
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2.3 chapter summary

In this chapter, the properties of two major human physiological signal generators, the
heart’s electrophysiological system and the cardiovascular system from a mechanical point
of view, were discussed. The heart’s electrophysiology causes rhythmic electric signals,
showing charactristic waveforms due to depolarization and repolarization that are syn-
chronous with the particular heart activity. Its causal effect is locally limited to the heart
but it is measurable at the body surface. The signal morphology is indirectly affected by
the measurement location due to projection. The cardiovascular system causes a rhythmic
and pulsating mechanic signal characterized by blood pressure and blood volume flow. Its
causal effect propagates over the the complete body but with changing morphology such
that the morphology is directly affected by the measurement location. Both signals are
physiologically and pathologically modulated in rhythm and morphology on different time
scales.





Ser Jacklyn scratched at his cheek with his iron hand.
"Wise measures. Though I have no love for that alchemist’s piss."
Tyrion: "Nor I, but I use what I’m given."
— George R.R. Martin in A Clash of Kings p.315, A Song of Ice and Fire (1998)

3
T E C H N I C A L S TAT E O F T H E A RT

Biosignal acquisition and processing addresses physiological processes and their possible
pathological changes for gathering information on a subject’s health condition. This chap-
ter provides background information on the biosignal acquisition and processing tech-
niques, on which this doctoral work is built. For that purpose, section 3.1 provides in-
formation on clinical and novel minimum-contact/contact-less acquisition techniques for
bioelectrical (electrophysiological) and biomechanical (cardiovascular) phenomena. Sec-
tion 3.2 discusses the fundamentals of processing multichannel biosignal recordings. From
there, section 3.3 details Blind Source Separation as a particular multichannel processing
technique. Finally, section 3.4 identifies the boundaries of Blind Source Separation’s state
of the art for the processing of the particular biosignal recording techniques described
before.

3.1 cardiac diagnostic and measuring technique

3.1.1 Clinical Cardiac Signal Acquisition

3.1.1.1 Biopotential Measurement

Biopotential measurement typically addresses bioelectrical phenomena at the body sur-
face by using metal-based electrodes. The activity measurable at the body surface thereby
reflects ion-based bioelectrical excitation (e.g. through excitable cells of the heart muscle)
from within the body whose electrical potentials are carried to the body surface because
of the tissue’s conductivity [92, 253]. Whereas the intra-corporal electrical processes orig-
inate from ion-based charge transport, at the body surface the stratum corneum forms a
dry dielectric outer layer, which basically impairs the transfer of ions to electrons in the
electrode. A moist electrolyte gel electrode is one possibility that facilitates an ion con-
ductivity of the skin’s dry outer layer [92]. Figure 6 shows the electrical equivalent circuit
of the electrode-electrolyte system including the skin. The conductive electrolyte (Rc) is
composed of sodium (NaCl) and/or potassium chloride (KCl) correspondingly ensuring

19



20 technical state of the art

Figure 6: Electrical equivalent circuit of a biopotential electrode (adapted from [280, p.207]).

compatibility to the body fluids [253]. This solution buffers the electrolytic composition
through the outer and inner layers of the skin [51] and forms two Nernst potentials
on both sides of the electrolyte. The Nernst potential is described by the Nernst equa-
tion assessing the relative activity of ions on two sides of a semipermeable membrane
[199, 253]. Gruetzmann et al. [92] denotes both potentials as half-cell potentials (Ehc1,2)
whereas Ehc2, that is located on the electrode side of the electrolyte, serves the potential
commonly known as half-cell potential. Since electrolytic solutions of different concentra-
tions and ion mobilities in direct contact also exhibit a potential difference, Ehc1 which
is also known as liquid-junction potential gives the other Nernst potential [280, p.194f].
The processes (potential differences) at the two electrolyte boundaries (electrode, skin)
are important for the biopotential measurement.

An electrode’s half-cell potential Ehc is a consequence of the Helmholtz double layer
formed of ions at the interface between electrode and electrolyte. This causes the elec-
trolyte close to the electrode to establish a different electrical potential compared to the
rest of the electrolytic solution. Without alteration of the charge distribution in the so-
lution, the half-cell potential should be observable at the electrode [199]. Additionally,
the ions at the electrode-electrolyte interface could be hydrated thus involving a layer of
solvent molecules (adsorption of water) in the double layer [110, p.23f].

The drivers of the half-cell potential at the electrode-electrolyte interface are redox
reactions. Thereby e.g. cathodic oxidation appears where a metal atom releases electrons
as charge carrier inside the electrode and goes into solution as positively charged cation
(e.g. for silver: Ag → Ag+ + e−). Reduction appears where ions are reduced (discharged
onto the metallic surface) in reverse direction. Inverse processes appear with anions at
the anode [199].

Without additional currents, redox reactions of cations and anions form an equilibrium
at the electrode-electrolyte interface. However, there exists a difference between oxidation
and reduction rates of Ag � Ag+ + e− [61, p.21] causing a higher amount of cations close
to the surface forming a double layer with anions (principal anion Cl−) to be complexed
from the electrolyte [280, p.190f,206].

If electrical fields/currents are added between electrolyte and electrode, charge-transfer
processes involved in redox reactions are not always entirely reversible and deviations from
equilibrium occur. The activation energy for the respective redox reaction not necessarily
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equals each other, which causes either oxidation or reduction predominating the interface
in case of imprinted currents. Moreover, currents affect the ion concentrations itself at
the interface [280, p.191ff]. In that case, the Helmholtz double layer remains intact and
no actual current passes the interface, whereas the change in the half-cell potentials is
referred to as polarization and overpotential. The measured current is a displacement
current [280, p.196]. Accordingly, such electrodes impose a highpass character based on
the capacitive nature of the double layer (Rin and Cin) and are known as electrodes of
the first kind [73],[110, p.24],[199],[280, p.203].

Non-polarizable electrodes allow current to pass freely without changing the charge dis-
tribution in the electrolytic solution adjacent to the electrode. A balanced electrochemical
reaction is achieved by interfacing a metal to its salt e.g. a silver base structure coated
with a layer of silver chloride, which itself is almost insoluble in aqueous solutions [199]. In
this system, silver shows the tendency to oxidize as known from the polarizable electrode
whereas the silver cation Ag+ shows the tendency to form the ionic compound AgCl on
the electrode surface together with the principal anion Cl− from the electrolyte. This
gives the balanced overall reaction Ag + Cl− � AgCl + e− [280, p.197]. Electrokinetic
effects of such electrodes belong to the bulk charge induced by an applied field. Electrodes
of this nature are known as electrodes of the second kind [73]. The silver-silver chloride-
based electrode system behaves similar to a non-polarizable electrode and offers lowest
and most stable half-cell potential [199, 253].

The half-cell potential of the electrolytic interface can cause electrode-based motion
artifacts, when charge distributions adjacent to the electrode alter due to relative motion
between electrode and electrolytic solution. A non-polarizable electrode is less affected by
relative motion than a polarizable one.

The electrolyte-skin interface transduces the ionic currents of the body to currents
measurable through the electrode-electrolyte interface. The impedance of the epidermis
(Re and Ce) is poorly defined and unstable [92] and the effect of instability can be min-
imized by the removal of the stratum corneum prior to the measurement [280, p. 207f].
However, the stratum corneum serves as membrane semipermeable to ions, which gives a
potential difference (Nernst potential) based on differing ion concentrations between skin
and the electrolyte gel [280, p.207]. The removal of the stratum corneum will still enable
the manifestation of a half-cell potential (liquid-junction potential [280, p.194f]) at the
electrolyte-skin interface. Time-variant ionic currents inside the body thus affect charge
displacements covered by ions in the electrolyte which influence the electrokinetic phe-
nomena at the electrode-electrolyte interface measurable at the electrode. In this context,
ionic currents are altered by field potentials spread from the respective sources (e.g. the
heart muscle) through the body as a volume conductor [280, p.135ff].
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Figure 7: Basic circuit design of a biopotential amplifier based on an instrumentation amplifier
(adapted from [253]).

3.1.1.2 Biopotential Amplification

Biopotential amplifiers provide amplification to low level potentials measured from the
human body, typically ranging between 1 µV and 100 mV (the ECG shows a typical am-
plitude difference of 1 mV [253]). They must simultaneously guarantee protection from
electrical shock and damage for both subject and electronic equipment [197]. Due to the
high source impedances and high levels of interferences typical for biopotential measure-
ments, they address features like high differential gain, low common mode gain, high
common mode rejection ratio (CMRR) and high input resistance as well as a linear am-
plification to not distort the measured signal [197, 253]. Common mode rejection thereby
refers to suppressing content showing only very small amplitude and phase differences
between the measuring electrodes thus appearing only between input and ground [197].

A typical circuit design of biopotential amplifiers involves the design of the instrumenta-
tion amplifier as depicted in Figure 7. It is composed of a differential first stage consisting
of two non-inverting operational amplifiers (OPVs) followed by a second stage differential
amplifier and back-end bandwidth limitation with highpass and lowpass filter [253].

The preferable high differential gain is distributed over the first two stages as the
gain factor of the first stage is limited because of the amplitude mismatch between a
relatively high electrode half-cell potential compared to the amplitude of the measured
biosignal. However, the two-stage combination can achieve high common mode rejection
and high input resistance realized by the non-inverting amplifier front-end. Nevertheless,
the common mode rejection always is limited by the equivalence requirement of the source
impedances at the respective electrodes [197]. An ECG amplifier further may limit the
bandwidth of the signal (back-end) to its relevant content of around 0.05 - 100 Hz whereas
distortions of the signal by highpass filters needs to be avoided [253].

Further interference suppression can be achieved by negative feedback of the common
mode signal into its lead by a driven-right-leg circuit. Electromagnetic shielding and
other filtering and guarding approaches and related technical solutions (e.g. by automatic



3.1 cardiac diagnostic and measuring technique 23

Figure 8: Basic recording principle (based on reflection) for optical measurement of the cardiac
volume flow by photoplethysmography (adapted from [6]) including an exemplary PPG
signal excerpt.

discharging of a high-pass capacitor of the back-end amplifier for baseline restoration in
case of amplifier saturation) are applied. [253]

To ensure subject safety, very small leakage currents (µA) of the amplifier are allowed
and electrical isolation from the power line is required to prevent current between instru-
mentation, subject and the earth ground, respectively. Transformers or opto-couplers are
common techniques to provide galvanic isolation. Their performance is characterized by
the isolation mode rejection ratio (IMRR). Moreover, equipment protection against high
voltages e.g. by defibrillation and electrosurgical instrumentation is achieved by using
diodes or providing alternative paths to ground for high voltages like low pressure gas
discharge tubes. [197, 253]

3.1.1.3 Optical Measurement of Blood Volume Changes

The non-invasive measurement of absolute blood volume involved in cardiac processes is
a rather complex task. Two-dimensional or Doppler echocardiography estimates relevant
cross sections (e.g. the aortic cross section by measuring the aortic diameter) and further
estimates velocities through the respective cross section or otherwise directly measures
end-systolic and end-diastolic left-ventricular volumes using ventricular models [54, 71].

However, if one is less interested in absolute volume measurement, the assessment of the
pulsatile component of the cardiac volume flow, i.e. the rhythmic changes in the blood flow
through the human body, is available via a simple non-invasive measurement principle,
the photoplethysmography [6].

Whereas its main clinical purpose is the measurement of blood’s oxygen saturation,
the photoplethysmogram (PPG) is an optical measurement technique that also can detect
blood volume changes in the microvascular bed of tissue, thus allowing for non-invasive
measurements at the skin-surface. It is opto-electronically realized by two basic compo-
nents, a light source to illuminate the tissue and a photodetector (e.g. a photodiode)
to measure variations in the light intensity associated with the blood volume in the tis-
sue. Figure 8 shows the measurement principle. The technique is applied to acquire the
peripheral pulse wave (for a signal example see also Figure 8). [6]
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Based on the optical measurement principle addressing the light modulation within the
human tissue, the optical processes scattering, absorption, reflection, transmission and
also fluorescence contribute to the PPG. These processes are mainly affected by blood
volume and blood vessel wall movement. Dependent whether the light irradiation works
mainly through the tissue (i.e. from the opposite side of the photodetector) or indirect (i.e.
adjacent to the photodetector), transmitted or reflected light (each containing proportions
of scattered light) is measured at the sensor, whereas absorption modulates the total
amount of light. Water as the main constituent of body tissue (and melanin) thereby
strongly absorbs short (e.g. ultraviolet) and long (e.g. longer infrared) wavelengths, what
refers to as optical water window. In the visible and shorter infrared wavelength spectrum,
hemoglobin as blood component shows significant absorbency which causes a pulsatile
blood volume to rhythmically change the amount of absorbed (and measured) light. The
absorption also differs for oxygenated hemoglobin (HbO2) and reduced hemoglobin (Hb)
despite for isobestic wavelengths (e.g. 805 nm). Moreover, light of different wavelength
penetrates and consequently gets absorbed in tissue of different depth with different blood
vessel structure. The gathered signal accordingly shows a pulsatile (alternating current
(AC)) component with fundamental frequency depending on the heart rate plus a direct
current (DC) component affected by the measured tissue with its average blood volume
and some quasi-DC contributions due to respiration and other low-frequency phenomena.
[6]

The measurement of the peripheral PPG from humans was firstly described in 1936 by
Molitor et al. [193]. Nowadays, PPG sensors use light emitting diodes (LEDs) of green [74,
301] or red and/or near-infrared (NIR) wavelength [6, 76, 301]. One distinguishes between
the transmissive irradiation of the finger-tip or earlobe and the reflective irradiation at all
suitable sorts of body locations. Although the concept of the PPG does not necessarily re-
quire direct contact between photodetector and the recording location, direct contact with
moderate contact pressure improves the pulse amplitude and suppresses light reflected at
the skin surface as source of disturbance [107]. However, also non-contact/remote PPG

has been studied more recently [42, 233]. Besides single location use, PPG measurements
have also been conducted simultaneously at multiple locations [7, 76].

3.1.2 Minimum-contact/Contact-less Cardiac Signal Acquisition

3.1.2.1 Capacitive ECG

The capacitive electrocardiogram (cECG) represents a mean to measure the electrical exci-
tation of the heart muscle cells in a minimum-contact or even limited non-contact fashion.
The coupling to the subject is established capacitively and does not require any galvanic
contact. However, the differential bioelectrical signal is equivalent to the standard conduc-
tive ECG [33] . The electrical field at the body surface is measured via the displacement
current in the electrode [110, p.30],[238]. Figure 9 shows the electrical equivalent front-
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Figure 9: Electrical equivalent front-end circuit of a cECG measurement system (adapted from
[33, 238],[110, p.32]) with a sample cECG-excerpt recorded using a cECG seat cushion.

end circuit of a cECG measurement system. The coupling between the subject and the
electrodes is characterized by the coupling capacitances Ccp. The electrodes possess an in-
put impedance (Rin, Cin) which is adapted by an impedance converter (OPV). The input
impedance must be much larger than the source impedance imposed by Ccp to avoid signal
attenuation [238]. The capacitive voltage divider formed by Ccp and Cin acts as a high-
pass filter which causes a minimization of Cin, especially because removing the mechanical
contact between electrode and body surface while inserting an air gap or clothing largely
decreases Ccp [110, p.33],[238]. On the other hand, the large input impedance increases the
influence of external interferences [170]. Because of the lacking galvanic contact between
subject and measurement system, common mode interferences are likely to occur which
can saturate the impedance converter of the electrodes. Active reference potential control
by Driven-Right-Leg/Driven-Seat can help to suppress common mode interferences e.g.
caused by differing coupling capacitances Ccp1 and Ccp2 [110, p.41f]. Also, increasing the
electrode size decreases the coupling impedance meanwhile minimizing common mode
interference [160]. DC common mode interferences like electrostatic charge of the subject
due to e.g. triboelectricity [277] cannot be suppressed by capacitive reference potential
control [110, p.42]. Noise coupling by electrical fields, in turn, was not found to induce a
larger impact on insulated electrodes compared to wet electrodes [230]. A sample cECG

excerpt can be seen in Figure 9 (recorded with a cECG seat cushion and Driven-Seat).
The measurement of a capacitively coupled ECG was first demonstrated by using insu-

lated electrodes by Richardson [220],[221] in 1967 and 1968, respectively. However, the
research interest regarding this technique for cardiac monitoring grew not until the 2000s.
Then, new applications of the cECG addressing long-term and everyday ECG monitoring
were presented e.g. by integrating capacitive electrodes into a chair [18, 145, 169]. Also,
other types of seats, e.g. car seats utilizing multiple capacitive electrodes and a Driven
ground (Driven-Right-Leg/Driven-Seat) [164, 165, 271, 281] and a ground level obtained
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from the steering [44, 180] were studied as well as toilet seats [17, 144] and an airplane
seat [227].

Besides seats, the use of cECG in beds has been under consideration, which could fa-
cilitate a less obtrusive sleep medical cardiovascular assessment. Lim et al. [170] used
eight aluminum-shielded cECG electrodes with reference level measured through a large
conductive textile ground sheet all covered by a cotton sheet. Later, the group added a
Driven ground to the system [171]. Fully flexible electrodes of highly conductive textile
material in a bedsheet with cotton bedcover were used together with a capacitive Driven-
Right-Leg circuit of Wu et al. [294] and Lee et al. [160]. Chamadiya et al. [45] utilized
actively guarded electrodes driving the guarding layer with a common mode voltage for
hospital beds. The usage of capacitive electrodes in mattresses have also been adapted to
the monitoring of neonates [140].

More applications of the cECG are in bathtubs [172], a portable multichannel unit as
presented by Oehler et al. [201] as well as multimodal electrodes also including optical
sensors for the usage e.g. on the operating theater table [276].

3.1.2.2 Textile (Wearable) ECG

Another possibility to measure an ECG without preparation of the skin like the cECG is the
usage of dry-contact electrodes. The conductive electrode material itself is brought into
contact with the skin. Since the dry-contact electrode directly aims at ionic charges altered
by bioelectrical processes, the mandatory electrolytic layer responsible for transducing
ionic currents into electric currents by redox (oxidation-reduction) reactions is constituted
by sudor [110, p.25f],[199]. Sudor contains Na+, K+ and Cl− ions [280, p.208] but has
a lower ion conductivity compared to gel used in wet electrodes [92]. The initialization
of the interface may require a settling time of a few minutes before achieving readable
signals [186].

Because of the higher input impedance compared to wet electrodes and the partly-
polarizable nature of the dry electrode, the half-cell potential of the electrode-electrolyte
interface is affected by relative movements between electrode and skin inducing artifacts
[87, 92],[110, p.22,26],[199]. Similar electrical equivalent circuits as presented in Figure 9
can be used for dry-contact active and passive (no impedance conversion) electrodes
adding a coupling resistance in parallel to the coupling capacitance Ccp [51].

The interplay between coupling resistance and capacitance determines the limits of
noise sensitivity [51]. Analogue to cECG (varying coupling capacitance), the coupling
impedance alters during moistening of the skin under the electrode (e.g. shunting the
coupling capacitance) [87].

Common mode interference expresses differently in dry-contact electrodes compared to
wet-electrodes. Searle et al. [230] found that dry-contact (as well as insulated) electrodes
show less interference according to non-stationary electrical fields than wet electrodes.
Especially, the two limiting cases, i.e. infinite coupling conductance (dry-contact electrode,
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zero resistance) or infinite coupling impedance of the electrode (cECG, infinite resistance),
are optimal for low-noise signal reception [51]. Artifact levels through relative motions
between subject and electrode were found significantly higher than by using wet electrodes
[230] and should be addressed by mechanical design considerations [51, 87].

Dry-contact electrodes allow for reusable wearable devices and smart clothing and also
facilitate long-term physiological monitoring [92, 186, 205]. Special interest for dry-contact
electrodes arises from disadvantages of common gel-based electrodes going along with
dermatological responses to the gel or recording in gel-sensitive areas as well as reliance
on an electrolyte which decreases the signal quality while the gel dehydrates [186, 230].

Dry electrodes build from silver plates [205] and stainless steel plates or silver foil as
well as with active impedance conversion [206] have been used. The reduction of necessary
wires to connect active dry electrodes and size of the active electrodes was addressed in
[68].

Mechanically adaptive electrodes have been addressed by electrically conductive foam
with silver surface and titanium adhesion layer [92]. Moreover, polymeric structures have
been proposed utilizing conductive nanoparticles in a elastic polysiloxane connected to a
textile (belt/shirt) [111] as well as a thin metallic layer on a polysiloxane base structure
as electrode on a wristband [19]. Conductive polymer transducers for active electrodes
with impedance conversion has also been used for limb leads [27] and flexible non-woven
fabric-based electrodes [139] with imprinted conductive inks [300].

The highest formability of a dry-contact electrode can be obtained by a textile integra-
tion. However, the structured surface of a textile reduces the contact surface by forming
cavities and interstices which affects the coupling impedance [110, p.26f]. This property is
compensated by increased electrode adhesion through moistening of the skin [209]. Practi-
cal realizations are given by knitted stainless steel textile electrodes (stainless steel wires
twisted around a yarn) in a garment or belt to obtain multichannel ECG [41, 290] partly
covering the metal electrode with a hydrogel membrane [209, 228]. Also a bed has been
equipped by large-area electrodes from electrically conductive carbon and nickel-plated
fibers [128]. In this work, the term textile electrocardiogram (tECG) refers to as dealing
with ECG derived by textile forms of dry-contact electrodes.

3.1.2.3 Camera-based Photoplethysmogram

The cbPPG represents an opportunity to measure the PPG, i.e. time-variant changes of
the cardiac volume flow in conceptually contact-less fashion. Additionally, it offers the
acquisition of two-dimensional information. As utilized in the PPG concept, the basic
idea is to measure the light radiated from illuminated tissue using an image sensor [242].
Figure 10 illustrates the basic recording principle.

The cbPPG concept originally denoted as photoplethysmography imaging (PPGI) was
first described 1996 in a patent application by Vladimir Blažek and others [29] and later
on taken up by his group members in 2000 and 2002 [117, 295]. It utilizes polychromatic il-
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Figure 10: Basic recording principle for optical measurement of the cardiac volume flow by camera-
based photoplethysmography.

lumination and an actively cooled charge-coupled device (CCD) sensor for two-dimensional
assessment of the dermal blood perfusion at human limbs. Venous blood perfusion and
its functional test [29, 295] as well as wound healing [117] was addressed by the pioneer
researchers. The relationship between arterial hemodynamics, also accessible by this tech-
nique, and the heart synchronous blood volume pulse and heart frequency, respectively,
was additionally outlined by the group.

A growing community of researchers has taken up the cbPPG technology since than.
Following its introduction, other pioneering works continued to use high-quality experi-
mental/industrial cameras [114, 118, 289] based on CCD and complementary metal-oxide-
semiconductor (CMOS) technology. Such cameras were also utilized later on in clinical
investigations [2, 217, 251, 302] and other rather fundamental research questions [93, 95,
137, 138, 147, 232]. Simple webcams, either laptop-integrated [55, 212, 213] or external
[63, 79, 86, 112, 166], soon augmented the scope of suitable measurement technology.
Comparisons between webcams and high-sensitivity CMOS camera showed comparable
performance on simpler cbPPG post-processing tasks like heart and breathing rate esti-
mation [231, 244]. Standard consumer level cameras like camcorders [113, 246], digital
compact [265] or single-lens reflex cameras [181] have also been used. In addition, the
application of cell phone cameras has been examined [134, 153, 184, 214, 229]. A special
application utilized a camera integrated into a mobile service robot [241]. The measure-
ment scenarios applied to cbPPG have been rather limited and restricted. The most typical
scenario involve healthy subjects sitting at a table including the measurement technique
which acquires video data from parts of the upper body and head in a resting condition [55,
63, 93, 95, 112, 113, 147, 153, 166, 174, 181, 213, 231, 244, 246, 252, 265, 273, 307]. Less
frequent, larger subjects’ movement (i.e. head movement) is allowed or forced according
to a protocol in such sitting scenarios [77, 79, 86, 241]. Another typical scenario comprises
video data acquisition from parts of the limbs (e.g. palm, arm, foot) [34, 42, 114, 117, 118,
138, 192, 245, 289, 295]. Actual motion scenarios involving subjects using fitness devices
like bike,stepper or treadmill are rare and conducted mostly with few subjects [95, 243,
275]. Challenging scenarios like driver monitoring [30, 215, 292, 305] are rarely addressed
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and, if at all, with very few subjects. Despite monitoring healthy subjects, the clinical
usage of cbPPG finds applications in patients with atrial fibrillation [62, 184], general car-
diovascular patients [217], dialysis patients [251], migraine patients [302], and neonates
[2].

The basic components of the cbPPG technology consists of a camera sensor chip and
optics. Typical sensor types comprise pixels of CCD or CMOS technology. Part of the
sensor is also a color filter, which controls the wavelengths gathered at each sensor pixel.
Horizontal (e.g. Bayer filter, RGBE) and vertical (e.g. Foveon X3) structures of wavelength
separation are available. Each single pixel of a gathered image typically consists of the
red, green, and blue (RGB) color channels, each color channel covering a certain range of
wavelengths of the respective color. Orange or cyan color channels can also be found in
the cbPPG context [181] as well as monochrome cameras [243]. The quantization of each
color value for each pixel is described by the bit depth per color (8 bit [265], 10 bit [163],
12 bit [141] or 14 bit [295]). A sensor comprises an absolute number of pixels, which can
be combined on the sensor side referred to as binning [295]. The optics of a cbPPG system
include adjustment possibilities by aperture, shutter speed (length of exposure), focal
length, and the use of additional spectral and other optical filters limiting the bandwidth
[86] or polarization [192] of the measured light. [182]

Many cbPPG applications do not make use of spezialized illumination but instead work
with ambient lightning conditions [182]. Thereby, the accomplishments of measurements
at ambient light came along the first applications of consumer level cameras for cbPPG of
Takano et al. [246] and Verkruysse et al. [265]. In the lightning context, Sun et al. [244] also
reported, that the pulsatile (AC) component of the volume pulse measured by cbPPG shows
no correlation with the ambient light intensity while the DC component does. However,
lightning variations can induce severe distortions in cbPPG. Strategies to cope with such
interferences aim at separately measuring the ambient light for later subtraction to obtain
an illumination rectified cbPPG [10, 168]. Such cbPPG applications, which comprise active
illumination use LEDs of green wavelength [136, 138] or red [10], respectively, both red
and NIR [118, 289, 295] wavelength or even diffuse halogen [9] and full spectrum bulb
illumination [77].

Despite each single camera sensor pixel can deliver a cbPPG signal (given a technically
adequate illumination and exposure and a measurement at a suitable skin region), the
consolidation of multiple pixels by averaging is known to improve the signal-to-noise
ratio (SNR) of the cbPPG [243, 265]. The amount of spatially distributed pixels, typically
containing suitable regions for gathering the cardiac pulse, is referred to as region of
interest (ROI). The cbPPG further is extracted by only considering (i.e. typically averaging
[252]) the pixel values inside the ROI for each frame. Thereby, single ROIs [212] or the usage
of multiple ROIs at once [181, 252] are considered. The ROI selection besides the measured
wavelength is critical due to different dominance of the underlying effects and according
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waveforms measured at different sites of the skin, i.e. the blood volume pulse (BVP) or
the ballistocardiogram (BCG) [191, 232, 257].

The BVP is mostly covered by conventional PPG theory underlying an altering amount
of blood in the measured volume (additional theories had been formulated by Kamshilin
et al. [138] and Sidorov et al. [234]). Thereby, it is worth noting that the cbPPG is expected
to measure light reflected from less penetration depth compared to conventional PPG. I.e.,
the PPG signal is mainly composed by processes of the arterial vasculature, whereas the
cbPPG serves a mixture of processes within the upper skin layers. BCG effects, however,
are particularly characteristic for cbPPG. One distinguishes between global BCG effects,
i.e. the movement of the measurement region due to a distant effect (e.g. head movements
while blood ejects into the aorta), and local effects (e.g. the movement of the measurement
area due to a pulsating artery below the measurement area). [304]

3.2 processing of multichannel biosignal recordings

Unobtrusive and minimum-contact/contact-less biosignal measurement techniques as the
above described tECG, cECG and cbPPG offer increased measurement comfort and widespread
measurement scenarios. However, these techniques are susceptible to disturbances (i.e.
they show low SNR). Compared to the fixed contact sensors used in conventional ECG

and PPG, these disturbances are likely to arise from relative movements between sensor
and subject for instance as motion artifacts. Biosignals from single sensors thus contain
episodes incorporating no valid or only hidden information. One approach to overcome
this problem is the fusion of biosignals obtained from multiple sensors and/or modalities,
where all sensor measurements of interest originate from the same mutual source (i.e. the
heart). [15]

Multi-sensor data fusion aims at improving four major performance categories of data
usage. The data representation is improved either by increasing the degree of abstraction
or increasing the level of detail. Second and third, the certainty of data as well as the
accuracy (standard deviation) is improved. Fourth, increased redundancy and concordance
improves the coverage (completeness). [190, p.4f]

Data fusion can be handled using three basic types of fusion architecture. If the orig-
inal sensor data consists of observations of the same or similar physical quantity (com-
mensurate data), which also can be properly associated and aligned with each other (e.g.
temporal alignment of signals, spatial alignment of images), the raw sensor data can be
fused. This approach is also termed data-level fusion. If the sensor fusion addresses non-
commensurate data, e.g. ECG and PPG showing differing morphology and relative peak
locations while exhibiting equal beat-to-beat interval [15], other fusion architectures have
to be applied. Feature-level fusion addresses the combination of several feature vectors
extracted from multiple sensor data to a single concatenated feature vector for further
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Figure 11: Exemplary data fusion strategies for biosignal processing: The cECG and cbPPG signal
(middle box) aren’t suitable for data-level fusion because of their noncommensurate
nature. Feature-level fusion (right box) e.g. by calculating the cross spectrum out of
the single spectra |X(f)| is possible (see orange curve). Decision-level fusion (left box)
combines estimates of heartbeats time instants from both signals or heartrate estimates
from both spectra.

processing. Decision-level fusion combines preliminary estimates of an entity’s location or
attribute. [96],[97, p.21f]

Figure 11 exemplarily depicts fusion architectures in the context of cardiac biosignal
processing. Whereas data-level fusion is appropriate only for homogeneous sensor data
as measured by redundant and equivalent sensor networks (e.g. multichannel cECG), het-
erogeneous data as measured by applying different measurement principles (capacitively,
optical) can be fused by feature-level and decision-level fusion. Thereby, target decisions of
a heterogeneous biosignal fusion process are e.g. a robust heartrate estimate [278] or single
most accurate heartbeat time instants [239] giving a time series of beat-to-beat-intervals
for analyzing heartrate variability (HRV) [3]. Because of cardiac biosignals’ periodic na-
ture, e.g. the frequency domain gives an appropriate feature space for either estimating
preliminary decisions (e.g. heartrates) or enabling feature-level fusion e.g. using the cross
spectrum [23]. Feature-level and decision-level fusion naturally applies also to features
and decisions derived from homogeneous sensor data.

3.2.1 Feature-Level Fusion

The possibilities of fusing multichannel biosignal data on the feature-level are diverse
due to a practically unlimited feature space. However, its application to improve the
robustness of target biosignal processing decisions (e.g. heartrates, beat-to-beat intervals)
is less common. Yet, since the Fourier spectrum presents a widespread feature space for
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biosignal analysis, the cross spectrum serves its data fusion counterpart. Analogous to
the spectral density S(f) which is given by the Fourier transform of the auto-correlation
function, the cross spectral density Sxy(f) is defined by the Fourier transform of the
cross-covariance function [158]. The cross covariance thereby is the second moment of the
joint probability density of the variables. In this context, the coherence Cohxy(f), which
involves the cross spectral density is useful if spectral components between two signals
are significantly correlated [196]:

Cohxy(f) =
|Sxy(f)|2

Sx(f) · Sy(f)
(4)

Cross spectra have been applied for assessing (patho-)physiological relation and inter-
action between heterogeneous biosignals [16, 23]. The application of averaging spectral
information is presented in [148] where multichannel logarithmic spectra are averaged for
the calculation of the average cepstrum.

3.2.2 Decision-Level Fusion

Common concepts of decision-level fusion involve simple voting techniques, probabilistic
fusion (i.e. Bayes fusion) and evidential belief reasoning (e.g. Dempster-Shafer fusion) [97,
p.21],[142] and are widely applied to biosignal processing. Besides this methodological
classification, Šprager et al. [239] categorized decision-level fusion for biosignal processing
into multichannel (multiple homogeneous sensors), multisensor (multiple heterogeneous
sensors, e.g. [56],[32]) and multimethod (one sensor, multiple extraction methods) fusion.

3.2.2.1 Voting Techniques

Voting techniques aim at the selection of a single best sensor among multiple sensors. A
selection of a single sensor can be based, e.g., on a sensor quality index [278]. Together with
the arithmetic mean, the median also serves a simple and frequently applied selector under
the assumption, that measurements (e.g. heartrates) in the considered window are samples
of the same measurement level [298]. Orphanidou et al. [202] applied a voting to judge
amongst respiration-related poles of auto-regressive models from different measurements
and subsequently selected the pole with highest magnitude. A "hybrid" median involving
recent and previous measurements (temporal) from different sensors (spatial) and previous
estimates was applied [298]. A weighted average that negatively judges high relative sensor
value innovation between two sensors was introduced by Tarassenko et al. [250] and further
developed by a signal-quality scaled innovation judgment [167]. Weighted decisions of
separately measured atrial and ventricular activity were fused in [106]. Physiological limits
and prior average heartrate estimates were used for exclusion of RRIs in a multisensor
setting [90].
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3.2.2.2 Bayesian Inference

Bayesian inference treats all quantities as random variables characterized by a probabil-
ity distribution. Thereby, conditional probability distributions model the likelihood of
observed data given a hypothesis (e.g. a certain heartrate) and further take into account
(non-)informative priors, i.e. the probability of the hypothesis. One obtains a posterior
probability distribution of the hypothesis given the data, which facilitates the maximum
a-posterior (MAP) approach aiming at the most probable posterior probability and hy-
pothesis, respectively. [43],[190, p.115ff]

The according formalism applicable to digital biosignal processing and its k discrete-
time observations comprises

yk : the actual state (e.g. true heartrate) at time k

xk : the observation of the state (e.g. measured heartrate) at time k

Xk : all observations of the state {x1, x2, . . . , xk} up to time k.

The notation P(A|B), the probability of event A given event B, and, i.e. P(A, B), the
probability of two coincident events A and B gives the posterior probability of a single
sensor by using Bayes’ rule

P (yk|Xk) = P (yk|xk, Xk−1) =

likelihood︷ ︸︸ ︷
P (xk|yk, Xk−1) ·

prior probability︷ ︸︸ ︷
P (yk|Xk−1)

P (xk|Xk−1)︸ ︷︷ ︸
normalization

(5)

where the normalization can be neglected in relative comparisons of hypothesis probabil-
ities. [43]

The particular solution needs to take into account the respective (in-)dependence of
multiple sensors and single measurements xk [50] and further needs to select appropriate
probability distributions to be modeled by the assessed data [190, p.119ff].

While applying the Bayesian framework to biosignal processing, a MAP estimate not
necessarily comes along with determining the state of highest likelihood because of the
influence of prior probabilities. However, a maximum likelihood estimator (MLE), which
aims at the highest probability of observing certain data given a state hypothesis, becomes
relevant for fusing annotations (e.g. beat-to-beat intervals, heartbeat time instants) with
help of features as signal quality or precision measures. The expectation-maximization
(EM) algorithm by Dempster et al. [69] is one solution that facilitates a weighted judgment
of annotations by multivariate regression using aforementioned features and can be applied
independently [309].

Informative priors for fusing homogeneous multichannel biosignals have been proposed
by [306] assessing the similarity of QRS morphology and [299] evaluating the peak height
and their intervals for calculating a channel priority. The Bayesian inference was adapted
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to multichannel heartrate fusion (MAP) by Wartzek et al. [278] by modeling prior proba-
bility distribution using the prior fusion result and estimating the likelihood of the recent
heartrate estimates given a time frame of prior measurements.

A sophisticated multisensor fusion approach comparable to Bayesian inference was pro-
posed by Ebrahim et al. [75] and Feldman et al. [78]. Physiological limits were used to
eliminate heartrates. The consensus of the remaining heartrates (sensors against each
other, sensors against past fused heartrate) was evaluated to select a maximum likelihood
hypothesis (which sensor(s) contain reliable heartrates respectively, the past prediction
should be further used) by assessing Gaussian-modeled errors. Accordingly, selected heart-
rates and their prediction is fused by a Kalman filter (KF) acting as a weighted averager.

Multimethod fusion comprises strategies to combine multiple annotations of different
human (e.g. addressing a consensus among multiple expert annotations) or technical an-
notations derived from biosignal processing on the same quantity. An expectation maxi-
mization approach evaluating the human annotator precision by linear regression of the
annotation using a feature vector (containing signal quality and heartrate features) was
presented by Zhu et al. [309]. Šprager et al. [239] proposed a MLE of independent detec-
tors moreover using priors from physiological limits and prior RRI together with detection
characteristics of each detector to derive a MAP approach for heartbeat annotations from
multiple detectors.

3.2.2.3 Dempster-Shafer Fusion

Compared to Bayesian inference which is based on the concept of probabilities, the
Dempster-Shafer fusion still addresses the weighting of sensors but by so-called "masses" m

measuring the degree of belief. The Dempster-Shafer theory introduces a state "unknown"
combining alternative states and thus defining a (momentary) non-zero intersection be-
tween states. Masses can be combined by Dempster’s rule of combination hereafter given
for three abstract states A,B and C and masses associated with the recent sensor mea-
surement ms and masses from prior existing evidence mo:

m(C) =

joint belief of sources︷ ︸︸ ︷∑
A∩B=C

[ms(A) · mo(B)]

1 −
∑

A∩B=∅
[ms(A) · mo(B)]︸ ︷︷ ︸

conflict between sources

. (6)

Accordingly, the numerator involves mass products associated with the target state C
as well as combinations of C with "unknown", whereas the denominator involves mass
products of definite (non-"unknown") and non-equal states. Recent and prior information
sources (measurement masses ms and mo) can also be replaced by two simultaneously
measuring sensors or can be extended to a larger number of sensors. [43, 142]
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3.2.3 Data-Level Fusion

Data-level fusion gives the most accurate fusion technique for proper sensor association
and alignment [96]. This is because it aims at improving the quality and reliability of
the data before any feature or decision is derived. Because the fused data in this context
is typically measured by spatially distributed sensors (e.g. pixels), the term spatial data
fusion is also used. In classical data fusion literature, which is dominated by military
applications, data-level fusion, if considered at all, mostly deals with fusion of image data
on the pixel-level. The fusion of image data is also important for the large variety of
medical imaging techniques [65, 177]. [97, ch.4]

However, considering the redundant multichannel measurement of biosignals (as e.g.
cECG and tECG) in the data fusion context, data-level fusion became an important signal
processing strategy for combining multichannel data. Correspondingly, Luo et al. [175]
define a "signal-level fusion" as a "combination of the signals of a group of sensors with
the objective of providing a signal that is usually of the same form as the original signals
but of greater quality". Methods for data-level-fusion comprise the weighted average as
simplest method as well as the Kalman filter (KF) which estimates optimal weights in
a statistical sense. The KF is designed to combine redundant information provided by a
group of sensors not only on the signal level under the assumption (given a two-sensor
example) that discrete measurements x1(k) and x2(k) are constituted by y(k), the discrete
state of interest and n1(k) and n2(k), independent zero-mean Gaussian random variables:

x1(k) = y(k) + n1(k) and x2(k) = y(k) + n2(k) (7)

Thus, the system is assumed that it can be linearly modeled (otherwise the extended
Kalman filter serves an alternative). Based on a state-space representation of the un-
derlying system (see equation (9)), an optimal combination ŷ(k) of the state prediction
y(k|k − 1) and its recent measurement x(k) is given by

ŷ(k) = y(k|k − 1) + K(k)[x(k) − H(k) · y(k|k − 1)] (8)

y(k + 1|k) = F(k) · ŷ(k) + B(k) · u(k) (9)

with K the Kalman gain assessing the noise influences (process noise, measurement noise)
and its covariances, H the measurement matrix transforming the predicted state into the
measurement space of x, F the state transition matrix, and B together with u the deter-
ministic influence of external inputs on the state y. This framework can easily be applied
to data-level fusion of homogeneous data e.g. by considering one sensor the prediction
and another the measurement [175, p.44]. For linear systems and also strictly speaking
decision-level fusion of e.g. heartrates [12], the KF provides straightforward estimates of
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Figure 12: Schematic Blind Source Separation. Redrawn and modified from [58, Fig. 1].

statistically weighted data. However, considering actual data-level fusion for nonlinear
biosignals as the ECG [59, p.171ff], applying the KF requires extensive dynamic modeling
of the underlying biosignals [225],[269]. Based on the model incorporated by equation (7),
the idea of consensus sensors (identifying sensors measuring the same quantity) is also
applied to data-level fusion by Bayesian estimation [176] and statistical decision theory
[183]. In this context, it can be shown, that adding more redundant sensors improves the
(data-level) fusion result [219]. [175]

With respect to the aforementioned definition of data-level fusion also more recent
signal processing techniques as Blind Source Separation (BSS) can be conciliated. These
techniques are less-restrictive on assumptions regarding noise distribution and also re-
quire far less modeling on the source signals y while maintaining the assumption [219]
of statistical independence between noise and noise-free measurements. In this context,
noise sources are considered as another equivalent state vectors yi i.e. as independent and
separable components [49] such that the model underlying equation (7) is extended to a
multitude of weighted (wi) states/sources x =

∑
i wi · yi. In the following, BSS techniques

will be considered in more detail.

3.3 blind source separation

The blind separation of sources tackles the problem of estimating and separating primary
sources (original input signals) from an array of sensors and their measurements without
knowing the transmission channels, i.e. the mapping of original sources onto the observ-
able mixtures of sources. The term "blind" indicates the unsupervised and self-normalizing
nature of this procedure. As depicted in Figure 12, the problem is addressed by developing
a neural network together with an adaptive learning algorithm for reversing the unknown
mixing process constituting the i-th observed measurement xi(k) out of m weighted orig-
inal sources sj(k)



3.3 blind source separation 37

xi(k) =
m∑

j=1
aij · sj(k) (10)

x = A · s (11)

s ' y = W · x ' A−1 · x (12)

with y = [y1(k), y2(k), . . . , yn(k)]T the estimate of the original source signals. In this
context, one distinguishes between Blind Separation or Blind Source Separation (BSS)
and Blind Signal Separation, respectively, whose object are the separated sources s and
Blind Identification whose object is to estimate the mixing process A. Blind Identifica-
tion thereby addresses Blind Beamforming for estimating the location of sources or their
directional vectors, respectively. [39],[58],[124]

Equation (10) and (11) in this context is a simplification of the actual mixing process
x(k) = f{s(k)}+n(k) with f any unknown function and n additive sensor noise in order
to generate a more tractable (linear) separation problem. [131]

Separation techniques dealing with more complex mixing processes allowing sources to
differently enter the mixing process at multiple delays are termed Blind Deconvolution or
convolutive BSS [210]. This links to BSS based on signals’ state space representation by
delay reconstruction [59, p.181].

Typical Blind Source Separation algorithms attempt to identify an independent set of
vectors/axes onto which the measured data is projected to fulfill the transformation’s
target properties y being intrinsically uncorrelated (Principal Component Analysis) or
statistically independent (Independent Component Analysis). [59, p.149]

3.3.1 Principle Component Analysis

3.3.1.1 Principle Component Analysis

PCA is a transformation technique which decorrelates data by its projection onto orthogo-
nal axes, thus ensuring a diagonal covariance matrix Cov(y) = E{yyT } − µyµT

y . Thereby,
the observed multivariate data x = [x1(k), x2(k), . . . , xn(k)]T with k ∈ [1, K] can be de-
composed by singular value decomposition (SVD)

xT = U · Λ · ΓT (13)

with Λ a non-square K × n matrix with zero entries except the leading diagonal with
Λii =

√
λi the square roots of the eigenvalues λi (i.e. the singular values) of the covariance

matrix Cov(x) arranged in descending order of their magnitude, also Γ a n × n matrix
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of column vectors representing the eigenvectors γi of Cov(x) and, U a K × K matrix of
projections of xT onto the eigenvectors. [59, p.149]

Noise-reduction in the measurement domain (x) using the above-described SVD is re-
alized by truncating the decomposition (13) by retaining only the most significant eigen-
vectors. Moreover, Principal Component Analysis (PCA) can be reformulated to resemble
a neural network problem to solve SVD by a multilayer perceptron [59, p.151f].

Alternatively, the covariance matrix Cov(x) can be decomposed by eigendecomposition
(or eigenvalue decomposition (EVD)) into

Cov(x) = Γ · D · ΓT (14)

with D a square n × n diagonal matrix of eigenvalues λi sorted in descending order and γi

of Γ having unit norm (for uniqueness of the solution [60]). Also, EVD can by reformulated
to be solved by neural networks [58].

Finally, the source signal estimates y of PCA are obtained by setting W = ΓT which
diagonalizes the covariance matrix Cov(y) [58]

yP CA = ΓT · x. (15)

Thereby, PCA projects the data on an orthogonal basis and retains the maximum amount
of variance among all linear projections inside the projected space [49].

3.3.1.2 Whitening

Whitening is a special case of PCA which ensures the covariance matrix of y equaling
the identity matrix Cov(y) = I. This realizes a "white" vector y being intrinsically
uncorrelated and each variable yi having unit variance. Using the EVD as described above
(equation (14)), whitened source signal estimates y can be obtained by [124]

yW hite = Γ · D−1/2 · ΓT · x. (16)

3.3.1.3 Time-Structure Based Methods

Time-structure based methods capture temporal consequences of the relations between
independent signals together with the spatial relations both arising from independence
between separated sources si. Whereas common PCA or Whitening only covers spatial
decorrelation between sensors/sources, this approach extends the decorrelation to a spatio-
temporal decorrelation. Temporal structure which is relevant for periodic signals as biomed-
ical signals is covered accordingly and can improve the BSS performance [130]. The tem-
poral dependency is addressed by assessing correlation at different time lags τ . Thus, a
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stack of covariance matrices Covτ (x) with respect to the time lag τ is formed and a joint
diagonalizer W is searched

Covτ (y) = W · Covτ (x) · WT (17)

which optimizes the overall diagonality of the stack Covτ (y) for instance by minimizing
the sum of squared off-diagonal elements. The time-delayed covariance matrix is of the
form Covτ (x) = E{x(k)xT (k − τ )}. [131]

Further approaches introduce a symmetric stack-metric C(ki, τj) of the i-th (non-
overlapping) time window and the j-th time lag for joint diagonalization [53]:

Covx(ki, τj) =
1
n

ki+n−1∑
k=ki

x(k)xT (k − τj) (18)

C(ki, τj) =
1
2 [Covx(ki, τj) + CovT

x (ki, τj)] (19)

Methods for solving the joint diagonalization problem include the usage of Jacobi an-
gles [40, 311] as well as joint approximate diagonalization by MLE [211] or least-squares
optimization [312]. A positive effect of joint diagonalization is the removal of the influence
of white noise on the diagonalization of a multisensor measurement such that a robust
whitening can be derived [53].

The joint diagonalization of time-lagged covariance matrices is also known as second-
order blind identification (SOBI) by Belouchrani et al. [26]. Despite basing the joint diag-
onalization on pre-whitened inputs, Belouchrani further defines conditions to select time
lags τ in order to obtain a unique solution for the demixing matrix W. Namely, a set of
non-zero time lags τ should be selected such that W · Covτ (x) · WT = Diagτ (d1, . . . , dn)

suffices di 6= dj for ∀ 1 ≤ i 6= j ≤ n for all τ .
The appropriate choice of the number of time lags τ can be addressed e.g. by fitting an

autoregressive model to each channel [131] or assessing the autocorrelation function [21].
Other methods based on time-structure which do not utilize temporal correlations as

described above, work with cross-correlations between frequency sub-bands or joint diag-
onalization in cross time-frequency distributions of multiple signals. [131]
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3.3.2 Independent Component Analysis

Independent Component Analysis (ICA) is a transformation technique aiming at statistical
independence between outputs y such that the joint probability distribution function (pdf)
p(y) = p(y1, y2, . . . yn) of the source estimates y is factorizable by its marginal pdfs [124]:

p(y) =
n∏

i=1
p(yi) (20)

Because the joint pdf of two (or more) Gaussian random variables is completely symmet-
ric and thus, independent of any orthogonal transformation of the random variable, the
applicability of this principle (i.e. ICA) is restricted to random variables y containing at
most one Gaussian variable yi. Otherwise, the problem would lack the identifiability of the
problem’s solution [124]. Another important restriction that applies to ICA is the assump-
tion on uncorrelated (i.e. white) and thus orthogonal outputs yi ∈ y. This guarantees an
unique solution such that each independent component is only estimated once.

While the algorithmic principle for solving this problem was already introduced in 1986
by Herault and Jutten [105], the term Independent Component Analysis was introduced
by Jutten and Herault in the first place in 1991 [135]. Since then, typical algorithms
utilize measures derived from information theory to judge statistical independence. These
measures are essentially based on mutual information or entropy [296], respectively. A
widely applied key to statistical independence thereby is the non-Gaussianity of the ICA

output which derives as a consequence of the central limiting theorem. Accordingly, sums
of independent random variables rather tend toward Gaussian distributions [124].

Whereas the amount of algorithms and their variations proposed to solve the ICA prob-
lem are manifold, we restrict the following descriptions to fundamental ICA solutions and
such which are commonly applied to biomedical signal processing.

3.3.2.1 Projection Pursuit

Since Independent Component Analysis is subject to blindly identifying the underlying
independent components of multivariate data, Projection Pursuit can be regarded as
first approach towards the solution of an ICA separation problem. Projection Pursuit
was designed to determine low-dimensional projections of multivariate data in order to
reveal salient features of the high-dimensional data. These low-dimensional projections can
linearly be obtained by the rotation of the coordinate system/axes and data projection
(visualization) onto the planes/axes of the new coordinate system. [84]

The problem of Projection Pursuit now is to identify interesting projections among
the large number of possible projections. Whereas Friedman et al. [84] first developed an
index characterizing projections following the idea of visual clustering (small inter-point
distances together with large overall data spread), which is rather applicable to process
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Figure 13: Exemplary (sub-/super-)gaussian probability densities p(y) drawn from the exponential
power family of density functions p(y) = c1 · exp (c2 · |y|α) with c1, c2 normalization
constants and α the parameter to define the (sub-/super-)gaussian shape [123].

point clouds than biosignals as ECGs, Huber [116] and Friedman [83] afterwards proposed
the idea of using non-Gaussianity which later on served as a major concept for addressing
statistical independence [60]. In the context of Projection Pursuit, these projections were
considered least interesting, which show normal (Gaussian) probability distribution of
the projected data. This is because sums tend to be normally distributed such that most
linear combinations (views on the data based on the rotated coordinate system) will
be approximately normally distributed. Given fixed variance, normal distributions also
have the maximum information, which is tried to be separated and thus, minimized by
interesting projections. [83, 116]

Non-Gaussianity in a probability distribution is tractable via non-normal deviations
in the tails (e.g. heavy tails measurable by cumulants) or even the main body and cen-
ter of the distribution. Typical non-Gaussian distributions as super- and sub-Gaussian
distributions relevant for biosignals [222] show characteristic behavior with respect to
both distributions’ tail and center. Whereas super-Gaussian distributions exhibit sharp
and narrower centers together with stronger pronounced tails, sub-Gaussian distributions
show a larger mass proportion concentrated in their center compared to normal distribu-
tions [162] (see Fig. 13 for exemplary probability densities). Friedman [83] developed a
projection index focusing on the main body of the distribution. After Whitening of the
input data, projections (ensuring wnwT

n = 1)

zn = wn · yW hite (21)

are transformed by the cumulative distribution function (cdf) of a normal distribution Φ
and scaled to the interval [-1,1]
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Φ(zn) =
1√
2π

∫ t=zn

−∞
e−1/2t2 dt (22)

Rn = 2Φ(zn) − 1 (23)

A standard normal distributed transformation zn will cause a uniform distributed Rn.
Measuring the non-uniformity of Rn corresponds to a measure of non-Gaussianity of zn.
The non-uniformity is measured by the integral-squared distance δu between the pdf of
Rn, p(Rn) and the uniform density pu = 1

2

δu =
∫ 1

−1
[ p(Rn) − 1

2 ]2dR (24)

The probability density p(Rn) is measured by expanding the density into Legendre poly-
nomials Pj up to J terms which gives the projection index I(wn)

I(wn) =
J∑

j=1
(2j + 1)E{Pj(Rn)}2 (25)

I(wn) =
1
2

J∑
j=1

(2j + 1)
[ 1

N

N∑
k=1

Pj(Rn(k))

]2
(26)

The obtained projection index is subject to optimization (maximization) which is ad-
dressed by computing δI

δwn
. Moreover, Projection Pursuit requires a removal of the ob-

tained structure from the data in order to be able to compute another interesting pro-
jection. This removal is realized by transforming the obtained projection zn inside the
whitened data yW hite → y′

W hite such that this particular projection becomes standard
normal distributed and the newly computed projection index optimization will neglect
the prior solution. [83]

3.3.2.2 Minimum Mutual Information

The ICA algorithm proposed by Comon [60] is based on minimizing the mutual informa-
tion of the output components. Mutual information is invariant under transformations
like scaling and permutation as well as component-wise monotonic, nonlinear transforms
[296]. The mutual information thereby is derived by evaluating both sides of equation
(20) which defines statistical independence. Specifically, assessing the difference of both
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pdf components p(y) and
∏

i p(yi) becomes possible by the Kullback-Leibler divergence,
namely the divergence between two probability densities p1(u) and p2(u):

δ(p1(u), p2(u)) =
∫

p1(u) log p1(u)
p2(u)

du. (27)

This gives the mutual information I(y) of the ICA output components y:

I(y) =
∫

p(y) log p(y)∏
i p(yi)

dy (28)

which only vanishes if the output components of y are statistically independent. Comon
[60] derives the mutual information and Kullback-Leibler divergence, respectively, by using
higher-order cumulants. Accordingly, the mutual information is alternatively expressed as
a function of the differential entropy S(p(y)) or the corresponding negentropy J(p(y)),
respectively. This quantities are defined as

S(p(y)) = −
∫

p(y) log p(y) dy (29)

J(p(y)) = S(φ(y)) − S(p(y)) (30)

with φ(y), a gaussian pdf of same mean and variance as y and S(φ(y)) the largest of
possible entropies. The decomposition of the logarithm in equation (28) together with the
relation of differential entropies of an output y and its whitened version yW hite

S(p(y)) = S(p(yW hite)) − 1
2 log det Cov(y) (31)

gives the rewritten mutual information [60]

I(y) = J(p(y)) −
n∑

i=1
J(p(yi)) +

1
2 log

∏
i Covii(y)

det Cov(y) . (32)

Since pre-whitening of the mixed signals x or continuous whitening of the output y, re-
spectively, will cancel the last term of equation (32), the minimization of the mutual
information will refer to maximizing the second term of the right side of this equation
[123] by utilizing cumulants of orders three and four [60]. Namely, the pdfs p(y) necessary
to calculate the negentropies are expanded in neighborhood of their respective gaussian
densities φ(y) (i.e. the term p(y)

φ(y) is expanded) by using Edgeworth expansion. Because
only the second term of equation (32) depends on the de-mixing matrix W (for whitened
output), this sum of marginal negentropies is represented by cumulant tensors as a func-
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tion of W (see [60] section 3.1) which serves the contrast to be maximized. Comon also
derives the pairwise independence which provides the relation that given y = C · s with
C an orthogonal square matrix C = Λ · P with Λ diagonal and P a permutation matrix,
the output components yi ∈ y are pairwise independent, if s is a matrix of independent
components including at most one Gaussian component. This simplifies the computation
by the fact that now, only pairwise cumulants need to be considered. Accordingly, the
optimization (i.e. the calculation of W by contrast maximization) is conducted each using
pairs of signals and their respective elements of W. Moreover, unit variance components/-
sources ensures identifiability of the solution. [60]

3.3.2.3 FastICA

The popular FastICA algorithm proposed by Hyvärinen [123] realizes the mutual infor-
mation minimization solution to ICA (described above as proposed by Comon [60]) by
replacing the cumulant-based entropy estimation with a new approximation of differen-
tial entropy [122] together with a performant optimization. Thereby, it follows the idea
of addressing statistical independence by maximizing non-Gaussianity of the output com-
ponents by using negentropy. Abstaining from cumulant-based estimators/contrasts com-
pensates for the cumulant-related drawbacks of outlier-sensitivity and their limitation to
tail characteristics of the respective distributions [122]. The new entropy approximation
is based on the maximum entropy method, namely approximating the maximum entropy
that is compatible with the measurement of the random variable. In order to measure
the relevant characteristics (i.e. the pdf) of a scalar random variable u, one can estimate
expectations E{Gi(u)} of u given a test function Gi such that the information on the
density p(u) becomes the form

E{Gi(u)} =
∫

p(u) · Gi(u) du = ci for i ∈ [1, n]. (33)

Together with equation (29) it is obvious that one exactly measures the differential entropy
in the case Gi equals minus the logarithmic pdf p(u) of u [122, 123]. However, since the pdf

typically is not known a priori in our BSS setup, equation (33) only gives an ambiguous
solution because multiple densities p(u) can correspond to the obtained measurements
each showing different entropies. An unambiguous solution is given by the density of
maximum possible entropy. Further assuming the density being near the Gaussian density
φ(u), i.e. p(u) = φ(u)(1+ δ(u)) (because φ(u) itself shows the maximum entropy but we
are looking for non-Gaussian densities to address statistical independence), the maximum
entropy pdf is of the form

p(u) = φ(u)(1 +
n∑

i=1
ci · Gi(u)) (34)



3.3 blind source separation 45

which can be used to approximate the entropy of the output component y [122]:

S(y) ≈ S(φ(y)) − 1
2

n∑
i=1

c2
i (35)

Whereas multiple Gi can simultaneously be used to measure the entropy of a random
variable (guidelines for assembling Gi can be found in [121–123]), FastICA typically refers
to use only one single G to estimate the negentropy JG [123] as a function of the demixing
matrix W or one demixing-vector w and yi = wT · x, respectively.

JG(w) =
[
E{G(wT · x)} − E{G(φ(wT · x))}

]2
(36)

Maximizing the sum of negentropies
∑

i JG(wi) realizes the solution to minimize the
mutual information as proposed by Comon [60] (see equation (32)). The optimization
(maximization) of the negentropy-based contrast can be realized by common stochastic
gradient descent (simplified one unit: wn+1 = wn − η · ∇J(wn) with η the learning rate).
However, Hyvärinen also proposes a fixed-point algorithm (simplified one unit: wn+1 =

wn − η · J(wn)
∇J(wn)

) such that the learning rule becomes (see [123] for further stabilized
versions and modifications of the learning rule)

w∗
n+1 = E{x · g(wT

n x)} − E{g′(wT
n x)}wn

wn+1 = w∗
n+1/ ‖ w∗

n+1 ‖
(37)

with g′ the derivative of g and g the derivative of G. [123]

3.3.2.4 Maximum Entropy

Inspired by neural networks, the Infomax approach to BSS as proposed by Bell et al. [25]
aims at maximizing the mutual information I(g(y), y) that a g-transformed output g(y)
contains about its input y (i.e. the transformation input is given by the ICA output) by
maximizing the entropy S(p(g(y))). Accordingly,

I(g(y), y) = S(p(g(y))) − S(p(g(y)|y)) (38)
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where S(p(g(y)|y)) represents the entropy of g(y) which does not originate from y. More-
over, Bell et al. [25] considers only a gradient of this quantities with respect to some
parameter w (i.e. y = wT · x) such that equation (38) becomes

δ

δwI(g(y), y) = δ

δwS(p(g(y))) (39)

with S(p(g(y)|y)) not depending on w ( δ
δwS(p(g(y)|y)) = 0) because of its additive

noise character. Considering the one-dimensional case, the parameter w weights the input
x before the output y is passed through an invertible function g(y) = g(w · x). If one
passes y (i.e. its pdf) through g, one maximizes both I(p(g(y), y)) as well as S(p(g(y)) by
aligning high density parts of y with highly sloping parts of g. The pdfs of g(y) and y are
related accordingly:

p(g(y)) =
p(y)

|δg(y)/δy|
(40)

Following the definition of differential entropy (eq. (29)), the output entropy can be de-
rived by [25] and equation (40)

S(p(g(y))) = −E{log p(g(y))} = E{log
∣∣∣∣δg(y)

δy

∣∣∣∣} − E{log p(y)} (41)

where only the first term of the right side of equation (41) is considered to be affected by
the parameter w. Applying a stochastic gradient descent to maximize the entropy with
∆w = wn+1 − wn will give

∆w ∝ δS(p(g(y)))

δw
=

δ

δw

(
log

∣∣∣∣δg(y)

δy

∣∣∣∣). (42)

See also Amari et al. [8] for a natural gradient realization of this approach.
Utilizing a nonlinear function g (resp. its Taylor series expansion, see also [135]) to

yield statistical independence is possible since g accesses higher order terms to measure
mutual information. However, Bell et al. [25] underlines the importance of the choice of
the non-linearity. Namely, in a multi-dimensional case (e.g. a two-dimensional case)

S(p(g1(y1), g2(y2))) = S(p(g1(y1))) + S(p(g2(y2))) − I(g1(y1), g2(y2)) (43)

maximizing the joint entropy S(p(g1(y1), g2(y2))) requires the maximization of individual
entropies S(p(g1(y1))) and S(p(g2(y2))) plus the minimization of mutual information
I(g1(y1), g2(y2)) in order to obtain statistical independence between the outputs yi. A
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non-linearity (approximately) matching the cdf of the respective source signals will ensure
the maximization of entropies as well as an actual minimization of mutual information. On
the other hand, locally correct solutions are nevertheless obtained by zero-mean outputs
or sources, respectively. [25, 296]

3.3.2.5 JADE

The Joint Approximate Diagonalization of Eigenmatrices (JADE) algorithm, which has
been frequently used in scientific BSS applications was firstly proposed by Cardoso et al.
[39] in 1993.

As the previously described ICA approaches do more explicitly, also cumulant ap-
proaches as JADE implicitly utilize knowledge about the source distributions (in com-
parison only Comon [60] introduces a distribution-assumption-free concept based on the
Kullback-Leibler divergence of marginal and joint densities but anyway realize the contrast
by exploiting cumulants) [38]. In particular, second-order and fourth-order cumulants were
used where e.g. fourth-order cumulants of the random variables x1, x2, x3, x4 ∈ x with
x̃i = xi − E{xi} estimates as

Cum(x1, x2, x3, x4) =

E{x̃1x̃2x̃3x̃4} − E{x̃1x̃2}E{x̃3x̃4} − E{x̃1x̃3}E{x̃2x̃4} − E{x̃1x̃4}E{x̃2x̃3} (44)

and cumulants involving only one variable xi with i = const ∀ xi are called auto-cumulants
or cross-cumulants otherwise. Using Rij = Cum(xi, xj) and Qijkl = Cum(xi, xj , xk, xl),
the Kullback-Leibler divergence from equation (27) (as well as other ICA entropy-based
contrasts) can be approximated [38], i.e.

δ(p1(u), p2(u)) ≈ 1
4
∑
ij

(
R

p1(u)
ij − R

p2(u)
ij

)2
+

1
48
∑
ijkl

(
Q

p1(u)
ijkl − Q

p2(u)
ijkl

)2
. (45)

Moreover, cumulants show a multilinearity property such that the fourth-order cumulants
of the output yi =

∑
p wip · xp are obtained

Cum(yi, yj , yk, yl) =
∑
pqrs

wipwjqwkrwls · Cum(xp, xq, xr, xs) (46)

which can be exploited for the linear ICA model. The statistical independence addressed
by computing a transformation w ∈ W brings in the diagonalization such that the fourth-
order cumulant matrix Qp(s) of statistically independent source signals s is a diagonal
matrix of kurtoses and thus, all cross-cumulants equaling zero.
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Because a fourth-order cumulant matrix would be a four-dimensional matrix, cumulant
matrices are further expressed in terms of a set of two-dimensional matrices such that
the entry Qij of this matrix which is based on random variables xi of sensors i ∈ [1, n] is
calculated as [263, p.488]

Qij =
n∑

k,l=1
Cum(xi, xj , xk, xl). (47)

In order to capture a large amount of fourth-order information in a set of two-dimensional
matrices, an additional matrix M is involved to generate a two-dimensional cumulant
matrix. If one defines a set of cumulant matrices {Qp(x)(M )} with respect to an arbitrary
n × n matrix M , the entry Qij is obtained

[Q p(x)(M )]ij =
n∑

k,l=1
Cum(xi, xj , xk, xl) · Mk,l. (48)

Using the multilinearity property from equation (46) will arrange the cumulant matrices
involved in the ICA model x = A · s according to

Q p(x)(M ) = A · D(M ) · AT (49)

D(M ) = Diag
(
Q

p(s1)
1111 · aT

1 Ma1, . . . , Q p(sn)
nnnn · aT

n Man

)
(50)

with ai the i-th column of A and Q
p(si)
iiii the kurtosis of si. The underlying diagonalization

problem is similar to EVD in PCA (see section 3.3.1). However, in this case one searches for
a joint diagonalizer of a set of matrices. Cardoso [38] gives guidance to construct such sets.
Thereby, a maximal set of cumulant matrices {Qp(ywhite)(M )} is constructed to guarantee
an equivariant estimate1 of the diagonalization by involving a large number of fourth-order
statistics. Actually, a set of eigenmatrices of {Q(M )} with non-zero eigenvalues is used
to compute a joint diagonalization. The respective set of matrices is jointly diagonalized
by a product of plane rotations based on Jacobi angles (Jacobi rotations) as proposed by
Cardoso et al. [40].

By using diagonalization of higher-order (fourth-order) cumulant tensors analogous to
the second-order cumulant tensor covariance matrix (PCA), JADE is considered very effi-
cient for a small number of observations [101], while it is not for a large number of observa-
tions [38]. An advantage coming alongside the usage of Jacobi angles for the computation
of the transformation is superseding the necessity for gradient descent optimization (i.e.
its sensitivity to local optima). [38, 39]

1 An equivariant estimator preserves the structure of the parameter estimation problem (i.e. finding the
diagonalizer of the fourth-order cumulant matrix) while using only sample estimates.
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3.3.2.6 RADICAL

The Robust, Accurate, Direct ICA aLgorithm (RADICAL) as well as the other following ap-
proaches are relatively new ICA developments, which were proposed after the fundamental
ICA approach statements during the 1990s.

As multiply exploited in the ICA domain, RADICAL bases on the concept of expressing
mutual information by entropies or negentropies, respectively, as described in equation
(32). Accordingly, minimizing mutual information essentially equals minimizing marginal
differential entropies

∑
i S(p(yi)) or maximizing negentropies, respectively. In order to

solve this minimization problem, Learned-Miller et al. [159] propose a new entropy esti-
mator thus giving an alternative solution to the minimum mutual information principle
by Comon [60].

The according entropy estimator is based on order statistics. Namely, if one considers
an ordered random variable y∗ which is ordered with respect to the sample value y∗(1) ≤
y∗(2) ≤ y∗(N ) an m-spacing is defined y∗(i + m) − y∗(i) and m is limited by N (and
can be a function of N such that one typically considers a mN -spacing). The entropy
estimator is defined as

SmN (p(y)) =
1

N − mN

N−mN∑
i=1

log
(

N + 1
mN

(y∗(i + mN ) − y∗(i))

)
(51)

with mN ≈
√

N such that the expectation of the corresponding density p(y) centers
around its probability mass, which lowers the variance of the estimator. In order to im-
prove the performance of the optimization regarding false optima especially in case of
small sample sizes N ≤ 2000, the algorithm further uses replicates y′ of the original sam-
ples with added spherical Gaussian noise (N (y, σ2

R)) at R samples to augment the original
data prior to entropy estimation. Given a pre-whitened output yW hite the residual rota-
tion aiming at statistical independence while maintaining whiteness is computed. In the
two-dimensional case, the global optima can easily be computed with a given resolution
and the rotation range [0, π/2] suffices since every 90◦ will result in the same independent
component. In the multidimensional case, the optimization is successively calculated for a
series of {yi, yj} pairs by utilizing Jacobi rotations always affecting only the two respective
components. Accordingly, the overall rotation is not calculated at once but in sweeps of
pairs i, j with 1 ≤ i 6= j ≤ n for yW hite consisting of n random variables.

Thus, the RADICAL approach uses no explicit nor implicit density estimation. Moreover,
its entropy estimator is robust against outliers, however the required pre-processing i.e.
whitening is not. The utilized global optimization also is robust compared to gradient
descent methods because sticking to local optima is avoided. [159]
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3.3.2.7 πCA

In biosignal processing with BSS, the (pseudo-)periodic structure and information inherent
in many biosignals is typically not exploited. Periodic Component Analysis (πCA) utilizes
such periodic structure of signals. A measure ε of periodicity to be minimized (to maximize
the periodicity of the output y) in the BSS context was proposed by Saul et al. [226]:

ε(w, τ ) =

∑
k |y(k + τ ) − y(k)|2∑

k |y(k)|2
(52)

with y(k) = wT · x(k). Thereby, w is further allowed to be complex in order to compensate
for phase differences among the outputs s and the originally real-valued signals x(k) are
transformed to analytic signals with imaginary parts computed by the Hilbert transform.

Whereas the above mentioned contrast ε refers to a constant time lag τ , Sameni et
al. [224] extend the πCA concept to deal with changing τ as typical for physiologically
fluctuating distances between successive heart beats in biosignals. Specifically, R-peaks
in the input ECG are detected and a phase signal ϕ(k) ∈ [−π, π] is extracted which serve
as a basis to a time-adaptive τk

τk = min {τ |ϕ(k + τ ) = ϕ(k), τ > 0} (53)

Also, Sameni et al. [224] works with real-valued variables and transformations. Moreover,
the output y in equation (52) is reformulated such that ε becomes

ε(w, τk) = 2
(

1 − wT · Covτk
(x) · w

wT · Cov(x) · w

)
. (54)

3.3.2.8 Constrained ICA

Given an already existing notion of the source signals of interest which should be ex-
tracted out of the measured signal mixtures x, one can impose a constraint to the ICA

optimization problem which works alongside the maximization of statistical independence.
Since these notions are typically seizable in form of temporal information on the source
signal’s course (e.g. additional sensors access time instances of heartbeats), temporally
constraints are common in constrained Independent Component Analysis (cICA). Typical
implementations [129, 161, 173, 187, 189, 259] apply these constraints to the FastICA
algorithm. To measure the closeness f(w) to the constraint r(k) (typically a rectangular
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function resembling the temporally important features), a correlation coefficient can be
applied such that equation (36) becomes

Maximize: JG(w) =
[
E{G(wT · x)} − E{G(φ(wT · x))}

]2
Subject to: f(w) = ξ − E{r(k)wT · x(k)} ≤ 0

(55)

with ξ a threshold and both variances E{y2}, E{r2} = 1. This constrained optimization
problem can be addressed by the Lagrange multiplier method (see [173] for details) with
the new Lagrangian objective function L including the constraints

L(w, µ, λ) = −JG(w) + f(w, µ) + h(w, λ) (56)

with µ and λ the Lagrange multipliers and h modeling the above mentioned variance
constraint (h can be omitted in case of pre-whitening). The crucial choice belongs to the
threshold ξ which can be done empirically [129, 189]. Namely, ensuring the optimization to
generally as well as exactly converge to the desired output yi 6= yj , ξ needs to be chosen
ξ ∈ [f(yi, r), min f(yj , r)] [173]. Accordingly, Mi [187] serves an algorithm to adapt ξ

based on detecting the desired convergence behavior.

3.3.2.9 Frequency Domain ICA

The classical instantaneous ICA model does not hold for convolutive mixtures xi(k) =∑
j,τ aij(τ ) · sj(k − τ ). Despite convolutive mixtures can be handled by BSS models in-

cluding delay-reconstruction [240] and spatio-temporal FIR filters [203], respectively, the
convolutive model can also be approached in the frequency domain. Accordingly,

Xi(f , k) =
N∑

j=1
Aij(f) · Sj(f , k) (57)

denotes the ICA model for each frequency bin X(f) and X(f , k), respectively S(f , k) is the
time-frequency representation, e.g. the short-time Fourier transform (STFT) of x(k) and
s(k) at the frequency bins f [188]. Aij(f) designate the discrete Fourier transform (DFT)
coefficients of the FIR filters aij(τ ) of the mixing matrix A. This model needs to be solved
by ICA algorithms capable of complex-valued data.

Complex ICA extensions to facilitate frequency Independent Component Analysis (fICA)
have been proposed e.g. for the infomax (maximum entropy) approach by Smaragdis [235]
and Anemüller et al. [14]. Also, FastICA has been modified to deal with complex data
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in a fICA setting by Milanesi et al. [188]. Thereby, the FastICA learning rule depicted in
equation (37) is adapted as

wn+1 = E{x · g∗(wH
n x)} − E{g∗′(wH

n x)}wn (58)

where g∗ is the complex extension of g, e.g. for the commonly applied g(y) = tanh(y)
such that g∗(y) = tanh(<{y}) + i · tanh(={y}) as already proposed in [235].

Under the model defined above, each considered frequency bin requires an ICA com-
putation. Before back-transformation of the obtained output components into the time
domain, the components of each frequency bin need to be associated with their match-
ing components from other bins. Inter-frequency correlation can be used to solve this
indeterminacy since different spectral envelopes of the same source should show highest
correlation among the possible combinations [14, 189].

3.3.3 Quantification of BSS Performance

A direct sample-by-sample comparison between a single estimated source signal y and
true source signal s given the solved permutation indeterminacy is obtained by [310]

D = min
∥∥∥∥ y

‖y‖
± s

‖s‖

∥∥∥∥2
(59)

a L2-normalized version of a squared distance to address the gain indeterminacy. However,
this measure serves a poor contrast for distinguishing between solutions y ≈ s and badly
solved permutation indeterminacy [268].

Other measures directly comparing source signal estimates y with their respective true
source s (and the noisy measured signal x) are given by the noise reduction factor2 (with
〈f〉 the mean of a function f):

χ =

√
〈x − s〉2

〈y − s〉2 (60)

and the cross-correlation coefficient between the true source and its estimate (mean µ and
standard deviation σ)3 [59, p.179]

ρ =
〈[s − µs][y − µy]〉

σsσy
. (61)

2 [189] defines a similar (inverse) measure of a quadratic error
3 [189] defines a similar morphology recovery coefficient which is limited to the immediate QRS vicinity
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Defining a BSS model including a source-to-sensor filter aij(τ ) that depends on embed-
ding time lag τ , the i-th measurement xi with i ∈ [1, m] is mixed out of n source signals
sj by

xi(k) =
n∑

j=1

+∞∑
τ=0

aij(τ ) sj(k − τ ) + εni(k) (62)

with εni(k) additive sensor noise at the i-th sensor.
Assuming a time-invariant linear mixing system Aτ : {A(τ )|τ ∈ [0,+∞]} and the ac-

cording demixing system Wτ one obtains the global system Bτ = Wτ · Aτ which can be
evaluated in an experimental setting given a previously known mixing system Aτ . The
intersymbol interference (ISI) of Bτ defined as [155]

ISI =
∑+∞

τ=0 |B(τ )|2 − maxτ∈[0,+∞] |B(τ )|2

maxτ∈[0,+∞] |B(τ )|2
. (63)

ISI is insensitive to overall gain and group delay (unlike the mean square error). It is
measured row-wise as row ISI4 [57, p.373],[155, 268] (dropping the summation over τ for
simplicity)

ISIj =

∑m
i=1 |Bji|2

maxi∈[1,m] |Bji|2
− 1 (64)

or as combined performance index (PI) of all j ∈ [1, n] rows5 [57, p.161],[248]

PI = 1
n(m − 1)

n∑
j=1

m∑
i=1

(
|Bji|

maxi∈[1,m] |Bji|
− 1

)
. (65)

Similar approaches estimate a SNR of the transformation obtained by the system Bτ

together with the source signals s [247]

SNRτ
j = 10 log10

∑K
k=1 |

∑+∞
τ=0 Bjj(τ )sj(k − τ )|2∑K

k=1 |
∑+∞

τ=0 Bjn(τ )sn(k − τ )|2
(66)

considered as noise source sn and source of interest sj with its SNRτ
j , respectively. These

measures cannot be applied to underdetermined (m < n) BSS problems [268].

4 [57] extends this measure with an analogue column-wise ISI. [155] uses another indexing for evaluating
the inverse system B−1 = A · W

5 [57] extends this measure with an analogue column-wise assessment
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A generalized model for the decomposition of source signals obtained by BSS was pro-
posed by Vincent et al. [268] in the context of BSS performance quantification for audio
source separation. Estimated sources are decomposed into a true source part plus error
terms corresponding to interferences by other sources, additive noise and algorithmic arti-
facts. The decomposition is based on orthogonal projections of the estimated source signals
y onto vector subspaces spanned by the true sources s. Numerical performance criteria
(i.e. signal-to-noise/interference/artifacts-ratio) are derived from this decomposition.

3.3.4 General Practical Limitations of ICA Usage

Common ICA algorithms as presented above assume a properly chosen nature of the
mixing problem to be solved. This for instance involves a well-determined mixing relation
between mixtures and sources, i.e. the number of sources m to be estimated being less
or equal the number of measured mixtures n. Also, the amount of samples per measured
mixture needs to be sufficient to ensure reliable contrasts and avoid artifacts. In the
following, some problems and related approaches addressing practical conditions beyond
the typical ICA assumptions are highlighted.

artifacts of ica In ICA (and BSS) insufficient sample sizes can lead to the gener-
ation of artefactual sources due to over-fitting. These specific artifacts have been termed
spikes and bumps by Hyvärinen et al. [126]. Considering the extreme case, where the num-
ber of measurements n equals the number of samples (x, A : n × n), it is obvious that a
perfect candidate y of non-Gaussian output components under the whiteness constraint
is a permutation (and sign-change) matrix of spikes.

If the original source signals are not independent and identically distributed but show
strong time-dependencies (e.g. periodic signals), the spikes are rather be expressed in a
lowpass-filtered fashion, i.e. as bump artifacts even for larger sample sizes. This is because
the periodic signal of sample size N consists of k-times repeated segments such that the
actual sample base for ICA optimization only is of size N/k and bumps of size k can be
generated. Accordingly, sample size and sampling rate as well as compression (e.g. batch
processing) approaches should be considered with care. [126]

under-/overdetermined ica Most ICA algorithms consider the symmetric case
of l source component estimates y obtained after inverting the mapping of m source signals
s onto n mixtures x with l = m = n. While facing a more generalized ICA problem, one
defines the underdetermined m > n as well the overdetermined m < n case. Whereas the
latter may effectively be addressed by PCA pre-processing, the underdetermined case is
troublesome. An underdetermined ICA may result in output components itself resembling
a mixture of the original source signals while anyway being statistically independent [173].
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Many approaches to the underdetermined case utilize the sparseness of source signals
[67], for instance Georgiev et al. [88] propose the concept of a sufficiently sparse source
signal. A sparse source signal thereby contains as few as possible non-zero elements. While
real-world time-domain sources rather not resemble sparse sources at first glance, a linear
sparseness-improving transformation (e.g. the wavelet packet transform, see also [310]
for BSS based on a signal dictionary) may be able to generate a sparse representation.
Moreover, constraining

1. the n × m matrix A to be non-singular also regarding its n × n sub-matrices

2. the source signals s to contain at most n − 1 non-zero elements

3. s nevertheless being sufficiently rich (contain a sufficient amount of independently
distributed non-zero entries, see [88] for details),

the underdetermined source separation problem can be uniquely solved by a hyperplane
evaluation of the columns of x. Another approach to underdetermined ICA basically works
with the concept of virtual sensors (see e.g. De Lathauwer et al. [67],[66]), which are
generated in the context of cumulant matrices and their simultaneous diagonalization to
achieve statistically independent output components (as used in SOBI an JADE).

On the contrary, Joho et al. [133] investigated the overdetermined ICA problem in a
subsequent PCA→ICA setup. The authors showed by simulations, that adding sensors can
improve the output signal quality for both the virtual sensors obtained by PCA as well
as the ICA outputs. In particular, the PCA profits of an increased sensor number, since
singular values (resp. eigenvalues) and thus, the SNRs of the original source signals are
improved. The effect of an increased SNR for a larger sensor number then also shows
in the ICA output. Additionally, more sensors decrease the condition number of A (i.e.
the influence of small changes like noise in the sensor of x on the estimate of s by A−1).
However, sensor noise is the limiting factor since for instance a dimension reduction by PCA

is typically based on singular values (resp. eigenvalues), thus excluding outputs associated
with small singular values. Moreover, the commonly applied whiteness constraint in ICA

eventually increases the noise power after being passed through PCA.

separability of sources The question whether the l estimated independent
output components y represent actually separated source signals s is strongly connected
to underdetermined ICA. The problem of separability of independent sources is stated
by Cao et al. [36]6 such that after the mixing process x = A · s we estimate a demixing
process y = W · x which still leaves the indeterminacy y = B · s with B = W × A a l × m

matrix. Typically, one does only have partial control of B because A is unknown. The
question of separability arises, if one can obtain a W such that each row of B contains
only one single non-zero entry. In this context, the Darmois-Skitovich theorem states that

6 The term separability in [36] specifically refers to the existence of A however, by using this term within
this doctoral work, the relation between y and s is considered.
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given a m-dimensional source vector s = (s1, . . . , sm)T of mutually independent sources
and further two pairwise independent output components y1 and y2

y1 = b1,1 · s1 + b1,2 · s2 + . . . + b1,m · sm

y2 = b2,1 · s1 + b2,2 · s2 + . . . + b2,m · sm

(67)

show b1,i 6= 0 and b2,i 6= 0, then si has a Gaussian distribution. While this theorem has
no limiting consequence in the case l = m and the ICA restriction regarding at most
one Gaussian source, the case l < m has consequences for a full column rank matrix A.
Then, a matrix W can be computed that separates m source signals into l non-empty
disjoint groups of source signals (i.e. independent components which are anyway pairwise
independent). Also, Cao et al. [36] derive consequences for the structure of B in case of
the number of Gaussian sources (noises) exceeding one.

reliability of bss One problem of unsupervised learning algorithms as common
BSS arises from the fact that the respective algorithm will always give a solution within
its model class, e.g. PCA will give an orthogonal separation independent of the actual
orthogonality of the original sources. Given the knowledge of both s the true sources
and y the estimated sources, one can calculate the actual separation error Ei of the i-th
component as the angle difference between the true direction of source and the estimated
source [185]

Ei = arccos
( ei · fi

‖ ei ‖ · ‖ fi ‖

)
(68)

with {ei} the canonical basis of the true sources and {fi} the basis of the estimated
sources.

One approach towards estimating the BSS reliability blindly is given by Meinecke et al.
[185]. It considers the reliability of BSS projections by application of re-sampling. Namely,
an ICA solution y is computed which is used to re-sample surrogate data by using Boot-
strap. The ICA algorithm again is used to compute the rotation which separates the surro-
gate data (after respective whitening). The uncertainty of the original i-th ICA projection
is assessed by evaluating the variance of the rotations (angles).

Thereby, a rotation in Rn is defined through a plane, i.e. a plane rotation in the
(i, j)-plane. The overall n-dimensional rotation can be decomposed by the product of
plane rotations of all principle planes 1 ≤ i, j ≤ n. A (i, j)-plane rotation is given by the
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identity matrix I except the contributions in (i, j) with Ri,j(α) the (i, j)-rotation matrix
of angle α and exemplarily one gets [72]

Ri,j(α) =


1 0 0 0

cos α 1 − sin α 0

sin α 0 cos α 0

0 0 0 1


for (i, j) = (2, 3) (69)

which is a principle, that is also utilized in the joint diagonalization of matrices [40]. How-
ever, in the new estimate of W∗ separating the surrogate data, the (i, j)-plane rotations
are already mixed. Nevertheless, it can be expected that W∗ will be close to the identity
matrix, since it separates surrogate data from already separated data. Based on that, the
rotation angles between the identity matrix I and W∗ are assessed for single components
(rows of W∗) with respect to the vectors forming the (i, j)-plane of each i-th component
by using cos α = a1·a2

|a1|·|a2| with a1 ∈ I and a2 ∈ W∗ the vectors defining the plane’s axes.
Namely, the variance of the rotation angles α of the i-th component among the surrogate
samples is computed. Accordingly, first the variance of αi,j (Var(αi,j)) given a pair (i, j)

is estimated for all surrogate samples (i.e. the instability of the rotation with respect to a
rotation in the (i, j)-plane). Afterwards, the uncertainty Ui with respect to the i-th com-
ponent is computed by determining the maximum variance among the j contributions to
the i-th component by [185]

Ui = max
j

Var(αi,j). (70)

This gives the maximum variance of the angle which bounds the reliability of the direction
of the ICA estimate yi.

nonlinear ica The previous descriptions on ICA underlay a linear mixing process
model x = A · s which has to be critically examined in real-world measurement scenarios.
Refining the ICA model in order to be capable of dealing with a nonlinear mixture will
give

x = f (s) (71)

with f an unknown function from Rn to Rn (a linear f equals the classical ICA model).
However, it can be shown [125], that while it is always possible to find a function h with
y = h(x) giving statistically independent outputs, this solution is highly non-unique.
Specifically, by incrementally building h using a Gram-Schmidt-like orthogonalization pro-
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cedure, one can always form a set of n variables yi which are jointly uniformly distributed
in the unit cube [0, 1]n and thus, independent. However, this solution will be non-unique
since y′ = h′(M · x) 6= y for a linear transformation M. According to this, the nonlinear
ICA solution will leave an indeterminacy comparable to that solved by standard linear
ICA. Only under very strong assumptions (i.e. a two-dimensional mixing problem, f a
conformal mapping, source densities with known bounded support), unique solutions can
possibly be obtained. [125]

3.3.5 Limitations of BSS for Processing Biomedical Signals

Multichannel biomedical signals derived from a (at least partly known) spatial distribution
of sensors with respect to the human body provide temporally and spatially correlated
measurements. These measurements are additionally contaminated by disturbances either
of physiological or environmental origin. In order to analyze the measured biomedical sig-
nals, the measurements needs to be unmixed into its constituent physio-/pathological
components and separated from disturbances. Moreover, information about the number
of distinct sources [279], their spatial distribution and temporal changes are to be pro-
vided. BSS methods at least partially aim at automated data-driven solutions for these
requirements. [131]

In the following, the general application of BSS to biomedical signals is discussed in the
context of the aforementioned limitations defined by the assumptions underlying practi-
cally relevant BSS models.

separability of biosignals and disturbances Typical environmental dis-
turbances in biomedical signal acquisition arise from common mode interferences in bio-
potential measurement. Common mode interferences express themselves as technically
originating baseline wander and power-line interference or non-technical contamination
like muscle activity and motion-related signal changes [49]. Despite already been addressed
by common biopotential amplification technique, even an ideal amplifier with infinite com-
mon mode rejection ratio is limited due to a common mode signal being dependent on
equal source impedances [197], i.e. the impedances characterizing the distances between
the human body’s signal generator(s) and each electrode. However, due to the nature of
common mode interferences spreading very similarly on differential leads, BSS provides a
suitable technique to cope with such interferences in multichannel (multi-lead) settings.

Also, the model of the BSS input, i.e. how the measured signal mixture is constituted by
the underlying source signals, affect its separability by means of BSS. The dipole model of
the ECG, i.e. one of the physiological models utilized for biosignal measurements, fulfills
one of the fundamental BSS assumptions such that the ECG recording is a linear mixture
of bioelectrical signals. The explicit manifestation of the linear mixture depends on the
measurement location [264]. In the cbPPG domain, the measurement model differs with
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respect to the utilized wavelengths. A cbPPG can be measured at different locations (i.e.
pixels or ROIs) using a single wavelength (monochrome approach, [64, 154, 252]) or alter-
natively at a single location using different wavelengths (multispectral approach, [265]).
The most widespread approach originating from Poh et al. [212] processes multispectral
measurements of the blood volume pulse. Thereby, each color sensor measures a mixture
of the photoplethysmographic effect alongside disturbances like changes in ambient light
or motion artifacts. This approach neglects the two-fold mixture problem apparent in
this measurement setup. One the one hand, light of different wavelength penetrates to
different depth of the human skin [265], which possess different properties [24] (e.g. ab-
sorption properties). The blood volume pulse then is formed as an individual mixture of
multiple wavelengths [95], which gives the first mixture. Additionally, the mixture of the
measured color changes is superimposed by disturbances. It has to be questioned whether
all types of disturbances (e.g. changing ambient light brightness) express themselves ho-
mogeneously for the different wavelengths and thus can be effectively separated by linear
BSS. Alternatively, the BSS model of [64, 154] in the context of the cbPPG utilizes different
spatial sensors of the same wavelength (monochrome approach). According to that model,
melanin and hemoglobin differently reflect the light such that the observed signals serve
as a mixture of these two contributions. Thus, this model covers the reflection and absorp-
tion of light in different depths of the skin [24] but for the same wavelength. Whereas the
amount of melanin can be considered constant in time, the amount of hemoglobin is peri-
odically affected by the blood volume pulse. The separation of these signals by ICA should
be possible by processing a pair of signals from two skin locations [64, 154]. However, the
underlying assumptions in this case comprise the measurement of a homogenous blood
volume pulse with respect to the two locations together with two locations measured at
the same color (regardless its brightness). The assumption on a homogeneous (linear) su-
perposition of disturbances (e.g. the relative change of brightness) in this model seems
realistic for common scenarios.

Moreover, in biosignal processing, clinical information and noise share similar properties
as commonly used for linear biosignal analysis like time- and frequency-domain features.
Whereas BSSs’ mixing models typically base on linear models in the time-domain, pro-
cessing approaches as Independent Component Analysis (ICA) do not rely on the linear
assumptions (a linear spectral superposition of biosignal and disturbance sources) applied
for spectral filtering. [49],[59, p.171] Therewith, they suit better to nonlinear spectral data
structure and have been associated with biological systems from the early beginning of ICA

algorithm developments on [131, 135]. Among the BSS algorithms, ICA is considered supe-
rior to e.g. PCA for the nonlinear data structure of biosignals [49]. In addition, compared
to spectral filters, BSS does not cause a reduction of amplitudes of important biosignal
waveforms as the QRS complex of the ECG [101].

Typically, the linear stationary mixing paradigm underlying the ICA ensures the separa-
bility of sources. For instance, a cardiac source signal which rotates through the abdomen
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due to respiration together with stationary located noise sources induces a nonlinear mix-
ing process [59, p.165]. However, this can also be understood as a problem of missing
stationarity [131] of an actually linear mixing process which may be addressed by seg-
mentation of the data. Basically, the assumption of a linear mixing process in biomedical
multichannel measurements serves a reasonable hypothesis in most cases.

bss model selection Despite the common instantaneous mixing model which is
addressed by a standard linear BSS model in the time domain, other BSS models e.g. uti-
lizing signals’ state space reconstruction, have been discussed in the context of biomedical
signal processing.

Nonlinear dynamics can be described by a state space reconstruction [240]. Under the
assumption that the biosignal dynamics evolve from an attractor7 (as reasonable for biosig-
nals like the ECG [82] and PPG [46]), a replica state space using delay vector reconstruction
is given

x(k) = [x(k), x(k + d), . . . , x(k + (m − 1) · d)]T ∈ Rm (72)

with m the reconstruction dimension and d the sample (time) delay. Appropriate choices
for m should consider the box counting dimension/Minkowski dimension D0 according
m > 2 · D0 of the nonlinear dynamics and d can be selected e.g. by the first minimum in
the mutual information of the signal. In practice, the selection of m of d can be realized
by accuracy optimization of the connected nonlinear filtering technique. [59, p.173]

The state space representation can be used for filtering by ICA even given a single
univariate ECG lead [59, p.173f,181f]. Filtering based on delay reconstruction represen-
tations can also be understood as FIR filter. Processing multivariate inputs based on a
delay reconstruction state space extends the standard temporal filter to a spatio-temporal
FIR filter [203]. According to Stögbauer et al. [240], BSS based on delay reconstruction in
general serves the more appropriate choice for biosignal processing since it accounts for
the multidimensionality of a source originating from a chaotic dynamical system as the
human heart.

The FIR filter perspective of ICA using delay reconstruction state space is basically
equivalent with convolutive ICA performed in the frequency domain (fICA), i.e. the com-
putation of the ICA for time courses of band-limited frequency bands (short-term Fourier
transform). Accordingly, ICA inputs are formed each of the same frequency bands from
different input signals. Since ICA is only solved up to a permutation the components from
several frequency-bands need to be associated. This is addressed by inter-frequency-band
correlation to construct grouped frequency domain components for back transformation

7 An attractor serves a subset of the phase space, i.e. a limited set of conditions, which a dynamical system
(approximately) does not leave over time. An ECG won’t express an arbitrary form but instead follows
limited dynamics and expresses an attractor (see e.g. [178]).
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into the time domain [189]. Convolutive BSS algorithms do not necessarily contribute to
an improved separation performance compared to standard instantaneous algorithms. For
instance, Vayá et al. [264] showed a better performance of instantaneous time domain ICA

for extraction of atrial activity during AF compared to convolutive methods. Milanesi
et al. [189] on the contrary reported lesser quadratic errors of the waveform compared to
the ECG reference, better QRS morphology recovery (higher correlation with reference)
and increased R peak detection accuracy for fICA. Whereas in fICA two indeterminacies
(association of frequency bands to one component, permutation of multiple components)
are to be solved, convolutive BSS by delay reconstruction solved in the time domain only
possess the permutation of multiple output components. Applying such spatio-temporal
ICA showed performance improvements compared to instantaneous ICA for wearable ECG

recordings [290].
Nevertheless, instantaneous mixing (without embedding delay-reconstruction) is com-

monly assumed and holds for certain biomedical applications [131, 222]. Another simpli-
fication, assuming a noiseless mixing in the linear model, is less realistic but still allows
for the separation of sources yet contaminated by measurement noise. [131]

Another important limitation of the BSS model is introduced by common BSS algorithms
that are based on (higher-order) statistics and treat the observations x as random variables
where temporal ordering is irrelevant. On the contrary, temporal structure is relevant in
biosignals and could be exploited as less-common approaches like time-structure based
methods do (see section 3.3.1). In the context of separation from maternal and fetal ECG,
a periodic component analysis was proposed by Sameni et al. [224] which replaces classical
independence of ICA by a periodical temporal structure criterion. However, this approach
wasn’t developed up to a level applicable for unsupervised data-driven usage. Temporally
constrained methods (see section 3.3.2) also incorporate time-structure. In contact-less
multichannel measurement setups as the cECG, however, temporal a priori information
as necessary for the temporally constrained ICA is typically not available. Clinical setups
recording an ECG alongside and electroencephalogram (EEG), on the other hand, can
provide temporal information to separate EEG disturbances originating from the ECG

[98]. Even data-driven temporal constraint determination requires carefully determined
thresholds [189] and thus training which inhibits the transferability to other data sets.
Besides temporal information, also spatial information or topographical maps (a priori
knowledge about spatial projections e.g. in the EEG) can be included in the ICA estimation
as constraints. [131]

consequence of overdetermined bss Increasing the number of ICA inputs
by increasing m (for delay vector reconstruction in equation (72)) or the number of sensors
complicates the permutation indeterminacy, which is one of the major problems and
antagonism of ICA. While adding inputs allow for fusion-performance improvements on the
one hand [219], it hampers the exploitation of the performance increase on the other hand.
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Because BSS is only solved up to permutation, a selection of interesting sources among
y after BSS application is mandatory. In order to highlight the selection necessity, ICA is
a context-dependent transformation driven by the data within the analysis window such
that no clinically relevant biosignal (e.g. ECG) is obtained by its application. For clinical
use and diagnosis, the back projection of non-noise sources (by W−1 and setting noise-
source-related columns to zero) after their respective selection is necessary and overcomes
the scaling ambiguity. The according permutation problem for handling back projection
is rather complicated but needs to be solved regardless ICAs usage with or without back
projection to anyway make use of the separation performance. [59, p.162ff]

The assumption of square mixing (the number of measurements equals the number
of estimated sources) is a commonly applied commitment in BSS application trying to
avoid model order selection and making BSS more tractable. This assumption is in par-
ticular relevant for overdetermined mixtures because it is less likely in large multichannel
setups. Overdetermined mixtures can be addressed by data-reduction techniques like pre-
whitening. These techniques, however, show a potential weakness to guaranty that the
sources of interest are contained in the subspace spanned by dominant principle com-
ponents (dominant eigenvalues, respectively amount of expressed variance). Other enu-
meration approaches are also based on eigenvalues [91, 261] or aim at sequential source
separation [108]. Together with the common square mixing assumption and thus, the num-
ber of sources to be extracted, the assumption of decorrelation or statistical independence
is utilized for the computation of the BSS solution. In the light of an actual biomedical
multichannel setup, also the question arises how many actually independent sources can
be extracted by given sensors. In general, the question whether independence is actually
achieved by a transformation and to which degree (e.g. assessed by mutual information)
is seldomly addressed in the ICA context [240]. [131]

While being based on common ICA algorithms, an alternative view onto ICA with re-
spect to the square mixing problem is given by Multidimensional Independent Compo-
nent Analysis (MICA). MICA extends the conventional ICA approach by aiming at inde-
pendent subspaces (sub-matrices of A, W) while allowing for dependencies within the
sub-matrices [48, 254]. Thus, multidimensional components y are determined by combin-
ing one-dimensional non-independent source signal estimates [37]. This connects a relaxed
independence assumption of the relation between output components y with the anyway
applied practical realization of ICA, which aims at estimating components that are merely
as independent as possible. [35],[37]. Essentially, MICA serves an alternative interpretation
of the results obtained by common ICA.

reliability of bss outputs As indicated above in context of the BSS’s permu-
tation indeterminacy, signal morphology retention by BSS is another issue which needs
to be considered carefully regarding the actual signal processing task [59, p.162]. For in-
stance, PCA has shown to perform worse with respect to signal morphology in the back
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projection case (noise canceling by column-cleaning in W−1) compared to ICA, especially
when using ICA with delay reconstruction. Still, PCA is described to maintain diagnostic
morphology in the projected space [49]. In addition, compared to other data-driven non-
linear noise filtering techniques, ICA showed to perform best in reducing noise and worse
in maintaining morphology (correlation to original signal). This rather recommends ICA

for ECG processing tasks as the estimation of beat-to-beat intervals (RRIs), i.e. the precise
location of R-peaks [48],[59, p.185].

In general, one needs to consider that BSS techniques compute data transformations
based on measures taken from the given data characteristics which are captured by con-
trast functions. The used contrast function, in turn, affects the output component morphol-
ogy. For instance, the separation of atrial and ventricular activity addresses components
of different nature (i.e. sub-Gaussian atrial and super-Gaussian ventricular [222, 264])
which possibly is not properly addressed by applying one single contrast function for all
components in the BSS optimization. Also the measurement of component characteristics
can be challenged regarding the question if all samples of the whole input data segment
can contribute to an useful transformation. One respective approach is given by using
parametrized BSS inputs. For instance, only R-peak values or values sampled from the
ST-segment have been extracted as parameters of the measured signals, characterizing
the signal as a subset of the available samples as input for BSS [47],[249].

3.4 application of bss for processing ecg and (cb)ppg signals

3.4.1 BSS for ECG Processing

3.4.1.1 Applications of BSS to ECG

Since its first application by Barros et al. [22] (1998), Blind Source Separation techniques
have been applied in the ECG domain mostly to standard (contact-electrode) ECG record-
ings of standard clinical lead systems. Different PCA and ICA algorithms have been used
to process three ECG leads with subsequent back-transformation of independent com-
ponents resembling the cardiac components to obtain a noise-/artifact-free ECG in the
measurement space [49, 101]. Atrial and ventricular activity have been separated by ICA

in clinical 12-lead ECG of patients showing AF [222]. Several lead subsets of a standard
clinical 12-lead ECG were processed with FastICA in [150]. Moreover, 12-lead ECGs have
been reconstructed from independent components of a reduced three-lead ECG [258]. Also,
the influence of typical noise types for processing standard ECG have been simulated on
two-lead recordings from PhysioNet MIT databases. Specifically, beat detection accuracy
in ECG originating from MIT arrhythmia and normal sinus rhythm database plus added
simulated noise with and without JADE ICA have been investigated [151, 152]. FastICA
has been applied in this context to MIT ECGs with added simulated noise by [4, 218]. Also,
customized lead-sets were used as origin for ECG processing with BSS. Whereas [291] pro-
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cessed an eight-lead thoracic ECG with ICA, standard ICA was compared to fICA and cICA

on customized two-lead ECG [189].
Besides BSS’s application to standard ECG, standard ICA as well as spatio-temporal

ICA have been utilized for the processing of wearable tECG recordings of healthy subjects
[290]. Moreover, abdominal ECG recordings are processed with PCA, [70], FastICA [262]
and cICA [161] for facilitating the extraction of the fetal ECG.

In general, there is consensus on the benefit of processing ECGs signals with BSS methods
in order to reduce noise and allow for the recovering of specific ECG features as the R-peak
and RRIs. [47].

3.4.1.2 Permutation Indeterminacy for ECG Processing

In the context of ECG processing and ECG identification, the permutation indeterminacy
has been addressed by two major strategies. The first strategy aims at identifying the unde-
sired components (i.e. artifacts) for exclusion. Thus, it indirectly obtains the desired ECG
component. This strategy has mostly been applied in setups with only a small amount
(two/three) of BSS output components. Thereby, one can exploit, that higher order mo-
ments as kurtosis suits as ECG signal quality indicator with typical values higher than these
of (Gaussian) noise [167]. Accordingly, pre-calculated kurtosis thresholds (lower bound)
to identify noise in combination with intra-segment variance thresholds (upper bound) to
identify artifact components (i.e. abrupt changes) have been applied [49],[101]. Compo-
nents’ periodicity by means of auto-correlation was exploited in [189]. Also, decision trees
were used to classify artifacts in [152].

The second strategy aims at directly identifying the desired component (i.e., the ECG).
Again, higher-order statistics have been utilized since e.g. kurtosis has been proposed as
target of ICA optimization for ECG processing [291]. The selection of single channels by
higher order moments was addressed in [218, 290]. Multiple ECG candidates as input
of a multichannel post-processing were identified by utilizing kurtosis in [151]. Kurtosis
ordering of heart activity components after ICA was used in [222]. Other approaches used
template matching for single channel selection [4, 150, 258] and the amplitude of detected
heartbeats [70].

Despite directly measuring signal statistics and features, the ECG develops a character-
istic and distinct waveform, i.e. the QRS complex. The periodic nature of this waveform
under physiological conditions offers an indirect way of identifying the ECG component
within a BSS output by assessing detections of QRS waveforms (peaks). The maternal
ECG of an abdominal ECG recording after BSS was identified by comparing pre- and
post-BSS QRS detections [11] or the assessment of QRSs’ periodicity [262]. A simple pe-
riodicity criterion was also applied to identify the ECG component inside the BSS output
of an electroencephalogram (EEG) by using QRS detections in [98].

The identification of the cardiac component becomes unnecessary in case of using tem-
porally constrained ICA, because only one single component may be extracted which
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matches the given temporal reference. James and Gibson [129] identified the ECG compo-
nent in the EEG ICA output by QRS time instants extracted from another simultaneously
recorded signal. Lee et al. [161] realized the identification of the maternal ECG compo-
nent from an abdominal ECG by using temporal a priori information. In this context,
the signal covering the temporal constraint does not have to match the exact temporal
behavior but should point the algorithm in the direction of the target component [131].

3.4.2 BSS for cbPPG Processing

3.4.2.1 Applications of BSS to cbPPG

Poh et al. [212] were the first to use BSS algorithms in the context of the cbPPG. Since
then BSS algorithms became a core part of signal processing schemes to extract the heart
rate from cbPPG recordings. Common approaches [94, 95, 99, 112, 153, 166, 212, 213, 260,
305] use different color channels (typically RGB) extracted from ROI, typically the face,
as input to PCA or JADE. FastICA has also been applied to RGB signals [55, 166, 307]
and achieved a slightly better performance in comparison to other ICA algorithms [55].
Tsouri et al. [259] proposed a constrained ICA for RGB information of a face ROI. Other
researchers have further developed the idea of applying multispectral cbPPG to PCA and
ICA but have used alternatives to RGB, namely combinations of RGB with orange and
cyan channels or chrominance as well as hue, infrared and LAB color space based signals,
respectively [81, 95, 113, 127, 174, 181, 273, 297].

In addition to wavelength-based considerations, more selective ROI choices like reducing
the face ROI to a more concise area have been outlined in the context of BSS [55, 79,
112, 166, 181, 243]. These approaches seek to exclude regions that are not supposed to
contribute with useful signals but can introduce distortions, e.g. by mouth movements
during speaking/smiling or blinking eyes [166, 252]. Approaches, which are described in
literature, typically rely on a spatial preselection and use multispectral information RGB

as input to BSS techniques. Moreover, a monochrome cbPPG, extracted from the forehead,
was used as input for spatio-temporal ICA [243]. Wang et al. [273] alternatively addressed
spatial selection without using explicit face detection. The authors utilized the temporal
behavior of pixel traces to distinguish skin-like areas showing temporally periodic content
from motion-like content. Even Guazzi et al. [93] pursued the idea of spatially selecting
ROIs according to the local distribution of signal quality. Qi et al. [216] simultaneously
processed multiple ROIs by using Joint BSS.

Despite the frequent multispectral BSS use, there is no consensus on performance im-
provements by using BSS techniques with multispectral inputs. In particular, Kwon et al.
[153] described a blurred spectral peak after applying RGB ICA as well as an increased
heart rate error. Christinaki et al. [55] identified only subtle improvements but similar
heart rate errors with/without using RGB ICA. Feng et al. [79] as well as Hassan et al. [99]
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and Holton et al. [112] showed a lack of robustness by applying standard approaches that
use ICA with RGB channels.

3.4.2.2 Permutation Indeterminacy for cbPPG Processing

Different approaches for addressing permutation indeterminacy while processing cbPPG

with BSS have been outlined. Some approaches simply select a fixed (namely the second)
component after transformation of the RGB channels [112],[113],[153],[212],[305] or even
consider fixed position principle components [260] (e.g. the third [174]). Only two of these
works briefly assess the results obtained for this selection [153, 174]. Some approaches
address a distinct peak in the spectrum (caused by the cardiac pulse) by selecting the
component with the maximum peak [55],[94],[213],[179],[181] or the maximum spectral
SNR [20, 28], respectively. Alternatively, component selection based on cross correlation
with an assumed heart rate [79] or other source signals in the Joint BSS context [216]
was described. Others neglect an automated component selection [99],[143],[166],[243].
Excluding the artifact component instead of selecting the pulse component has also been
proposed [149]. Another approach assesses the similarity of the de-mixing matrix to the
expected composition of a pulse component from the RGB signals [95]. Also, [64, 154]
do not propose an actual selection of the desired component but combine a sample of
several randomly collected ICA results from several locations of the subjects face and the
respectively derived heartrates for majority voting among the heartrates. A multitude of
components is also combined in [267], where the first three PCA components of video-based
respiration signals from different ROIs are selected for further combination.

3.4.3 Problem Description

During the extensive application of BSS to biosignal processing and the proposal of a
large variety of BSS algorithms, many researches have addressed algorithmic comparisons
in order to highlight performance differences between certain BSS algorithms on given
datasets composed of ECG [49, 131, 189, 290] or cbPPG data [55, 94, 100, 112, 127, 154,
179, 216, 259, 288]. The essential benefit of applying BSS with respect to the input data,
however, is not addressed as standard. Yet, in the ECG domain Milanesi et al. [189]
uses a performance measure, which takes into account the sensor signal and a reference
signal for the measurement of the BSS effect and also compares performance indices to
the raw sensor data. [101],[129] and [290], on the other hand, provide only qualitative
(signal) examples of comparisons between original sensor and cleaned signals. In the cbPPG

domain, pre-/post- BSS assessment of signal quality or rather typical heart rate accuracy
are more frequent [55, 99, 112, 153, 154, 174, 212]. Nevertheless, the characterization of
BSS performance limits, i.e. the examination of beneficial and unfavorable conditions for its
application, remains rare. One of the few exceptions for instance investigates the influence
of technical parameters on cbPPG BSS performance [179]. Also, in the ECG domain, adding
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simple simulated noise types (baseline wander, powerline interference and electromyogram
(EMG)) to standard ECG recordings to e.g. assess beat detection accuracy is addressed by
some researchers [4, 152, 218] in the BSS context.

Moreover, approaches to one of the major problems to harness any potential of BSS

application, i.e. the permutation indeterminacy, have been proposed for several particular
ECG and cbPPG applications. Still, these approaches typically merely appear as algorithm
description without a quantitative evaluation of their actual selection performance.

Therefore, this work will focus on two main aspects (1) how can a particular BSS routine
be applied to achieve a benefit by its application and what are the factors limiting its
performance for contact-less biosignal processing and, (2) how can such benefits of BSS

application anyway be exploited, i.e. how can permutation indeterminacy be solved. Thus,
this work is laying the foundations for the practical application of BSS in innovative
biosignal processing applications.

3.5 chapter summary

Classical biosignal recording techniques as ECG or PPG are nowadays supplemented by
contact-less recording techniques as cECG, tECG or cbPPG which allow for new (e.g. non-
clinical) biosignal measurement scenarios. Related problems like non-standard signal na-
ture or even decreased signal quality can effectively be addressed by exploiting the re-
dundancy of multichannel measurements which are processed by data fusion techniques.
Despite fusing features or parameters (e.g. heartrates) of multiple redundant channels,
fusion on the raw data level serves an approach aiming at the improvement of the biosig-
nal data quality prior to parameter extraction. Despite the Kalman filter approach, Blind
Source Separation represents a data level fusion approach, which requires less modeling
of both useful and noise signals compared to KF.

Typical BSS approaches are either based on second-order statistics which involve diago-
nalization of single or multiple covariance matrices (e.g. PCA), or are based on higher-order
statistics (e.g. ICA). ICA approaches utilize the concept of statistical independence to sep-
arate multiple source signals. Original methods use minimum (mutual) information or
maximum entropy approaches which are based on cumulant measures or neural network
approaches. Subsequent ICA developments as πCA, cICA and fICA refine the ICA concepts
in the context of particular applications as biomedical signal processing.

In the biomedical signal processing community, BSS techniques are frequently applied.
However, it remains unclear, which inputs are beneficially processed by BSS application, i.e.
under which circumstances the output signal quality or output parameter (e.g. heartrate)
accuracy is improved by BSS. Also, the BSS’s permutation indeterminacy requires an
automated selection of the component of interest after the BSS processing. This problem
is only unsatisfactorily (i.e. marginally) solved.
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4
E X P L O I T I N G T H E P O T E N T I A L O F B S S FO R B I O S I G N A L
P RO C E S S I N G

Given the principal applicability of a Blind Source Separation algorithm to separate source
signals from signal mixtures, the practical outcome of applying this signal processing tech-
nique depends on, first, the selection of suitable input data capable of being handled by
the respective BSS algorithm and, second, the ability to exploit the results of BSS i.e. by
reliably selecting the source component of interest. This chapter provides descriptions
of the experiments and algorithms conducted and developed to address the underlying
characteristics and solve the two above stated problems. Contents of this chapter partially
appeared already in own publications, i.e. [281, 282, 284, 286, 287]. Specifically, section 4.1
provides the experiments and algorithms related to the effect of BSS inputs on the BSS

performance. Thereby, this work develops a new framework to assess BSS algorithm ef-
ficiency in the context of cbPPG. Section 4.2 describes the experiments and algorithms
related to automated BSS output selection. Novel algorithms to solve permutation inde-
terminacy in the context of contact-less ECG recordings are presented. Finally, section 4.3
links the two problems input selection and output select-ability together by providing a
joint evaluation.

4.1 selection of bss input data

Whereas in the ECG processing domain, the positive effect of applying BSS for signal
quality enhancement and cardiac source separation (see section 3.4.1.1, p.63ff) is largely
uncontroversial with permutation indeterminacy presenting the main problem of BSS’s
application, in the cbPPG domain, it is not [55, 79, 99, 112, 153]. Moreover, in the cbPPG

domain it turned out that e.g. commonly applied BSS methods show weak performance
on other databases than the ones proposed alongside the algorithms [100]. Accordingly,
this doctoral work in the first part aims at figuring out whether BSS serves an appropriate
processing tool for enhancing the cbPPG signal quality. Beneficial BSS variants for its appli-
cation to cbPPG are to be designed. To this end, the following sections define investigations
addressing the effect of BSS input characteristics on the outcome of the BSS application.
First, simulated test data is constructed in order to model borderline cases of the BSS
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model (see section 3.3.4, p.54ff) in the context of cbPPG. Employing such data intends to
identify potential origins of BSS failure in cbPPG processing. Second, experiments for real
cbPPG data are defined, which address controlled conditions for BSS input characteristics.
Especially, input conditions are constructed which deal with the linearity assumption of
the standard BSS model.

4.1.1 BSS Benchmark Testing

In order to test, whether certain input conditions in the context of cbPPG, respectively, BSS

negatively affect the BSS performance (i.e. decrease the signal quality), simulated cbPPG

data is constructed to meet specific borderline cases of the BSS model. Also selected real
PPG data is added as a supplement. Three general aspects of BSS inputs are examined in
this context namely, (1) the characteristics of the original source signals underlying the
processed mixtures, (2) the characteristics of the mixtures to be separated by BSS and,
(3) the effect of modifying the mixtures prior to processing by BSS. In the following, brief
descriptions of these aspects are given as well as the according data creation is described.

source signal characteristics Common BSS algorithms restrict their out-
puts to be uncorrelated/white. Besides computational advantages, this restriction typi-
cally is motivated by ensuring the identifiability of the outputs, i.e. the uniqueness of the
BSS solution. Moreover, the concept of statistical independence of the estimated source
signals implies uncorrelated sources. This approach to source separation is also known as
the "orthogonal approach" [38]. However, one has to challenge whether the source signals
to be separated actually meet the orthogonal approach and what will be the result of a
model violation (e.g. by cross-correlated sources [310]). Meinecke et al. [185] proposes a
measure of reliability of the BSS result, which should be used to assess whether the un-
derlying BSS model holds. This measure is tested alongside some controlled source signal
characteristics which in part violate the standard BSS model.

In a cbPPG measurement scenario, the PPG typically serves the source signal of inter-
est. However, also other source signals like sensor noise [200, 255] or different kinds of
disturbances entering the measurement section, are simultaneously measured by a cbPPG.
Specifically, any lack of explicit control of the lightning conditions during the record-
ing induces a source signal characterized by the changing amount of light (e.g. ambient
light) [10]. Moreover, subject motion with respect to the sensor induce motion artifacts
originating from ROI fluctuation or alternating radiant flux at the measurement location
[80]. Those additional source signals do not necessarily form an orthogonal system as im-
posed by the orthogonal approach. The influence of typical disturbance sources onto the
BSS processing of cbPPG is to be investigated with special regard to deviations from the
orthogonal approach. Since typical disturbances due to alternating light conditions and
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Figure 14: Exemplary artificial disturbance source signals for testing the dependency of BSS per-
formance on source signal characteristics. From top down: PPG shows an exemplary
synthesized PPG signal without distortion (see section 5.1.1), SIN shows a sinus function
that is adapted to the PPG in phase and frequency, CHIRP shows a quasi-periodic chirp
signal, STEP shows a random multi-step function, TREND shows a random monotonic
third-power trend and NOISE shows a white Gaussian noise signal.

motions in the cbPPG context can be of different frequency and even periodic nature, the
disturbance source signals are modeled by:

• periodic or quasi-periodic (non-monotonic) baseline alternation

• step functions or continuous (monotonic) baseline alternation

• white gaussian noise to model image respectively sensor noise [255]

Exemplary disturbances can be seen in Figure 14. Those signals are generated according
to the following steps to obtain signals of 10 s duration. The periodic and quasi-periodic
disturbance signals are partly phase-aligned with the PPG signals. This approach addresses
a distinct violation of the orthogonal BSS approach. For each PPG segment, the peaks are
detected by using a simple maximum search detector [223]. These peak detections are
further used to extract the minimum, mean and maximum RRI in this segment. A sinus
function is generated which matches the mean RRI. Moreover, this sinus function is phase-
shifted to align the first maximum of the first PPG beat with a sinus maximum and
thus, generate some violation of the orthogonal approach of BSS (see Figure 14 - SIN).
The quasi-periodic disturbance signal is formed by a chirp signal generated with start
frequency 3/2 times the maximum local heart frequency (minimum inverse RRI) and



72 exploiting the potential of bss for biosignal processing

Figure 15: Test scenario for testing BSS source signal characteristics. Always, one synthesized PPG
segment is assembled together with one white gaussian noise segment and one artificial
disturbance signal. For each combination (with respect to the different disturbance
signals SIN,CHIRP,STEP,TREND) one mixture matrix A is sampled to generate the
mixture signals, i.e. four times 600 signal mixtures.

end frequency 2/3 times the minimum local heart frequency (maximum inverse RRI, see
Figure 14 - CHIRP). In contrast to the (quasi-)periodic disturbances, the step functions
and monotonic functions are completely random based. In order to generate a random
step function, an integer i ∈ [1, 10] representing the step number is sampled as well as
the matching amount of real-valued step locations xi ∈ [0.1, 9.9]. Finally, step heights
for subsequent addition are randomly sampled from a normal distribution and the step
function is sampled out of accordingly parametrized and scaled Heaviside functions (see
Figure 14 - STEP). The monotonic trend function (see Figure 14 - TREND) is randomly
sampled by parametrizing the third-power function y = a · x3 + b by drawing two random
points y1(x = 0 s) and y2(x = 10 s) from a uniformly distributed interval [−1, 1]. Lastly,
a white Gaussian noise vector is sampled (see Figure 14 - NOISE).

The PPG signals utilized as source signals are synthesized to generate 10 s segments by
using physiological and pathological RRI series as described in section 5.1.1. Accordingly,
600 different segments are available, which were down-sampled to sampling frequency
fs = 100 Hz. This sampling frequency serves a technically feasible frame rate for cbPPG

recording which finds its application in methodological and clinical cbPPG studies (e.g.
[217],[256]). Moreover, the real-world cbPPG data analyzed later (see also section 5.1.3.1,
p.98ff) was recorded with fs = 100 Hz. The segment length of 10 s serves a compromise
between a proposed stationarity of the segment statistics while likewise ensuring extract-
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ability of cardiac parameters from a single segment. This segment length also finds scien-
tific application (e.g. [217],[256]).

The PPG segments each are assembled alongside disturbance source signals. Figure 15
depicts the general scheme of assembling combinations of original source signals. Because
it is assumed that sensor noise is always present in the cbPPG measurement scenario, every
PPG segment is assembled with one white gaussian noise signal plus another disturbance
source. One obtains every combination out of PPG + NOISE + one disturbance source
(i.e. SIN,CHIRP,TREND,STEP). The noise and disturbance sources are newly sampled
for each PPG segment.

For each PPG segment, also one mixing matrix A is randomly sampled (from a Gaussian
distribution) to obtain a symmetric BSS problem (the number of signal mixtures equals
the number of sources, i.e. m = n = 3). The obtained signal mixtures are processed with
the respective BSS methods (see also section 4.1.4, p.79f) whereas FastICA is configured
to work on three different conditions, i.e. by using a sub-Gaussian, a standard (flexible)
and a super-Gaussian contrast by adapting the FastICA’s tanh non-linearity according to
[123].

mixture signal characteristics Signal mixtures are composed out of source
signals by applying a designated mixture (i.e. A) that induces a certain mixture signal
characteristic.

Cao et al. [36] defines the concept of a decomposable mixture in the context of BSS such
that the mixture signals have to meet some particularly geometrical criteria in order to
be separable by BSS algorithms. Also, the mixture itself can define an underdetermined
problem, which can only be handled under strong assumptions [67, 88], respectively lead
to statistically independent mixtures which are not further separable [173]. A potential
origin is given by phase differences in the signal mixtures that can violate the applied
BSS model (e.g. the instantaneous mixture) from a temporal perspective. Moreover and
especially in biosignals, which are measured by flexible non-standard minimum-contact
systems, the measured mixtures (multichannel measurements) are likely to contain vari-
able morphology. In addition, this morphology differences can be further amplified by
the nonlinear system dynamics underlying the biosignals (i.e. the ECG and PPG [46, 82]),
which are measured at different sensor locations. This variable morphology may express it-
self similar to phase differences or even show signals of different origin (with actual phase
differences). For instance, the blood volume pulse and ballistocardiogram are available
side by side in neighboring measurement locations [232, 257] in the cbPPG. In order to cre-
ate underdetermined mixtures, simulated data including phase differences is constructed.
The performance of standard BSS algorithms as well as time-structure based methods (like
SOBI [26, 131]) potentially capable of compensating for phase differences is assessed on
those mixtures.
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Thereby, the typical application of BSS for cbPPG processing involves a fixed amount of
input sensors (i.e. three color space based sensors - RGB) [213, 274]. Thus, the recorded
mixtures are likely to represent an underdetermined mixture, i.e. less mixture signals than
source signals recorded in the mixture are available. An underdetermined signal mixture
is simply synthesized by applying a non-symmetrical mixture matrix A as

x = A · s with A a Rn2x n1 matrix and n2 > n1. (73)

Besides directly underdetermined mixtures, phase differences between sensors can intro-
duce time-lagged versions of the same source signal which represent an indirectly underde-
termined mixture because an artificial source signal is generated by the the time-lagged sig-
nal version. This behavior can be synthesized straightforward. For both above-mentioned
signal mixture manipulations, the synthesized signals (PPG and noise/disturbances) de-
scribed above are utilized.

Moreover, recorded signals which originate from the same source process (e.g. cardiac
volume flow propagation) while showing different morphology and phase behavior at dif-
ferent measurement locations can introduce unsuitable mixture characteristics. Thereby,
they can show mixed characteristics of the underdetermined mixtures described above.
The real-world multisensor mattress data (described in section 5.1.2, p.97f) are utilized
for testing such heterogeneously underdetermined mixtures.

mixture signal modification Before applying BSS to signal mixtures, signal
mixtures might get modified to match a certain BSS model.

Non-stationary mixtures violate the standard linear BSS model. However, the measured
mixture signals can be modified to meet the model. For instance batch-processing is
a technique to modify mixtures by applying sub-sampling to collect only suitable data
interesting for the de-mixing [47, 249]. Nevertheless, reducing the sample size especially
in temporally structured signals increases the risk of artifacts [126]. Tests are conducted
to verify the usage of batch-processing for cbPPG signal mixtures. Since it is previously
unknown, which samples of a particular segment are suitable, tests are conducted, which
randomly select certain amounts of samples from each segment.

Moreover, spatio-temporal BSS have successfully been applied to ECG [240, 290]. De-
spite its particular usage in Sun et al. [243], an application for cbPPG is rare. Accordingly,
tests are designed to assess, whether forming spatio-temporal BSS inputs presents a mean-
ingful mixture modification for the processing of cbPPG signals. Spatio-temporal BSS adds
additional (time-lagged) versions of each measured signal to the BSS input [290] in order
to achieve a higher BSS performance capable of deconvolution by building a delay vector
reconstruction of each mixture signal. The amount of sample-wise time-lagged versions
added to the input can be determined by considering the involved system dynamics of
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interest. For instance, Sun et al. [243] states the reconstruction dimension m (see equation
(72)) to be chosen as

m ≥ fs/flow (74)

with fs the sampling frequency and flow the lowest frequency of interest. Since the con-
ducted tests are based on segments of 10 s length, Traube Hering Mayer waves are con-
sidered as lowest interesting frequency (flow = 0.1 Hz) which gives m ≥ 10 · fs. However,
for the utilized sampling rate fs = 100 Hz, m ≥ 1000 serves a computationally unfa-
vorable setup, i.e. convergent solutions to ICA becoming unlikely. Moreover, since only
1000 samples are provided for each 10 s segment given fs = 100 Hz and BSS works on full-
rank signal matrices x, all time-lagged signals are shortened until full-rank matrices are
present with respect to each time-lagged component. Thus, spatio-temporal dimensions
dim > 100 are considered less useful in this setup and tests are performed starting from
m = 1 (no time-lagged input signal) up to m = 100.

For both mixture signal modification tests, the synthesized signals (PPG and noise/dis-
turbances) described above are utilized.

4.1.2 Evaluation Metrics

In order to assess the deviation of the BSS problem from the orthogonal BSS model d⊥, the
covariance matrix of the original sources Cov(s) is evaluated. For further simplification,
the absolute deviations from an equally sized identity matrix I are summed up:

d⊥ =
n∑

i=1

n∑
j=1

|Covij(s)| − I (75)

Since the simulated BSS problem is symmetric and all contributors (original signals, mix-
ing matrix A) are known, the BSS performance parameter ρsy, i.e. the cross correlation
coefficient between yP P G and sP P G of the PPG component is computed. Also, Meinecke’s
online reliability measure Ui (see equation (70)) and further Umax, i.e. the maximum
variance of all contributions Ui to the PPG component is calculated.

Moreover, to test other common context-specific quasi-online measures of the BSS per-
formance, the spectral SNR [94] is computed for original signals, signal mixtures and BSS

outputs. By using this measure, the strength of the cardiac pulse in the spectrum is
assessed. First a binary spectral mask BM is computed
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BMfPPG (f) =


1 if f ∈ [fPPG ± 5 bpm]

1 if f ∈ [2 · fPPG ± 5 bpm]

0 otherwise.

(76)

BMfP P G sustains the spectral indices of the heart rate fP P G as well as its first harmonic.
The precision ± 5 bpm refers to the accuracy demanded for heart rate meters specified
in ANSI/AAMI EC13:2002 [1]. Finally, the SNR is calculated from a given amplitude
spectrum X(f) by

SNRfPPG = 10 log10

 ∑240bpm
f=30bpm BMfPPG(f) · X(f)2∑240bpm

f=30bpm (1 − BMfPPG(f)) · X(f)2

 . (77)

Further, ∆SNRorig is defined as the difference between SNRfPPG
y and SNRfPPG

s , i.e. the
difference between the strength of the cardiac pulse in the BSS output yPPG and the
original source sPPG.

4.1.3 Experiments Definition

source signal characteristics Three hypotheses are examined to investigate
the impact of source signal characteristics on the BSS performance which are as follows.

(1-1) The orthogonality d⊥ of the original source signals s which is defined by the distur-
bance source types SIN, CHIRP, TREND and STEP, does affect the BSS output parame-
ters SNR, Umax and ρsy.
(1-2) Different BSS algorithms show different performance (i.e. SNR, Umax and ρsy) on
different noise types SIN, CHIRP, TREND and STEP.
(1-3) The reliability of the solution W (Umax) and the reliability of the solution y (ρsy)
does affect the practically relevant parameter SNR, i.e. the strength of the cardiac pulse.

For PCA, no Umax is calculated because a PCA itself is part of the Umax calculation and
thus, Umax

!
= 0.

mixture signal characteristics The characteristics of the mixture signals
are simulated to meet three different kinds of underdetermined mixtures.

(1) Common (directly) underdetermined mixtures are generated by using the same
data and procedure as described above. However, this time underdetermined conditions
are achieved by (a) assembling each of the 600 synthesized PPG segments with one NOISE
signal and two randomly selected disturbance signals (SIN,CHIRP,TREND,STEP) and
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mixing these four signals with a random mixing matrix A of dimension R3x4 (W is
computed symmetrically - R3x3). Alternatively, (b) each of the 600 synthesized PPG seg-
ments is assembled alongside another randomly selected PPG signal from the data plus
one NOISE and one randomly selected disturbance while again mixing these signals by a
R3x4 matrix A. As utilized above, the SNRs and ρsy are calculated as well as Meinecke’s
online reliability measure Umax. The hypothesis pursued by (1)(a) and (b) is:

(2-1) Different BSS algorithms show different performance (i.e. SNR, Umax and ρsy) on
underdetermined mixtures (s : {si | 1 ≤ i ≤ M}, y : {yj | 1 ≤ j ≤ N} with M > N).

(2) In order to test indirectly underdetermined mixture conditions due to phase shifts
between the original source signals, two test cases are conducted. (a) To test phase shifts
in well-determined mixing scenarios, input signals are assembled by one PPG signal plus
its phase shifted copy (phase shift τ ∈ [0, 100 samples] with step size 5 samples) and one
NOISE signal. (b) The actually underdetermined case is modeled as described in (a) but
by additionally adding one randomly selected disturbance signal and mixing the original
sources with A ∈ R3x4. The phase shift experiments are conducted on 100 randomly
selected PPG segments out of the 600 overall segments. Since phase shifts are potentially
covered by time-structure based methods like SOBI utilizing time-lagged covariance ma-
trices, the SOBI algorithm is added to the BSS algorithm selection for these particular
experiments by using SOBI with 10 time-lagged covariance matrices (see the convergence
behavior of the SOBI performance in [26] to justify this configuration). The assessment
measures are computed as described above. The following hypothesis is examined by these
experiments (a) and (b).

(2-2) Phase shifts among BSS input signals (i.e. phase shifts within PPG signal mixtures)
do affect the strength of the cardiac pulse (i.e. the SNR), the reliability of the solution W
(Umax) and the reliability of the solution y (ρsy).

(3) For testing heterogeneous underdetermined conditions, i.e. combinations of directly
(1) and indirectly (2) undetermined mixtures, real-world signals from the multisensor
mattress (see section 5.1.2, p.97f) are processed with BSS. Specifically, 100 signal pairs
each of one PPG and one coincident BCG segment are processed without additional mixing.
It is assumed, that PPG and BCG originate from the same source process but show different
phase and morphology and at least sensor noise is present such that both indirectly and
directly underdetermined mixture characteristics are present in the measured signals. As
evaluation metrics, pre- and post-BSS SNRs are calculated alongside Meinecke’s online
reliability measure Umax. The difference between post- and pre-BSS SNR is defined as
∆SNRBSS . Accordingly, the following hypothesis is addressed.
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(2-3) Different BSS algorithms perform different on heterogeneous (underdetermined) mix-
tures with respect to the SNR and the reliability of W.

mixture signal modification The experiments addressing the effect of modi-
fying signal mixtures prior to BSS application are based on the same synthetic data (PPG,
NOISE, disturbances) as described above. Processing modified mixtures thereby implies
the application of a mixture (i.e. A) to original synthetic source signals and further modi-
fying the obtained mixtures x = A · s. The two tested scenarios involve (1) the processing
of only a partial amount of the mixture samples and on the contrary (2) generating addi-
tional data out of the mixtures and process the augmented data, both to achieve a higher
BSS performance.

(1) Batch processing is realized by selecting batches each including a given percentage
∈ {10, 25, 50, 75, 90, 100} % of randomly selected samples of each signal of the mixtures
(i.e. a random sample of segment indices with respect to the batch size is computed
and equally applied to each of the three mixture signals). Thereby, the mixtures are
obtained by assembling each one of the 600 PPG segments together with one NOISE
and one randomly selected disturbance (from SIN,CHIRP,TREND,STEP) and mixing
symmetrically with A ∈ R3x3. Afterwards, the de-mixing matrix W∗ is calculated based
on the batch of x : x∗ and the previously introduced performance measures SNR and ρsy

(except Umax which is computed during BSS) are computed from the non-batch outputs
y = W∗ · x. Accordingly, the following hypothesis is examined.

(3-1) Batch processing of BSS inputs (i.e. processing only a partial amount of input signal
samples x to compute W) does affect the strength of the cardiac pulse (i.e. the SNR), the
reliability of the solution W (Umax) and the reliability of the solution y (ρsy).

(2) Spatio-temporal BSS is realized by forming augmented inputs xτ out of sample-
wise time-lagged copies of each signal of x with τ = dim − 1 (with dim the spatio-
temporal dimension) and dim ∈ {1, 2, 5, 10, 20, 50, 100} (i.e. experiments are conducted
individually for each dim resp. τ). Since the spatio-temporal BSS for cbPPG in [243] is based
on [132], FastICA is used to solve the spatio-temporal BSS problem. Also, JADE is applied
as a second algorithm because of its popularity in cbPPG processing. However, since JADE

becomes impractical on large data dimensions [38], i.e. only non-convergent solutions are
found, spatio-temporal dimensions dim > 10 are skipped for JADE. Again, the underlying
mixtures x are obtained by assembling each one of the 600 PPG segments together with
one NOISE and one randomly selected disturbance (from SIN, CHIRP, TREND, STEP)
and mixing symmetrically with A ∈ R3x3. Moreover, only the SNR is assessed as BSS

performance measure, since first, unequal dimensions of original source signals and output
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signals as originating from the above described construction of spatio-temporal inputs
prohibits the calculation of sample-wise comparisons and second, the assessment of the
variance of rotation angles (i.e. Ui) from artificially augmented inputs/generated outputs
is considered being of limited use. The following hypothesis is examined.

(3-2) The spatio-temporal dimension dim of BSS inputs does affect the strength of the
cardiac pulse (i.e. the SNR).

In addition, two experiments based on spatio-temporal BSS are conducted which es-
pecially violate the assumptions of the standard linear BSS model, i.e. by applying non-
instantaneous mixtures. By applying the above described experiment configuration of
spatio-temporal BSS first, a convolutive mixture is simulated by applying a random mix-
ture A ∈ R3x30 to time-lagged original source signals sτ with τ ∈ [0, 9]. I.e. the three
original source signals s each are ten-fold present (but with different time lag) prior
to their mixing with A. After the mixing, again three mixture signals x are available
which represent the convoluted sources. Second, a non-stationary mixture is simulated by
composing the mixture out of a fixed component plus a sample-wise varying component
A = Astat +Ak where Ak is sampled for each discrete sample x(k) = (Astat +Ak) · s(k)
from a standard normal distribution with standard deviation σ = 0.05 and Astat is once
sampled from a standard normal distribution with standard deviation σ = 1. The follow-
ing hypotheses are founding these two experiments.

(3-3) The spatio-temporal BSS can compensate for convolutive mixtures, i.e. it unmixes a
convolutive mixture and provides an output component yPPG of comparable strength of
the cardiac pulse (i.e. the SNR) as present in the original source sPPG.
(3-4) The spatio-temporal BSS can compensate for non-stationary mixtures, i.e. it unmixes
a non-stationary mixture and provides an output component yPPG of comparable strength
of the cardiac pulse (i.e. the SNR) as present in the original source sPPG.

4.1.4 BSS Algorithm Selection

As presented in section 3.3 (p.36ff), there exists a multitude of algorithmic principles
for solving the BSS problem. To cover this range, five BSS algorithms are selected as a
algorithm base which represent the fundamental approaches behind BSS. Second-order
approaches are to be represented by PCA. SOBI, which can also be understood as an mul-
tidimensional PCA is additionally used in the particular context of phase-delayed inputs.
The concepts behind ICA are represented by FastICA, JADE and RADICAL. Despite being
deduced from the minimum mutual information principle, FastICA can also be understood
as an example of the maximum entropy approach because of its application of the test
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functions G. The JADE algorithm represents the usage of cumulants to access higher order
information in the context of statistical independence. Finally, RADICAL serves an actual
application of the minimum mutual information principle. Spatio-temporal BSS inputs are
also processed with the above named standard ICA algorithms. Other approaches as πCA,
cICA or fICA are not further considered because of their strong dependency of additional
context-specific configuration, e.g. πCA and cICA require additional information on the
expected periodicity of the signal, which is typically not available.

4.1.5 Spatial (Contextual) BSS Input Selection

Whereas the previous investigations are mainly based on simulated data in order to allow
for fully controlled input conditions, real cbPPG data can provide inputs to BSS which
are controlled at least to some extent (i.e. selected parameters under consideration). The
following section depicts the algorithms used for clustering real cbPPG data to investigate
the influence of BSS input characteristics. Specifically, the spectral homogeneity of inputs
is utilized to cover characteristics which influence the linearity of the mixing problem to
be handled by standard linear BSS models. The following investigations have also been
reported in Wedekind et al. [283],[286].

In order to evaluate BSSs’ benefit in consideration of varying (in)homogeneous inputs,
different BSS input sets S are defined for the cbPPG data available from the CardioVisio
study (see section A.2, p.162f). Each input set contains three input signals to reflect the
common number of input channels when RGB videos are used. The input sets differ re-
garding the wavelength(s) to be used and the frequency content of chosen ROIs (see section
5.1.3.1, p.98ff for available ROIs). Regarding the wavelength, it is distinguished between
using the green channel or using RGB channels (monochrome vs. multispectral approach).
Regarding the frequency content, it is distinguished between using ROIs, which show equal
dominant frequencies and using ROIs, which show differing dominant frequencies (domi-
nant frequency refers to the location of the global maximum in the fast Fourier transform

Table 1: Definition of input sets S for BSS. Set IDs refer to MC - monochrome, MS - multi-
spectral, R - random SNR and standard ROI sets from F - Face and FhC - Forehead and
Cheeks. *Note that in case of equal dominant frequency, three different input sets were
evaluated for the three most occurring dominant frequencies.

set id wavelength frequency content selection overall size

MC1 green equal dominant frequency* highest SNR 3 x (32x32)
MC2 green differing dominant frequencies highest SNR 3 x (32x32)
MS1 RGB equal dominant frequency* highest SNR 3 x (32x32)
MS2 RGB equal dominant frequency* highest SNR 3 x [3 x (32x32)]
MCR green equal dominant frequency* random choice 3 x (32x32)
MSR RGB equal dominant frequency* random choice 3 x (32x32)

F RGB n/a ROIF whole face
FhC RGB n/a ROIFhC suitable regions
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of the cbPPG signal from a ROI after applying a Hanning window and zero padding to
4096 points). To select each three ROIs it is further distinguished between a determinis-
tic choice and a random choice. The deterministic choice selects three ROIs which show
the highest signal quality (SNR). For the random selection three ROIs, which possess the
desired frequency content, are chosen randomly (independently of its signal quality). To
give an example, the selection "equal dominant frequency + deterministic choice" means
that ROIs are firstly ordered according to their dominant frequency. Afterwards the ROIs,
which show the highest SNRs within the desired dominant frequencies, are selected. Note
that it has to be defined, which dominant frequency is the desired one. As there is no
unambiguous answer to this question, input sets are created for the three most often
occurring dominant frequencies (i.e. for "equal dominant frequency" always three differ-
ent input sets were used). A detailed mathematical definition of equal/differing dominant
frequency and the definition of signal quality is described in the Appendix A.2, p.162f.
Table 1 summarizes the resulting input sets.

The cbPPG signal of every set is normalized by a three-step procedure. The signal is lin-
early detrended followed by 0.5 Hz highpass filtering (fifth order Butterworth) to limit low
frequency content below an expected heart rate [1]. Furthermore, the signal amplitude is
normalized by subtracting its mean and dividing the result by signal’s standard deviation.
Every set S is further processed with PCA and ICA, respectively. The FastICA algorithm
is chosen because Christinaki et al. [55] have shown a superior performance of FastICA
compared to JADE for processing cbPPG to extract the heart rate. The FastICA is initial-
ized with a fixed random demixing matrix W which is used as starting point for every
processed segment. The FastICA is symmetrically conducted for dimension preservation
between x and y. The standard tanh-nonlinearity is applied as contrast function which
supports super-Gaussian source extraction [123] as indicated for the PPG signal [259]. Si-
multaneously, it does not aim at highly super-Gaussian signals, which is a consequence of
Morris et al. [195] selecting the PPG component after ICA by using the lowest kurtosis of
the components.

The application of the above defined cbPPG sets investigates the performance of BSS to
enhance the cardiac pulse from cbPPG in dependency to varying input data characteristics.
To that end, the following hypotheses are examined.

(4-1) Varying BSS input sets S provide cbPPG of different SNR.
(4-2) cbPPG input sets of varying constitution and quality cause BSS to provide source
estimates y of different quality (SNR), i.e. BSS application show an effect on the SNR that
depends on the input set S.
(4-3) Different BSS algorithms show different output SNR performance on different input
sets S.
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4.2 approaches to permutation indeterminacy

In the previous section, the capacity of various BSS algorithms neglecting permutation
indeterminacy was tested. I.e. it was addressed, whether a benefit in signal quality can be
achieved by BSS processing. The matter of the following section, however, is to make use
of the BSS achievements and present algorithms to solve permutation indeterminacy for
BSS in the ECG and (cb)PPG domain. In the understanding of this doctoral work, there is
no primary reason that a successful solution to permutation indeterminacy (i.e. select the
best available BSS output of interest) is affected by differing BSS algorithms given that
the BSS algorithms stick to equal conditions, e.g. a symmetrical BSS model. Consequently,
the following algorithms solving permutation indeterminacy are based on outputs of one
single BSS algorithm, namely FastICA, which is commonly applied to both ECGs [189,
290] and cbPPGs [55, 307].

Moreover, spatio-temporal BSS has been identified as suitable approach to the process-
ing of nonlinear, temporally structured biosignals as the ECG [59, p.181ff] with motivations
derived from the underlying nonlinear chaotic system dynamics [240] or the convolutive
filter perspective [189, 203, 290]. However, the application of spatio-temporal BSS renders
solving permutation indeterminacy even more complicated due to the large increase of
output components in the case of standard symmetric BSS processing. Therefore, spatio-
temporal BSS outputs serve a challenging task for algorithms to solve permutation inde-
terminacy. Spatio-temporal FastICA thus is utilized in the following to generate the BSS

output for the processing of biosignals. The selection of the number of time-lags used for
spatio-temporal BSS is kept constant, however, the relation between the delay-embedding
dimension (i.e. the number of in-/outputs) and the select-ability of the component of
interest is addressed in the next section.

4.2.1 Permutation Indeterminacy for ECG Signals

Below (sections 4.2.1.1, 4.2.1.2, 4.2.1.3), several algorithms to solve permutation deter-
minacy for BSS processing of ECGs are described. The performance of the algorithms for
BSS output channel selection is assessed using real ECG data of different origin (standard
ECG, textile ECG, capacitive ECG), including recordings from both normal sinus rhythm
and arrhythmia). See section 5.2 (p.101ff) for the description of the according data.

Each channel of each segment of the ECG data was normalized for further processing
by subtracting its mean and division through its standard deviation. Time-delayed ver-
sions of the original signals were added as additional inputs to the multichannel filter.
Spatio-temporal BSS using FastICA algorithm with the skewness maximization and 10
added time lags [281] (k ∈ [0, 10] samples) was symmetrically applied to seven textile or
capacitive ECG leads which resulted in 77 output components per segment. Two ambula-
tory ECG leads of the arrhythmia database were processed similarly producing 22 output
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components per segment. In this context, the concept of skewness maximization by BSS
refers to generating spike train signals out of the ECG which show distinct QRS spikes
and a low noise level. The Figures 16(a) and 17(a) show examples of respective output
components (labeled with "BSS"). Among the BSS output components of each segment,
each one single component is selected by the respective selection algorithms.

The performance of the selection is assessed by the heartbeat detection accuracy (ACC)
of the selected BSS output component for each segment. The accuracy was obtained by
comparing the manual QRS annotations from the reference ECG with the QRS detections
estimated from the component as follows:

ACC =
TP

TP + FP + FN
(78)

In the case of the arrhythmia electrocardiogram (aECG), the pathologic beats are also
expected to contribute to the true positive (TP) detections and were considered false posi-
tive (FP) or false negative (FN) otherwise (no true negative beats allowed). By comparing
the different component selection algorithms, the following hypothesis is examined.

(5-1) Subsequent to a BSS processing by spatio-temporal FastICA, different BSS compo-
nent selection algorithms automatically select components of different heartbeat detection
ACC with respect to the underlying data tECG, cECG and aECG.

4.2.1.1 Cascaded Output Selection

In order to depict a component selection strategy based on traditional features of the
time-/frequency domain, a novel cascaded selection algorithm (termed CASCSEL) is in-
troduced. It combines two approaches: on the one hand to exclude unsuitable components
(by identifying artifact components), and on the other hand to select single suitable com-
ponents among the residual components. The following algorithm has also been reported
in Wedekind et al. [281],[287]. The cascaded output selection is realized in three steps.

primary output component exclusion A primary artefact exclusion is im-
plemented by calculating the ratio of high frequency (HF) power P

(1)
HF and low frequency

(LF) power P
(1)
LF of each output channel. P

(1)
HF and P

(1)
LF are derived from power spectral

density SX(f) estimate which has been calculated using periodogram. A high HF-power
is expected for usable channels as maximizing skewness can be obtained by strengthening
waveforms belonging to QRS complexes which contain a marked high frequency content
(up to 40 Hz [5], see Figure 16(b) (black curve) for an expected SX(f) behavior after
applying spatio-temporal ICA). The upper bound of the investigated frequency range was
set to 40 Hz. LF-power and HF-power are determined in the range of 0.1–5 Hz and 5–40 Hz,
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Figure 16: (a): Signal examples for cECG processing. Top panel: reference ECG REF (mV). Second
panel: exemplary cECG channel (mV). Three bottom panels: Spatio-temporal ICA out-
put component examples BSS 1-3 (a.u.). (b): Power spectral density SX (f) estimate for
CASCSEL primary output component exclusion (black curve shows SX (f) of BSS 2,
orange curve shows SX (f) of BSS 3). (c): Power spectral density estimate SX (f) for
CASCSEL secondary output component exclusion (black curve shows SX (f) of BSS 2
and orange curve shows SX (f) of BSS 1, respectively after Pan Tompkins filtering).
Figure contents appeared in [281].

respectively. The 5 Hz bound was introduced to separate potentially desired output sig-
nals from low frequency powered noise. At that stage, output channels are regarded as
usable if it holds P

(1)
HF /P

(1)
LF ≥ 1.
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secondary output component exclusion A secondary channel exclusion is
performed after post-processing of the remaining output channels from the first step. Ap-
plication of a bandpass filter between 5–11 Hz, smoothed derivative filtering and squaring
which is based on Pan and Tompkins QRS detection algorithm [207] aims at maximizing
of QRS energy and reintroduces fundamental oscillations which are typically contained
in an ECG (i.e. spectral peaks at the heart rate). An expected SX(f)-behavior can be
seen in Figure 16(c) (black curve). Channels containing a relatively high LF-power are
assumed to present desired waveforms. Consequently, power ratio estimation is performed
on post-processed channels by now estimating LF-power in the range of 0.5–5 Hz, which
encloses a recommended range for heart rate monitoring [1] and ensures the inclusion of
expected harmonic oscillations of the heart rate inside SX(f). HF-power is determined
in the frequency range 5–30 Hz. A decreased upper frequency bound (30 Hz) compared to
primary output channel exclusion is applicable due to limiting the high frequency content
of the signals using the bandpass filter according to Pan and Tompkins. P

(2)
LF /P

(2)
HF ≥ d

is used as criterion for a channel to be judged as usable. The initial threshold was set to
d = 1 and allowed to decrease in the case of removing every remaining output channel
with a given d.

best component selection After removing all potentially corrupted channels,
SX(f) (following post-processing based on Pan and Tompkins) is used to choose the
best channel among the remaining output channels. Assuming distinct fundamental and
corresponding harmonic oscillations containing the heart rate inside the frequency band
0.5–5 Hz of the desired signal (see also the black SX(f) inside Figure 16(c)), the root
mean squared error (RMSE) referring to the median of the SX(f) inside this frequency
band is calculated. A desired SX(f) is expected to have a distinct deviation from its
median inside the range of 0.5–5 Hz which contributes to a large RMSE. The channel with
maximum RMSE is chosen to be the single desired output component.

4.2.1.2 Sparse Coding Algorithm

Whereas the above described procedure directly assesses feature representations of the
signals, component selection can also be based on more abstract signal representations.
For instance, the ECG develops a characteristic and distinct waveform (the QRS complex)
which marks the main excitation of the heart muscle and can serve as a basis of an abstract
signal representation. After all, the periodic nature of this particular waveform under
physiological conditions results in the ECG’s sparse nature [48]. This offers an indirect way
of identifying the ECG component within a BSS output by assessing detections of QRS
waveforms (peaks). The following investigations have also been reported in Wedekind et
al. [285],[287].

Two novel approaches (termed RCODE and PeriodTest) to solve permutation inde-
terminacy aim at directly identifying ECG components in BSS outputs based on a sparse
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Figure 17: (a): Spatio-temporal BSS output components (excerpt) for tECG signals. Components
are vertically ordered according to the alternative skewness measure (AltSkew). The
modified Hamming distance dH as well as the sparse code sequence of each output
component are shown in grey bars. The RCODE selection is marked by orange color
and dH = 0. (b): Data processing steps prior to the coding. Spatio-temporal BSS output
channel (BSS) including its envelope (orange) and the lowpass-filtered (green) envelope
(ENV), the extracted signal (EXT) and its moving window integrated version (MOV)
including peak detections (black ◦). [285, 287].

representation of each component. The sparse representation itself, features QRS wave-
forms and their temporal behavior, expressed in the form of ’spike trains’ typical for the
spatio-temporal BSS on ECG [290]. Specifically, heartbeat detections derived from such
spike trains serve as the input to the component selection. A component selection which
is based on heartbeat detection consists of three major steps:

1. detection of peaks (both heartbeats and other peaks as large artifacts) in the output
components

2. interpreting the temporal behavior of the peaks of each component

3. selecting one single component based on the above interpretation which most likely
resembles the noise-free ECG component

Note that the second step requires an analysis of heartbeat dynamics that includes both
false positive and false negative detections.

Before the peak detection, each component is pre-processed by highpass-filtering (0.5 Hz,
5th-order Butterworth) and lowpass-filtering (40 Hz, 5th-order Butterworth), a subsequent
normalization (subtraction of the mean and division by its standard deviation) and an
optional sign-change to ensure consistent positive heartbeat peaks.
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peak detection in bss output components The main function of the peak
detection in this context is to serve the basis for a sensitive subsequent interpretation, thus
achieving a balance between sensitivity to distortions and likewise the ability to detect
peaks in the presence of distortions. The essential processing steps prior to peak detection
are shown in Figure 17(b). First, the envelope (ENV) is calculated for each BSS component
using Hilbert transformation. A spike train signal is formed by extracting (EXT) the
signal content above the lowpass-filtered (0.5 Hz, 5th-order Butterworth) envelope. This
procedure intends to suppress distortions typical for relative motions between electrode
and body surface in minimal-conductive ECG recordings. Peaks are further consolidated
by moving window integration (MOV) using a 0.1 s Hamming window (considered as QRS
length [52]). Finally, peaks are detected by applying a customized QRS-detector of the
combined maximum-search [223] and the Pan-Tompkins [207] logical detection principle
on MOV. In this context, the ’spike trains’ typical for spatio-temporal BSS processing are
robustly addressed by the detection principle of the simple maximum search detector [223].
However, the broad range of heart rates covered by the data as well as the arrhythmic
events render the fixed heart rate guess of the maximum search detector to be impractical.
Therefore, the maximum search detector is combined with the beat-to-beat decision logic
and threshold-adaption of the Pan-Tompkins QRS-detection algorithm detecting one beat
after another [207].

Whereas for the later assessment of the component selection (final heartbeat detection)
a refractory period of 0.3 s is utilized on the original BSS component, the QRS-detector’s
refractory period is decreased to 0.05 s prior to the selection on MOV to achieve high
sensitivity to artifacts in terms of a contrast for the component selection.

interpretation of peak detections i (rcode) In order to interpret the
peak detections from the above procedure, two different algorithms are applied. The
first delivers a quasi-continuous measure between the expected behavior of a cardiac
component consisting of peak detections followed by a reasonable time between subsequent
peaks and differently pronounced deviations from this behavior up to a lack of multiple
detections. This measure refers to as modified Hamming distance dH . It is derived from
a sparse code representation of the peak detections. The distance is calculated for each
component’s peak detections at times ti (i ∈ [1, I ], I is the number of peak detections)
by coding according to the dictionary {peak - 1, no peak - 0} together with physiological
temporal a-priori information. The cardiac refractory period ∆tR is considered as 0.3 s [11],
whereas the maximum peak-to-peak distance ∆tmax is considered as 1.5 s (i.e. a minimum
heart rate of 45 bpm [55]). Accordingly, a sequence (x) ∈ {0, 1} is obtained as follows.
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1. (xi) = 1 with i ∈ [1, I ]

2. add d(ti+1 − ti)/∆tmaxe zeros between xi and xi+1 if ti+1 − ti > ∆tR

3. add b(t1)/∆tmaxc zeros to (x) at t < t1

4. add b(10 − tI)/∆tmaxc zeros to (x) at t > tI

The sequence (x) of final length L is further evaluated by the modified Hamming distance
dH which is designed to indicate the distance from the expected code behavior assuming
a perfect ECG component with code (x) = 1, 0, 1, 0, . . . or (x) = 0, 1, 0, 1 . . . , respectively.

However, subjects with very low heart rate (≈ 45 bpm) or arrhythmia even under perfect
peak detection (ACC = 1) can feature sparse code patterns like (x) = . . . , 1, 0, 0, 1, . . .

or (x) = 0, 0, 1, . . . and (x) = . . . , 1, 0, 0 at the beginning/end of the code sequence,
respectively. To avoid negatively judging codes of such origin, these patterns are identified
in each output component of a segment. Moreover, if there is temporal coincidence of these
patterns (< 50 ms) in multiple components of the same segment, very low heart rate or
arrhythmia is considered to be apparent in the segment. One "0" of the respective (0,0)
code pairs is removed from the sequence (x) of the affected components in the case that
none of the other components has already shown perfect ((x) = 1, 0, 1, 0, . . . ) behavior.

After completing the code generation and manipulation, the modified Hamming dis-
tance distinctly evaluates single code pairs whether they show desired or non-desired pat-
terns with respect to the expected cardiac pattern. Contrary to that, a common Hamming
distance would serve a simultaneous distance measure between all code elements and the
expected binary pattern. The modified measure dH consists of two factors

dH = wd · d10 (79)

where d10 forms a distance to the expected behavior assessing only pairs of two subsequent
code elements (xi, xi+1) each. It is defined by the ratio between the amount of non-desired
code pairs (0,0) or (1,1) and the total amount of code pairs

d10 =
|{(xi, xi+1)|(xi, xi+1) = (0, 0) ∪ (1, 1)}|

L − 1 (80)

with i ∈ [1, L − 1].
wd factors the length of the longest continuous sequence (xi, xi+1, . . . ) ⊆ (x) of the ex-

pected ECG code behavior where all pairs of subsequent code elements suffice (xi, xi+1) =

(1, 0) ∪ (0, 1). Accordingly,

wd = 1 − l10
L − 1 (81)
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where l10 is the length of the longest continuous sequence. If I = 1, dH is set to 1. Exam-
ples of code sequences (x) and derived distance measures dH are shown in Figure 17(a).

interpretation of peak detections i i (periodtest) The second algo-
rithm is a simple periodicity test (PeriodTest) based on the peak detection evaluation
proposed by Hamaneh et al. [98] which aims at the binary classification into periodic and
non-periodic detections. It consists of the following three conditions for classifying a series
of peak detections at times ti (i ∈ [1, I ], I the number of peak detections) and the series
of the according inter-beat intervals (∆t in s) with ∆ti = ti+1 − ti and its median ∆tmed

as periodic (and non-periodic otherwise) [98]:

1. 1/∆tmed ≥ 2/3

2. 1/∆tmed ≤ 3

3. |{∆ti|∆ti < 0.75 · ∆tmed ∪ ∆ti > 1.25 · ∆tmed}| < 0.2 · (I − 1)

Besides the frequency limitation with respect to the median peak-to-peak interval, the
amount of single peak-to-peak intervals deviating more than 25% from their median is
limited to 20%. The result of the periodicity test is given as Hamaneh criterion HC = 0: pe-
riodic peak detections (cardiac component candidate) or otherwise HC = 1: non-periodic
peak detections (other component).

selection The component with the minimal dH or Hamaneh criterion HC = 0 is
selected as RCODE or PeriodTest output, respectively. In the case of obtaining multiple
components with equal minimum dH or HC, a further selection is necessary to obtain a
single output component for each selection routine. The application of spatio-temporal
BSS with skewness maximization aims at ’spike trains’ as cardiac output components. In
order to evaluate the quality of the spike train in cardiac component candidates, a measure
similar to skewness but focused on the peaks only is applied. A peak energy vector Ep

is formed by the maximum peak value of the preprocessed component around each peak
detection Ep,i = maxti±25 ms(BSS). The AltSkew measure assesses the average absolute
peak energy of Ep,i divided by its standard deviation:

AltSkew =
1
I

∑I
i=1 |Ep,i|√

1
I−1

∑I
i=1(Ep,i − Ep)2

. (82)

Accordingly, highly energetic peaks of similar amplitude provide a high AltSkew. Exam-
ples can be seen in Figure 17(a) where components are vertically ordered with respect to
AltSkew. Among the components with equal minimum dH or HC, the single component
with the maximum AltSkew is selected.



90 exploiting the potential of bss for biosignal processing

4.2.1.3 Standard Approaches to ECG Component Selection

In order to facilitate a comparison to traditional BSS component selection methods using
higher-order statistics [101, 151, 218, 222, 290], a single component selection based on
skewness and kurtosis, respectively, is also applied. To achieve measures which are less
affected by outliers, an outlier-removal using Walsh’s non-parametric outlier test [270] was
performed on each component prior to selecting the component with the highest skewness
(SKEW ) or highest kurtosis (KURT ). This investigation is also part of Wedekind et al.
[287].

4.2.2 Permutation Indeterminacy for PPG Signals

As described in section 3.4.2.2 (p.66), permutation indeterminacy for cbPPG is only unsat-
isfactorily solved, too. Wedekind et al. [284] already reported some initial investigations
and discussions about permutation indeterminacy for cbPPG. However, this doctoral work
will not continue on this topic and instead focus on permutation indeterminacy for ECGs.
Transferability of the ECG algorithms to cbPPG permutation indeterminacy is discussed
later on.

4.3 linking input composition and output performance of bss

While there exist theoretic guidelines to choose a delay-embedding dimension (i.e. the
number and maximum time-lag used for spatio-temporal BSS input construction), the
actual choice in practice is subject to accuracy optimization in the output of the filter
technique (e.g. BSS) [59, p.173]. However, any obtained accuracy improvement in the out-
put is only exploitable in practice, if the maximum accuracy output can also be selected by
a given algorithm solving permutation indeterminacy. Accordingly, the relation between
the number of added time-lags with the achieved maximum output accuracy/quality to-
gether with its select-ability (i.e. the ability of automatically selecting the best available
output) is investigated. Because the positive effect of BSS for ECG is unambiguous, this
test is performed for ECG data and the above described ECG-based algorithms for solving
permutation indeterminacy (see section 4.2.1, p.82ff).

Accordingly, the respective algorithmic and data framework of section 4.2.1 is used
to examine whether the spatio-temporal dimension dim affects first, the maximum ac-
curacy ACCmax of the BSS output components, and second, the relative accuracy of the
automatically selected output ACCsel/ACCmax. The hypotheses are as follows.
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(6-1) The spatio-temporal dimension dim of BSS inputs affects the maximum reachable
heartbeat detection accuracy ACCmax of the BSS output.
(6-2) The spatio-temporal dimension dim of BSS inputs affects the relative heartbeat
detection accuracy ACCsel/ACCmax of the selected BSS output component.

4.4 chapter summary

A positive effect of BSS for multichannel biosignal processing depends on either how well
the signal mixture, that is processed with BSS, fits the underlying BSS model or how
well the particular BSS algorithm tolerates model violations. Moreover, in a practical
processing setup using BSS, any improvement of signal quality can only be harnessed, if
the particular output of improved quality can be extracted out of the BSS output, i.e.
permutation indeterminacy can be solved.

This chapter defined a set of experiments which on the one hand address the first
aspect of characterizing BSS methods given different conditions. These experiments are
based on simulated as well as real-recorded (cb)PPG data and highlight the influence of
certain characteristics of original signal sources, (recorded) signal mixtures and specific
BSS models on the performance of BSS in terms of signal quality and the reliability of
the BSS solution. On the other hand, algorithms are proposed that solve permutation
indeterminacy for multichannel ECG processing with spatio-temporal BSS. Experiments
are defined that apply these algorithms in the context of contact-less ECG recordings and
arrhythmia. Also, this data and algorithm framework is used to investigate the relation
between the BSS model configuration (input characteristics) and the usability of potential
BSS-based signal quality improvements regarding their select-ability in terms of a solution
to permutation indeterminacy.





Jamie: Not a great host, all in all, fewer than a thousand men in total.
Numbers were the last thing needed in Riverrun.
— George R.R. Martin in A Feast for Crows p.562, A Song of Ice and Fire (2005)

5
DATA M AT E R I A L

This chapter provides descriptions of the data that is utilized to address the above raised
scientific questions. For that purpose, section 5.1 describes the generation of simulated
(cb)PPG data as well as the data collected from healthy and clinical subjects. Section 5.2
accordingly describes the ECG data which were assembled from contact-less ECG recording
techniques applied to healthy subjects as well as the pathological ECG data used for the
experiments. Contents of this chapter partially appeared already in own publications, i.e.
[286, 287].

5.1 cbppg data

5.1.1 Synthesized PPG Data

ppg waveform model The photoplethysmographic waveform is composed of a
pulsatile “AC“ component depending on the heartrate and its variability plus other in-
fluences as stroke volume and vessel properties and a “DC“ component which relates to
the tissue and average blood volume at the measurement location. The AC component
is characterized by two phases, i.e. the anacrotic1 and the catacrotic2 phase. Moreover,
the DC component slowly varies due to respiration and other low-frequency regulatory
processes as e.g. Traube Hering Mayer waves. [6]

Synthesizing a PPG waveform has the advantage, that the true signal-to-noise ratio can
be computed. On the contrary, any real (recorded) PPG waveform will already contain an
amount of noise. The generation of synthetic PPG waveforms e.g. to verify measurement
equipment can be based on hardware oscillators [266]. Also, software modeling has been
applied to PPG including arrhythmia [115, 119, 236, 272].

Huotari et al. [119] models the peripheral PPG waveform by five log-normal functions
(log-normal refers to log (x) being normally distributed) which resemble the percussion
(systole, left ventricle contraction), tidal (systole, elasticity of the aortic wall), dicrotic

1 upstroke phase of the PPG beat during systole
2 downstroke phase of the PPG beat during diastole together with wave reflections, i.e. a dicrotic notch
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Figure 18: Synthesized PPG sample beat (purple) using the PPG model of [119]. The waveform
consists of five log-normal components (shown in black). Model parameters are sampled
from the parameter distributions of the 61-year old male subject in [119] (see also
Table 4 in the appendix A.1, p.161).

(diastole, reflection from lower body bifurcation), and two pre-systolic components (re-
reflections during the end of diastole). The i-th component si is given by

si(t) =
ai√

2π · σi · t
· exp

(
− (log(t/µi))2

2 · σ2
i

)
with i ∈ [1, 5] (83)

with ai a factor, µi the mean and σi the standard deviation. The resulting weighted, time-
shifted, and time-scaled components further are linearly summed up. Huotari et al. [119]
also present detailed parameter estimates for the respective five components of three male
subjects (age 24, 61, 70). This serves an advantage compared to other contributions which
combine two Gaussian functions with one Gamma function [115] or utilize an adaptive
amount of multiple Gaussians alone [272] to model the BVP (i.e. the PPG), because these
parameter estimates can directly be used to synthesize realistic waveforms. Accordingly,
the Huotari-model [119] is used to generate PPG waveforms by applying the documented
parameter estimates which can be found in the appendix (see A.1 Table 4, p.161). A
sample synthesized PPG using this model is shown in Figure 18.

Whereas the model mentioned above have been used to analyze recorded BVP waveforms
and thus work on a given (i.e. recorded) rhythm, the synthesis of PPG waveforms requires
an additional modeling of the rhythm for combining multiple PPG beats. In this context,
Sološenko et al. [236] propose a PPG model based on RR interval (RRI) information.
Specifically, the authors develop a distinct scaling of amplitude and phase for the systolic
and diastolic part of each single PPG beat which depends on the RRI of the preceding
beat. Each single beat sk(t) =

∑
i sk,i(t) formed of the i components is divided into a

systolic (t < tp) and a diastolic part (t ≥ tp) with tp the time of the largest positive peak.
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Figure 19: Synthesized PPG segments using the PPG model of [119] and the amplitude and phase
scaling of [236]. The PPG model parameters are sampled from the parameter distribu-
tions of the 61-year old male subject in [119] (see also Table 4 in the appendix A.1,
p.161). A physiological example (upper panel) and an arrhythmic example (lower panel)
is shown. The underlying rhythm of the arrhythmic PPG is sampled from PhysioNet
[89] MIT-BIH Arrhythmia Database [194] recording 215.

The scaling is performed by (compared to [236], these equations are adapted to work with
positive time only):

s∗
k(t) =

 bk · sk(cs,k · t) 0 < cs,k · t < tp

bk · sk(tp + cd,k · (t − tp)) tp ≤ t < ∞
(84)

with bk the amplitude scaling factor and cs,k the systolic and cd,k the diastolic phase
scaling factor, of the k-th beat (see [236] for details on how to calculate the scaling
factors). The scaled beats afterwards are lined up with respect to the RRI series. Figure 19
shows two examples of 10 s PPG segments using the above described amplitude and phase
scaling. Given are a physiological (upper panel) as well as a arrhythmic (lower panel)
PPG example where the latter was generated with RRI intervals from the PhysioNet [89]
MIT-BIH Arrhythmia Database [194].

dataset generation Using the PPG waveform model of Huotari et al. [119] as well
as the PPG amplitude and phase scaling model of Sološenko et al. [236] as described above,
the synthetic dataset generation consisted of (1) sampling single PPG beats, (2) sampling
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RRI series, (3) assembling PPG signals by scaling and stringing single beats together with
respect RRI series obtained in the previous step and (4) sampling 10 s segments from the
PPG signals.

Since Huotari et al. [119] described their PPG model together with the explicit statistics
of three subjects (i.e. a 24,61 and 70-year old male subject), the synthetic dataset was
generated by separately using these three model distributions. Specifically, the described
PPG model utilizes five log-normal distributions to model a single PPG pulse, whose model
parameters were given in [119] and are documented in Table 4 (appendix A.1, p.161). In
order to synthesize a single beat, parameter sets for the five components of each beat
were sampled randomly from the given model parameter distributions. For each of the
three subjects model parameters, N = 100 beats were synthesized at a sampling frequency
f = 1000 Hz. Figure 20 shows the accordingly generated beats for each subject’s model.

The PPG model of Sološenko et al. [236] allows for assembling single PPG beats by un-
derlying RRI series. The synthetic PPGs were generated from normal as well as arrhythmic
RRI series. The physiological RRI series were obtained by randomly sampling RRIs from a
standard normal distribution with a standard deviation of 30 ms (see [3], the distribution
mean was selected 1000 ms for the model based on the 24 and 70-year old subject resp.
1200 ms for the 61-year old subject). Moreover, respiration (12 bpm) as well as Traube
Hering Mayer waves (0.1 Hz) [6] were sinusoidally superimposed to the RRI intervals each
with a standard deviation of 30 ms. Finally, the RRI series were re-normalized to meet the
specified mean and standard deviation. The pathological RRI series were sampled from the
PhysioNet [89] MIT-BIH Arrhythmia Database [194], namely the recordings 107,210 and
215. From the PhysioNet-given beat annotations, those segments were randomly selected
that contain as many as possible premature beat annotations of any kind. For both physio-
logical and pathological RRI series, segments were build/extracted to allow for generating
PPG signals each consisting of N = 100 subsequent beats.

By applying the model of Sološenko et al. [236], the single PPG beats from the first step
now were aligned (and scaled in amplitude and phase) with the RRI series derived in the
second step. Figure 19 serves one excerpt each from a physiological and a pathological
PPG signal. Specifically, the N = 100 single beats sampled from each subject’s model
distribution were utilized to generate PPG signals consisting of 100 subsequent beats by
using first, one physiological RRI series and second, one pathological RRI series (MIT-
BIH recording [194] assignment for pathological signals with [119] beat model pursuant
(24 years old subject: RRI from recording 107, 61 years old subject: RRI from recording 215,
70 years old subject: RRI from recording 210). Moreover, the transitions of the scaled
subsequent beats were smoothed by a ten-sample moving average filter applied to ±15
samples of the transitions between each two subsequent beats. Thus, six PPG signals each
consisting of 100 PPG beats were obtained.

Finally, N = 100 segments of 10 s duration were randomly sampled from the six contin-
uous PPG signals generated in the previous step. Accordingly, a total amount of 600 seg-
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Figure 20: Synthesized PPG beats using the PPG model of [119]. Shown are N = 100 beats each
sampled from the model parameter distributions of the 24-year old (black), the 61-year
old (purple) and the 70-year old subject (orange). The model parameters can be found
in Table 4 in the appendix A.1, p.161).

ments were synthesized based on the model distributions of three subjects together with
six RRI series (three physiological and three pathological series).

5.1.2 Data from Healthy Volunteers

bvp data from the multisensor mattress In measurements setups address-
ing the BVP by cbPPG, BCG signals (mechanical expression of heart activity) are available
in regions close to those showing PPG waveforms [232]. Thus, while processing multiple
ROIs from e.g. facial videos, heterogeneous signals can be expected which simultaneously
or alternately contain characteristics of both waveforms. A dataset with signals of both
origins is used to model effects of alternating signal characteristics in the context of BSS

for cbPPG processing.
In experiments measuring supine subjects with a multisensor mattress Hetzel [109] and

Henning [103] utilized a piezo film to gather a dorsal BCG similar to common BCG (which is
measured in longitudinal fashion) [103, p.65f,p.72f]. Simultaneously, a PPG was measured
both dorsally and using an ear clip [103, p.98ff],[109, p.33]. The measurements obtained
from this setup are based on a protocol comprising breathing maneuvers and motion tasks
[109, p.35]. For this thesis, data was extracted from these experiments from a motion-less
phase with spontaneous breathing. Figure 21 shows a signal excerpt from this dataset.

The multisensor mattress data were recorded during the master thesis of Hetzel [109]
at the Institute of Biomedical Engineering (IBMT), TU Dresden. The mattress comprised
sensors for recording cECG, BCG (piezo film, [103, p.68f]), PPG (dorsal MLT1020PPG sen-
sor and ear clip MLT1020EC, ADinstruments, Dunedin, New Zealand) as well as antennas
for radar-based sensing and a microphone for the recording of the phonocardiogram. The
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Figure 21: Sample data segment from multisensor mattress ([103],[109]). Shown is the dorsal
ballistocardiogram (BCG) recorded with an piezo film and a dorsal photoplethysmo-
gram (PPG) alongside the reference ECG.

data was sampled at a sampling frequency of 2 kHz by using a PowerLab 16/35 biosignal
data acquisition system (ADinstruments). Moreover, a reference ECG was recorded using
a Bio Amp (ADinstruments) differential biological amplifier. [109, p.33f]

Data were acquired from 18 healthy supine subjects (age: 26.7 ± 3.7 years, BMI:
24.8 ± 5.3 kg/m2) lying on the multisensor mattress. The measurement protocol con-
sisted of several breathing and motion maneuvers. Followed by an initial resting phase
with spontaneous breathing, alternating breathing maneuvers consisting of spontaneous
breathing, abdominal breathing and breath-holding were conducted. [109, p.35]

For this doctoral work, data from the first 45 s spontaneous breathing phase after the ini-
tial (familiarization) phase were extracted. Data excerpts from four subjects were selected
among the overall data due to very good signal quality. Specifically, the BCG and PPG

data were chosen alongside the reference ECG (for evaluation purposes). Afterwards, the
BCG and PPG data were filtered (zero-phase) by a 10 Hz lowpass (5th-order Butterworth)
and 0.1 Hz highpass (3th-order Butterworth) filter. From each of the four subjects’ 45 s
segments, 25 subsegments of 10 s duration (maximum overlap 9 s) were randomly selected
and down-sampled to 100 Hz. Each segment was normalized to possess zero mean and
unit variance. Overall, a total amount of 100 segments (with 10 s duration) were collected
from the multisensor mattress data.

5.1.3 Clinical Data

5.1.3.1 CardioVisio

The cbPPG data was gathered within the scientific project CardioVisio - Contactless aqui-
sition of vital parameters. Measurements were carried out at the cardiac surgical inten-
sive care unit at the Heart Center Dresden, University Hospital Carl Gustav Carus, TU
Dresden, Dresden, Germany. The project was approved by the Institutional Review Board
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Figure 22: cbPPG ROI selection. White lines indicate ROI borders. (a): Evenly distributed 32x32
pixel ROIs with 50 % overlap. (b): Manually annotated ROI including the face ROIF.
(c): Manually annotated ROI including forehead and cheeks ROIFhC. [286]

of the TU Dresden (IRB00001473, EK168052013). Patients after elective cardiac surgery
were included if they gave written, informed consent prior to surgery. Video data was
recorded during the immediate recovery from surgery after admission at the intensive
care unit [217]. Postoperative care followed clinical standards including mechanical ven-
tilation and external cardiac pacing by temporal atrial and ventricular wires adjusted to
intrinsic cardiac rhythm and haemodynamic needs. Four-lead ECG and finger PPG were
simultaneously recorded at 300 Hz and used to derive the reference heart rate. Specifically,
manual beat annotations of the ECG are used to extract the ground truth heart rate out
of the spectral representation (i.e. the peak best matching the ECG derived heart rate) of
the PPG that is further used to compute SNRs of the cbPPGs.

Video data was recorded using an industrial camera (IDS UI-3370CP-C-HQ, IDS Imag-
ing Development Systems GmbH, Obersulm, Germany, 100 fps, 420x320 pixels, RGB
3x12 bit). The camera was placed at a distance of approximately 60 - 100 cm to patients’
faces. Clinical ceiling fluorescent lamps served as primary illumination source. However,
the luminous color, intensity and homogeneity of the illumination varied across the mea-
surements due to varying patient positions with respect to the illumination, varying room
geometries and entering daylight. Therefore, a broad range of illumination characteristics
is covered by the data.

In order to use only suitable data for further analysis, data segments were selected which
showed high quality reference PPGs to correctly identify the true heart rate. Furthermore,
data segments with severe cardiac disorders were excluded. Only continuous segments
with a minimum length of 500 s (one per patient) were considered for further processing.
Based on such criteria, overall recordings of 18 patients (13 male, 5 female; 30 minutes
per recording) were selected from a larger collective of 70 patients (age: 70.3 ± 11.4 years,
BMI: 28.8 ± 4.1 kg/m2). The selected material includes a total of about 6 h video data
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Figure 23: Sample cbPPG signal excerpts (normalized and normalized + 4 Hz lowpass filtered (bold
signal) versions) and amplitude spectra from different ROIs. (a): 32x32 pixel ROI. (b):
Manually annotated ROI including the face. (c): Manually annotated ROI including
forehead and cheeks. The true heart rate and its harmonic (± 5 bpm) is indicated
by the colored areas in the back of the spectra. Colors of the respective spectra are
according to the time signals. [286]

(average length 1200 ± 400 s per patient). The selection did not consider video quality,
i.e. slight patient motion as well as illumination inadequacies (changes or insufficient
lightning) persisted in the dataset.

The selected video data was processed in segments of 10 s length resulting in 2197
segments (106 ± 37 per patient). The cbPPGs were extracted in three ways as illustrated
in Figure 22. To allow a spatial selection of desired ROIs, every video frame was covered
by 25 x 19 overlapping square ROIs (50 % overlap at each direction) of 32 x 32 pixels.
The ROI placement is indicated in Figure 22(a). The ROI size was chosen since own prior
investigations addressing the relationship between ROI size and signal quality (SNR) using
a comparable technical setup (i.e. camera sensor, image resolution and camera distance
to subject) showed that no higher signal quality can be obtained by further increasing the
ROI size3. In order to compare the spatial ROI selection to standard ROI selection prior to
BSS [55, 181, 212], manually annotated ROIs were used to extract the cbPPG of the com-

3 Other investigations [251], which showed an appropriate ROI size for pulse wave extraction to be larger
(100-150 pixels ROI side length), used a higher image resolution.
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plete face (ROIF) and the forehead-cheeks region (ROIFhC), respectively. See Figure 22(b)
and 22(c) for exemplary ROI annotations. cbPPG were extracted from each ROIn (with
n = 1,2,...,475) as well as from ROIF and ROIFhC at every wavelength by averaging its
pixels values [265] for each frame. See Figure 23 for exemplary signals together with the
reference PPG.

5.2 ecg data

5.2.1 Data from Healthy Volunteers

5.2.1.1 Capacitive ECG Data

Figure 24: Capacitive data (cECG) and recording. (a) Input data example of the capacitive data.
REF indicates the conductive reference ECG and CH1-7 the ECG leads obtained from
the driver’s seat electrodes. (b) Electrode placement of the cECG setup. The numbered
electrodes each define a bipolar lead (CH) together with the green (unnumbered) elec-
trode. [287]

The cECG recordings consist of data from ten healthy subjects (age structure with ap-
proximate range [25,45] years) seated at a driver’s seat equipped with eight capacitive
electrodes. The capacitive system was provided by Capical GmbH (Capical Medical So-
lutions, Braunschweig, Germany) and has been integrated into a driving test station [31].
The data was recorded by the doctoral candidate at the Volkswagen development site in
Wolfsburg, Germany. The measurement protocol comprised a resting phase and a passive
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motion phase, where the seat was moved impulse-like from outside at a given period of
time. Bipolar ECG leads were obtained using a fixed bipolar reference electrode in chest
height. See Figure 24(b) for an illustration of the electrode placement of the cECG system.
Seven ECG leads obtained from the driver’s seat (sampling rate 500 Hz) were processed
in subsequent 10 s segments (1 s segment shift). A total of 523 ± 11 segments per subject
containing both, resting and motion phases, were considered. The reference ECG recorded
simultaneously using conductive electrodes together with manual annotations served as
the ground truth. See Figure 24(a) for an example of a recording without a motion artifact.

5.2.1.2 Wearable ECG Data

Figure 25: Wearable data (tECG) and recording. (a) Input data with heavy distortions and a large
motion artifact. REF indicates the conductive reference ECG and CH1-7 the ECG leads
derived from the textile electrodes. Due to the normalization of signals, QRS complexes
are not visible in the upper channels. (b) Electrode placement of the tECG garment.
The numbered electrodes indicate pairs of bipolar leads (equivalent to CH in (a)) and
the reference potential measurement is marked green near the waist. [287]

The tECG recordings consist of data from ten healthy subjects (average age 30 years,
range [21,47] years) wearing a garment with integrated textile electrodes [290] while per-
forming a protocol of motion and non-motion phases (sitting, standing, sitting down,
standing up, walking, flexing chest muscles). Seven bipolar ECG leads obtained from
the garment (sampling rate 500 Hz) using a reference potential near the waist were pro-
cessed in subsequent 10 s segments (1 s segment shift). A total of (mean ± standard devi-
ation) 536 ± 9 segments per subject were considered. Manual annotations in a reference
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ECG recorded simultaneously using conductive electrodes served as the ground truth. See
Figure 25(a) for a data example including a large motion artifact as well as Figure 25(b)
for an illustration of the electrode placement in the tECG garment.

5.2.2 Clinical Data

5.2.2.1 PhysioNet MIT-BIH Arrhythmia Database

Since no arrhythmia data were available for the used tECG and cECG techniques, patholog-
ical aECGs were assembled out of the PhysioNet [89] MIT-BIH Arrhythmia Database [194].
To match the data amount and the structure of the textile and capacitive ECGs, 100 seg-
ments (10 s duration, minimum 1 s segment shift, sampling rate 360 Hz) were randomly
sampled out of each of the database’s 48 two-channel recordings. Based on the expert beat
annotations available with the database, first, segments containing non-normal beats (i.e.
premature and block beats, no escape beats) were extracted. If 100 different segments
containing pathological beats could not be sampled for a single patient, segments contain-
ing only (quasi-)physiological beats (sinus or paced beats) are added. By applying this
procedure, 74 ± 41 of 100 segments for each patient containing pathological beats were
obtained. The expert beat annotations also served as the ground truth regardless of their
beat type.

5.3 chapter summary

The data assembled for this doctoral work consists of synthesized (cb)PPG data as well
as a broad variety of real-recorded (cb)PPG and ECG data incorporating contact-less
measurement techniques as well as (clinical) standard measurement techniques. The syn-
thesized (cb)PPGs allow for advanced analyses in the context of BSS (e.g. morphology
retention) because the signals’ ground truth is known. For the patient data, ground truth
measurements are not available but instead more abstract ground truth parameters as
the heartrate or heartbeat location are used. These data allow for BSS related analyses of
according parameters (e.g. SNR, ACC, heartrate error (HRE)).





Jamie: "Oh, it’s truth you want? Be careful, my lady. Tyrion
says that people often claim to hunger for truth, but seldom
like the taste when it’s served up."
— George R.R. Martin in A Clash of Kings p.792, A Song of Ice and Fire (1998)

6
R E S U LT S FO R DATA A N A LY S I S

This chapter provides the results of the experiments conducted to address the above
raised scientific questions. It presents descriptive and graphical overviews of the results.
The related complete numerical results are mostly described in the appendix. Section 6.1
describes the results of the (cb)PPG experiments on the influence of the BSS input data on
BSS performance. Section 6.2 describes the results gained by the experiments on solving
the major BSS output indeterminacy, i.e. permutation indeterminacy. Finally, section 6.3
provides the results for the comprehensive experiment about linking BSS inputs and output
indeterminacy. Contents of this chapter partially appeared already in own publications,
i.e. [286, 287].

6.1 selection of bss input data

In the following, the results and statistical evaluation of experiments, first, using mostly
simulated PPG data and disturbances and, second, using real cbPPG data, are presented.

For the simulated data, ∆SNRorig, Umax and ρsy are selected as results. ∆SNRorig rep-
resents the difference between SNRs of the BSS output yPPG and the original source signal
sPPG and thus is expected to be non-symmetrically (non-normally) distributed with a cen-
tral mass close to 0 dB and a skewness towards negative values. Also, ρsy (limited by 1)
and Umax (distributed over magnitudes of different order) are expected to be distributed
non-normal. That is why non-parametric statistical tests, i.e. rank based tests are utilized
for the statistical assessment of the simulated data. Moreover, the effect size measure Co-
hen’s U1 [104] is chosen to characterize the effect size of potentially significant differences.
Since it assesses relative amounts of group elements being larger/smaller than opposing
group maxima/minima, respectively, its interpretation is straightforward. A maximum
effect (U1 = 1) is achieved if every group element of one group is larger than all elements
of another group. No effect equals U1 = 0.

For the cbPPG data, absolute SNR values respectively, a difference ∆SNR between the
output yPPG and the input xPPG is assessed. These measures are expected to resem-
ble a normal distribution. Accordingly, analysis of variance (ANOVA)/analysis of covari-

105
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ance (ANCOVA) statistics and related post-hoc tests are applied. Hedges g [85] serves as
effect size measure. g represents a standardized mean difference between groups. Given
a comparable confidence interval (CI), the larger g, the bigger the impact of the experi-
mental variable [198]. However, contextual information is required to interpret g in terms
of absolute values. To define which effects are relevant for further discussion, instead the
concept of CI consistency is introduced: an effect is regarded as consistent, if the CI of a
given g is completely positive or negative, respectively.

Furthermore, to avoid large sample sizes to determine the statistical results [157], sub-
jects’ and methods’ means are calculated and used as basis for the statistical analysis.

6.1.1 Source Signal Characteristics

Hypothesis 1-1:
The orthogonality d⊥ of the original source signals s which is defined by the disturbance
source types SIN, CHIRP, TREND and STEP, does affect the BSS output parameters
SNR, Umax and ρsy.

Figure 26: Deviations from the orthogonal BSS approach for different disturbance signals SIN,
CHIRP, STEP, TREND measured by d⊥ (in a.u., subject-wise averaged, N = 6, whisker
lengths 10 % and 90 % percentile). Horizontal lines in the lower box indicate pair-
wise significant post-hoc tests between the disturbance types (∗p ≤ 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001).

In order to examine, whether different disturbance types actually cause different devia-
tions from the orthogonal approach, d⊥ is compared amongst the disturbance types. The
independent samples of d⊥ are subject-wise averaged to ensure statistical independence
(i.e. each 100 segments sampled using three physiological and three pathological RRI series
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give N = 6 averaged values per disturbance type). The Kruskal-Wallis test by ranks to
log-scaled d⊥ values (to ensure homoscedasticity by Brown-Forsythe-test) shows highly
significant differences (p < 0.001) between the disturbance types. Mann-Whitney U tests
confirm significant differences between most of the pairs. See Figure 26 for the results.
Also, see additional results in section A.3.1 (p.165).

In order to illustrate exemplary source-, mixture- and BSS output signals of the ex-
periment conducted on synthesized cbPPGs, Figures 27 and 28 show respective input and
mixture signals for the applied noise categories SIN, CHIRP, TREND and STEP as well
as the BSS output components resembling the PPG component for the different BSS al-
gorithms which has been selected based on maximum correlation with the original PPG

signal.
It is worth noting that regardless the disturbance type (SIN, CHIRP, TREND, STEP),

the PCA is not capable of fully separating the white gaussian noise from the PPG in
presence of the another disturbance signal, whereas all ICA algorithms show qualitatively
noise-free sources. Moreover, even for qualitatively heavily distorted PPG signals from a
morphological point of view (see CHIRP disturbance mixtures in Figure 27b), all ICA

algorithms are capable of separating PPG signals for the given simple linear three-signal-
mixtures. However, RADICAL shows a strong qualitative influence (altered signal morphol-
ogy of the PPG component after BSS) of sinusoidal disturbances on the morphology of the
BSS output components (see Figure 27a) whereas the other ICA algorithms do not.
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(a)

(b)

Figure 27: Exemplary signals showing the BSS performance of different algorithms on PPG signals
mixed with (a) sinusoidal (SIN) and (b) quasi-periodical (CHIRP) disturbances. Shown
are the original source signals s (upper left plot), the signal mixtures x (lower left plot)
and the BSS output components y resembling the PPG component (right plot).
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(a)

(b)

Figure 28: Exemplary signals showing the BSS performance of different algorithms on PPG sig-
nals mixed with (a) monotonous trend (TREND) and (b) volatile (STEP) disturbance.
Shown are the original source signals s (upper left plot), the signal mixtures x (lower
left plot) and the BSS output components y resembling the PPG component (right plot).
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Figure 29: Relation between d⊥ and ∆SNRorig for different BSS algorithms. Full data distribution
is shown in faint color, subject- and disturbance-type-wise averaged data (N = 24) is
shown in bright color. An exemplary linear regression (incl. R2) is calculated and drawn,
if Spearman’s rank partial correlation coefficient rS (controlling for the disturbance
type) indicates a significant correlation (p ≤ 0.05).

Furthermore, the relation between ∆SNRorig, Umax and ρsy, respectively, and d⊥ is as-
sessed by Spearman’s rank partial correlation coefficient rS . The correlation is calculated
on subject- and disturbance-type-wise averaged values (N = 24) by controlling for the dis-
turbance type. If rS is significant (p ≤ 0.05), an exemplary linear regression is calculated
and rated by R2 (variance resolution for non-averaged data). Figure 29 shows the data and
statistics for the relation between ∆SNRorig and d⊥ each for the respective BSS algorithm.
While only expressing a small amount of variance by the linear regression (2–14 %), all BSS

algorithms show a significant negative correlation between ∆SNRorig and an increasing
deviation from the orthogonal approach d⊥. Note that ∆SNRorig = 0 equals an optimal
BSS outcome with respect to the SNR, i.e. a signal y matching the SNR of the original
source signal s has been extracted from the signal mixture x. Figure 30a and 30b show
the relation between the deviation from orthogonality of the original source signals and
Umax and ρsy, respectively. The reliability of W, i.e. Umax is significantly correlated only
to standard and super-Gaussian FastICA. The reliability of y, i.e. ρsy instead, shows sig-
nificant negative rank-based correlations for all ICA algorithms. Especially for RADICAL,
together with the high negative correlation coefficient rs = −0.83, the exemplary linear
regression shows a high variance resolution of 76 %.
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(a)

(b)

Figure 30: Relation between d⊥ and Umax and ρsy, respectively, for different BSS algorithms. Full
data distribution is shown in faint color, subject- and disturbance-type-wise averaged
data (N = 24) is shown in bright color. An exemplary (log-)linear regression (incl. R2) is
calculated and drawn, if Spearman’s rank partial correlation coefficient rS (controlling
for the disturbance type) indicates a significant correlation (p ≤ 0.05).
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Hypothesis 1-2:
Different BSS algorithms show different performances (i.e. SNR, Umax and ρsy) on different
noise types SIN, CHIRP, TREND and STEP.

Figure 31: The SNR performance with respect to the BSS algorithm and disturbance type mea-
sured by ∆SNRorig (in dB, subject-wise averaged, N = 6, whisker lengths 10 % and 90 %
percentile). Horizontal lines in the lower boxes indicate pairwise significant post-hoc
tests between the BSS algorithms (∗p ≤ 0.05, ∗∗p < 0.01).

The performance of the different BSS algorithms with respect the disturbance types using
the BSS output measures ∆SNRorig, Umax and ρsy, respectively, is assessed. The dependent
samples of ∆SNRorig, Umax and ρsy, respectively, are subject-wise averaged to ensure
statistical independence (i.e. each 100 segments sampled using three physiological and
three pathological RRI series give N = 6 averaged values per disturbance type). First, the
homoscedasticity is validated by Brown-Forsythe-test. To ensure homoscedasticity, PCA

was excluded from ∆SNRorig on CHIRP disturbances and RADICAL was excluded from ρsy

on SIN disturbances. The Friedman test further tests for significant differences between
the BSS algorithms (which holds for all comparisons except for Umax on SIN disturbances).
After full-filling these preconditions, Wilcoxon’s signed rank test serves as post-hoc test
to confirm significant differences amongst the pairs. See the Figures 31, 32a and 32b for
the results.
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(a)

(b)

Figure 32: The reliability performance with respect to the BSS algorithm and disturbance type
measured by Umax (rad2) and ρsy (a.u.), respectively (subject-wise averaged, N = 6,
whisker lengths 10 % and 90 % percentile). Horizontal lines in the lower boxes indicate
pairwise significant post-hoc tests between the BSS algorithms (∗p ≤ 0.05, ∗∗p < 0.01).
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It is worth noting that, while most ICA algorithms perform similar, the PCA performs
worse, i.e. shows significantly lower SNRs and y reliability ρsy. Also, there occurs a signifi-
cant difference in the reliability (variance) of W, i.e. Umax for most of the BSS algorithms.

See numerical results in section A.3.1, p.165.

Hypothesis 1-3:
The reliability of the solution W (Umax) and the reliability of the solution y (ρsy) does
affect the practically relevant parameter SNR, i.e. the strength of the cardiac pulse.

Spearman’s rank partial correlation controlling for the disturbance type again is used
to measure the relation of the SNR to the BSS reliability measures. Figures 33a and 33b
show the relation between the relative strength of the cardiac pulse ∆SNRorig and the
BSS’s reliability measures Umax and ρsy, respectively. The SNR is significantly negatively
correlated to the reliability of W, i.e. Umax for standard and super-Gaussian FastICA
as well as RADICAL . It is also positively correlated to the reliability of y, i.e. ρsy for
all ICA algorithms. Accordingly, the output SNR decreases while (at least for some ICA

algorithms) the reliability of W decreases. Moreover, the output SNR increases while (for
all ICA algorithms) the reliability of y increases. For the calculated rank-based correlation
coefficients rs, a linear regression model shows a weak variance resolution.
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(a)

(b)

Figure 33: Relation between the BSS reliability measures Umax and ρsy, respectively, and the SNR,
i.e. ∆SNRorig. Full data distribution is shown in faint color, subject- and disturbance-
type-wise averaged data (N = 24) is shown in bright color. An exemplary (log-)linear
regression (incl. R2) is calculated and drawn, if Spearman’s rank partial correlation
coefficient rS (controlling for the disturbance type) indicates a significant correlation
(p ≤ 0.05).
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6.1.2 Mixture Signal Characteristics

Hypothesis 2-1:
Different BSS algorithms show different performance (i.e. ∆SNRorig, Umax and ρsy) on
underdetermined mixtures (s : {si | 1 ≤ i ≤ M}, y : {yj | 1 ≤ j ≤ N} with M > N)

Figure 34: The SNR performance with respect to the BSS algorithm and disturbance type mea-
sured by ∆SNRorig (in dB, subject-wise averaged, N = 6, whisker lengths 10 % and 90 %
percentile). Horizontal lines in the lower boxes indicate pairwise significant post-hoc
tests between the BSS algorithms (∗p ≤ 0.05, ∗∗p < 0.01).

The performance of the different BSS algorithms with respect to underdetermined mix-
tures using the BSS output measures ∆SNRorig, Umax and ρsy, respectively, is assessed.
Two cases are distinguished, i.e. (a) underdetermined mixtures containing an additional
disturbance signal in the signal sources s (referring to as "underdetermined disturbance")
and (b), underdetermined mixtures containing an additional PPG signal in the signal
sources s (referring to as "underdetermined PPG"). The dependent samples of ∆SNRorig,
Umax and ρsy, respectively, are subject-wise averaged to ensure statistical independence
(i.e. each 100 segments sampled using three physiological and three pathological RRI series
give N = 6 averaged values per disturbance type). First, the homoscedasticity is validated
by Brown-Forsythe-test. All data showed homoscedasticity. The Friedman test further
indicates significant differences (p ≤ 0.05) between the BSS algorithms of the evaluated
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(a)

(b)

Figure 35: The reliability performance with respect to the BSS algorithm and underdetermined
mixtures measured by Umax (rad2) and ρsy (a.u.), respectively (subject-wise averaged,
N = 6, whisker lengths 10 % and 90 %). Horizontal lines in the lower boxes indicate
pairwise significant post-hoc tests between the BSS algorithms (∗p ≤ 0.05, ∗∗p < 0.01).
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groups. Wilcoxon’s signed rank test serves as post-hoc test to confirm significant dif-
ferences amongst the pairs. See the Figures 34, 35a and 35b for the results. Also, see
additional results in section A.3.2 (p.168).

Evaluating underdetermined mixtures with respect to the strength of the cardiac pulse
∆SNRorig (i.e. does the strength of the cardiac pulse in the BSS output y attain the
strength of the cardiac pulse in the original source signals s) and the reliability ρsy (signal
morphology match) shows that the PCA performs worse compared to all tested ICA algo-
rithms. I.e. regardless of the nature of the underdetermined mixture (underdetermined
disturbance or underdetermined PPG), applying the PCA causes a significantly lower out-
put SNR and cross-correlation between original and estimated source signal. Moreover,
the ∆SNRorig tests show that RADICAL performs significantly worse compared to other
ICA algorithms if the underdetermined mixtures contains another PPG signal. Also, the
JADE results display a solution of W that is more stable (shows smaller Umax) compared
to the FastICA solutions. However, this difference does not significantly affect ∆SNRorig

and ρsy.

Hypothesis 2-2:
Phase shifts among BSS input signals (i.e. phase shifts within PPG signal mixtures) do
affect the strength of the cardiac pulse (i.e. the SNR), the reliability of the solution W
(Umax) and the reliability of the solution y (ρsy).

Spearman’s rank correlation is used to measure the relation of phase shifts within the
signal mixtures to the BSS output measures. Figures 36a and 36b show the relation between
the sample-wise time lag (τPPG, sampling frequency fs = 100 Hz) and the relative
strength of the cardiac pulse ∆SNRorig and the BSS’s reliability measure ρsy, respectively.
The underlying signal mixtures contained a PPG signal as well as its phase shifted version
plus a noise signal (no additional disturbance). The PCA results (data not shown) does
not show significant correlations with τPPG.

The SNR expresses a significant positive correlation with the increasing time lag τPPG

for standard and super-Gaussian FastICA as well as SOBI. For neither Umax (except
SOBI, data not shown) nor ρsy, a significant correlation can be proven. Solely, a positive
correlation between increasing time lag τPPG and Umax (rs = 0.42, p < 0.01) and thus, a
decreasing W-reliability finds. Moreover, all correlations fully vanish while further adding
a disturbance signal to the signal mixture (as described as experiment (2)(b) in section
4.1.3, p.76: Mixture Signal Characteristics). However, while no significant correlations are
expressed for the full interval of tested time lags τPPG, ρsy indicates correlation patterns
related to partial time lag intervals (see Figure 36b).
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(a)

(b)

Figure 36: Relation between phase shifts (time lags τPPG with respect to the sampling frequency
fs = 100 Hz) among BSS input signals and ∆SNRorig and ρsy, respectively. Full data
distribution is shown in faint color, subject- and time-lag-wise averaged data (N = 42)
is shown in bright color. An exemplary linear regression (incl. R2) is calculated and
drawn, if Spearman’s rank correlation coefficient rS indicates a significant correlation
(p ≤ 0.05).
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Furthermore, the performance of the different BSS algorithms in this experiment (adding
PPG signals with different time lag to the BSS input) is compared amongst each other.
Again, the BSS output measures ∆SNRorig, Umax and ρsy, respectively, are assessed. Two
cases are distinguished: (a) BSS inputs consisting only of phase-shifted PPGs and a white
noise source and (b), an underdetermined mixture of the signals of (a) plus randomly
adding a disturbance signal from {SIN,CHIRP,TREND,STEP}.

The dependent samples of ∆SNRorig, Umax and ρsy, respectively, are subject-wise and
time-lag-wise averaged to ensure statistical independence (i.e. each 50 PPG signals from
each a physiological and a pathological RRI series averaged per time lag (N = 21) give
N = 42 averaged values). Initially, the homoscedasticity is validated by Brown-Forsythe-
test. To ensure homoscedasticity, the PCA data is excluded from experiment (a). Also in
experiment (b), the Umax data is fully excluded from further analysis. The Friedman test
afterwards indicates highly significant differences (p < 0.001) between the BSS algorithms
of the evaluated groups. Wilcoxon’s signed rank test serves as post-hoc test to confirm sig-
nificant differences amongst the pairs. See Tables 23 - 27 in the appendix A.3.2 (p.168f) for
the pairwise results. Whereas SOBI showed the significantly highest ∆SNRorig compared to
other ICA algorithms in experiment (a), the underdetermined conditions of experiment (b)
caused SOBI to show the significantly lowest ∆SNRorig amongst the ICA algorithms (only
PCA reaches a lower SNR). In experiment (a), SOBI additionally show’s the highest reli-
ability of W (significantly higher than FastICA). However, SOBI also achieves the lowest
y-reliability among the ICA algorithms (again only PCA reaches a lower ρsy). With respect
to the reliability of the BSS output components y, i.e. ρsy, FastICA and JADE perform
best in the phase shift experiments with a slightly (but significantly) better performance
of JADE.

Hypothesis 2-3:
Different BSS algorithms perform different on heterogeneous (underdetermined) mixtures
with respect to ∆SNRBSS and the reliability of W (Umax).

The performance of the different BSS algorithms on heterogeneously underdetermined
mixtures (mixtures consisting of BCG and PPG signals) using the BSS output measures
∆SNRBSS and Umax is assessed. Figure 37 shows the according box plots. The dependent
samples of ∆SNRorig and Umax, respectively, are subject-wise averaged to ensure statis-
tical independence and homoscedasticity (N = 4). RADICAL needs to be excluded from
the ∆SNRBSS results to ensure homoscedasticity. However, whereas homoscedasticity is
confirmed by Brown-Forsythe-test (which only holds for subject-wise averaged data in
this case), the Friedman test afterwards indicates no significant differences among the
BSS algorithms (∆SNRBSS : p = 0.075, Umax: p = 0.051).
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Figure 37: The SNR performance with respect to the BSS algorithm and disturbance type mea-
sured by ∆SNRBSS in dB and the W-reliability performance Umax in rad2 (N = 100,
whisker lengths 10 % and 90 % percentile).

6.1.3 Mixture Signal Modification

Hypothesis 3-1:
Batch processing of BSS inputs (i.e. processing only a partial amount of input signal
samples x to compute W) does affect the strength of the cardiac pulse (i.e. the ∆SNRorig),
the reliability of the solution W (Umax) and the reliability of the solution y (ρsy).

Spearman’s rank correlation is used to measure the relation between the portion of sam-
ples processed by BSS within a batch and the BSS output measures. The Figures 38 and 39
show the relation between batch % (with respect to the sampling frequency fs = 100 Hz)
and the relative strength of the cardiac pulse ∆SNRorig as well as the BSS’s reliability mea-
sures Umax and ρsy, respectively. The samples of ∆SNRorig, Umax and ρsy, respectively,
are subject-wise and batch %-wise averaged to ensure statistical independence. Namely,
100 PPG signals from each three physiological and three pathological RRI series are each
averaged per used batch % (N = 6), thus giving N = 36 averaged values.

The SNRs show no correlation with the portion of samples processed within a batch
for the tested batch sizes ≥ 10 %. On the contrary, Umax expresses a significant negative
correlation with increasing batch size, i.e. the reliability of W increases while increasing
the data portion in the batch. Also, the reliability of y, ρsy, slightly but significantly
increases while increasing the data portion in the batch (except for PCA). However, using
a linear regression to express the correlation results in a relation of only a very small
slope: δ ρsy/δ batch % < 0.0001 with batch % ∈ [10 %, 100 %].
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(a)

(b)

Figure 38: Relation between the percentage of samples used for batch processing of BSS (batch %,
sampling frequency fs = 100 Hz) and ∆SNRorig and Umax, respectively. Full data
distribution is shown in faint color, subject- and batch %-wise averaged data (N = 36)
is shown in bright color. An exemplary (log-)linear regression (incl. R2) is calculated and
drawn, if Spearman’s rank correlation coefficient rS indicates a significant correlation
(p ≤ 0.05).
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Figure 39: Relation between the percentage of samples used for batch processing of BSS (batch %,
sampling frequency fs = 100 Hz) and ρsy. Full data distribution is shown in faint color,
subject- and batch %-wise averaged data (N = 36) is shown in bright color. Also finds
the corresponding Spearman’s rank correlation coefficients rS including their p-value.
An exemplary linear regression (incl. R2) is calculated and drawn, if Spearman’s rank
correlation coefficient rS indicates a significant correlation (p ≤ 0.05).

Hypothesis 3-2:
The spatio-temporal dimension dim of BSS inputs does affect the strength of the cardiac
pulse (i.e. ∆SNRorig)

Spearman’s rank correlation measures the relation between the spatio-temporal dimen-
sion dim used for BSS input generation and the relative strength of the cardiac pulse, i.e.
∆SNRorig. Figure 40 shows the corresponding results (with respect to the sampling fre-
quency fs = 100 Hz). The samples of ∆SNRorig are subject-wise and dim-wise averaged
to ensure statistical independence. Namely, 100 PPG signals from each three physiological
and three pathological RRI series are each averaged per dim % (max. N = 7), thus giving
N = 42 averaged values for FastICA and N = 24 for JADE.

The SNRs on average show a significant negative correlation with the spatio-temporal
dimension dim for both BSS algorithms. However, the overall spread of all values ∆SNRorig

increases with increasing dim, thus higher output SNR (i.e. an amplification of the spectral
strength of the cardiac pulse) as well as lower SNR (i.e. an attenuation of the spectral
strength of the cardiac pulse) are possible with increasing dim. Moreover, despite the
overall negative trend, Figure 40 indicates that ∆SNRorig on average seems to profit from
small increases of dim (dimFastICA ≤ 5, dimJADE ≤ 2).
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Figure 40: Relation between spatio-temporal dimension dim used for BSS input generation (with
respect to the sampling frequency fs = 100 Hz) and ∆SNRorig. Full data distribu-
tion is shown in faint color, subject- and dim-wise averaged data (NFastICA = 42,
NJADE = 24) is shown in bright color. An exemplary log-linear regression (incl. R2)
is calculated and drawn, if Spearman’s rank correlation coefficient rS indicates a signif-
icant correlation (p ≤ 0.05).

Hypothesis 3-3:
The spatio-temporal BSS can compensate for convolutive mixtures, i.e. it unmixes a con-
volutive mixture and provides an output component yPPG of comparable strength of the
cardiac pulse (i.e. the SNR) as present in the original source sPPG.

The SNR performance of two spatio-temporally applied BSS algorithms FastICA and
JADE on convolutive mixtures is assessed with respect to the spatio-temporal dimension
dim of the BSS inputs.

The dependent samples of the BSS output SNRs and the original PPG source SNR are
subject-wise averaged to ensure statistical independence (i.e. each 100 PPG signals from
three physiological and three pathological RRI series give N = 6 averaged values per dim).
Initially, the homoscedasticity is validated by Brown-Forsythe-test. To ensure homoscedas-
ticity, dim = 100 is excluded from the FastICA results. The subsequent Friedman test
indicates highly significant differences (p < 0.001) among the groups. Wilcoxon’s signed
rank test serves as post-hoc test to confirm, especially if significant differences exist be-
tween the BSS output SNR and the SNR of the original PPG source. Figure 41a shows the
corresponding boxplots and statistical test results. See also the detailed statistical results
in section A.3.3 (p.171f).

The results show that FastICA can compensate for the tested convolutive mixtures
given dim = 10 (also dim = 20), because the SNR difference between the ICA output
with dim = 10 and the original source SNR of sPPG is non-significant. JADE shows signifi-
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(a)

(b)

Figure 41: The SNR performance with respect to the spatio-temporal dimension dim of BSS inputs
and convolutive (Figure 41a) and non-stationary mixtures (Figure 41b), respectively
(subject-wise averaged, N = 6, whisker lengths 10 % and 90 % percentile). ORIG repre-
sents the SNR of the original PPG source. Horizontal lines in the lower boxes indicate
pairwise significant post-hoc tests between the BSS algorithms (∗p ≤ 0.05, ∗∗p < 0.01).
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cant SNR differences for all tested dim values and thus, cannot fully compensate for the
convolutive mixtures with respect to the SNR.

Hypothesis 3-4:
The spatio-temporal BSS can compensate for non-stationary mixtures, i.e. it unmixes a
non-stationary mixture and provides an output component yPPG of comparable strength
of the cardiac pulse (i.e. the SNR) as present in the original source sPPG.

The performance in terms of SNR improvement of two spatio-temporally applied BSS

algorithms FastICA and JADE on non-stationary mixtures is assessed with respect to the
spatio-temporal dimension dim of the BSS inputs.

The dependent samples of the BSS output SNRs and the original PPG source SNR are
subject-wise averaged to ensure statistical independence (i.e. each 100 PPG signals from
three physiological and three pathological RRI series give N = 6 averaged values per dim).
Initially, the homoscedasticity is validated by Brown-Forsythe-test. To ensure homoscedas-
ticity, dim = 100 is excluded from the FastICA results. The subsequent Friedman test
indicates significant differences (p = 0.01) among the groups. Wilcoxon’s signed rank test
serves as post-hoc test to confirm, if significant differences exist between the BSS output
SNR and the SNR of the original PPG source. Figure 41b shows the corresponding boxplots
and statistical test results. See also the detailed statistical results in section A.3.3, p.171.

The results show that FastICA can compensate for the tested non-stationary mixtures
given dim = {5, 10} (also dim = 20), because the SNR difference between the corre-
sponding ICA output and the original source SNR of sPPG is non-significant. JADE shows
significant SNR differences for all tested dim values and thus, cannot fully compensate for
the non-stationary mixtures with respect to the SNR.

6.1.4 Spatial (Contextual) BSS Input Selection

Hypothesis 4-1:
Varying BSS input sets S provide cbPPG of different SNR.

The comparison between input SNRs is addressed using one-way ANOVA on subject-wise
averaged (N = 18) dependent samples after ensuring homoscedasticity by Brown-Forsythe-
test. As post-hoc tests, a selection of 13 pairwise t-tests with Bonferroni-Holm correction
is applied (see Table 2, for the test selection and pairwise results, see Figure 42 and Table 3,
p.131 for SNR results). The selection contains pairwise comparisons of the deterministic
small-sized ROIs (Smc1, Smc2, Sms1, Sms2) plus the tests of the random small-sized ROI

selection matched with Smc1 and Sms1 (i.e. SmcR, SmsR). Moreover, pairwise comparisons
of all deterministic multispectral sets are conducted (Sms1, Sms2, SF hC , SF ). Furthermore,
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Figure 42: Input and output SNRs for BSS processing of cbPPGs of different sets S (in dB, subject-
wise averaged, N = 18, whisker lengths 10 % and 90 % percentile). Significance of dif-
ferences ∆SNR between output and input SNRs by pairwise t-tests is indicated be-
tween the boxes (in case of significance) denoting p-values as: ∗p ≤ 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001). [286]

the effect size measure Hedges g [85] including the 95 % CI of g [104] is used as standardized
mean difference between groups.

The ANOVA yields a highly significant difference between inputs (p < 0.001). According
to Table 2, g shows consisted effects between various inputs as well as post-hoc t-tests
confirm significant differences between various inputs.

The deterministic automated selection of 32 x 32 pixels input ROIn and respective
cbPPGn,color (according to the selection algorithm described in Appendix A.2, p.162f)
provides higher quality cbPPG compared to random selection of ROIn of same size or
standard ROIF and ROIFhC, respectively. Omitting the random selection, an increased
ROI size comes along with a decreased input SNR (for example on a multispectral input
ROI (MS1 < MS2 < FhC < F)). Regarding the random selection of cbPPGn,color, the
input signal quality in both cases, the monochrome and multispectral random case, is
significantly worse than the one achieved by the deterministic selection.

Table 2: Results of the SNR comparison for input sets. Pairwise results: Bonferroni-Holm-
corrected p-values from post-hoc pairwise t-tests, effect size g and 95 % confidence inter-
vals of g [104] in brackets.

Set ID 1 Set ID 2 p-value effect size g

MS1 F < 0.001 2.01 [1.23,2.78]
MS2 F < 0.001 1.86 [1.15,2.56]
MS1 MSR < 0.001 1.57 [0.95,2.19]
MS1 FhC < 0.001 1.34 [0.77,1.91]
MS2 FhC < 0.001 1.21 [0.71,1.72]
MC1 MCR < 0.001 1.09 [0.60,1.59]
MC1 MS2 0.06 0.14 [0.03,0.25]
MC2 MS2 0.06 0.14 [0.03,0.25]
MS1 MS2 0.06 0.12 [0.01,0.22]
MC1 MS1 0.01 0.02 [0.01,0.04]
MC2 MS1 0.01 0.02 [0.01,0.04]
MC1 MC2 n/a n/a

F FhC < 0.001 -0.51 [-0.74,-0.27]
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Hypothesis 4-2:
cbPPG input sets of varying constitution and quality cause BSS to provide source estimates
y of different quality (i.e. SNR), i.e. BSS application shows an effect on the cbPPG signals’
SNR that depends on the input set S.

For assessing the BSS performance on different cbPPG input sets S, the comparison of
output SNR alone does not suffice, because the BSS performance ∆SNRBSS (difference
between output and input SNR) and the output SNR must be assumed to be heavily
dependent on the input SNR. A statement, which bases solely on output SNRs, thus might
favor the output featuring the highest input SNR and won’t provide a meaningful statement
on BSSs’ performance. A dependence on the input SNR implies using the input SNR as
covariate, i.e. ANCOVA. Suchlike analysis provides a meaningful statement on the benefit
of applying BSS. However, poor input SNR will be favored by this analysis, as a large
improvement can be obtained while the outcome still might be worse than using another
input. For high input SNRs, on the other hand, the potential improvement which can be
gained by BSS is limited as the output SNR is bounded. For such reasons, both analyzes,
ANOVA and ANCOVA, are combined. An ANOVA to the output SNRs and respective post-hoc
tests could be used as described before. For ANCOVA, the input SNR serves as covariate.
As post-hoc tests for ANCOVA, t-tests with centered mean [102] are applied and Hedges g

is calculated (again N = 18 subjects’ means are used). The selection of post-hoc tests as
applied for the input SNRs is also used for these results. For the pairwise comparison of
two settings, one of them is regarded as superior and relevant for further discussion if
ANOVA’s and ANCOVA’s post-hoc test show consistent effects with the same sign (both
CI entirely positive or negative, for a detailed example see the result descriptions below).
Additionally, the question if a significant ∆SNRBSS could be achieved by applying a BSS

algorithm to a single input is answered by pairwise t-tests of output and input SNR.
Figure 42 shows boxplots of individually taken BSS performances, namely the patient-

wise averaged output and input SNRs including the statistical measure of the pairwise
difference. Especially for low input SNR, statistically significant SNR improvements are
obtained for both PCA and ICA. PCA moreover significantly improves the SNR of the mono-
chrome set MC1 with equal dominant frequencies whereas ICA significantly improves the
SNR of the monochrome set MC2 with different dominant frequencies. ICA also shows a
high SNR improvement on MS2. Figure 43 illustrates a distinct dependence of the BSS
performance, i.e. the obtained SNR difference ∆SNRBSS, on the input SNR. ANCOVA proves
that there are no significant differences in the strength of that dependence (i.e. no differ-
ences in the slope of separate regression lines with p = 0.27 for PCA and p = 0.15 for
ICA, Brown-Forsythe-test in addition proves homoscedasticity). ANCOVA further proves
highly significant differences in terms of adjusted means (i.e. significant differences in the
intercepts of parallel regression lines with p < 0.001 for PCA and ICA). ANCOVA post-hoc
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Figure 43: BSS performance ∆SNRBSS with respect to the input SNR. Every point depicts the
performance of a single 10 s segment. Color gradation indicates single patients. Each
point below the x-axis indicates a SNR decrease due to BSS application. [286]

tests confirm significant differences between various outputs (see Figure 44). ANOVA for
the BSS output SNR yields a highly significant difference between outputs (p < 0.001
for PCA and ICA). ANOVA post-hoc tests confirm significant differences between various
outputs (see also Figure 44). Figure 44 gives a comprehensive overview on the post-hoc
results of ANCOVA and ANOVA together with Hedges g including its 95 % CIs. As stated
before, BSS’s application can be considered as superior in a pairwise S comparison if g

and its CI are consistent and show the same direction (sign of g) for both ANOVA and
ANCOVA post-hoc tests.

As can be seen in Figure 44, not every pairwise comparison shows relevant differences.
The comparison of ICA results for ANCOVA and ANOVA for the standard approaches of sets
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Figure 44: Pairwise t-test results (ANOVA) and pairwise t-test results using mean-centered inde-
pendent variable (ANCOVA) of patient-wise averaged (N = 18) BSS output SNR. The
results are characterized by its effect size g (• for ANOVA, x for ANCOVA) as well as the
95 % CI of g[104] stated as line length. Sign of g indicates the effect direction according
to the mean difference obtained by always setting the second set as subtrahend. The
set comparisons are vertically (y-axis) ordered according to the effect size g of the input
comparison of the same sets. Significance according to the Bonferroni-Holm-corrected
p-value is denoted by ∗p ≤ 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Consistency of an effect is
denoted by = between the set names, - otherwise. [286]

FhC and F may serve as an example for the interpretation of Figure 44. Both sets show
significant differences in their input SNR (y-axis) with a negative effect size g = -0.51 (input
SNR of SF is smaller than input SNR of SFhC). Considering the comparison of adjusted
means, i.e. ANCOVA’s post-hoc test, a consistent effect in favor of SF was found (indicated
by the entirely positive CI of g). Concerning the comparison of the output SNR without
adjustment, i.e. ANOVA’s post-hoc test, also a consistent effect was obtained. However,
this time the CI is entirely negative, which indicates that SFhC provides a significantly
higher output SNR. Apparently, the lower input SNR of SF, together with a bounded SNR,
favors SF within ANCOVA’s post-hoc test. Accordingly, the ICA performance on cbPPG

signals of ROIF and ROIFhC, respectively, is depending on the input SNR and shows no
unambiguous effect (i.e. no advantage of one ROI or another). As example for a pairwise
comparison, which shows a relevant difference, one may be referred to MC1 vs. MCR
using ICA: besides significantly differing input SNR (with g = 1.09, input SNR of Smc1 is
higher than input SNR of SmcR), both ANOVA and ANCOVA show consistent effects, either
of them is positive. It indicates the better performance of ICA on homogeneous (frequency)
inputs of best available SNR compared to homogeneous (frequency) input of random SNR

regardless of the input SNR.
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The results illustrated in Figure 44 can be summarized as follows. Consistent effect size
measures according to the definition (i.e. fully positive, respective negative confidence in-
terval of g) can be found for both, PCA and ICA, for example assessing the adjusted means
(ANCOVA) of SFhC when compared to high SNR inputs Sms1 and Sms2. Thus, in case of
poor input SNR, PCA and ICA both can be efficiently applied. However, relevant effects
according to the definition, i.e. considering ANCOVA and ANOVA at the same time, are
found for PCA with Smc1 > Smc2 and Smc1 > Sms1 as well as for ICA with Smc1 > Sms1,
Smc2 > Sms1 and Sms2 > Sms1. Accordingly, PCA is considered performing worse on in-
homogeneous frequency input compared to homogeneous frequencies. Moreover, PCA and
ICA are considered performing better on monochrome inputs compared to multispectral
inputs of same ROI size. Increasing the ROI size (from Sms1 to Sms2) also favors ICA

performance.

Hypothesis 4-3:
Different BSS algorithms show different output SNR performance on different sets S.

The comparison between the BSS performance of different algorithms with the respect
to the output SNR is assessed by pairwise t-tests of ICA and PCA outputs. Again, subjects
means (N = 18) are used and Hedges g is concerned for measuring the effect size.

Table 3 shows the input and output SNR for all input sets and BSS techniques (PCA

and ICA). Note that for equal dominant frequencies originally three different input sets
were available but only the highest SNR is shown (independently from the used dominant
frequency; in 44 % / 36 % / 20 % the first / second / third dominant frequency yielded
the highest SNR). Comparing the performance of PCA and ICA on a given input shows
that PCA works significantly better on homogeneous inputs Smc1 (dominant frequency,
wavelength). ICA works significantly better on inhomogeneous inputs Smc2 (dominant
frequency) as well as for inhomogeneous ROIs (SF ).

Table 3: Pairwise comparison between ICA and PCA outputs. SNR in dB shown as mean
± standard deviation, p-values from pairwise t-tests and effect size g and 95 % confidence
intervals of g [104] in brackets.

Set ID Input SNR PCA ICA p-value effect size g

MC1 2.56 ± 2.50 3.01 ± 2.21 2.69 ± 2.37 < 0.001 0.14 [0.07,0.20]
MC2 2.56 ± 2.50 2.10 ± 2.31 2.92 ± 2.48 < 0.001 -0.33 [-0.53,-0.13]
MS1 2.50 ± 2.52 2.45 ± 2.06 2.36 ± 2.33 0.53 0.04 [-0.08,0.16]
MS2 2.18 ± 2.76 2.68 ± 2.24 2.74 ± 2.56 0.67 -0.03 [-0.15,0.09]
MCR -0.74 ± 3.34 -0.86 ± 2.88 -0.63 ± 2.94 < 0.01 -0.08 [-0.14,-0.02]
MSR -2.33 ± 3.43 -1.09 ± 3.13 -1.60 ± 3.02 < 0.001 0.16 [0.09,0.24]

F -4.05 ± 3.74 1.70 ± 2.99 2.18 ± 3.25 < 0.01 -0.15 [-0.25,-0.05]
FhC -2.05 ± 3.97 2.85 ± 3.01 2.98 ± 3.16 0.32 -0.04 [-0.12,0.04]
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6.2 approaches to permutation indeterminacy

In the following, the results and statistical evaluation of experiments, using ECG data of
different origin, are described.

The heartbeat detection accuracy ACC serves as evaluation parameter. Since ACC is
practically non-continuously distributed (because of the limited amount of heart beats
within a segment) and furthermore bounded by 1 (100 %), it is expected to be distributed
non-normal. That is why non-parametric statistical tests, i.e. rank based tests are utilized
for the statistical assessment of the simulated data. Moreover, the effect size measure
Cohen’s U1 [104] is chosen to characterize the effect size of potentially significant differ-
ences. Since it assesses relative amounts of group elements being larger/smaller than op-
posing group maxima/minima, respectively, its interpretation is straightforward. A max-
imum effect (U1 = 1) is achieved if every group element of one group is larger than all
elements of another group. No effect equals U1 = 0.

6.2.1 Permutation Indeterminacy for ECG Signals

Hypothesis 5-1:
Subsequent to a BSS processing by spatio-temporal FastICA, different BSS component
selection algorithms automatically select components of different heartbeat detection ACC

with respect to the underlying data tECG, cECG and aECG.

The statistical analysis of the accuracies is conducted separately for the textile, capac-
itive and arrhythmia ECG data. Besides the ACCs obtained by assessing the components
selected by the respective algorithms, a benchmark comparison to the input data without
the BSS processing is provided as the average ACC of all input leads of a segment using
the same detector (Av.Input). The acquired groups of accuracies (Av.Input, each BSS
component selector) are pairwise compared by Wilcoxon’s signed-rank test after testing
for significant differences between all groups by applying the Friedman test and requiring
homoscedasticity of the groups evaluated by the Brown-Forsythe-test. To ensure indepen-
dence within each group, the statistical analysis is calculated for subject-wise averaged
accuracies (N = 10 respectively N = 48 for aECG data). As effect size measure for the
p-values obtained from Wilcoxon’s signed-rank test, Cohen’s U1 including its 95 %-CI is
calculated with bootstrapping (N = 1000) [104].

Figure 45 shows boxplots of the accuracies obtained after selecting a single output com-
ponent after spatio-temporal BSS application by using five different selectors (RCODE,
PeriodTest, SKEW , KURT , CASCSEL) for three different datasets (tECG, cECG,
aECG) without subject-wise averaging. The boxplots also show the average input accu-
racy (Av.Input) before BSS application to highlight the potential of BSS application in the
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Figure 45: Heartbeat detection accuracy ACC for each segment and subject (N = 10 resp. N = 48
for aECG data). Shown are the average input ACC (Av.Input) of the respective ECG input
leads and the selections results of the RCODE, PeriodTest, skewness (SKEW ) , kur-
tosis (KURT ) and Cascaded (CASCSEL) output component selectors. The whisker
length is defined as 10 % and 90 % percentile, respectively. No outliers are shown.
Subject-wise averaged results can be found in the appendix A.4.1, p.173. [287]

context of the component selection. Brown-Forsythe-test proves homoscedasticity for the
cECG and aECG data. That is why pairwise tests are excluded for tECG data. However,
Figure 45 qualitatively shows a superior performance of the newly introduced sparse code
selectors RCODE and PeriodTest for tECG data with absolute accuracies ACC ≈ 1. The
Friedman test on subject-wise averaged ACCs shows highly significant differences between
the groups (p < 0.001) for cECG and aECG data. Pairwise post-hoc tests on subject-wise
means including effect size measure Cohen’s U1 and its 95 % CI for cECG and aECG data
are shown in the appendix A.4.1 (p.173).

The pairwise comparisons between the average input accuracy (Av.Input) and any com-
ponent selection after spatio-temporal BSS show an unambiguous benefit of the BSS ap-
plication with the subsequent component selection. Despite the skewness and kurtosis
selector for cECG data, highly significant ACC increases by the selected BSS component
compared to the average of input channels are available. Large effects (effect sizes) are
obtained especially for the peak-detection-based selectors (RCODE, PeriodTest) and the
CASCSEL selector in cECG data. However, for cECG data, the application of higher order
moments selection (SKEW , KURT ) is not able to provide significantly higher ACC after
BSS compared to the average of input channels.

Pairwise comparison of the peak-detection-based selectors (RCODE, PeriodTest) with
the other selectors based on higher order moments or frequency-domain-features shows
that the peak-detection-based methods significantly outperform the other approaches for
all datasets. Large effects can especially be proven for cECG data. No significant difference
of the RCODE/PeriodTest algorithm can be obtained in the case of the arrhythmia data
in comparison to the skewness selector. However, the average difference achieved in the
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(a)

(b)

Figure 46: Relation between the modified Hamming distance gathered from the RCODE algo-
rithm, respectively the periodicity criterion according to the PeriodTest algorithm
(x-axis) and the heartbeat detection accuracy (y-axis) obtained for each distance mea-
sure. Shown are the results for cECGs (Figure 46a) and aECGs (Figure 46b), respectively
(whisker lengths 10 % and 90 % percentile, no outliers). All available BSS output com-
ponents are assessed (not only the selected components). Additionally, a histogram
shows the data distribution with respect to the input data quality (average ACC of
the multichannel measurement) for cECG in Figure 46a, respectively the beat/rhythm
classifications present in the segments for aECG in Figure 46b. [287]
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output ACC (see Table 33, p.173) between RCODE/PeriodTest and SKEW is 1.5 % and
1.2 %, respectively, in favor of the peak-detection-based methods. The skewness selector
always significantly outperforms the kurtosis selector, too.

When comparing the peak-detection-based selectors (RCODE, PeriodTest) against
each other, no significant difference between the obtained ACC of the respectively selected
components can be found for cECG data. Despite being of very small absolute value, a
significant difference in favor of RCODE is achieved for the aECG data. An insight into
the direct comparison between RCODE and PeriodTest and their respective selection
criteria, modified Hamming Distance and the Hamaneh periodicity criterion, is given in
Figure 46a and Figure 46b. The figures show the accuracy of any output component
(i.e. its peak detections) given its selection measure for all available output components
after BSS. The variance of the output ACC given dH /HC = 0 underlines the necessity
of applying an additional criterion (i.e. AltSkew) for selecting among the components
classified as suitable candidates by RCODE/PeriodTest. In the case of the cECG data
(Figure 46a), the candidates for selection of the cardiac component (modified Hamming
distance or Hamaneh criterion equals zero) show a higher first quartile in the according
RCODE boxplot (ACC > 0.35) compared to the PeriodTest boxplot (ACC < 0.25).
Figure 46b shows the same assessment for the aECG data. In this case, the RCODE al-
gorithm shows a slight advantage regarding the amount of data accessed as good cardiac
component candidates. The histogram shows around 10 % more components achieving
modified Hamming distance equal to zero compared to the components classified as peri-
odic using the Hamaneh criterion with comparable ACC.

6.3 linking input composition and output performance of bss

Hypothesis 6-1:
The spatio-temporal dimension dim of BSS inputs affects the maximum reachable heart-
beat detection accuracy ACCmax of the BSS output.

Spearman’s rank partial correlation is used to measure the relation of the maximum
reachable heartbeat detection accuracy ACCmax with the spatio-temporal BSS dimension
dim. However, the relation, respectively correlation is only considered further if homo-
scedasticity can be proven by Browne-Forsythe-test on the subject-wise averaged data
(N = 10 for tECG, cECG, N = 48 for aECG) with respect to a grouping according to dim.
Figure 47 illustrates this relation for tECG, cECG and aECG data, respectively.

ACCmax shows significant positive correlation with dim given dim ∈ [1, 50] for cECG

data. For tECG and aECG a potentially positive correlation cannot be proven due to
heteroscedasticity among the dim groups. However, cECG data results show that an in-
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Figure 47: Relation between the spatio-temporal BSS dimension dim and the maximum heartbeat
detection accuracy ACCmax for tECG, cECG and aECG data. Full data distribution is
shown in faint color, subject-wise averaged data (N = 10 for tECG, cECG, N = 48
for aECG) is shown in bright color. An exemplary linear regression (incl. R2 for the
non-averaged data) is calculated and drawn, if the data show homoscedasticity and
Spearman’s rank partial correlation coefficient rS indicates a significant correlation
(p ≤ 0.05).

creasing spatio-temporal BSS dimension dim improves the quality of the BSS output, i.e.
the maximum heartbeat detection accuracy among the BSS output components y.

Hypothesis 6-2:
The spatio-temporal dimension dim of BSS inputs affects the relative heartbeat detection
accuracy ACCrel = ACCsel/ACCmax of the selected BSS output component.

Again, Spearman’s rank partial correlation is used to measure the relation between the
relative heartbeat detection accuracy ACCrel and the spatio-temporal BSS dimension dim.
Thereby, ACCrel describes, how well a maximum heartbeat detection accuracy compo-
nent among the BSS output can be selected by an automated BSS component selection
algorithm given the spatio-temporal BSS dimension (which directly affect’s the number
of BSS outputs). However, the relation, respectively correlation is only considered further
if homoscedasticity can be proven by Browne-Forsythe-test on the subject-wise averaged
data (N = 10 for tECG, cECG, N = 48 for aECG) with respect to a grouping according to
dim. The Figures 48a, 48b and 49 illustrate this relation for tECG, cECG and aECG data,
respectively.

Whereas homoscedasticity among the dim groups can be proven for tECG and cECG

and all selectors, no significant correlation is observed for the BSS output components of
tECG. On the contrary, aECG BSS output components show heteroscedasticity among the
dim groups which prohibits an evaluation of potentially negative correlations of ACCrel

and dim. For cECG data, a significant negative correlation can be proven for the SKEW

and KURT selector which indicates that BSS component selectors based on higher order
moments are negatively affected by an increasing dim, i.e. select the best available (maxi-
mum ACC) component less effectively while increasing the number of output components.
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(a)

(b)

Figure 48: Relation between the spatio-temporal BSS dimension dim and the relative heartbeat
detection accuracy ACCrel for (a) tECG and (b) cECG data each given a BSS component
selection algorithm. Full data distribution is shown in faint color, subject-wise averaged
data (N = 10) is shown in bright color. An exemplary linear regression (incl. R2 for
the non-averaged data) is calculated and drawn, if the data show homoscedasticity and
Spearman’s rank partial correlation coefficient rS indicates a significant correlation
(p ≤ 0.05).
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Figure 49: Relation between the spatio-temporal BSS dimension dim and the relative heartbeat de-
tection accuracy ACCrel for aECG data each given a BSS component selection algorithm.
Full data distribution is shown in faint color, subject-wise averaged data (N = 48) is
shown in bright color. An exemplary linear regression (incl. R2 for the non-averaged
data) is calculated and drawn, if the data show homoscedasticity and Spearman’s rank
partial correlation coefficient rS indicates a significant correlation (p ≤ 0.05).

Additionally, selectors based on sparse coding (RCODE, PeriodTest) show no signifi-
cant ACCrel correlation with dim for tECG and cECG data and thus, show a selection
performance that is not affected by the number of output components (dim ∈ [1, 50]).

6.4 chapter summary

The preceding section reports the results of a variety of experiments conducted based on
simulated and real-world (cb)PPGs and ECGs of different kind, i.e. tECG, cECG and aECG.

The experiments utilizing simulated PPG data and a well-controlled experimental envi-
ronment highlight the differences among different PCA and ICA algorithms with respect
to their performance on source signal conditions (e.g. orthogonality) and signal mixtures
featuring different noise types and underdetermined mixtures of different nature. Thereby,
the results are represented by measuring SNRs as well as the reliabilities of the BSS solution
W and the BSS output y. Besides the core algorithmic differences, the experiments based
on simulated PPGs result in insights regarding the modification of BSS algorithms. In this
context, batch processing does negatively affect the reliability of W and y whereas the
SNR is not significantly affected by such techniques. Also, spatio-temporal BSS is shown
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to rather decrease cbPPG SNRs but partially performs beneficially for convolutive and
non-stationary mixtures.

The experiments based on real-recorded cbPPGs follow the path of characterizing the
BSS performance given controlled conditions about the BSS inputs where it is possible.
These experiments show a BSS output performance, whose SNR is dependent on factors
like the input SNR and the fundamental nature of the cbPPG mixture.

The subsequent experiments feature approaches to permutation indeterminacy based on
ECG data. The results show that the newly introduced automated BSS component selection
algorithms based on sparse coding outperform standard selectors based on higher order
moments with respect to the absolute heartbeat detection accuracy and relative heartbeat
accuracy, i.e. the select-ability of a maximum accuracy output. Moreover, these findings
hold regardless of the spatio-temporal BSS dimension dim.





Cersei: "We pay you for truth, Lord Varys. Remember that,
or this small council may grow smaller still."
— George R.R. Martin in A Clash of Kings p.529, A Song of Ice and Fire (1998)

7
D I S C U S S I O N A N D P RO S P E C T I V E

This chapter provides the discussion of the above described results. Section 7.1 discusses
how different (cb)PPG data from synthesized and real camera-based origin influence BSS.
Section 7.2 discusses the algorithms presented to solve permutation indeterminacy for
ECG processing by BSS. Finally, section 7.3 discusses the comprehensive experiment about
linking BSS inputs and output indeterminacy. Contents of this chapter partially appeared
already in own publications, i.e. [284, 286, 287].

7.1 selection of bss input data

7.1.1 Source Signal Characteristics

In typical Blind Source Separation algorithms and applications, the orthogonal approach
is utilized to computationally solve the BSS problem. Specifically, the estimated sources y
are required to form an orthogonal system regardless of the orthogonality of the original
sources s. This constraint is intended to simplify the computations [123]. However, it can-
not be guaranteed in principal that this constraint holds in real-world source signals (e.g.
the original sources within cbPPG measurements). Therefore, the question is raised whether
violations from the orthogonal approach affect the BSS results in the cbPPG context. First,
it is verified that sources s assembled from PPGs and different artificial disturbance signals
out of {SIN, CHIRP, TREND, STEP} together with noise express significant differences
in their deviations from orthogonality d⊥. This is taken as a justification to use these
artificial signals together with PPGs in order to evaluate the influence of violations from
the orthogonal approach onto BSS results. Furthermore, different commonly applied BSS

algorithms, i.e. PCA and ICA (FastICA with different contrast functions, JADE, RADICAL),
are assessed regarding their BSS results with respect to the violation from the orthogonal
approach. ∆SNRorig describes the change of the SNR of the PPG component due to BSS

application. The reliability of W, i.e. Umax assesses the stability of the BSS solution and
the reliability of y, i.e. ρsy assesses the morphology retention by BSS.

The quantitative results show that for each tested BSS algorithm there exists a signif-
icantly negative relation between ∆SNRorig and increasing d⊥, i.e. the output SNR and
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thus strength of the cardiac pulse in the extracted PPG component yP P G decreases while
the violation from the orthogonal approach in the sources s increases. On the contrary,
the reliability of W (Umax) is not significantly affected (despite for FastICA with only
low variance explanation of R2 ≈ 5 %) by a increasing d⊥. That indicates BSS showing
stable solutions (i.e. stable transformations W · x) with respect to changes in the orthog-
onality of the source system s. Accordingly, in a real-world measurement scenario where
the original source signals, and thus d⊥ are not known a priori, the online-estimate Umax

cannot be used to reveal deviations from the orthogonal approach in the source system
formed by s. Thus, Umax is only of limited use as an online indicator of the expected qual-
ity of the BSS solution, if the violation of the orthogonal should be considered. However,
the online detection of such violation would be beneficial. Accordingly, the results of the
relation between d⊥ and the reliability of y (ρsy, see Figure 30b, p.111) show a signifi-
cant inverse relation between increasing d⊥ and ρsy for all ICA algorithms (not for PCA).
This indicates that ICA decreasingly preserves the morphology of the original sources s in
y with increasing deviation from the orthogonal approach. Thus, by forcing orthogonal
output components, ICA potentially impairs morphology retention. Especially, RADICAL

shows a high negative correlation rS = −0.83 with high variance explanation R2 ≈ 76 %.
RADICAL combines the entropy-based ICA approach known from e.g. FastICA with the
compartementalized transformation optimization based each on pairs of the entries of the
rotation matrix which is known e.g. from JADE. The combination of this two properties
could be assumed to contribute to the increased sensitivity of RADICAL to deviations from
the orthogonal approach compared to other ICA algorithms. Otherwise, ICA algorithms
perform similar among each other, however, with JADE and RADICAL showing a slightly
better reliability of W (lesser Umax, see Figure 32a, p.113) for CHIRP, TREND and STEP
disturbances compared to FastICA. PCA in general shows a worse separation performance
(∆SNRorig, d⊥) compared to ICA given the selected source signals and symmetric random
mixtures. In the cbPPG community [55, 99, 153], PCA is typically not directly compared to
the performance of ICA where rather the ICA application is discussed against the originally
measured signals. Still, Holton et al. [112] report heartrate estimates in PCA outputs show-
ing higher absolute errors compared to ICA outputs which indirectly confirms the above
findings. Nevertheless, the PCA performance with respect to cbPPG morphology retention
shows a main difference compared to ECG processing, i.e. [49] reported PCA to maintain
diagnostic morphology in the projected space rather then ICA.

In real-world cbPPG processing, the SNR difference between BSS inputs x and outputs y
defines the benefit of a cbPPG processing algorithm since the original source signals s are
not available. The question whether a higher SNR also coincides with a better morphology
retention (ρsy) can be positively answered for ICA algorithms for the given synthesized
data. Despite explaining only a small amount of variance (R2 ≈ 3 %), a significant positive
correlation has been observed between ∆SNRorig and ρsy (see Figure 33b, p.115). Umax

is not consistently related to ∆SNRorig across the BSS algorithms and shows positive
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correlations (again of small variance explanation, see Figure 33a, p.115) for FastICA and
RADICAL only. Accordingly, the online-estimate Umax cannot in general be utilized to
decide whether a signal of maximum SNR has been extracted by BSS.

7.1.2 Mixture Signal Characteristics

In the previously discussed experiments on the influence of source signal characteristics,
i.e. the influence of violations of the orthogonal approach on BSS results, a symmetrical
and thus well-determined mixture x = A · s was guaranteed by the experimental design.
However, in real-world (cbPPG) measurements mostly utilizing three input signals prior
to BSS processing as proposed by Poh et al. [212], it becomes likely that the measured
mixtures present underdetermined mixtures. Thus, more source signals are incorporated
into the measured mixture than mixture signals available.

The according experiments (see e.g. Figures 34 and 35, p.116f) on underdetermined mix-
tures show that both the strength of the cardiac pulse (∆SNRorig) as well as the PPG’s
signal morphology (ρsy) is preserved significantly worse in PCA compared to ICA algo-
rithms. However, this confirms the results of the determined mixtures above. Comparing
the ICA algorithms among each other reveals a comparable performance of different ICA

algorithms on underdetermined mixtures. A detailed view also shows RADICAL causing
outputs y of significantly less SNR compared to FastICA and JADE for underdetermined
PPGs. These signal mixtures can be expected to show a distinct violation of the orthogo-
nal approach since two different PPG segments from the same RRI series are assembled in
the original sources s. That increases the probability of correlation between the two PPG

source signals. Moreover, JADE shows a higher reliability of W compared to FastICA for
underdetermined mixtures, however as discussed for the determined problems above, Umax

cannot be proven to provide an added value as an online-estimate of the BSS performance
since it cannot be globally linked to SNR or ρsy improvements by BSS.

As can be seen from Figure 36 (p.119), underdetermined mixtures caused by phase
shifts between multiple measurements of the same PPG signal within the signal mixture
are affecting the BSS outcome in terms of the strength of the cardiac pulse (∆SNRorig)
as well as the PPG’s signal morphology retention (ρsy). However, the effect is strongly
dependent on the particular time lag τPPG, which itself can be expected to be heavily
dependent on the mean heartrate of the PPG segment. This particular relation is not
further quantified within this thesis. Moreover, SOBI which is conceptually capable of
compensating phase differences qualitatively shows a similar interference by phase shifts
as other ICA algorithms if also disturbance signals are involved.

The experiments based on heterogeneous underdetermined mixtures (mixing PPG and
BCG signals) reveal that despite there are no significant differences between the BSS al-
gorithms, RADICAL shows the qualitatively worst performance on these mixtures with
respect to SNR and the reliability of W (see Figure 37, p.121).
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7.1.3 Mixture Signal Modification

Mixture signal modification provides the possibility to either achieve computational ad-
vantages by e.g. applying batch processing techniques or to apply more comprehensive
(but computationally more demanding) BSS models by e.g. utilizing spatio-temporal BSS

approaches. Both techniques are characterized in the context of cbPPG processing.
The experiments on batch processing (see e.g. Figures 38 and 39, p.122f) show that

the preservation of the strength of the cardiac pulse (∆SNRorig) is not affected by batch
processing, i.e. there exist no significant relation between the batch size and the SNR.
However, there is a small positive relation between batch size and morphology retention
(ρsy) whereas this correlation is of small absolute value (rS ≈ 0.5) and variance explana-
tion (R2 ≈ 1 %). The reliability of W is strongly negatively affected (increasing absolute
value Umax) by decreasing the batch size. This can be expected since the fewer samples
involved in the computation, the more important are becoming single samples. Overall,
batch processing seems to be a suitable computational tool for cbPPG processing with BSS.

The spatio-temporal BSS experiments (see e.g. Figure 40, p.124) show an inverse relation
between the preserved strength of the cardiac pulse (∆SNRorig) and the increasing spatio-
temporal dimension dim for both FastICA and JADE. Nevertheless, the subsequent ex-
periments on convolutive mixtures reveal (see e.g. Figure 41, p.125) that spatio-temporal
FastICA can compensate for convolutive mixtures by applying a spatio-temporal dimen-
sion dim equaling the dimension of the convolutive mixture itself. Specifically, the output
SNR of yP P G does not show a significant difference to the original SNR of sP P G for dim = 10
(FastICA). On the contrary, spatial-only FastICA (dim = 1) and other configurations do
not preserve the SNR, i.e. show a significant difference in the SNR. Simultaneously, JADE

is not capable of compensating for convolutive mixtures in this spatio-temporal setup
with respect to the SNR. In addition, FastICA but not JADE shows to cope with the
tested non-stationary mixtures for the given dim selections. In summary, spatio-temporal
FastICA if properly configured, i.e. incorporating a problem-matching dim, shows to suc-
cessfully handle complex mixing scenarios like convolutive and non-stationary mixtures
in the cbPPG domain. A suitable spatio-temporal dimension dim might be estimated in
practical applications by delay embedding [240]. I.e. convergence of a state-space recon-
struction [129] with respect to the measured signals can guide a dim selection. However,
the reconstruction dimension d of a state-space reconstruction is not only effected by
mixture complexity (addressed by dim) but also by the time-structure of the underlying
source signals. An online-estimate of d might thus be larger than the required dim to
separate a non-stationary mixture. For instance, Sun et al. [243] selects dim based on the
time-structure and calculates dim based on the frequency content of interest. However,
the results (see e.g. Figure 41, p.125) also show that increasing dim above the mixture
complexity (larger then dim used for A) does decrease the output SNR. Thus, a delay
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embedding to estimate dim should address the complexity of the mixture A rather than
the a state-space reconstruction of the signals x.

7.1.4 Spatial (Contextual) BSS Input Selection

roi selection In real applications, ROIs for cbPPG extraction have to be selected
by using automated video processing algorithms. Typically, rectangular ROIs using frontal
face classifiers for detection and (stabilized) tracking of the complete face [212] or selective
rectangular ROIs [79, 181] or non-rectangular ROIs [252] of smaller face parts further using
facial landmarks are used. The contextual selection of BSS input signals from square ROIs

utilized within this thesis does not require face detection. Yet, standard ROIs are compared
to the contextual selection methods by simulating a perfect functioning face/face part
detection by manual ROI selection (see Figure 22, p.99).

This comparison (see tables 2 and 3, p.127,131) shows that the automated spatial
selection among small-sized squared ROIn (Smc1 and Sms1) outperforms the input SNR of
selecting ROIs of the whole face or parts of it (forehead and cheeks) including consistent
effect sizes g. Together with BSS, the output SNR (Figure 44, p.130) show inconsistent
effects which will be discussed later.

However, the comparison of deterministic and random selection of ROIn clearly mo-
tivates that assembling homogeneous input characteristics (wavelength, dominant fre-
quency) for BSS processing is not sufficient to reach the best BSS outcome. Both, the
deterministic as well as the random selection of ROIs make use of periodicity in terms of
frequently occurring dominant frequencies. Accordingly, both sets SmcR and SmsR contain
signals of the same dominant frequency and thus, homogenous content from a frequency
perspective should be present up to some extent. Still, input and output SNR of MCR
and MSR of both BSS algorithms show absolute values below 0 dB (see tables 2, 3 and
Figure 42, p.127 and 131). In addition, the BSS performance as a function of the input
SNR (Figure 43, p.129) shows an inferior performance compared to deterministic selection
of equally sized ROIs in terms of a broadened area of negative performance (performance
below x-axis) which widely lasts into the range of negative input SNR. This finding under-
lines the necessity to process the best available input. Consequently, BSS is not necessarily
able to compensate for lower input SNR under comparable conditions (ROI size, dominant
frequency).

bss performance Figures 50 and 51 show examples of selecting cbPPGn,color ac-
cording to the proposed BSS input selection and the further processing of these signals
with PCA and ICA for the monochrome (MC1) and multispectral (MS1) case, respectively.
In both cases, PCA and ICA are able to extract a distinct pulsatile component in the time
domain. Focusing on the markedness of the spectral peak related to the heart rate in the
spectra X(f), it is worth noting that in the monochrome set (Figure 50), PCA and ICA
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Figure 50: Sample signal excerpts (+ 4 Hz lowpass filtered (bold signal) versions) and amplitude
spectra according to an automatically selected set Smc1. (a): BSS input. (b): PCA output.
(c): ICA output. The true heart rate from the reference and its harmonic (± 5 bpm)
is indicated by the colored areas in the back of the spectra. Colors of the respective
spectra are according to the time signals. [286]

are performing similar. On the contrary, in the multispectral set (Figure 51) PCA shows
a decrease in the spectral power of the cardiac pulse compared to ICA. However, both
examples and both BSS algorithms show at least one output component of proper quality
regarding common postprocessing tasks (e.g. heart rate estimation). Accordingly, even a
decrease in signal quality by application of BSS not necessarily renders post-processing im-
possible. Nevertheless, morphology retention through BSS should be considered carefully
[13].

Several researchers have reported that BSS not necessarily improves cbPPG quality and
outcome. ICA was found to, if any, only subtly decrease the heart rate error for a small-
sized cheek ROI [55] and even (slightly) increase for rectangular face ROI [112, 153] com-
pared to the BSS inputs. Moreover, PCA was found to perform worse on multispectral
input compared to FastICA [112]. Since movements affect the input signal quality, it is
worth relating these results to the movement conditions during recording. Christinaki
et al. [55] allowed for small movements (facial expression) while extracting cheek ROIs,
whereas face ROIs were extracted from subjects who were asked not to move [112, 153].
Accordingly, ICA showed a benefit for moderate motion scenarios but not for motionless
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Figure 51: Sample signal excerpts (+ 4 Hz lowpass filtered (bold signal) versions) and amplitude
spectra according to an automatically selected set Sms1. (a): BSS input. (b): PCA output.
(c): ICA output. The true heart rate from the reference and its harmonic (± 5 bpm)
is indicated by the colored areas in the back of the spectra. Colors of the respective
spectra are according to the time signals. [286]

setups. Also, improvements of Bland Altman heart rate measures for facial ROIs turned
out to be higher for movement phases compared to no movement [212].

Such findings are in accordance with the results obtained by this thesis’s investigations.
Considering Figure 43 (p.129) which indicates an inverse relationship between input SNR

and BSS performance (negative ∆SNR), the usage of BSS can even decrease the signal
quality, its application thus should be considered with care. Particularly for small-sized
ROIs after deterministic spatial selection (MC1, MC2, MS1, MS2), a SNR decrease mainly
appears in case of high quality input (to the right of the y-axis) and is differently pro-
nounced for different sets. On the contrary, especially the standard approaches using the
face ROI and the forehead-cheeks ROI (Figure 43, p.129), respectively, are not showing
this marked negative BSS performance, while the increase of SNR for good quality inputs
is also limited.

roi homogeneity Different factors of (in-)homogeneity of input signal sets to BSS

are assessed in a controlled fashion by the experiments on contextual BSS input (ROI)
selection.
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First, the sensitivity of BSS algorithms regarding input of different dominant frequencies
is analyzed. The results show that the ICA can take advantage of input signals comprising
content with different dominant frequencies (output SNR MC2 > MC1) while PCA shows
significantly worse performance on MC2 compared to ICA (see Table 3, p.131). One might
infer that the concept of statistical independence as applied for ICA is rather suited to
such content compared to the basic concept of decorrelation utilized for PCA. However, in
case of a very homogeneous BSS input (MC1) comprising only one uniform wavelength and
dominant frequency, PCA performs significantly better than ICA. As we used pre-whitening
prior to ICA which is similar to PCA, one might deduce that the contrast applied for ICA,
which is used to additionally transform the pre-whitened data, isn’t well chosen to extract
the cardiac pulse component. A potential application of the result that only PCA is able
to preserve the SNR in very homogeneous (wavelength, dominant frequency) high quality
inputs of small-sized ROIs could be the evaluation of ∆SNR of spatially distributed ROIs

to address the spatial homogeneity of the cutaneous microcirculation. Two-dimensional
statements of the microcirculation may provide clinical significance in critical care patients
[217].

Second, the question of sensitivity of BSS algorithms regarding wavelength homogeneity
could clearly be answered for same ROI size and equal dominant frequencies (MC1, MS2)
in support of the monochrome approach. Both, PCA and ICA, showed a significantly higher
output SNR (see Table 3, p.131) by using the monochrome input. Also consistent effects
are found for both ANOVA and ANCOVA on outputs (Figure 44, p.130). Such findings
support the idea that wavelength-dependent penetration depth into human skin imposes
a non-linear problem [117], which BSS cannot consistently resolve. However, the results
also confirm the better suitability of ICA compared to PCA for multispectral face ROI input
(F) [112].

Another result giving insight into BSS input homogeneity is stated by the comparison
between the multispectral sets MS1, MS2, FhC and F. While ROI size and input SNR show
an inverse relationship, the output SNR of multispectral PCA and ICA shows proportional-
ity to the ROI size except for the rectangular face ROI (see tables 2 and 3, p.127,131). Up to
ROIFhC one might assume a homogeneous ROI augmentation since mostly homogeneous
skin regions without marked edges and regions which do not necessarily contribute to a
distinct cardiac pulse are consolidated with ROIFhC. The same skin regions are principally
addressed by the sets MS1 and MS2. The only exception gives ROIF where also less-suited
regions like mouth and nose are included in the ROI, thus serving a inhomogeneous ROI

augmentation. Consequently, homogeneous ROI augmentations seems to be beneficial for
multispectral BSS, whereas inhomogeneous areas inside ROIs should be omitted in order to
optimize the extraction of the cardiac pulse. This behavior could also be found regarding
heart rate error measures after FastICA on 15 s cbPPGs of different ROIs [179]. Despite
that investigation neglected the input quality, the FastICA output showed decreasing
heart rate error measures while step-wise excluding the face surrounding and face borders
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from the ROI. On the other hand, the heart rate error of outputs increased again while
assessing ROI with highly edged face regions mostly containing nose and mouth structures.
Nevertheless, the positive effect of homogeneity of the input seems to be limited especially
considering monochrome inputs of high signal quality.

linking to results of synthesized data The experiments on real cbPPG

signals show that increasing ROI size (especially inhomogeneous augmentation) causes a
decreasing SNR of the input signals prior to BSS. However, this can be expected since
the small-size ROI selection is based on SNR. Also, this input SNR affects the BSS perfor-
mance, i.e. ∆SNRBSS (see e.g. Figure 43, p.129). For instance in small size ROIs many
SNRin > 0 dB are available whereas further BSS processing causes a ∆SNRBSS < 0 dB.
Such cases should be avoided in BSS applications. Only PCA can deal with high quality in-
puts but for homogenous sets only (MC1) where on average also the highest mean output
SNR after BSS is obtained by this setup. For other sets the high input SNR is compen-
sated (extinguished as can be seen by negative ∆SNRBSS in Figure 43, p.129). Taking
into account the input SNR (see combined ANOVA/ANCOVA statistics in Figure 44,
p.130) some consistent effects can be proven. ICA shows a better BSS performance for
monochrome sets MC1 and MC2 compared to the multispectral MS1. Also for PCA, MC1
outperforms MS1 whereas opposed to ICA this does not hold for MC2 (on the contrary
MC1 > MC2). Comparing PCA and ICA (see Table 3, p.131), ICA performs significantly
better on MC2 and F.

In homogenous good quality signals (like MC1), the mixtures x contain very similar
disturbance-free signals, which can be separated in signals orthogonal to each other, e.g.
a PPG and noise components (see e.g. Figure 50). However, in inhomogeneous sets (e.g.
MC2, MS1) the different components do not necessarily form an orthogonal system. Never-
theless, both PCA and ICA algorithms have shown a relation between increasing deviation
from orthogonality and decreasing SNR, yet, PCA has shown a worse performance com-
pared to ICA in presence of disturbances as well as in underdetermined conditions for
synthesized data. Especially in multispectral or otherwise inhomogeneous sets, underde-
termined mixtures are likely. The output SNR comparison between PCA and ICA at MC2
and F, respectively, confirms that.

The experiments on synthesized data does not explain the ICA results on homogenous
high quality inputs. This behavior might be attributed to the used ICA optimization
contrast. MC1 consists of inputs which are as homogeneous as possible. The decorrelation
transformation conducted by PCA is mostly able to preserve the SNR and shows the lowest
number of segments with negative ∆SNR for high (positive) input SNR (see Figure 43,
p.129). In comparison, the additional rotation introduced by ICA decreases the SNR for
this set. However, the exclusive usage of PCA for high quality inputs is not sufficient if the
input is not as homogeneous as assembled by MC1 as the results of MC2, MS1 and MS2
show. So far, a standard tanh-contrast for FastICA as well as symmetric optimization
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for uniformity of the amount of output signals is used for the cbPPG signals. One should
further test optimized contrasts or alternatively, let the demixing be guided by an expected
cardiac pulse composition [95]. Regarding contrasts, Morris et al. [195] indicates utilizing
the sub-Gaussian properties of the cbPPG component. The experiments on synthesized
data, however, does not show a marked improvement of BSS performance for sub-Gaussian
contrasts. Sub-Gaussian FastICA as other FastICA contrasts shares the dependency on
deviations from the orthogonal approach and shows a comparable performance on different
disturbance types and underdetermined mixtures.

Another possibility to avoid undesired SNR decrease, if no SNR preserving contrast
for high input quality is available, could be an adaptive decision, whether a BSS algo-
rithm should be applied or not. This decision could be based on the prior SNR estimate
based on peak frequency detection which is done during the selection process of inputs.
Alternatively, deflationary ICA could be applied to focus on single components instead of
simultaneously calculating a rotation for the full set of input signals x.

However, whereas the latter discussion focuses on high quality inputs and the avoidance
of a SNR decrease in already good quality signals due to BSS, it is worth noting that still
inputs of inferior quality (SNR) can be processed well with BSS, i.e. BSS facilitates a
significant SNR increase for low input SNR (see e.g. Figure 43, p.129).

7.2 approaches to permutation indeterminacy

7.2.1 Permutation Indeterminacy for ECG Signals

the potential of spatio-temporal bss BSS in general is considered an ap-
propriate tool for the processing of measurements imposing non-predictable and varying
signal qualities across multiple ECG channels. Moreover, spatio-temporal BSS is a powerful
processing technique which combines spatial-filtering of multichannel data with channel-
wise adaptive FIR filtering all guided by the concept of statistical independence [204].
Although it has been proven to successfully compete against the standard BSS [290], its
application to cardiac signal processing is addressed only by limited number of researchers,
so far [204, 243, 281, 290]. This may be attributed to the lack of robust selectors of
components of interest (i.e. the cardiac component), namely for solving permutation in-
determinacy, a problem intrinsic to the BSS. Especially, spatio-temporal BSS generates
a vast amount of output components after its usage. Particularly, a very large number
of temporal filter coefficients is proposed in [243]. At the same time, even pure spatial
BSS (standard BSS) often requires complex selection routines of cascaded structure or
pre-computed thresholds. Pre-trained templates are seldom transferable over datasets of
different nature [4, 101, 222]. On the other hand, using non-symmetric BSS approaches
like projection pursuit [204] which estimates output components one-by-one still involves
the problem of deciding whether the component of interest has already been extracted.
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Figure 52: Two different BSS output component examples of one aECG recording. The lower panel
shows the RCODE selection and the respective PeriodTest selection is depicted in the
upper panel. The corresponding modified Hamming distance (dH), Hamaneh criterion
(HC) and beat detection ACC is provided. The sparse code sequence is indicated above
each component and the QRS detections obtained from the customized peak detector
are marked as orange crosses. The y-axis shows the AltSkew measure. [287]

It has been shown, that component selection methods based on peak detections (i.e.
RCODE and PeriodTest) and their rhythm evaluation regarding potential cardiac be-
haviour are capable of handling spatio-temporal BSS outputs of different data nature (i.e.
tECG, cECG, aECG). This can be seen from Figure 45 (p.133), where for tECG and aECG

data both median and inter-quartile-range (IQR) show output accuracies of selected com-
ponents being ACC = 1. Also, the highly distorted cECG data achieve an IQR ACC > 0.9.
This finding is underlined by the pairwise comparisons of these selectors with the average
input quality (section A.4.1, p.173f), always significantly increasing ACC. Efficient usage
of spatio-temporal BSS, thus, becomes possible.

selection strategies During automatic selection of a single (desired) BSS com-
ponent, undesired components (e.g. artifact components) might resemble features initially
chosen to characterize the desired component. In particular, higher order moments are
heavily affected by outliers or time-/frequency based features [285]. Moreover, both types
of features may vary in absolute and relative values between datasets of different ori-
gin [3], which renders an according feature selection to be even more complicated. The
susceptibility of higher order moments to artifacts is especially observed in the minimal-
conductive ECG datasets (tECG and cECG, see Figure 45, p.133), where artifacts are likely
to occur (e.g. see Figure 25(a), p.102). In pairwise comparisons (section A.4.1, p.173) even
a decrease in ACC after BSS application and the subsequent selection was obtained by us-
ing skewness or kurtosis selectors (with outlier removal). For an almost artifact-free ECG

setting (aECG) the higher order moments (i.e. skewness) performed well and no signifi-
cant difference compared to other selectors was observed. This highlights the limitations
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of higher order moments as the BSS component selector in distorted ECG settings. Still,
skewness showed better performance than kurtosis, which is in accordance with [290].

Nevertheless, a selector based on peak detections can also be misguided, since its perfor-
mance is given by: (1) the detection performance prior to selection, and (2) the detection
performance after selection. Both performances are not necessarily the same, since, e.g.
prior to selection, the presented detector was designed to be more sensitive to artifacts com-
pared to the post-selection detector. Also, periodic artifacts (such as those included in the
measurement protocol of the assessed cECG data) can cause an artifact component being
a good cardiac candidate according to the selection criterion. The large IQR (Figure 46a,
p.134) of components showing Hamming distance or Hamaneh criterion equaling zero for
the cECG data is a possible consequence. However, Figure 46a shows the detection accu-
racy in all available output components, whereas Figure 45 (p.133) illustrates the results
only for the selected ones. The largely decreased IQR in Figure 45 (cECG) compared to
Figure 46a (p.134) supports the usability of our additional selection criterion AltSkew in
the case of multiple cardiac component candidates after peak detection evaluation and
underlines its necessity. In the case of arrhythmia, which can also hamper periodicity tests
based on peak detections, the advantage of our advanced code manipulation and assess-
ment (RCODE) compared to the simple periodicity test (PeriodTest) emerges. Figure 52
underlines this finding by means of two BSS components after processing aECG. The up-
per component was selected by PeriodTest solely based on AltSkew, because no output
component could be classified as periodic according to the Hamaneh criterion HC (HC =
1 ∀ components). Accordingly, using AltSkew alone fails to select the proper component
in this case. The lower component (Figure 52) was selected by RCODE according to
its modified Hamming distance dH = 0 and shows maximum ACC = 1. Thus RCODE

shows a higher capability to select cardiac components in the case of arrhythmia. Also,
RCODE explicitly tries to compensate for arrhythmia originating from blocks before
rhythm evaluation (but it doesn’t compensate for fibrillation type arrhythmia). Whereas
this is not relevant for the healthy subjects in the tECG and cECG data, for the aECG

data is obtained a slightly but significantly higher output ACC using RCODE (section
A.4.1, Table 33, p.173). Moreover, around 10% more components (Figure 46b, p.134) can
be exploited of the aECG data showing Hamming distance equal to zero compared to the
PeriodTest-selected components. Nevertheless, it should be noted that the BSS analysis
of the two-lead ECGs in the aECG data comprises a less complicated component selection
problem in BSS’s permutation indeterminacy, as compared to the analysis of the tECG

and cECG data. However, it is assumed, that the equivalent BSS processing for all data
using the same amount of time lags in BSS input construction brings along comparable
BSS component characteristics as precondition for the selection problem. Accordingly, the
aECG results are considered exemplary for arrhythmia data originating from contact-less
techniques.
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7.2.2 Permutation Indeterminacy for PPG Signals

In the cbPPG domain, permutation indeterminancy remains only unsatisfactorily solved.
Wedekind et al. [284] showed that traditional component selection algorithms like utilizing
a SNR measure (without ground truth) achieved a success rate of around 70 ± 20% among
only three cbPPG components. Thereby, a success was defined by an automatic selection
of the component with maximum SNR based on the ground truth. Better results were only
theoretically obtained by using a combination of Markov models as a probabilistic selector.
The above described sophisticated selection strategies applied to ECG processing thereby
might contribute to a large improvement of the selection performance. The core part of the
selection strategies of RCODE and PeriodTest is given by the rhythmical interpretation
of heartbeat detections. Such strategies are highly transferable to other rhythmic signals
of cardiac origin like the cbPPG. Still, a suitable beat detection algorithm adapted to the
signal characteristics of a cbPPG would be needed, however, that is available in literature
e.g. [30, 244].

7.3 linking input composition and output performance of bss

Spatio-temporal BSS modifies the measured signals and BSS inputs x by artificial augmen-
tation using time-delayed version of the signals. This procedure has shown to improve the
results of BSS processing in e.g. the ECG domain [290] as well as in the experiments on
synthesized PPG data conducted within this thesis. Nevertheless, increasing the amount
of input signals prior to BSS for the commonly applied symmetric BSS approaches also
increases the amount of BSS output components in y. This complicates solutions to permu-
tation indeterminacy which are needed to automatically (e.g. for remote applications [4])
make any use of the BSS results for selecting components with improved SNR with respect
to the original measurements. Accordingly, a potential improvement in signal quality due
to BSS can only be utilized if the respective component in y can also be selected for further
usage.

This relation is addressed for ECG data by the experiments regarding the hypotheses 6-1
and 6-2. Specifically, first a potential positive effect of increasing dim for spatio-temporal
BSS is tested, i.e. if the maximum available accuracy ACCmax among the BSS outputs
y can be increased by increasing dim. Figure 47 (p.136) shows a valid positive effect
of increasing dim at least for the cECG data. For tECG and aECG data, the measured
positive effect cannot be considered further due to heteroscedasticity. The precondition
for further utilizing this positive effect is a non-significant relationship between ACCrel

and dim. ACCrel measures how an actually selected component (i.e. ACCsel) matches the
best available output component (i.e. ACCmax). This result is dependent on the actual
selection algorithm. Figure 48 (p.137) especially for cECG finds a negative relation and
thus a decreasing ACCrel while increasing dim for standard selectors SKEW and KURT .
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On the contrary, there are no significant correlations to dim for the selectors RCODE,
PeriodTest and CASCSEL that have been newly proposed alongside this thesis. These
sophisticated BSS component selection algorithms, thus, are capable of utilizing the BSS

performance improvements possible by spatio-temporal BSS for ECG processing.

7.4 chapter summary

The preceding section discusses the results gathered alongside the questions how BSS

input influences the BSS performance as well as how the results of BSS processing can be
exploited, i.e. what algorithms are suited to solve permutation indeterminacy.

Especially in the cbPPG domain, the benefit of processing cbPPG measurements with BSS

in order to improve the signal quality has not yet been proven. Several experiments within
this thesis approach this question by characterizing BSS performance under controlled BSS

input conditions. Accordingly, it has been shown that both SNR and morphology retention
is negatively affected by violations to the orthogonal approach that is underlying common
BSS algorithms. Thereby, PCA performs worse compared to ICA on disturbances present
alongside PPG signals as well as for underdetermined mixtures. Several ICA algorithms
have been found to perform widely similar amongst each other in the tested setups. Despite
some individual differences in certain experiments, however, FastICA shows some small
advantages especially, because it can also be shown to successfully work with spatio-
temporal ICA in the PPG domain. Moreover, cbPPG BSS performance has been found being
dependent on the signal quality of the signal mixtures. Only PCA works as expected with
high quality inputs, i.e. it preserves already high signal quality in the BSS input. However,
as signal mixtures get content-wise inhomogeneous, ICA suits better than PCA. No single
recommendation on what BSS algorithm should be used for cbPPG processing can be given.
Adaptive algorithms could overcome the ambiguities. In this context, the online estimate
Umax, i.e. the reliability of W, has been tested if it is related to the output performance
of BSS measured by the SNR or the morphology retention ρsy. Unfortunately, Umax has
not shown a consistent relation to BSS output measures. Umax quantifies the influence
of sample portions on the overall BSS solution. Potentially, violations of the orthogonal
approach could rather be quantified by measures simultaneously addressing all available
samples, e.g. distribution metrics like the pdf and the question how are the distribution
metrics changed between BSS inputs x and outputs y.

In the ECG domain spatio-temporal ICA allows for improvements in the processing per-
formance, i.e. BSS outputs with increased heartbeat accuracy can be generated. This is
necessary especially in remote measurements e.g. by contact-less measurement techniques.
For these techniques, the signal quality is not likely to be kept at a high level across typ-
ical measurement scenarios. Spatio-temporal ICA has shown to cope with such scenarios.
Most importantly, this potential can also be exploited by a successful solution to per-
mutation indeterminacy. The application of the newly developed automated component
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selection algorithms, especially the sparse coding based RCODE, show a high selection
performance amongst BSS outputs of signals from different origin (tECG, cECG, aECG).





Cersei: "And you’re quite certain, that Father is the lion?"
Tyrion grinned: "It’s on all our banners."
— George R.R. Martin in A Clash of Kings p.321, A Song of Ice and Fire (1998)

8
C O N C L U S I O N

BSS in biosignal processing aims at resolving an unknown signal mixture x = A · s in order
to improve the quality of the signals of interest. Contact-less measurement techniques
typically involve significant distortions due to the nature of their measurement principles.
Whether BSS contributes to an improvement of the signal quality depends on mainly
two factors and the subsequent question if the chosen BSS algorithm presents a suitable
match to each of these factors. One factor is given by the original source signals s and
the question if the source model applied to extract y ≈ s matches the original sources
present in the measurements. Common BSS algorithms follow the orthogonal approach
and thus assume orthogonal sources. The second factor is given by the mixture A, i.e.
the question if the BSS model can compensate for complex (e.g. underdetermined, non-
stationary, convolutive) mixtures.

This work has investigated the influence of these factors onto the BSS results for pro-
cessing biosignals in the (cb)PPG domain. Moreover, the suitability of particular BSS

algorithms given these factors was examined. In this context, this work has contributed
a large selection of own synthesized PPG data and mixtures as well as real-world cbPPG

data gathered during the CardioV isio project to facilitate cbPPG for clinical usage in
critical care patients. Moreover, a candidate online estimate (Umax, i.e. the reliability of
W = A−1) to indicate poor BSS performance has been evaluated in the (cb)PPG context.

The results show that violations of the commonly applied orthogonal approach nega-
tively affect the quality of the cardiac BSS output components, i.e. both the strength of
the cardiac pulse SNR is decreased as well as the morphology retention is hampered by
decreasing ρsy. Thus, common BSS application is negatively affected especially in those
conditions, where different source signals are correlated, i.e. share significant amounts of
variance. In these scenarios, one might consider non-orthogonal BSS approaches.

For the forced synthesized BSS model violations (e.g. orthogonal approach, underdeter-
mined mixtures), PCA generally performed worse compared to different ICA algorithms.
This behavior has also been found in real-world cbPPG where ICA showed better perfor-
mance with inhomogeneous heterogeneous inputs. Thereby, inhomogeneous heterogeneous
inputs are likely to contain underdetermined mixtures. On the contrary, considering the
results of real-world cbPPG for the processing of homogeneous less-distorted signal mix-
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tures (i.e. monochrome homogeneous high-quality cbPPG), the PCA outperformed ICA. ICA

is even found to reduce signal quality in high-quality inputs. Thus, PCA seems to suit best
in pure noise-reduction applications, i.e. where sufficient control and pre-selection of the
BSS input is possible. However, real complex signal mixtures are rather addressed by ICA.

Many ICA algorithms have shown a comparable performance on different BSS model
violations. For instance, the adaption of the FastICA contrast function towards sub- or
super-Gaussian sources did not cause significant performance improvements. However,
RADICAL has shown a higher sensitivity to violations of the BSS model. Distinct negative
correlations between morphology retention and the violation of the orthogonal approach
as well as a significantly worse SNR for underdetermined PPG mixtures were found com-
pared to the other ICA algorithms. RADICAL seems not to be suited best in (cb)PPG BSS,
accordingly.

Independent of the distinct violations of the BSS model, ICA showed stable solutions
W. Umax has not been proven being consistently related to violations of orthogonality,
morphology retention and the SNR. The variance of W during bootstrapping of the com-
ponents to be unmixed obviously is no indicator of the quality of y, respectively, ICA

serves stable solutions regardless the quality of y. That is why Umax despite its potential
as an online-estimate of BSS performance is proven as unsuitable to estimate the quality
of the BSS output y. Potentially, distribution metrics like the pdf and the relation of such
distribution metrics between BSS inputs x and outputs y should be addressed in future
works on online reliability measures of BSS that are intended to unmask violations of the
orthogonal approach.

Advanced BSS techniques as batch processing and spatio-temporal FastICA has been
found to successfully contribute to cbPPG processing. Batch processing of cbPPGs might
help with fast processing in applications with limited computational power. On the other
hand, spatio-temporal FastICA suits for complex (e.g. convolutive, non-stationary) mixing
scenarios.

Whether the potential of a BSS algorithm in terms of signal quality improvements
can be exploited in practice, depends on the availability of suitable algorithms to solve
permutation indeterminacy.

Spatio-temporal BSS has shown high potential to process distorted ECG recordings as it
is found in minimum- or non-contact ECG techniques (e.g. tECG, cECG) used for innovative
mobile recording applications. The disadvantage of spatio-temporal BSS is a large num-
ber of output components obtained after processing which causes component selection
after BSS to be difficult. Specifically, the automatic selection of the best available single
component, i.e. the cardiac component of maximum signal quality, among the BSS output
becomes challenging as the number of components increases. Within this thesis, differ-
ent common selection strategies have been evaluated against newly developed approaches
based on sparse coding.
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Common component selection algorithms solving permutation indeterminacy simulta-
neously address feature extraction and component selection. For instance, higher order
moments as kurtosis serve as a component feature and selector at the same time. On
the contrary, sparse coding methods use features (e.g. peaks) to create an abstract rep-
resentation of the BSS component. This representation later on is evaluated e.g. from
a rhythmical point of view and thus, abstracts the component selection step from the
handling of signal-specific features and differences (e.g. between ECGs of different origin).
Thus, a selection based on sparse coding is transferable to any signal of cardiac origin. The
application of sparse coding algorithms would only require the adaption of the extraction
of a sparse code sequence (e.g. from a cbPPG signal), whereas the interpretation and thus
selection algorithm would remain the same. Accordingly, a potentially re-usable selection
algorithm part has been obtained what presents a main advantage compared to common
algorithms based on higher order moments or frequency domain features.

Such newly developed component selection algorithm based on sparse coding (RCODE)
has shown to outperform the common usage of higher order moments and frequency
domain features. The availability of performant component selection algorithms being
able to handle large amounts of BSS output components and, nevertheless, selecting the
best cardiac component with high certainty, facilitates the usage of spatio-temporal BSS

for processing highly distorted ECGs. This is particularly relevant since the results of this
thesis also has shown that first, increasing the spatio-temporal dimension dim in highly
distorted signal mixtures (cECG) also increases the maximum available heartbeat accuracy
in the BSS output. Thus, the worse the starting condition for a selection algorithm (i.e.
the higher the amount of BSS output components), the higher is the potential of a high
quality cardiac component. Second, common selection algorithms based on higher order
moments are not able to handle the increasing numbers of output components in this
context. I.e., while increasing dim, higher order moments as skewness and kurtosis are
decreasingly able to select the best available cardiac component among the outputs. Thus,
sophisticated selection algorithms e.g. based on sparse coding are required to exploit the
potential of spatio-temporal BSS.

Future work should address the transfer of the promising sparse coding selection algo-
rithms to the cbPPG domain. The experiments on spatio-temporal BSS for PPG signals
described within this thesis have shown the potential of advanced BSS techniques to re-
solve complex, i.e. non-stationary or convolutive signal mixtures also in the cbPPG domain.
This potential now should be exploited by solving permutation indeterminacy in cbPPG

BSS and adapting the sparse coding algorithms RCODE and PeriodTest, accordingly.





Sam did not know how long it had been since last he’d slept, but scarce an inch
remained of the fat tallow candle he’d lit when starting on the ragged bundle of
loose pages that he’d found tied up in twine.
— George R.R. Martin in A Feast for Crows p.101, A Song of Ice and Fire (2005)

A
A P P E N D I X

a.1 ppg waveform synthesis

Table 4: PPG model parameters of a 24, 61 and 70 year old male subject according to the synthesis
model in equation (83) and [119]. Given are mean ± standard deviation (STD).

index i amplification ai distribution mean µi distribution STD σi

24 year old male subject

1 0.23611 ± 0.00064 0.17830 ± 0.00081 0.67751 ± 0.00234
2 0.00788 ± 0.00032 0.24193 ± 0.00108 0.11866 ± 0.00449
3 0.14237 ± 0.00074 0.41878 ± 0.00131 0.24789 ± 0.00351
4 0.04771 ± 0.00198 0.65103 ± 0.00552 0.13537 ± 0.00742
5 0.01540 ± 0.00212 0.77177 ± 0.00165 0.07312 ± 0.00437

61 year old male subject

1 0.34075 ± 0.00638 0.28884 ± 0.00600 0.74016 ± 0.00734
2 0.03848 ± 0.00138 0.28353 ± 0.00225 0.20647 ± 0.00000
3 0.21446 ± 0.00827 0.54630 ± 0.01034 0.28774 ± 0.01534
4 0.06470 ± 0.01187 0.77861 ± 0.01477 0.15132 ± 0.01925
5 0.02181 ± 0.00617 0.93668 ± 0.00486 0.08740 ± 0.00821

70 year old male subject

1 0.29437 ± 0.00586 0.27005 ± 0.00629 0.74839 ± 0.00863
2 0.05237 ± 0.00206 0.28000 ± 0.00000 0.24380 ± 0.00000
3 0.07547 ± 0.00000 0.43385 ± 0.00466 0.20867 ± 0.00734
4 0.07410 ± 0.00465 0.59554 ± 0.00816 0.17392 ± 0.00975
5 0.01678 ± 0.00306 0.75239 ± 0.00413 0.09058 ± 0.00862

161



162 appendix

a.2 cbppg selection

Figure 53: ROI selection based on the three most frequent dominant frequencies of the green wave-
length. ROI assembly (MC#,MS#) based on signal quality inside dominant frequencies.
[286]
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algorithm input All available cbPPGn,color signals with n = 1, 2, ..., 475 and color ∈
{R,G,B} serve as input to the input set selection algorithm. The selection is mainly based on
evaluating peak frequencies f̂G and its grouping clusters f̃i,G considered as the dominant frequency
respectively periodic component of the amplitude spectrum X(f) of a cbPPGn,G.

1. The maximum peak frequency f̂n,G of the amplitude spectra X(f) = F{cbPPGn,G} be-
tween [30,240] bpm is estimated for every ROI. The green wavelength is chosen for this
selection according to the suitability for detecting the cardiac pulse inside this channel
[265].

2. The histogram H(f̂G) of peak frequencies f̂G for all 475 ROIs is estimated (see Fig. 53
for an example). Clusters of cbPPGn,G are formed according to peak frequencies f̂n,G of
maximum spread of 10 bpm (± 5 bpm). The cluster width adapts to the signal quality
measure used for evaluation. In case of multiple possibilities for forming cbPPGn,G clusters
due to a continuous range of peak frequencies f̂n,G with spread > 10 bpm, always the
cluster with maximum amount of cbPPGn,G is formed and the cluster limits to surrounding
clusters are adjusted accordingly. The clustering according to peak frequencies in general
addresses the search for highly periodic components as we expect the nature of the cardiac
pulse.

3. The three largest clusters of cbPPGn,G of H(f̂G) → f̃i,G with i ∈ {1, 2, 3} according to its
central peak frequency f̃i,G (see Fig. 53) are located.

4. In order to assess the strength of the periodic component defined by its peak frequency f̂n,G

inside a cbPPGn,G ∈ f̃i,G with i ∈ {1, 2, 3} the SNRf̃i
n,G (i ∈ {1, 2, 3}) of the cbPPGn,G is

calculated using equation (76) and (77) while considering the peak frequency f̂n,G as usable
signal frequency estimate fPPG . Accordingly, SNRf̃i

n,G = SNRfPPG with fPPG = f̂n,G and
f̂n,G ∈ f̃i,G (i ∈ {1, 2, 3}).

5. Input sets S are principally formed of ROIs of identical size so approaches could equally ben-
efit from spatial averaging. Exceptions are formed by the standard multispectral approaches
using a face or a forehead-cheek ROI, respectively. Moreover, one multispectral set is build
with larger ROI area to adapt to the area intrinsically formed by the monochrome approach.

monochrome approach (homogenous frequency content) Assemble
the green channel from appropriate ROIs inside a cluster f̃i,G to three input sets according to
(i ∈ {1, 2, 3}):


cbPPGn,G with highest SNRf̃i

n,G subject to f̂n,G
!
= f̃i,

cbPPGn,G with second highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i,

cbPPGn,G with third highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i

 → Smc1
i

monochrome approach (heterogeneous frequency content) Assem-
ble the green channel from appropriate ROIs inside a SNR positioning (of absolute SNRs) j for all
three clusters f̃i,G with i ∈ {1, 2, 3} to three input sets according to (j ∈ {first, second third}):



164 appendix


cbPPGn,G with j highest SNRf̃1

n,G subject to f̂n,G
!
= f̃1,

cbPPGn,G with j highest SNRf̃2
n,G subject to f̂n,G

!
= f̃2,

cbPPGn,G with j highest SNRf̃3
n,G subject to f̂n,G

!
= f̃3

 → Smc2
j

multispectral approach (homogenous frequency content) Assem-
ble the color channels from appropriate ROIs inside a cluster f̃i,G to three input sets according to
(i ∈ {1, 2, 3}):


cbPPGn,R with highest SNRf̃i

n,G subject to f̂n,G
!
= f̃i,

cbPPGn,G with highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i,

cbPPGn,B with highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i

 → Sms1
i

multispectral approach (roi area adaption) Assemble the color channels
from appropriate ROIs inside a cluster f̃i,G containing the area (ROIn) of the three best SNR ROIs

obtained by frame-wise averaging the respective ROIs located as in Smc1
i for three wavelengths

each to three input sets according to (i ∈ {1, 2, 3}) to match the ROI area of the monochrome
approach:



cbPPGn,R with highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i,

second highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i,

third highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i

cbPPGn,G with highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i,

second highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i,

third highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i

cbPPGn,B with highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i,

second highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i,

third highest SNRf̃i
n,G subject to f̂n,G

!
= f̃i



→ Sms2
i

random approaches For testing against choosing only the highest SNRs, assemble anal-
ogous monochrome SmcR

i and multispectral SmsR
i sets with respective random selection out of

available cbPPGn,color subject to f̂n,G
!
= f̃i and i ∈ {1, 2, 3}.

standard approaches For testing against standard multispectral BSS processing for
cbPPG, form sets SF and SFhC from cbPPGF,color and cbPPGFhC,color, respectively.

algorithm output Input sets Smc1
i , Smc2

j , Sms1
i , Sms2

i , SmcR
i and SmsR

i with i ∈ {1, 2, 3}
and j ∈ {first, second, third} (i.e. three input sets, containing three channels each for the multi-
spectral and monochrome approach) as well as one set SF and SFhC, respectively.
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a.3 additional results for selection of bss input data

a.3.1 Source Signal Characteristics

Table 5: Pairwise d⊥ results for disturbance types. d⊥ values are shown as mean ± standard
deviation a.u., p-values of log-scaled d⊥ (below main diagonal) from Mann–Whitney U
test on subject-wise means (N = 6) and effect size (above main diagonal) Cohen’s U1 and
95% CIs of U1 [104] (calculated with bootstrapping, N = 1000) in brackets.

d⊥ group sin chirp trend step

1.15 ± 0.37 SIN 1 [1,1] 1 [1,1] 1 [1,1]

0.43 ± 0.08 CHIRP < 0.01 0.75 [0.5,1] 1 [1,1]

0.24 ± 0.08 TREND < 0.01 < 0.01 0.42 [0.25,1]

0.25 ± 0.05 STEP < 0.01 < 0.01 0.13

In the following (Tables 6 - 9), SNRs are shown as mean ± standard deviation dB, p-values
(below main diagonal) from Wilcoxon’s signed-rank test on subject-wise means (N = 6)
and effect size (above main diagonal) Cohen’s U1 and 95% CIs of U1 [104] (calculated
with bootstrapping, N = 1000) in brackets.

Table 6: Pairwise SNR results for mixtures with SIN disturbances.

∆SNRor ig group pca fastica fastica (sub) fastica (sup) jade radical

-1.77 ± 0.93 PCA 1 [1,1] 0.83 [0.5,1] 1 [1,1] 1 [1,1] 0.75 [0.58,1]

-0.54 ± 0.33 FastICA 0.03 0.25 [0.17,0.5] 0.17 [0.17,0.5] 0.17 [0.17,0.5] 0.17 [0.17,1]

-0.56 ± 0.33 FastICA (sub) 0.06 0.69 0.25 [0.17,0.5] 0.25 [0.17,0.5] 0.17 [0.17,0.83]

-0.55 ± 0.32 FastICA (sup) 0.03 0.84 1 0.17 [0.17,0.5] 0.17 [0.17,0.92]

-0.45 ± 0.33 JADE 0.03 0.44 0.03 1 0.17 [0.17,0.75]

-0.29 ± 0.38 RADICAL 0.03 0.22 0.22 0.16 0.44

Table 7: Pairwise SNR results for mixtures with CHIRP disturbances.

∆SNRor ig group fastica fastica (sub) fastica (sup) jade radical

-1.14 ± 1.08 PCA X X X X X

-0.12 ± 0.17 FastICA 0.17 [0.17,0.5] 0.25 [0.17,0.5] 0.42 [0.25,0.5] 0.33 [0.17,0.54]

-0.08 ± 0.13 FastICA (sub) 0.16 0.17 [0.17,0.42] 0.17 [0.17,0.5] 0.42 [0.33,1]

-0.13 ± 0.18 FastICA (sup) 0.56 0.09 0.25 [0.17,0.5] 0.33 [0.25,0.58]

-0.07 ± 0.07 JADE 0.56 0.69 1 0.42 [0.25,1]

-0.27 ± 0.24 RADICAL 0.03 0.03 0.03 0.06
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Table 8: Pairwise SNR results for mixtures with TREND disturbances.

∆SNRor ig group pca fastica fastica (sub) fastica (sup) jade radical

-0.68 ± 1.04 PCA 0.58 [0.5,1] 0.58 [0.5,1] 0.58 [0.5,1] 0.5 [0.5,1] 0.58 [0.5,1]

-0.13 ± 0.34 FastICA 0.03 0.25 [0.17,1] 0.33 [0.17,1] 0.17 [0.17,0.5] 0.25 [0.17,0.5]

-0.14 ± 0.33 FastICA (sub) 0.03 0.31 0.33 [0.25,1] 0.33 [0.25,1] 0.25 [0.17,0.58]

-0.11 ± 0.32 FastICA (sup) 0.03 0.16 0.06 0.17 [0.17,0.75] 0.17 [0.17,0.5]

-0.14 ± 0.31 JADE 0.03 0.84 0.44 0.31 0.25 [0.17,0.58]

-0.08 ± 0.23 RADICAL 0.03 0.44 0.31 0.84 0.56

Table 9: Pairwise SNR results for mixtures with STEP disturbances.

∆SNRor ig group pca fastica fastica (sub) fastica (sup) jade radical

-0.85 ± 0.84 PCA 0.83 [0.67,1] 1 [1,1] 1 [1,1] 0.83 [0.67,1] 1 [1,1]

-0.07 ± 0.11 FastICA 0.03 0.17 [0.17,0.5] 0.17 [0.17,0.42] 0.17 [0.17,0.42] 0.25 [0.17,0.67]

-0.08 ± 0.08 FastICA
(sub)

0.03 0.44 0.25 [0.17,0.5] 0.17 [0.17,0.42] 0.42 [0.17,0.75]

-0.05 ± 0.05 FastICA
(sup)

0.03 1 0.16 0.17 [0.17,0.42] 0.33 [0.17,0.67]

-0.08 ± 0.10 JADE 0.03 0.16 0.56 0.16 0.42 [0.17,0.75]

-0.02 ± 0.03 RADICAL 0.03 0.84 0.56 0.56 0.56

In the following (Tables 10 - 12), Umax are shown as mean ± standard deviation rad2, p-
values (below main diagonal) from Wilcoxon’s signed-rank test on subject-wise means (N
= 6) and effect size (above main diagonal) Cohen’s U1 and 95% CIs of U1 [104] (calculated
with bootstrapping, N = 1000) in brackets.

Table 10: Pairwise W-reliability results for mixtures with CHIRP disturbances.

Umax group fastica fastica (sub) fastica (sup) jade radical

7.2e-03 ± 1e-02 FastICA 0.25 [0.17,0.5] 0.17 [0.17,0.5] 0.5 [0.5,1] 0.41 [0.25,1]

6.8e-03 ± 9e-03 FastICA (sub) 1 0.25 [0.17,0.5] 0.5 [0.5,1] 0.5 [0.33,1]

6.9e-03 ± 9e-03 FastICA (sup) 0.84 0.56 0.5 [0.5,1] 0.42 [0.25,1]

2.5e-03 ± 5e-03 JADE 0.03 0.03 0.03 0.5 [0.5,1]

2.1e-03 ± 8e-04 RADICAL 0.09 0.06 0.15 0.44

Table 11: Pairwise W-reliability results for mixtures with TREND disturbances.

Umax group fastica fastica (sub) fastica (sup) jade radical

9.1e-03 ± 2e-02 FastICA 0.42 [0.33,1] 0.25 [0.17,0.5] 0.42 [0.25,1] 0.75 [0.58,1]

1.1e-02 ± 2e-02 FastICA (sub) 0.03 0.5 [0.5,1] 0.5 [0.5,1] 1 [1,1]

8.0e-03 ± 2e-02 FastICA (sup) 0.03 0.03 0.42 [0.25,1] 0.75 [0.58,1]

3.1e-03 ± 5e-03 JADE 0.03 0.03 0.03 0.5 [0.33,1]

6.0e-04 ± 4e-04 RADICAL 0.03 0.03 0.03 0.09
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Table 12: Pairwise W-reliability results for mixtures with STEP disturbances.

Umax group fastica fastica (sub) fastica (sup) jade radical

5.8e-03 ± 1e-02 FastICA 0.33 [0.25,1] 0.25 [0.17,0.5] 0.5 [0.5,1] 1 [1,1]

7.0e-03 ± 1e-02 FastICA (sub) 0.03 0.42 [0.33,1] 0.5 [0.5,1] 1 [1,1]

8.1e-03 ± 2e-02 FastICA (sup) 0.84 0.44 0.42 [0.33,1] 1 [1,1]

2.7e-03 ± 5e-03 JADE 0.03 0.03 0.03 0.58 [0.33,1]

5.0e-04 ± 3e-04 RADICAL 0.03 0.03 0.03 0.09

In the following (Tables 13 - 16), ρsy are shown as mean ± standard deviation a.u.,
p-values (below main diagonal) from Wilcoxon’s signed-rank test on subject-wise means
(N = 6) and effect size (above main diagonal) Cohen’s U1 and 95% CIs of U1 [104]
(calculated with bootstrapping, N = 1000) in brackets.

Table 13: Pairwise y-reliability results for mixtures with SIN disturbances.

ρsy group pca fastica fastica (sub) fastica (sup) jade

0.82 ± 0.007 PCA 1 [1,1] 1 [1,1] 1 [1,1] 1 [1,1]

0.958 ± 0.02 FastICA 0.03 0.17 [0.17,0.5] 0.17 [0.17,0.5] 0.17 [0.17,1]

0.959 ± 0.02 FastICA (sub) 0.03 0.56 0.17 [0.17,0.42] 0.25 [0.17,0.75]

0.960 ± 0.02 FastICA (sup) 0.03 0.09 1 0.17 [0.17,0.67]

0.969 ± 0.02 JADE 0.03 0.06 0.03 0.16

0.904 ± 0.07 RADICAL X X X X X

Table 14: Pairwise y-reliability results for mixtures with CHIRP disturbances.

ρsy group pca fastica fastica (sub) fastica (sup) jade radical

0.828 ± 0.01 PCA 1 [1,1] 1 [1,1] 1 [1,1] 1 [1,1] 1 [1,1]

0.984 ± 0.01 FastICA 0.03 0.17 [0.17,0.42] 0.17 [0.17,0.42] 0.17 [0.17,0.75] 0.33 [0.21,0.5]

0.987 ± 0.01 FastICA (sub) 0.03 0.16 0.25 [0.17,0.5] 0.25 [0.17,0.58] 0.42 [0.33,1]

0.984 ± 0.01 FastICA (sup) 0.03 1 0.16 0.25 [0.17,0.75] 0.33 [0.17,0.5]

0.992 ± 0.007 JADE 0.03 0.06 0.06 0.16 0.5 [0.42,1]

0.985 ± 0.007 RADICAL 0.03 0.44 0.44 0.44 0.22

Table 15: Pairwise y-reliability results for mixtures with TREND disturbances.

ρsy group pca fastica fastica (sub) fastica (sup) jade radical

0.831 ± 0.01 PCA 1 [1,1] 1 [1,1] 1 [1,1] 1 [1,1] 1 [1,1]

0.977 ± 0.04 FastICA 0.03 0.33 [0.25,1] 0.33 [0.17,0.5] 0.33 [0.25,1] 0.33 [0.25,1]

0.978 ± 0.04 FastICA (sub) 0.03 0.44 0.42 [0.33,1] 0.42 [0.25,1] 0.58 [0.5,1]

0.983 ± 0.03 FastICA (sup) 0.03 0.03 0.03 0.33 [0.17,0.5] 0.25 [0.17,0.5]

0.983 ± 0.03 JADE 0.03 0.31 0.03 0.44 0.33 [0.17,0.5]

0.996 ± 0.003 RADICAL 0.03 0.03 0.03 0.09 0.84
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Table 16: Pairwise y-reliability results for mixtures with STEP disturbances.

ρsy group pca fastica fastica (sub) fastica (sup) jade radical

0.832 ± 0.01 PCA 1 [1,1] 1 [1,1] 1 [1,1] 1 [1,1] 1 [1,1]

0.985 ± 0.03 FastICA 0.03 0.5 [0.5,1] 0.25 [0.17,0.5] 0.17 [0.17,0.58] 0.17 [0.17,0.5]

0.987 ± 0.02 FastICA (sub) 0.03 0.44 0.42 [0.33,1] 0.42 [0.25,1] 0.50 [0.5,1]

0.984 ± 0.03 FastICA (sup) 0.03 1 0.44 0.33 [0.25,0.83] 0.25 [0.17,0.5]

0.990 ± 0.01 JADE 0.03 0.84 0.03 0.56 0.25 [0.17,0.83]

0.995 ± 0.003 RADICAL 0.03 0.56 0.03 0.56 0.16

a.3.2 Mixture Signal Characteristics

In the following (Tables 17 and 18), ∆SNRorig are shown as mean ± standard deviation
dB, p-values (below main diagonal) from Wilcoxon’s signed-rank test on subject-wise
means (N = 6) and effect size (above main diagonal) Cohen’s U1 and 95% CIs of U1
[104] (calculated with bootstrapping, N = 1000) in brackets.

Table 17: Pairwise SNR results for underdetermined disturbances.

∆SNRor ig group pca fastica fastica (sub) fastica (sup) jade radical

-2.50 ± 0.63 PCA 0.58 [0.5,1] 0.5 [0.5,1] 0.67 [0.5,1] 0.50 [0.5,1] 0.58 [0.5,1]

-1.65 ± 0.49 FastICA 0.03 0.17 [0.17,0.42] 0.17 [0.17,0.42] 0.25 [0.17,0.5] 0.17 [0.17,0.42]

-1.68 ± 0.55 FastICA (sub) 0.03 0.44 0.25 [0.17,0.5] 0.25 [0.17,0.5] 0.17 [0.17,0.42]

-1.58 ± 0.41 FastICA (sup) 0.03 0.16 0.22 0.33 [0.17,0.5] 0.25 [0.17,0.5]

-1.68 ± 0.62 JADE 0.03 1 1 0.56 0.33 [0.17,0.5]

-1.69 ± 0.47 RADICAL 0.03 0.69 1 0.06 1

Table 18: Pairwise SNR results for underdetermined PPGs.

∆SNRor ig group pca fastica fastica (sub) fastica (sup) jade radical

-2.57 ± 0.50 PCA 1 [1,1] 1 [1,1] 1 [1,1] 0.83 [0.67,1] 0.83 [0.67,1]

-1.43 ± 0.30 FastICA 0.03 0.25 [0.17,0.5] 0.17 [0.17,0.42] 0.17 [0.17,0.42] 0.42 [0.33,0.92]

-1.49 ± 0.30 FastICA (sub) 0.03 0.09 0.33 [0.17,0.5] 0.33 [0.21,0.5] 0.42 [0.29,0.63]

-1.41 ± 0.32 FastICA (sup) 0.03 0.56 0.16 0.17 [0.17,0.42] 0.42 [0.33,0.75]

-1.47 ± 0.40 JADE 0.03 0.31 0.84 0.56 0.33 [0.17,0.5]

-1.69 ± 0.38 RADICAL 0.03 0.03 0.03 0.03 0.03

In the following (Tables 19 and 20), Umax results are shown as mean ± standard devi-
ation rad2, p-values (below main diagonal) from Wilcoxon’s signed-rank test on subject-
wise means (N = 6) and effect size (above main diagonal) Cohen’s U1 and 95% CIs of
U1 [104] (calculated with bootstrapping, N = 1000) in brackets.
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Table 19: Pairwise W-reliability results for underdetermined disturbances.

Umax group fastica fastica (sub) fastica (sup) jade radical

1.5e-02 ± 1e-02 FastICA 0.17 [0.17,0.5] 0.17 [0.17,0.5] 0.33 [0.25,1] 0.67 [0.42,1]

1.5e-02 ± 9e-03 FastICA (sub) 0.31 0.17 [0.17,1] 0.25 [0.17,1] 0.75 [0.58,1]

1.3e-02 ± 8e-03 FastICA (sup) 0.44 0.03 0.25 [0.17,1] 0.67 [0.42,1]

8.5e-03 ± 3e-03 JADE 0.03 0.03 0.03 0.5 [0.25,1]

6.2e-03 ± 2e-03 RADICAL 0.06 0.03 0.06 0.16

Table 20: Pairwise W-reliability results for underdetermined PPGs.

Umax group fastica fastica (sub) fastica (sup) jade radical

1.2e-02 ± 5e-03 FastICA 0.17 [0.17,0.42] 0.17 [0.17,0.42] 0.33 [0.25,0.83] 0.42 [0.25,1]

1.3e-02 ± 5e-03 FastICA (sub) 0.44 0.25 [0.17,0.5] 0.42 [0.33,1] 0.5 [0.33,1]

1.3e-02 ± 5e-03 FastICA (sup) 1 0.56 0.5 [0.33,1] 0.33 [0.17,0.75]

8.1e-03 ± 3e-03 JADE 0.03 0.03 0.03 0.17 [0.17,0.58]

8.9e-03 ± 3e-03 RADICAL 0.09 0.09 0.06 0.69

In the following (Tables 21 and 22), ρsy are shown as mean ± standard deviation a.u.,
p-values (below main diagonal) from Wilcoxon’s signed-rank test on subject-wise means
(N = 6) and effect size (above main diagonal) Cohen’s U1 and 95% CIs of U1 [104]
(calculated with bootstrapping, N = 1000) in brackets.

Table 21: Pairwise y-reliability results for underdetermined disturbances.

ρsy group pca fastica fastica (sub) fastica (sup) jade radical

0.720 ± 0.015 PCA 1 [1,1] 1 [1,1] 1 [1,1] 1 [1,1] 1 [1,1]

0.816 ± 0.019 FastICA 0.03 0.17 [0.17,0.42] 0.17 [0.17,0.5] 0.17 [0.17,0.42] 0.25 [0.17,0.5]

0.815 ± 0.021 FastICA (sub) 0.03 0.69 0.17 [0.17,0.5] 0.17 [0.17,0.42] 0.25 [0.17,0.5]

0.816 ± 0.024 FastICA (sup) 0.03 1 0.84 0.17 [0.17,0.42] 0.33 [0.25,0.5]

0.819 ± 0.017 JADE 0.03 0.06 0.06 0.56 0.25 [0.17,0.5]

0.821 ± 0.010 RADICAL 0.03 0.69 1 1 0.84

Table 22: Pairwise y-reliability results for underdetermined PPGs.

ρsy group pca fastica fastica (sub) fastica (sup) jade radical

0.718 ± 0.014 PCA 1 [1,1] 1 [1,1] 1 [1,1] 1 [1,1] 1 [1,1]

0.804 ± 0.032 FastICA 0.03 0.17 [0.17,0.42] 0.17 [0.17,0.5] 0.17 [0.17,0.42] 0.17 [0.17,0.83]

0.804 ± 0.029 FastICA (sub) 0.03 0.84 0.17 [0.17,0.42] 0.17 [0.17,0.5] 0.17 [0.17,0.71]

0.802 ± 0.035 FastICA (sup) 0.03 0.56 0.56 0.17 [0.17,0.5] 0.17 [0.17,0.67]

0.809 ± 0.026 JADE 0.03 0.06 0.03 0.16 0.17 [0.17,1]

0.795 ± 0.019 RADICAL 0.03 0.44 0.43 0.56 0.31

In the following (Tables 23 and 24), ∆SNRorig are shown as mean ± standard deviation
dB, p-values (below main diagonal) from Wilcoxon’s signed-rank test on subject-wise
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means (N = 42) and effect size (above main diagonal) Cohen’s U1 and 95% CIs of U1
[104] (calculated with bootstrapping, N = 1000) in brackets.

Table 23: Pairwise SNR results for mixtures of phase-delayed PPGs.

∆SNRor ig group fastica fastica (sub) fastica (sup) jade radical sobi

-0.42 ± 0.47 PCA X X X X X X
0.31 ± 0.30 FastICA 0.02 [0.02,0.07] 0.04 [0.02,0.1] 0.02 [0.02,0.1] 0.08 [0.05,0.2] 0.11 [0.06,0.34]
0.28 ± 0.31 FastICA (sub) < 0.001 0.05 [0.02,0.11] 0.04 [0.02,0.11] 0.12 [0.07,0.24] 0.13 [0.08,0.37]
0.28 ± 0.31 FastICA (sup) 0.04 0.70 0.05 [0.02,0.11] 0.14 [0.08,0.24] 0.21 [0.14,0.39]
0.31 ± 0.30 JADE 0.35 0.02 0.05 0.10 [0.06,0.24] 0.12 [0.08,0.37]
0.48 ± 0.29 RADICAL < 0.001 < 0.001 < 0.001 0.01 0.02 [0.02,0.14]
0.65 ± 0.32 SOBI < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 24: Pairwise SNR results for mixtures of phase-delayed PPGs and disturbance.

∆SNRor ig group pca fastica fastica(sub) fastica(sup) jade radical sobi

-1.48 ± 0.60 PCA 0.33
[0.27,0.43]

0.33
[0.27,0.44]

0.33
[0.27,0.42]

0.32
[0.26,0.42]

0.36
[0.31,0.45]

0.29
[0.21,0.39]

-0.83 ± 0.52 FastICA < 0.001 0.02
[0.02,0.07]

0.02
[0.02,0.08]

0.02
[0.02,0.07]

0.07
[0.04,0.13]

0.12
[0.06,0.24]

-0.84 ± 0.52 FastICA
(sub)

< 0.001 0.09 0.02
[0.02,0.08]

0.02
[0.02,0.08]

0.07
[0.04,0.13]

0.11
[0.05,0.23]

-0.81 ± 0.51 FastICA
(sup)

< 0.001 0.07 < 0.01 0.02
[0.02,0.08]

0.06
[0.02,0.12]

0.11
[0.06,0.23]

-0.84 ± 0.54 JADE < 0.001 0.84 0.33 0. 17 0.07
[0.02,0.13]

0.11
[0.06,0.25]

-0.82 ± 0.53 RADICAL < 0.001 0.70 0.29 0.69 0.59 0.1 [0.06,0.2]
-0.97 ± 0.47 SOBI < 0.001 < 0.001 < 0.01 < 0.001 < 0.001 < 0.001

In the following (Table 25), Umax are shown as mean ± standard deviation rad2, p-
values (below main diagonal) from Wilcoxon’s signed-rank test on subject-wise means
(N = 42) and effect size (above main diagonal) Cohen’s U1 and 95% CIs of U1 [104]
(calculated with bootstrapping, N = 1000) in brackets.

Table 25: Pairwise W-reliability results for mixtures of phase-delayed PPGs.

Umax group fastica fastica (sub) fastica (sup) jade radical sobi

7.3e-03 ± 6e-03 FastICA 0.07 [0.03,0.2] 0.02 [0.02,0.11] 0.12 [0.07,0.25] 0.08 [0.04,0.2] 0.12 [0.08,0.32]
8.5e-03 ± 7e-03 FastICA (sub) 0.08 0.02 [0.02,0.14] 0.18 [0.12,0.3] 0.14 [0.08,0.24] 0.24 [0.17,0.35]
6.8e-03 ± 5e-03 FastICA (sup) 0.61 0.03 0.12 [0.07,0.21] 0.08 [0.05,0.17] 0.20 [0.14,0.31]
5.5e-03 ± 5e-03 JADE 0.01 < 0.01 0.04 0.04 [0.02,0.13] 0.11 [0.06,0.20]
6.4e-03 ± 5e-03 RADICAL 0.47 0.14 0.68 0.44 0.10 [0.06,0.19]
5.0e-03 ± 5e-03 SOBI 0.02 < 0.01 0.02 0.37 0.25

In the following (Tables 26 -27), ρsy are shown as mean ± standard deviation a.u.,
p-values (below main diagonal) from Wilcoxon’s signed-rank test on subject-wise means
(N = 42) and effect size (above main diagonal) Cohen’s U1 and 95% CIs of U1 [104]
(calculated with bootstrapping, N = 1000) in brackets.
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Table 26: Pairwise y-reliability results for mixtures of phase-delayed PPGs.

ρsy group fastica fastica (sub) fastica (sup) jade radical sobi

0.84 ± 0.02 PCA X X X X X X
0.926 ± 0.04 FastICA 0.05 [0.02,0.11] 0.02 [0.02,0.11] 0.05 [0.02,0.13] 0.1 [0.05,0.2] 0.23 [0.15,0.44]
0.928 ± 0.04 FastICA (sub) 0.20 0.04 [0.02,0.12] 0.07 [0.04,0.14] 0.1 [0.06,0.21] 0.23 [0.17,0.44]
0.930 ± 0.04 FastICA (sup) 0.17 0.43 0.07 [0.04,0.15] 0.1 [0.05,0.18] 0.21 [0.15,0.4]
0.937 ± 0.04 JADE < 0.01 < 0.01 0.04 0.15 [0.09,0.29] 0.36 [0.3,0.61]
0.898 ± 0.05 RADICAL 0.11 0.05 0.03 < 0.01 0.02 [0.02,0.13]
0.861 ± 0.06 SOBI < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 27: Pairwise y-reliability results for mixtures of phase-delayed PPGs and distur-
bance.

ρsy group pca fastica fastica(sub) fastica(sup) jade radical sobi

0.73 ± 0.03 PCA 0.61
[0.55,0.78]

0.56
[0.5,0.76]

0.64
[0.57,0.79]

0.62
[0.56,0.83]

0.29
[0.23,0.55]

0.21
[0.15,0.44]

0.81 ± 0.04 FastICA < 0.001 0.04
[0.02,0.08]

0.05
[0.02,0.1]

0.02
[0.02,0.07]

0.05
[0.02,0.14]

0.14
[0.1,0.27]

0.81 ± 0.04 FastICA
(sub)

< 0.001 0.34 0.05
[0.02,0.1]

0.04
[0.02,0.1]

0.05
[0.02,0.14]

0.12
[0.07,0.26]

0.81 ± 0.04 FastICA
(sup)

< 0.001 0.16 0.48 0.02
[0.02,0.1]

0.06
[0.04,0.17]

0.14
[0.1,0.29]

0.82 ± 0.04 JADE < 0.001 < 0.01 < 0.001 < 0.001 0.06
[0.04,0.2]

0.13
[0.09,0.33]

0.79 ± 0.05 RADICAL < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.05
[0.02,0.15]

0.77 ± 0.04 SOBI < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

a.3.3 Mixture Signal Modification

In the following (Tables 28 - 31), SNRs are shown as mean ± standard deviation dB.,
p-values (below main diagonal) from Wilcoxon’s signed-rank test on subject-wise means
(N = 6) and effect size (above main diagonal) Cohen’s U1 and 95% CIs of U1 [104]
(calculated with bootstrapping, N = 1000) in brackets.

Table 28: Pairwise results for convolutive mixtures with FastICA with respect to
spatio-temporal BSS dimension dim.

snr group orig 1 2 5 10 20 50

2.58 ± 3.50 ORIG 0.42
[0.25,0.5]

0.42
[0.25,0.5]

0.33
[0.17,0.5]

0.25
[0.17,0.5]

0.33
[0.17,0.5]

0.5 [0.5,1]

1.00 ± 3.59 1 0.03 0.25
[0.17,0.5]

0.33
[0.17,0.5]

0.42
[0.25,0.5]

0.42
[0.25,0.5]

0.42
[0.33,1]

1.29 ± 3.50 2 0.03 0.03 0.33
[0.17,0.5]

0.33
[0.25,0.5]

0.42
[0.25,0.5]

0.5 [0.5,1]

1.89 ± 3.36 5 0.03 0.03 0.03 0.33
[0.17,0.5]

0.42
[0.25,0.5]

0.42
[0.25,1]

2.32 ± 3.20 10 0.16 0.03 0.03 0.03 0.33
[0.17,0.5]

0.5 [0.5,1]

0.94 ± 2.14 20 0.06 1 0.44 0.16 0.06 0.42
[0.33,1]

-0.51 ± 1.40 50 0.03 0.16 0.16 0.06 0.03 0.03

-1.49 ± 0.81 100 X X X X X X X
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Table 29: Pairwise results for convolutive mixtures with JADE with respect to spatio-
temporal BSS dimension dim.

snr group orig 1 2 5 10

2.58 ± 3.50 ORIG 0.42 [0.25,0.5] 0.42 [0.25,0.5] 0.33 [0.17,0.5] 0.42 [0.25,0.5]

0.98 ± 3.61 1 0.03 0.25 [0.17,0.5] 0.33 [0.17,0.5] 0.33 [0.21,0.5]

1.26 ± 3.51 2 0.03 0.03 0.33 [0.17,0.5] 0.33 [0.17,0.5]

1.76 ± 3.39 5 0.03 0.03 0.03 0.25 [0.17,0.5]

1.93 ± 3.20 10 0.03 0.03 0.03 0.09

Table 30: Pairwise results for non-stationary mixtures with FastICA with respect to
spatio-temporal BSS dimension dim.

snr group orig 1 2 5 10 20 50

2.77 ± 3.16 ORIG 0.25
[0.17,0.5]

0.25
[0.17,0.5]

0.17
[0.17,0.42]

0.25
[0.17,0.5]

0.33
[0.17,0.5]

0.5 [0.5,1]

2.34 ± 3.15 1 0.03 0.17
[0.17,0.42]

0.17
[0.17,0.42]

0.17
[0.17,0.5]

0.42
[0.25,0.5]

0.42
[0.25,1]

2.40 ± 3.12 2 0.03 0.03 0.17
[0.17,0.42]

0.17
[0.17,0.5]

0.33
[0.17,0.5]

0.5 [0.5,1]

2.68 ± 3.05 5 0.44 0.03 0.03 0.17
[0.17,0.42]

0.33
[0.17,0.5]

0.5 [0.5,1]

2.82 ± 2.93 10 0.84 0.06 0.06 0.22 0.33
[0.17,0.5]

0.5 [0.5,1]

1.97 ± 2.23 20 0.16 0.44 0.44 0.16 0.06 0.5 [0.5,1]

-0.28 ± 1.43 50 0.03 0.03 0.03 0.03 0.03 0.03

-1.50 ± 1.04 100 X X X X X X X

Table 31: Pairwise results for non-stationary mixtures with JADE with respect to
spatio-temporal BSS dimension dim.

snr group orig 1 2 5 10

2.77 ± 3.16 ORIG 0.25 [0.17,0.5] 0.25 [0.17,0.5] 0.25 [0.17,0.5] 0.33 [0.17,0.5]

2.38 ± 3.17 1 0.03 0.17 [0.17,0.42] 0.17 [0.17,0.42] 0.25 [0.17,0.5]

2.37 ± 3.12 2 0.03 0.84 0.17 [0.17,0.42] 0.25 [0.17,0.5]

2.39 ± 2.99 5 0.03 1 0.69 0.25 [0.17,0.5]

2.22 ± 2.75 10 0.03 0.69 1 0.56
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a.4 additional results for permutation indeterminacy

a.4.1 Permutation Indeterminacy for ECG signals

In the following (Tables 32 and 33), ACCs are shown as mean ± standard deviation, p-
values (below main diagonal) from Wilcoxon’s signed-rank tests on subject-wise means
(N = 10 for tECG and cECG, N = 48 for aECG) and effect size (above main diagonal)
Cohen’s U1 and 95% CIs of U1 [104] in brackets.

Table 32: Pairwise results for cECG data.

ACC Group Av.Input RCODE PeriodTest SKEW KURT CASCSEL

0.566 ± 0.136 Av. Input 0.85 [0.7,1] 0.9 [0.75,1] 0.25
[0.15,0.45]

0.1
[0.1,0.35]

0.7 [0.55,1]

0.867 ± 0.092 RCODE < 0.01 0.1 [0.1,0.3] 0.7 [0.55,1] 0.8 [0.65,1] 0.3
[0.2,0.58]

0.868 ± 0.093 PeriodTest < 0.01 0.77 0.7 [0.55,1] 0.8 [0.65,1] 0.3 [0.2,0.6]

0.629 ± 0.107 SKEW 0.08 < 0.01 < 0.01 0.3
[0.15,0.5]

0.6 [0.5,1]

0.584 ± 0.127 KURT 0.49 < 0.01 < 0.01 < 0.01 0.6 [0.5,1]

0.793 ± 0.064 CASCSEL < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Table 33: Pairwise results for aECG (MIT-BIH) data.

ACC Group Av.Input RCODE PeriodTest SKEW KURT CASCSEL

0.871 ± 0.100 Av. Input 0.16
[0.10,0.33]

0.17
[0.12,0.30]

0.08
[0.05,0.23]

0.06
[0.03,0.19]

0.06
[0.03,0.23]

0.948 ± 0.065 RCODE < 0.001 0.01
[0.01,0.04]

0.01
[0.01,0.08]

0.01
[0.01,0.17]

0.01
[0.01,0.09]

0.945 ± 0.067 PeriodTest < 0.001 0.01 0.02
[0.01,0.07]

0.02
[0.01,0.14]

0.01
[0.01,0.09]

0.933 ± 0.083 SKEW < 0.001 0.21 0.67 0.01
[0.01,0.10]

0.01
[0.01,0.08]

0.917 ± 0.095 KURT < 0.001 < 0.01 0.02 < 0.001 0.01
[0.01,0.13]

0.942 ± 0.067 CASCSEL < 0.001 0.01 0.16 0.91 0.06
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Tyrion: He wished he’d been able to think of some rousing last words.
"Bugger you all" was not like to earn him much of a place in the histories.

— George R.R. Martin in A Storm of Swords p.1062, A Song of Ice and Fire (2000)
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