
Research Article
Finite-Time Robust𝐻∞ Control for Uncertain
Linear Continuous-Time Singular Systems with
Exogenous Disturbances

SonglinWo and Bo Li

School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China

Correspondence should be addressed to Songlin Wo; wosonglin@jsut.edu.cn

Received 27 September 2017; Revised 22 January 2018; Accepted 28 January 2018; Published 26 February 2018

Academic Editor: Xuejun Xie

Copyright © 2018 Songlin Wo and Bo Li. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Singular systems arise in a great deal of domains of engineering and can be used to solve problems which are more difficult and
more extensive than regular systems to solve. Therefore, in this paper, the definition of finite-time robust𝐻∞ control for uncertain
linear continuous-time singular systems is presented.The problem we address is to design a robust state feedback controller which
can deal with the singular system with time-varying norm-bounded exogenous disturbance, such that the singular system is finite-
time robust bounded (FTRB) with disturbance attenuation 𝛾. Sufficient conditions for the existence of solutions to this problem
are obtained in terms of linear matrix equalities (LMIs). When these LMIs are feasible, the desired robust controller is given. A
detailed solving method is proposed for the restricted linear matrix inequalities. Finally, examples are given to show the validity of
the methodology.

1. Introduction

Singular system (known aswell descriptor systemor algebraic
differential system) was introduced to model a large class
of systems in many domains, such as physical, biological,
and economic ones, to which the standard representation
sometimes cannot be applied. The 𝐻∞ control problem for
singular systems has attracted much attention due to its
both practical and theoretical importance since 2000. Various
approaches have been developed, and a great number of
results for continuous singular systems and discrete singular
systemshave been reported in the literatures; see, for instance,
[1–9].

On the other hand, most of the results in this field
related to stability and performance criteria were defined
over an infinite-time interval. In many practical applications,
the main concerns are the behavior of the system over a
fixed finite-time interval. It has shown that in [10] that a
sufficient condition for robust finite-time stabilization for
linear systems is provided. Moreover, in [11], the assumption
that the state is available for feedback is removed and the

output feedback problem is investigated. The corresponding
results for discrete linear systems can be found in [12]. In
[13], the design of time-varying state feedback controller
guaranteeing that the finite-time closed-loop stability is pre-
sented. And some finite-time control problems for uncertain
discrete-time linear systems subject to exogenous disturbance
was dealt with in [14]. Furthermore it appears reasonable to
provide a kind of stabilization definition for a system whose
state remains within prescribed bounds in the fixed finite-
time interval with some given initial conditions. For example,
the main aim of [15] is focused on the design a state feedback
controller which ensures that the closed-loop system is finite-
time bounded (FTB) and reduces the effect of the disturbance
input on the controlled output to a prescribed level. Recently,
Feng et al. [16–18] extended the definition of finite-time stable
(FTS) and the definition of finite-time bounded (FTB) of
regular systems to ones of singular systems.

In this paper, we extend the definition of 𝐻∞ control,
and a new definition of finite-time𝐻∞ control for uncertain
linear continuous singular systems (ULCTSS) is presented.
Our main propose is to design a state feedback controller
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which guarantees that the closed-loop system is regular and
impulse-free and FTB with a prescribed level of disturbance
attenuation. A sufficient condition is presented for the solv-
ability of this problem, which can be reduced to a feasibility
problem involving linear matrix inequalities (LMIs). As a
corollary, the existence condition and design method of
the finite-time 𝐻∞ controller for continuous-time singular
systems are given. Finally, examples are given to show the
validity of the proposed approach.

Notation 1. Throughout this paper, for real symmetric matri-
ces 𝑋 and 𝑌, the notation 𝑋 ≥ 𝑌 (𝑋 > 𝑌, resp.) means that
the matrix 𝑋 − 𝑌 is positive semidefinite (positive definite,
resp.). 𝐼 is the identity matrix with appropriate dimension.
The notation 𝑁𝑇 represents the transpose of the matrix𝑁. Matrices, if not explicitly stated, are assumed to have
compatible dimensions. The notation of rank𝑋 represents
the rank of matrix 𝑋. ‖ ⋅ ‖ is the Euclidean matrix norm.
Re(⋅) is real part of a complex. 𝜆(⋅) is the eigenvalue of a real
symmetric matrix. 𝜆max(⋅) is maximum the eigenvalue of a
real symmetric matrix.

2. Preliminaries and Problem Formulation

In this paper, we consider the following uncertain linear
continuous-time singular system (ULCTSS):

𝐸𝑥̇ (𝑡) = (𝐴 + △𝐴) 𝑥 (𝑡) + (𝐵 + △𝐵) 𝑢 (𝑡) + 𝐺𝜔 (𝑡) ,
𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷1𝑢 (𝑡) + 𝐷2𝜔 (𝑡) , (1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector; 𝑢(𝑡) ∈ R𝑚 is the control
input; 𝑧(𝑡) ∈ R𝑙 is the control output; 𝜔(𝑡) ∈ R𝑞 is the
exogenous disturbance; matrices 𝐸 ∈ R𝑛×𝑛, 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈
R𝑛×𝑚, 𝐺 ∈ R𝑛×𝑞, 𝐶 ∈ R𝑙×𝑛, 𝐷1 ∈ R𝑙×𝑚, and 𝐷2 ∈ R𝑙×𝑞 are
known mode-dependent constant matrices with appropriate
dimensions, and rank𝐸 = 𝑟 < 𝑛. △𝐴 and △𝐵 are unknown
time-invariant matrix uncertainty, respectively, modeled as

[△𝐴 △𝐵] = 𝑀𝐹 (𝜎) [𝑁𝑎 𝑁𝑏] , (2)

where𝑀,𝑁𝑎, 𝑁𝑏 are known mode-dependent matrices with
appropriate dimensions. 𝐹(𝜎) is the time-invariant unknown
matrix function with Lebesgue norm measurable elements
satisfying

𝐹𝑇 (𝜎) 𝐹 (𝜎) ≤ 𝐼, (3)

and 𝜎 ∈ Θ, where Θ is a compact set. The uncertain matrices△𝐴 and △𝐵 are said to be admissible if both (2) and (3)
hold. In this paper, the following assumptions, definitions,
and lemmas play an important role in our later proof.

Assumption 1. The external disturbance 𝜔(𝑡) is time-variant
and satisfies

∫+∞
0

𝜔𝑇 (𝑡) 𝜔 (𝑡) 𝑑𝑡 ≤ 𝑑. (4)

Assumption 2. There exist two orthogonal matrices 𝑈 and 𝑉
such that 𝐸 has the decomposition as

𝐸 = 𝑈[Σ𝑟 00 0]𝑉𝑇, (5)

where Σ𝑟 = diag(𝜎1, 𝜎2, . . . , 𝜎𝑟) with 𝜎𝑖 > 0 for 𝑖 = 1, 2, . . . , 𝑟.
Partition

𝑈 = [𝑈1 𝑈2] ,
𝑉 = [𝑉1 𝑉2] (6)

conformably with (5). From (5), it can be seen that 𝑉2 spans
the right null space of 𝐸, and 𝑈𝑇2 spans the left null space of𝐸; that is, 𝐸𝑉2 = 0 and 𝑈𝑇2 𝐸 = 0.
Definition 3 (see [16]). The linear continuous-time singular
system (LCTSS) (7) with 𝜔(𝑡) = 0,

𝐸𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐺𝜔 (𝑡) ,
𝑥 (0) = 𝑥0, (7)

is said to be regular, if det(𝑠𝐸 − 𝐴) is not identically zero.
Definition 4 (see [16]). The LCTSS (7) with 𝜔(𝑡) = 0 is said to
be impulse-free, if deg(det(𝑠𝐸 − 𝐴)) = rank𝐸.
Definition 5. The LCTSS (7) subject to an exogenous distur-
bance 𝜔(𝑡) satisfies (4) and is said to be finite-time bounded
(FTB) with respect to (𝑐1, 𝑐2, 𝑇, 𝑅, 𝑑) (0 < 𝑐1 < 𝑐2 and 𝑅 > 0),
if

(i) the CTLSS (7) is said to be regular and impulse-free,
when 𝜔(𝑡) = 0;

(ii) 𝑥𝑇0𝐸𝑇𝑅𝐸𝑥0 ≤ 𝑐1 ⇒ 𝑥𝑇(𝑡)𝐸𝑇𝑅𝐸𝑥(𝑡) < 𝑐2, ∀𝑡 ∈ [0, 𝑇].
Definition 6. The uncertain linear continuous-time singular
systems (ULCTSS),

𝐸𝑥̇ (𝑡) = [𝐴 + △𝐴] 𝑥 (𝑡) + 𝐺𝜔 (𝑡) ,
𝑥 (0) = 𝑥0, (8)

subject to an exogenous disturbance 𝜔(𝑡) satisfy (4) and△𝐴
satisfies (2) and is said to be finite-time robust bounded
(FTRB) with respect to (𝑐1, 𝑐2, 𝑇, 𝑅, 𝑑) (0 < 𝑐1 < 𝑐2 and𝑅 > 0),
if

(i) theULCTSS (8) is said to be regular and impulse-free,
when 𝜔(𝑡) = 0;

(ii) 𝑥𝑇0𝐸𝑇𝑅𝐸𝑥0 ≤ 𝑐1 ⇒ 𝑥𝑇(𝑡)𝐸𝑇𝑅𝐸𝑥(𝑡) < 𝑐2, ∀𝑡 ∈ [0, 𝑇].
Lemma7 (Desoer andVidyasagar, 1975). Thematrixmeasure𝜇(𝑋) of the matrix 𝑋 has following properties:

(i) −‖𝑋‖ ≤ Re𝜆(𝑋) ≤ 𝜇(𝑋) ≤ ‖𝑋‖.
(ii) 𝜇(𝑋) = (1/2)𝜆max(𝑋 + 𝑋𝑇).
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Lemma 8 (see [19]). The following items are true.
(i) All𝑃 satisfying𝐸𝑇𝑃 = 𝑃𝑇𝐸 ≥ 0 can be parameterized as𝑃 = 𝑈1𝑊𝑈𝑇1 𝐸 + 𝑈2𝑆, where 0 ≤ 𝑊 ∈ R𝑟×𝑟 and 𝑆 ∈ R(𝑛−𝑟)×𝑛

are parameter matrices; furthermore, when 𝑃 is nonsingular,𝑊 > 0.
(ii) All𝑋 satisfying𝑋𝐸𝑇 = 𝐸𝑋𝑇 ≥ 0 can be parameterized

as𝑋 = 𝐸𝑉1𝑊̂𝑉𝑇1 +𝑆𝑉𝑇2 , where 0 ≤ 𝑊̂ ∈ R𝑟×𝑟 and 𝑆 ∈ R(𝑛−𝑟)×𝑛

are parameter matrices; furthermore, when 𝑋 is nonsingular,𝑊̂ > 0.
(iii) If 𝑈1𝑊𝑈𝑇1 𝐸 + 𝑈2𝑆 is nonsingular with 𝑊 > 0, then

there exist 𝑊̂ and 𝑆 such that
𝑈1𝑊𝑈𝑇1 𝐸 + 𝑈2𝑆 = (𝐸𝑉1𝑊̂𝑉𝑇1 + 𝑆𝑉𝑇2 )−1 (9)

with 𝑊̂ = Σ−1𝑟 𝑊−1Σ−1𝑟 .
Lemma 9 (see [20]). Let𝐷,𝐻, 𝐹 be real matrices of appropri-
ate dimensions such that 𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼. For any scalar 𝜀 > 0,
then we have the following:

𝐷𝐹 (𝑡)𝐻 + (𝐷𝐹 (𝑡)𝐻)𝑇 ≤ 𝜀𝐷𝐷𝑇 + 1𝜀𝐻𝑇𝐻. (10)

Consider the following state feedback controller:

𝑢 (𝑡) = 𝐾𝑥 (𝑡) , (11)

where 𝐾 is the controller gain to be designed. Then, the
uncertain closed-loop systems is as follows:

𝐸𝑥̇ (𝑡) = [𝐴𝐾 + △𝐴𝐾] 𝑥 (𝑡) + 𝐺𝜔 (𝑡) ,
𝑧 (𝑡) = 𝐶𝐾𝑥 (𝑡) + 𝐷2𝜔 (𝑡) , (12)

where 𝐴𝐾 = 𝐴 + 𝐵𝐾,△A𝐾 = △𝐴 + △𝐵𝐾, 𝐶𝐾 = 𝐶 + 𝐷1𝐾.
The finite-time robust 𝐻∞ control problem to be

addressed in this paper can be formulated as finding a state
feedback controller in the form of (11) such that

(i) the uncertain closed-loop system (12) is FTRB;

(ii) under the zero-initial condition, the controlled output𝑧 satisfies
∫𝑇
0
𝑧𝑇 (𝑡) 𝑧 (𝑡) 𝑑𝑡 < 𝛾2 ∫𝑇

0
𝜔𝑇 (𝑡) 𝜔 (𝑡) 𝑑𝑡, (13)

for any nonzero 𝜔(𝑡) satisfies (4), where 𝛾 is a prescribed
scalar.

3. Main Results

The following lemma states a sufficient condition for the FTB
of system (7), which is the fundament to obtain the main
results.

Lemma 10. The LCTSS (7) with 𝜔(𝑡) = 0 is regular and
impulse-free, if there exist a scalar 𝛼 ≥ 0 and an invertible
matrix 𝑃, such that the following conditions hold:

𝐸𝑇𝑃 = 𝑃𝑇𝐸 ≥ 0, (14)

𝐴𝑇𝑃 + 𝑃𝑇𝐴 < 𝛼𝐸𝑇𝑃. (15)

Proof. Let 𝑀̃, 𝑁̃ ∈ R𝑛×𝑛 be nonsingular matrices such that

𝑀̃𝐸𝑁̃ = [𝐼𝑟 00 0] . (16)

New partitions 𝑀̃−𝑇𝑃𝑁̃ and 𝑀̃𝐴𝑁̃ conform to 𝑀̃𝐸𝑁̃; that is,

𝑀̃−𝑇𝑃𝑁̃ = [𝑃1 𝑃2𝑃3 𝑃4] ,

𝑀̃𝐴𝑁̃ = [𝐴1 𝐴2𝐴3 𝐴4] .
(17)

From (14), (16), and (17), it is easy to show that 𝑃1 > 0 and𝑃2 = 0. By using (15) together with (16) and (17), we have

[
[
𝐴𝑇1𝑃1 + 𝑃𝑇1 𝐴1 + 𝐴𝑇3𝑃3 + 𝑃𝑇3 𝐴3 − 𝛼𝑃1 𝐴𝑇3𝑃4 + 𝑃𝑇1 𝐴2 + 𝑃𝑇3 𝐴4

𝐴𝑇2𝑃1 + 𝐴𝑇4𝑃3 + 𝑃𝑇4 𝐴3 𝐴𝑇4𝑃4 + 𝑃𝑇4 𝐴4
]
]
< 0. (18)

By Lemma 7,

Re 𝜆 (𝑃𝑇4 𝐴4) ≤ 𝜇 (𝑃𝑇4 𝐴4) = 12𝜆max (𝐴𝑇4𝑃4 + 𝑃𝑇4 𝐴4)
< 0. (19)

Then it can be easily shown that 𝑃𝑇4 𝐴4 is invertible, which
implies that 𝐴4 is invertible, too. Hence, in the light of
definition and the results of Xu [1], we have that the
LCTSS (7) is regular and impulse-free. The proof is complet-
ed.

Lemma 11. The unforced ULCTSS (1) (𝑢(𝑡) = 0) is said to be
FTRB with respect to (𝑐1, 𝑐2, 𝑇, 𝑅, 𝑑), if there exist scalars 𝜀 > 0,𝜆1 > 0, 𝜆2 > 0, 𝛼 ≥ 0, invertible matrix 𝑃, and symmetric
positive definite matrix 𝑄 such that

[[[
[

Π 𝑃𝑇𝐺 𝑁𝑇𝑎
𝐺𝑇𝑃 −𝑄 0
𝑁𝑎 0 −𝜀𝐼

]]]
]
< 0, (20)

𝐸𝑇𝑃 = 𝑃𝑇𝐸 ≥ 0, (21)
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𝜆1𝐸𝑇𝑃 < 𝐸𝑇𝑅𝐸 < 𝜆2𝐸𝑇𝑃, (22)

𝜆2𝑒𝛼𝑇 [ 𝑐1𝜆1 + 𝑑𝜆max (𝑄)] < 𝑐2, (23)

hold, where Π = 𝐴𝑇𝑃 + 𝑃𝑇𝐴 − 𝛼𝐸𝑇𝑃 + 𝜀𝑃𝑇𝑀𝑀𝑇𝑃.
Proof. Using Schur complements formula, from (20), it is
easy to show that

Π + 1𝜀𝑁𝑇𝑎𝑁𝑎 + 𝑃𝑇𝐺𝑄−1𝐺𝑇𝑃 < 0. (24)

By Lemma 9,

[△𝐴]𝑇 𝑃 + 𝑃𝑇 [△𝐴] = (𝑀𝐹 (𝜎)𝑁𝑎)𝑇 𝑃
+ 𝑃𝑇 (𝑀𝐹 (𝜎)𝑁𝑎)

≤ 𝜀𝑃𝑇𝑀𝑀𝑇𝑃 + 1𝜀𝑁𝑇𝑎𝑁𝑎.
(25)

Hence,

[𝐴 + △𝐴]𝑇 𝑃 + 𝑃𝑇 [𝐴 + △𝐴] − 𝛼𝐸𝑇𝑃
+ 𝑃𝑇𝐺𝑄−1𝐺𝑇𝑃 ≤ Π + 1𝜀𝑁𝑇𝑎𝑁𝑎 + 𝑃𝑇𝐺𝑄−1𝐺𝑇𝑃.

(26)

By noting (24) and (26), (20) implies that

[𝐴 + △𝐴]𝑇 𝑃 + 𝑃𝑇 [𝐴 + △𝐴] − 𝛼𝐸𝑇𝑃
+ 𝑃𝑇𝐺𝑄−1𝐺𝑇𝑃 < 0. (27)

Or equivalently

[[𝐴 + △𝐴]𝑇 𝑃 + 𝑃𝑇 [𝐴 + △𝐴] − 𝛼𝐸𝑇𝑃 𝑃𝑇𝐺
𝐺𝑇𝑃 −𝑄 ] < 0. (28)

By noting that (27) implies that [𝐴+△𝐴]𝑇𝑃+𝑃𝑇[𝐴+△𝐴]−𝛼𝐸𝑇𝑃 < 0, (21) and Lemma 10, then the unforced ULCTSS
(1) (𝑢(𝑡) = 0) is said to be regular and impulse-free when𝜔(𝑡) = 0.

On the other hand, (22) is equivalent to

1𝜆2𝐸𝑇𝑅𝐸 < 𝐸𝑇𝑃 <
1𝜆1𝐸𝑇𝑅𝐸. (29)

Let 𝑉(𝑥(𝑡)) = 𝑥𝑇(𝑡)𝐸𝑇𝑃𝑥(𝑡) ≥ 0, and 𝑉̇(𝑥(𝑡)) denotes
the derivative of 𝑉(𝑥(𝑡)) along the solution of the unforced
ULCTSS (1) (𝑢(𝑡) = 0). We have

𝑉̇ (𝑥 (𝑡)) = [(𝐴 + △𝐴) 𝑥 (𝑡) + 𝐺𝜔 (𝑡)]𝑇 𝑃𝑥 (𝑡) + 𝑥𝑇 (𝑡)
⋅ 𝑃𝑇 [(𝐴 + △𝐴) 𝑥 (𝑡) + 𝐺𝜔 (𝑡)] = [𝑥 (𝑡)𝜔 (𝑡)]

𝑇

⋅ [[𝐴 + △𝐴]𝑇 𝑃 + 𝑃𝑇 [𝐴 + △𝐴] 𝑃𝑇𝐺
𝐺𝑇𝑃 0 ][𝑥 (𝑡)𝜔 (𝑡)] .

(30)

From (21), (28), and (30), we have

𝑉̇ (𝑥 (𝑡)) < 𝛼𝑉 (𝑥 (𝑡)) + 𝜔𝑇 (𝑡) 𝑄𝜔 (𝑡) . (31)

Multiplying (31) by 𝑒−𝛼𝑡, we can obtain

𝑒−𝛼𝑡𝑉̇ (𝑥 (𝑡)) − 𝛼𝑒−𝛼𝑡𝑉 (𝑥 (𝑡)) < 𝑒−𝛼𝑡𝜔𝑇 (𝑡) 𝑄𝜔 (𝑡) . (32)

Furthermore,

𝑑𝑑𝑡 (𝑒−𝛼𝑡𝑉 (𝑥 (𝑡))) < 𝑒−𝛼𝑡𝜔𝑇 (𝑡) 𝑄𝜔 (𝑡) . (33)

Integrating (33) from 0 to 𝑡 with 𝑡 ∈ [0, 𝑇], we have
𝑒−𝛼𝑡𝑉 (𝑥 (𝑡)) − 𝑉 (𝑥 (0)) < ∫𝑡

0
𝑒−𝛼𝜏𝜔𝑇 (𝜏) 𝑄𝜔 (𝜏) 𝑑𝜏. (34)

Noting that 𝛼 ≥ 0, we can obtain

𝑉 (𝑥 (𝑡)) < 𝑒𝛼𝑡 [𝑉 (𝑥 (0)) + ∫𝑡
0
𝑒−𝛼𝜏𝜔𝑇 (𝜏) 𝑄𝜔 (𝜏) 𝑑𝜏] (35)

< 𝑒𝛼𝑡 [𝑥𝑇 (0) 𝐸𝑇𝑃𝑥 (0) + ∫𝑡
0
𝜔𝑇 (𝜏) 𝑄𝜔 (𝜏) 𝑑𝜏] ,

𝑡 ∈ [0, 𝑇] .
(36)

Noting that (29), we have

𝑉 (𝑥 (𝑡)) = 𝑥𝑇 (𝑡) 𝐸𝑇𝑃𝑥 (𝑡) > 1𝜆2 𝑥𝑇 (𝑡) 𝐸𝑇𝑅𝐸𝑥 (𝑡) . (37)

Noting that (36) and Assumption 1, from (29), it follows that

𝑉 (𝑥 (𝑡)) < 𝑒𝛼𝑇 [ 1𝜆1 𝑥𝑇 (0) 𝐸𝑇𝑅𝐸𝑥 (0) + 𝜆max (𝑄) 𝑑] . (38)

Combining (37) with (38), we have

𝑥𝑇 (𝑡) 𝐸𝑇𝑅𝑥 (𝑡) < 𝜆2𝑉 (𝑥 (𝑡))
< 𝜆2𝑒𝛼𝑇 [ 1𝜆1 𝑥𝑇 (0) 𝐸𝑇𝑅𝐸𝑥 (0) + 𝜆max (𝑄) 𝑑] . (39)

Condition (23) implies that 𝑥𝑇(𝑡)𝐸𝑇𝑅𝐸𝑥(𝑡) < 𝑐2 with 𝑡 ∈[0, 𝑇], if 𝑥𝑇0𝐸𝑇𝑅𝐸𝑥0 ≤ 𝑐1. The proof is completed.

Theorem 12. The unforced ULCTSS (1) (𝑢(𝑡) = 0) is said to
be FTRB with respect to (𝑐1, 𝑐2, 𝑇, 𝑅, 𝑑), and (13) is satisfied for
any admissible△𝐴, if there exist scalars 𝜀 > 0, 𝜆1 > 0, 𝜆2 > 0,𝛼 ≥ 0 and invertible matrix 𝑃 such that (21), (22), (40), and
(41) hold:

[[[[[[
[

Π 𝑃𝑇𝐺 𝑁𝑇𝑎 𝐶𝑇
𝐺𝑇𝑃 −𝛾2𝑒−𝛼𝑇𝐼 0 𝐷𝑇2𝑁𝑎 0 −𝜀𝐼 0
𝐶 𝐷2 0 −𝐼

]]]]]]
]
< 0, (40)

𝜆2𝑒𝛼𝑇 [ 𝑐1𝜆1 + 𝑑𝛾2𝑒−𝛼𝑇] < 𝑐2, (41)

where Π = 𝐴𝑇𝑃 + 𝑃𝑇𝐴 − 𝛼𝐸𝑇𝑃 + 𝜀𝑃𝑇𝑀𝑀𝑇𝑃.
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Proof. Note that condition (40) implies that

[[[
[

Π 𝑃𝑇𝐺 𝑁𝑇𝑎
𝐺𝑇𝑃 −𝛾2𝑒−𝛼𝑇𝐼 0
𝑁𝑎 0 −𝜀𝐼

]]]
]
< 0. (42)

From Lemma 11, let 𝑄 = 𝛾2𝑒−𝛼𝑇𝐼, then it is guaranteed
by conditions (21), (22), (40), and (41) that the ULCTSS (1)(𝑢(𝑡) = 0) is FTRB. Note that
[[𝐴 + △𝐴]𝑇 𝑃 + 𝑃𝑇 [𝐴 + △𝐴] − 𝛼𝐸𝑇𝑃 𝑃𝑇𝐺

𝐺𝑇𝑃 −𝛾2𝑒−𝛼𝑇𝐼]

+ [𝐶𝑇𝐷𝑇2] [𝐶 𝐷2]

≤ [ Π 𝑃𝑇𝐺
𝐺𝑇𝑃 −𝛾2𝑒−𝛼𝑇𝐼]

+ [𝑁𝑇𝑎 𝐶𝑇
0 𝐷𝑇2][[

1𝜀 𝐼 0
0 𝐼]]

[𝑁𝑎 0
𝐶 𝐷2] .

(43)

Using Schur complements formula, it is easy to know that
(40) implies

[[𝐴 + △𝐴]𝑇 𝑃 + 𝑃𝑇 [𝐴 + △𝐴] − 𝛼𝐸𝑇𝑃 𝑃T𝐺
𝐺𝑇𝑃 −𝛾2𝑒−𝛼𝑇𝐼]

+ [𝐶𝑇𝐷𝑇2] [𝐶 𝐷2] < 0.
(44)

Let 𝑉(𝑥(𝑡)) = 𝑥𝑇(𝑡)𝐸𝑇𝑃𝑥(𝑡); we have
𝑉̇ (𝑥 (𝑡)) = [(𝐴 + △𝐴) 𝑥 (𝑡) + 𝐺𝜔 (𝑡)]𝑇 𝑃𝑥 (𝑡) + 𝑥𝑇 (𝑡)

⋅ 𝑃𝑇 [(𝐴 + △𝐴) 𝑥 (𝑡) + 𝐺𝜔 (𝑡)] = [𝑥 (𝑡)𝜔 (𝑡)]
𝑇

⋅ [[𝐴 + △𝐴]𝑇 𝑃 + 𝑃𝑇 [𝐴 + △𝐴] 𝑃𝑇𝐺
𝐺𝑇𝑃 0 ][𝑥 (𝑡)𝜔 (𝑡)] .

(45)

From (40) and (44), we have

𝑉̇ (𝑥 (𝑡)) < 𝛼𝑉 (𝑥 (𝑡)) + 𝛾2𝑒−𝛼𝑇𝜔𝑇 (𝑡) 𝜔 (𝑡)
− 𝑧𝑇 (𝑡) 𝑧 (𝑡) . (46)

The above equation implies that

𝑑𝑑𝑡 (𝑒−𝛼𝑡𝑉 (𝑥 (𝑡))) < 𝛾2𝑒−𝛼(𝑡+𝑇)𝜔𝑇 (𝑡) 𝜔 (𝑡)
− 𝑒−𝛼𝑡𝑧𝑇 (𝑡) 𝑧 (𝑡) .

(47)

Integrating (47) from 0 to 𝑇, and noting that 𝑥(0) = 0, we
have

𝑒−𝛼𝑇𝑉 (𝑥 (𝑇))
< ∫𝑇
0
[𝛾2𝑒−𝛼(𝑡+𝑇)𝜔𝑇 (𝑡) 𝜔 (𝑡) − 𝑒−𝛼𝑡𝑧𝑇 (𝑡) 𝑧 (𝑡)] 𝑑𝑡, (48)

which implies that

∫𝑇
0
𝑒−𝛼𝑡𝑧𝑇 (𝑡) 𝑧 (𝑡) 𝑑𝑡 ≤ 𝛾2𝑒−𝛼𝑇∫𝑇

0
𝑒−𝛼𝑡𝜔𝑇 (𝑡) 𝜔 (𝑡) 𝑑𝑡. (49)

Noting that

𝑒−𝛼𝑇∫𝑇
0
𝑧𝑇 (𝑡) 𝑧 (𝑡) 𝑑𝑡 < ∫𝑇

0
𝑒−𝛼𝑡𝑧𝑇 (𝑡) 𝑧 (𝑡) 𝑑𝑡,

𝛾2𝑒−𝛼𝑇∫𝑇
0
𝑒−𝛼𝑡𝜔𝑇 (𝑡) 𝜔 (𝑡) 𝑑𝑡

< 𝛾2𝑒−𝛼𝑇∫𝑇
0
𝜔𝑇 (𝑡) 𝜔 (𝑡) 𝑑𝑡.

(50)

From (49)-(50), we can obtain

∫𝑇
0
𝑧𝑇 (𝑡) 𝑧 (𝑡) 𝑑𝑡 < 𝛾2 ∫𝑇

0
𝜔𝑇 (𝑡) 𝜔 (𝑡) 𝑑𝑡. (51)

The proof is completed.

Remark 13. In Theorem 12, a sufficient condition of FTRB
and (13) with respect to (𝑐1, 𝑐2, 𝑇, 𝑅, 𝑑) is satisfied, but con-
dition (21) is difficult to determine due to the nonlinear
constraints of 𝑃.
Theorem 14. The unforced ULCTSS (1) (𝑢(𝑡) = 0) is said to
be FTRB with respect to (𝑐1, 𝑐2, 𝑇, 𝑅, 𝑑), and (13) is satisfied for
any admissible△𝐴, if there exist scalars 𝜀 > 0, 𝜆1 > 0, 𝜆2 > 0,𝛼 ≥ 0, symmetric positive definitematrix 𝑊̂, andmatrix 𝑆 such
that

[[[[[[
[

Φ 𝐺 𝑋𝑁𝑇𝑎 𝑋𝐶𝑇
𝐺𝑇 −𝛾2𝑒−𝛼𝑇𝐼 0 𝐷𝑇2

𝑁𝑎𝑋𝑇 0 −𝜀𝐼 0
𝐶𝑋𝑇 𝐷2 0 −𝐼

]]]]]]
]
< 0, (52)

𝜆1 (Σ𝑟𝑈𝑇1 𝑅𝑈1Σ𝑟)−1 < 𝑊̂ < 𝜆2 (Σ𝑟𝑈𝑇1 𝑅𝑈1Σ𝑟)−1 , (53)

𝜆1𝛾2𝑒−𝛼𝑇 < 1, (54)

𝜆2𝑒𝛼𝑇 (𝑐1 + 𝑑) < 𝜆1𝑐2, (55)

hold, whereΦ = 𝑋𝐴𝑇+𝐴𝑋𝑇−𝛼𝑋𝐸𝑇+𝜀𝑀𝑀𝑇,𝑋 = 𝐸𝑉1𝑊̂𝑉𝑇1 +𝑆𝑉𝑇2 .
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Proof. From (52), we can obtain Φ < 0, and 𝑋 is invertible.
According to Lemma 8, there exist𝑊 and 𝑆 such that

𝑈1𝑊𝑈𝑇1 𝐸 + 𝑈2𝑆 = (𝐸𝑉1𝑊̂𝑉𝑇1 + 𝑆𝑉𝑇2 )−1 , (56)

where 𝑊̂ = Σ−1𝑟 𝑊−1Σ−1𝑟 .
Let𝑃 = 𝑈1𝑊𝑈𝑇1 𝐸+𝑈𝑇2 𝑆; then𝑋 = 𝐸𝑉1𝑊̂𝑉𝑇1 +𝑆𝑉𝑇2 = 𝑃−𝑇.
Premultiplying (52) by diag(𝑃𝑇, 𝐼, 𝐼, 𝐼) and postmulti-

plying (52) by diag(𝑃, 𝐼, 𝐼, 𝐼), we can obtain the equivalent
condition (40).

Noting that

𝐸𝑇𝑃 = 𝑃𝑇𝐸 = 𝐸𝑇𝑈1𝑊𝑈𝑇1 𝐸 = 𝐸𝑇𝑈1Σ−1𝑟 𝑊̂−1Σ−1𝑟 𝑈𝑇1 𝐸
≥ 0, (57)

and noting (53), we can obtain (21) and (22).
Noting (54) and (55), we have

𝜆2𝑒𝛼𝑇 [ 𝑐1𝜆1 + 𝑑𝛾2𝑒−𝛼𝑇] < 𝜆2𝑒𝛼𝑇 [
𝑐1𝜆1 +

1𝜆1 𝑑] < 𝑐2. (58)

Hence, the unforced ULCTSS (1) (𝑢(𝑡) = 0) is FTRB with
respect to (𝑐1, 𝑐2, 𝑇, 𝑅, 𝑑), and (13) is satisfied under conditions
(52)–(55). The proof is completed.

Remark 15. Theorem 14 is obtained based on the results
in Theorem 12, in which a sufficient condition is given to
guarantee the ULCTSS (1) (𝑢(𝑡) = 0) FTRB with respect to(𝑐1, 𝑐2, 𝑇, 𝑅, 𝑑). Meanwhile, (13) is satisfied in terms of LMI
in (52)–(55) when 𝛼 is fixed. Therefore, they can be solved
efficiently.

Corollary 16. The linear continuous-time singular system
(LCTSS),

𝐸𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐺𝜔 (𝑡) ,
𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷1𝑢 (𝑡) + 𝐷2𝜔 (𝑡) , (59)

is FTB with respect to (𝑐1, 𝑐2, 𝑇, 𝑅, 𝑑), and (13) is satisfied when𝑢(𝑡) = 0, if there exist scalars 𝜆1 > 0, 𝜆2 > 0, 𝛼 ≥ 0, symmetric
positive definite matrix 𝑊̂, and matrix 𝑆 such that (53)–(55)
and (60) hold.

[[[
[

Φ 𝐺 𝑋𝐶𝑇
𝐺𝑇 −𝛾2𝑒−𝛼𝑇𝐼 𝐷𝑇2
𝐶𝑋𝑇 𝐷2 −𝐼

]]]
]
< 0, (60)

where Φ = 𝑋𝐴𝑇 + 𝐴𝑋𝑇 − 𝛼𝑋𝐸𝑇,𝑋 = 𝐸𝑉1𝑊̂𝑉𝑇1 + 𝑆𝑉𝑇2 .
Theorem 17. There exists a state feedback controller in the
form of (11) such that the uncertain closed-loop system (12) is
FTRBwith respect to (𝑐1, 𝑐2, 𝑇, 𝑅, 𝑑), and (13) is satisfied for any
admissible △𝐴 and △𝐵; if there exist scalars 𝜀 > 0, 𝜆1 > 0,

𝜆2 > 0, 𝛼 ≥ 0, symmetric positive definite matrix 𝑊̂ and
matrices 𝑆 and 𝑍 such that (53)–(55) and (61) hold:

[[[[[[
[

Υ 𝐺 𝑋𝑁𝑇𝑎 + 𝑍𝑁𝑇𝑏 𝑋𝐶𝑇 + 𝑍𝐷𝑇1
𝐺𝑇 −𝛾2𝑒−𝛼𝑇𝐼 0 𝐷𝑇2

𝑁𝑎𝑋𝑇 + 𝑁𝑏𝑍𝑇 0 −𝜀𝐼 0
𝐶𝑋𝑇 + 𝐷1𝑍𝑇 𝐷2 0 −𝐼

]]]]]]
]

< 0,

(61)

where Υ = 𝑋𝐴𝑇 + 𝐴𝑋𝑇 + 𝑍𝐵𝑇 + 𝐵𝑍𝑇 − 𝛼𝑋𝐸𝑇 + 𝜀𝑀𝑀𝑇,𝑋 = 𝐸𝑉1𝑊̂𝑉𝑇1 + 𝑆𝑉𝑇2 . In this case, a finite-time robust 𝐻∞
state feedback controller can be chosen as

𝑢 (𝑡) = 𝑍𝑇 (𝐸𝑉1𝑊̂𝑉𝑇1 + 𝑆𝑉𝑇2 )−𝑇 𝑥 (𝑡) . (62)

Proof. From 𝑊̂ > 0, we can obtain that𝑋 = 𝐸𝑉1𝑊̂𝑉𝑇1 + 𝑆𝑉𝑇2
is invertible. From Theorems 12 and 14, let 𝐴𝐾 = 𝐴 + 𝐵𝐾,△𝐴𝐾 = △𝐴 + △𝐵𝐾 = 𝑀𝐹(𝜎)[𝑁𝑎 + 𝑁𝑏𝐾], 𝐶𝐾 = 𝐶 + 𝐷1𝐾,
and 𝑍 = 𝑋𝐾𝑇; then we can obtain the conclusion. The proof
is completed.

Corollary 18. There exists a state feedback controller in the
form of (11) such that the closed-loop system (63),

𝐸𝑥̇ (𝑡) = [𝐴 + 𝐵𝐾]𝐴𝑥 (𝑡) + 𝐺𝜔 (𝑡) ,
𝑧 (𝑡) = [𝐶 + 𝐷1𝐾]𝑥 (𝑡) + 𝐷2𝜔 (𝑡) , (63)

is FTB with respect to (𝑐1, 𝑐2, 𝑇, 𝑅, 𝑑), and (13) is satisfied, if
there exist scalars 𝜆1 > 0, 𝜆2 > 0, 𝛼 ≥ 0, symmetric positive
definite matrix 𝑊̂ and matrices 𝑆 and 𝑍 such that (53)–(55)
and (64) hold:

[[[
[

Υ 𝐺 𝑋𝐶𝑇 + 𝑍𝐷𝑇1
𝐺𝑇 −𝛾2𝑒−𝛼𝑇𝐼 𝐷𝑇2

𝐶𝑋𝑇 + 𝐷1𝑍𝑇 𝐷2 −𝐼
]]]
]
< 0, (64)

where Υ = 𝑋𝐴𝑇 + 𝐴𝑋𝑇 + 𝑍𝐵𝑇 + 𝐵𝑍𝑇 − 𝛼𝑋𝐸𝑇, 𝑋 =𝐸𝑉1𝑊̂𝑉𝑇1 + 𝑆𝑉𝑇2 . In this case, a finite-time robust 𝐻∞ state
feedback controller can be chosen as

𝑢 (𝑡) = 𝑍𝑇 (𝐸𝑉1𝑊̂𝑉𝑇1 + 𝑆𝑉𝑇2 )−𝑇 𝑥 (𝑡) . (65)

Remark 19. From Theorem 17 and Corollary 18, the similar
sufficient conditions are given, respectively. Noting (53)–(55)
and (61), we can see that the conditions in Theorem 17 are
not LMIs with respect to 𝑐1, 𝑐2, 𝑇, 𝑑, 𝜀, 𝛼, 𝜆1, 𝜆2, 𝛾, 𝑊̂, 𝑆,𝑍. However, once we can fix 𝑐1, 𝑐2, 𝑇, 𝑑 and 𝛼, they can be
converted to feasibility problem based on LMIs.

4. Numerical Examples

In this section, a numerical example is provided to demon-
strate the effectiveness of the proposed method.
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Example 1. Consider the uncertain linear singular system (1)
with

𝐸 = [[
[
1 1 0
1 −1 1
2 0 1

]]
]
,

𝐴 = [[
[
2 0.5 1
−1 0 1
0.5 0.5 1

]]
]
,

𝐵 = [[
[
1 0
0.5 −0.5
1 1

]]
]
,

𝐺 = [[
[
0.1
0.1
0.2
]]
]
;

𝑀𝑇 = [0.1 −0.1 0.1] ,
𝑁𝑎 = [0.1 0.1 0.1] ,
𝑁𝑏 = [0.1 −0.1] ;
𝐶 = [ 1 0 1

0.5 1 0.5] ,

𝐷1 = [ 1 0
−0.5 1] ,

𝐷2 = [0.10.1] .

(66)

In this paper, the finite-time robust𝐻∞ controller is derived
by using the algorithm sketch below, with the aid of Matlab
LMI Toolbox.

Step 1. Some fixed values are given for 𝑐1, 𝑇, 𝑑 and 𝑅.
Step 2. An initial value is given for 𝑐2.
Step 3. Starting from stable the index 𝛼 = 0, we kept
increasing 𝛼 until a solution is found or maximum value for𝛼 is reached.

Step 4. If no solution is found, then the initial value for 𝑐2
should be increased; otherwise 𝑐2 can be decreased until its
minimum is found.

We chose 𝑐1 = 1, 𝑇 = 5, 𝑅 = 𝐼, 𝛾 = 0.5, 𝑑 = 0.1, and
the initial value for 𝑐2 = 10. By solving the LMIs (53)–(55)
and (61), the following finite-time robust 𝐻∞ controller is
achieved:

𝑢 (𝑡) = (−17.4909 −2.2012 −8.1442
−16.3589 1.4712 −9.9141)𝑥 (𝑡) , (67)

which guarantees the desired close-loop properties with 𝑐2 =4 and stable index 𝛼 = 0.258.
Moreover, we can fix 𝑐2 and find the admissiblemaximum𝑐1 to guarantee the desired close-loop finite-time property.

5. Conclusions

In this paper, we extended the definition of 𝐻∞ control of
singular systems to finite-time 𝐻∞ control of singular sys-
tems. First, new sufficient conditions for FTRB are presented,
which can decrease conservation. Then, we considered the
finite-time robust 𝐻∞ control problem for ULCTSS with
time-varying norm-bounded exogenous disturbance via state
feedback controller.The sufficient conditions of the theorems,
which ensure that the system is FTRB, are given in terms
of linear matrix inequalities, and they can be solved by LMI
toolbox. Numerical examples were given to demonstrate the
validity of the proposed methodology.
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