86,187 research outputs found

    Offset-free receding horizon control of constrained linear systems

    No full text
    The design of a dynamic state feedback receding horizon controller is addressed, which guarantees robust constraint satisfaction, robust stability and offset-firee control of constrained linear systems in the presence of time-varying setpoints and unmeasured disturbances. This objective is obtained by first designing a dynamic linear offset-free controller and computing an appropriate domain of attraction for this controller. The linear (unconstrained) controller is then modified by adding a perturbation term, which is computed by a (constrained) robust receding horizon controller. The receding horizon controller has the property that its domain of attraction contains that of the linear controller. In order to ensure robust constraint satisfaction, in addition to offset-free control, the transient, as well as the limiting behavior of the disturbance and setpoint need to be taken into account in the design of the receding horizon controller. The fundamental difference between the results and the existing literature on receding horizon control is that the transient effect of the disturbance and set point sequences on the so-called "target calculator" is explicitly incorporated in the formulation of the receding horizon controller. An example of the control of a continuous stirred-tank reactor is presented. (c) 2005 American Institute of Chemical Engineers

    Analysis and design of robust stabilizing modified repetitive control systems

    Get PDF
    In control system practice, high precision tracking or attenuation for periodic signals is an important issue. Repetitive control is known as an e.ective approach for such control problems. The internal model principle shows that the repetitive control system which contains a periodic generator in the closed-loop can achieve zero steady-state error for reference input or completely attenuate disturbance. Due to its simple structure and high control precision, repetitive control has been widely applied in many systems. To improve existing results on repetitive control theory, this thesis presents theoretical results in analysis and design repetitive control system. The main work and innovations are listed as follows: We propose a design method of robust stabilizing modi.ed repetitive controllers for multiple-input/multiple-output plants with uncertainties. The parameterization of all robust stabilizing modi.ed repetitive controllers for multiple-input/multiple-output plant with uncertainty is obtained by employing H∞ control theory based on the Riccati equation. The robust stabilizing controller contains free parameters that are designed to achieve desirable control characteristic. In addition, the bandwidth of low-pass .lter has been analyzed. In order to simplify the design process and avoid the wrong results obtained by graphical method, the robust stability conditions are converted to LMIs-constraint conditions by employing the delay-dependent bounded real lemma. When the free parameters of the parameterization of all robust stabiliz-ing controllers is adequately chosen, then the controller works as robust stabilizing modi.ed repetitive controller. For a time-varying periodic disturbances, we give an design method of an opti-mal robust stabilizing modi.ed repetitive controller for a strictly proper plant with time-varying uncertainties. A modi.ed repetitive controller with time-varying delay structure, inserted by a low-pass .lter and an adjustable parameter, is developed for this class of system. Two linear matrix inequalities LMIs-based robust stability con-ditions of the closed-loop system with time-varying state delay are derived for .xed parameters. One is a delay-dependent robust stability condition that is derived based on the free-weight matrix. The other robust stability condition is obtained based on the H∞ control problem by introducing a linear unitary operator. To obtain the desired controller, the design problems are converted to two LMI-constrained opti-mization problems by reformulating the LMIs given in the robust stability conditions. The validity of the proposed method is verified through a numerical example.学位記番号:工博甲46

    Gain-Scheduled Aircraft Control Using Linear Parameter-Varying Feedback

    Get PDF
    Systems which vary significantly over an operating envelope, such as fighter aircraft, generally cannot be controlled by a single linear time-invariant controller. As a result, gain-scheduling methods are employed to design control laws which can provide the desired performance. This thesis examines a relatively new approach to gain-scheduling, in which the varying controller is designed from the outset to guarantee robust performance, thereby avoiding the disadvantages of point designs. Specifically, the parameter-varying (LPV) aircraft model is linearized using linear fractional transformations (LFT\u27s), and the resulting control problem is characterized as the solution to a set of four linear matrix inequalities (LMI\u27s). The supporting theory is reviewed and two pitch-rate controllers are designed; one for the full longitudinal aircraft model, and another for the short period model. It is found that, even though the varying controllers are quite conservative, they can guarantee better robust performance over a large portion of an operating envelope when compared to time-invariant u-synthesis controllers

    Robust and reliable HH_\infty output feedback control for linear systems with parameter uncertainty and actuator failure

    Get PDF
    summary:The robust and reliable HH_{\infty } output feedback controller design problem is investigated for uncertain linear systems with actuator failures within a prespecified subset of actuators. The uncertainty considered here is time- varying norm-bounded parameter uncertainty in the state matrix. The output of a faulty actuator is assumed to be any arbitrary energy-bounded signal. An observer-based output feedback controller design is presented which stabilizes the plant and guarantees an HH_{\infty }-norm bound on attenuation of augmented disturbances, for all admissible uncertainties as well as actuator failures. The construction of the observer-based output feedback control law requires the positive-definite solutions of two algebraic Riccati equations. The result can be regarded as an extension of existing results on robust HH_{\infty } control and reliable HH_{\infty } control of uncertain linear systems

    Robust H-infinity finite-horizon control for a class of stochastic nonlinear time-varying systems subject to sensor and actuator saturations

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This technical note addresses the robust H∞ finite-horizon output feedback control problem for a class of uncertain discrete stochastic nonlinear time-varying systems with both sensor and actuator saturations. In the system under investigation, all the system parameters are allowed to be time-varying, the parameter uncertainties are assumed to be of the polytopic type, and the stochastic nonlinearities are described by statistical means which can cover several classes of well-studied nonlinearities. The purpose of the problem addressed is to design an output feedback controller, over a given finite-horizon, such that the H∞ disturbance attenuation level is guaranteed for the nonlinear stochastic polytopic system in the presence of saturated sensor and actuator outputs. Sufficient conditions are first established for the robust H∞ performance through intensive stochastic analysis, and then a recursive linear matrix inequality (RLMI) approach is employed to design the desired output feedback controller achieving the prescribed H∞ disturbance rejection level. Simulation results demonstrate the effectiveness of the developed controller design scheme.This work was supported under Australian Research Council’s Discovery Projects funding scheme (project DP0880494) and by the German Science Foundation (DFG) within the priority programme 1305: Control Theory of Digitally Networked Dynamical Systems. Recommended by Associate Editor H. Ito

    Development of U-model enhansed nonlinear systems

    Get PDF
    Nonlinear control system design has been widely recognised as a challenging issue where the key objective is to develop a general model prototype with conciseness, flexibility and manipulability, so that the designed control system can best match the required performance or specifications. As a generic systematic approach, U-model concept appeared in Prof. Quanmin Zhu’s Doctoral thesis, and U-model approach was firstly published in the journal paper titled with ‘U-model based pole placement for nonlinear plants’ in 2002.The U-model polynomial prototype precisely describes a wide range of smooth nonlinear polynomial models, defined as a controller output u(t-1) based time-varying polynomial models converted from the original nonlinear model. Within this equivalent U-model expression, the first study of U-model based pole placement controller design for nonlinear plants is a simple mapping exercise from ordinary linear and nonlinear difference equations to time-varying polynomials in terms of the plant input u(t-1). The U-model framework realised the concise and applicable design for nonlinear control system by using such linear polynomial control system design approaches.Since the first publication, the U-model methodology has progressed and evolved over the course of a decade. By using the U-model technique, researchers have proposed many different linear algorithms for the design of control systems for the nonlinear polynomial model including; adaptive control, internal control, sliding mode control, predictive control and neural network control. However, limited research has been concerned with the design and analysis of robust stability and performance of U-model based control systems.This project firstly proposes a suitable method to analyse the robust stability of the developed U-model based pole placement control systems against uncertainty. The parameter variation is bounded, thus the robust stability margin of the closed loop system can be determined by using LMI (Linear Matrix Inequality) based robust stability analysis procedure. U-block model is defined as an input output linear closed loop model with pole assignor converted from the U-model based control system. With the bridge of U-model approach, it connects the linear state space design approach with the nonlinear polynomial model. Therefore, LMI based linear robust controller design approaches are able to design enhanced robust control system within the U-block model structure.With such development, the first stage U-model methodology provides concise and flexible solutions for complex problems, where linear controller design methodologies are directly applied to nonlinear polynomial plant-based control system design. The next milestone work expands the U-model technique into state space control systems to establish the new framework, defined as the U-state space model, providing a generic prototype for the simplification of nonlinear state space design approaches.The U-state space model is first described as a controller output u(t-1) based time-varying state equations, which is equivalent to the original linear/nonlinear state space models after conversion. Then, a basic idea of corresponding U-state feedback control system design method is proposed based on the U-model principle. The linear state space feedback control design approach is employed to nonlinear plants described in state space realisation under U-state space structure. The desired state vectors defined as xd(t), are determined by closed loop performance (such as pole placement) or designer specifications (such as LQR). Then the desired state vectors substitute the desired state vectors into original state space equations (regarded as next time state variable xd(t) = x(t) ). Therefore, the controller output u(t-1) can be obtained from one of the roots of a root-solving iterative algorithm.A quad-rotor rotorcraft dynamic model and inverted pendulum system are introduced to verify the U-state space control system design approach for MIMO/SIMO system. The linear design approach is used to determine the closed loop state equation, then the controller output can be obtained from root solver. Numerical examples and case studies are employed in this study to demonstrate the effectiveness of the proposed methods

    Nonlinear Tracking Control Using a Robust Differential-Algebraic Approach.

    Get PDF
    This dissertation presents the development and application of an inherently robust nonlinear trajectory tracking control design methodology which is based on linearization along a nominal trajectory. The problem of trajectory tracking is reduced to two separate control problems. The first is to compute the nominal control signal that is needed to place a nonlinear system on a desired trajectory. The second problem is one of stabilizing the nominal trajectory. The primary development of this work is the development of practical methods for designing error regulators for Linear Time Varying systems, which allows for the application of trajectory linearization to time varying trajectories for nonlinear systems. This development is based on a new Differential Algebraic Spectral Theory. The problem of robust tracking for nonlinear systems with parametric uncertainty is studied in relation to the Linear Time Varying spectrum. The control method presented herein constitutes a rather general control strategy for nonlinear dynamic systems. Design and simulation case studies for some challenging nonlinear tracking problems are considered. These control problems include: two academic problems, a pitch autopilot design for a skid-to-turn missile, a two link robot controller, a four degree of freedom roll-yaw autopilot, and a complete six degree of freedom Bank-to-turn planar missile autopilot. The simulation results for these designs show significant improvements in performance and robustness compared to other current control strategies

    Finite-Time Robust H

    Get PDF
    Singular systems arise in a great deal of domains of engineering and can be used to solve problems which are more difficult and more extensive than regular systems to solve. Therefore, in this paper, the definition of finite-time robust H∞ control for uncertain linear continuous-time singular systems is presented. The problem we address is to design a robust state feedback controller which can deal with the singular system with time-varying norm-bounded exogenous disturbance, such that the singular system is finite-time robust bounded (FTRB) with disturbance attenuation γ. Sufficient conditions for the existence of solutions to this problem are obtained in terms of linear matrix equalities (LMIs). When these LMIs are feasible, the desired robust controller is given. A detailed solving method is proposed for the restricted linear matrix inequalities. Finally, examples are given to show the validity of the methodology
    corecore