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ABSTRACT

In control system practice, high precision tracking or attenuation for periodic signals

is an important issue. Repetitive control is known as an effective approach for such

control problems. The internal model principle shows that the repetitive control

system which contains a periodic generator in the closed-loop can achieve zero steady-

state error for reference input or completely attenuate disturbance. Due to its simple

structure and high control precision, repetitive control has been widely applied in

many systems. To improve existing results on repetitive control theory, this thesis

presents theoretical results in analysis and design repetitive control system. The main

work and innovations are listed as follows:

We propose a design method of robust stabilizing modified repetitive controllers

for multiple-input/multiple-output plants with uncertainties. The parameterization

of all robust stabilizing modified repetitive controllers for multiple-input/multiple-

output plant with uncertainty is obtained by employing H∞ control theory based on

the Riccati equation. The robust stabilizing controller contains free parameters that

are designed to achieve desirable control characteristic. In addition, the bandwidth

of low-pass filter has been analyzed. In order to simplify the design process and avoid

the wrong results obtained by graphical method, the robust stability conditions are

converted to LMIs-constraint conditions by employing the delay-dependent bounded

real lemma. When the free parameters of the parameterization of all robust stabiliz-

ing controllers is adequately chosen, then the controller works as robust stabilizing

modified repetitive controller.

For a time-varying periodic disturbances, we give an design method of an opti-

mal robust stabilizing modified repetitive controller for a strictly proper plant with

time-varying uncertainties. A modified repetitive controller with time-varying delay

structure, inserted by a low-pass filter and an adjustable parameter, is developed for

this class of system. Two linear matrix inequalities LMIs-based robust stability con-

ditions of the closed-loop system with time-varying state delay are derived for fixed



parameters. One is a delay-dependent robust stability condition that is derived based

on the free-weight matrix. The other robust stability condition is obtained based

on the H∞ control problem by introducing a linear unitary operator. To obtain the

desired controller, the design problems are converted to two LMI-constrained opti-

mization problems by reformulating the LMIs given in the robust stability conditions.

The validity of the proposed method is verified through a numerical example.
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1

Chapter 1

Introduction

People often completely master a new learned skill through repetition. By repeating

the same action, a person gradually comes to understand the essential points, and

achieves a significant efficiency and precision. This process, with self-learning and

gradual progress, is a repetitive task. An investigation of the process reveals two

main characteristics:

1. the same action is performed;

2. the action currently being performed is based on the action performed in the

previous repetition.

These two characteristics imply that it is a periodic repetitive task.

Manufacturing and industrial applications often have plants that perform repeti-

tive tasks. In these situations, exploiting the periodic properties of the design problem

is an important part in maximizing performance. Inoue et al. [1, 2] devised a new

control strategy called repetitive control that adds a human-like learning capability

to a control system. The new type of control system for periodic repetitive task is

named as repetitive control system. A repetitive control system is different from other

types of control systems in that it possesses a self-learning capability. For example,

Inoue et al. [1] designed a Single-Input/Single-Output repetitive control system for

supplying power for the magnet of a proton synchrotron that tracks a desired period-
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ic reference input, namely excitation current. After self-learning for 16 periods, the

relative tracking precision reached 10−4. This high precision was unobtainable by any

other control method at that time. As a result, the theory and design methods of

the repetitive control system immediately received a great deal of attention, and it is

now widely used in many fields from aerospace to public welfare systems.

1.1 Background

In practical applications, tracking and/or rejecting the periodic reference input and/or

disturbance signals are of great significance. For example, in industrial manipulators

executing operations of picking, placing or painting, machine tools and magnetic disk

or CD drives, the control systems are usually required to track or reject periodic

exogenous signals with high control precision. The repetitive control theory provides

an achievable and practicable theoretical foundation and solution.

At present, repetitive control has been widely applied in various high-precision

control systems. As a simple learning control method, repetitive control has many

advantages such as simple algorithm, insensitivity of the system performance to pa-

rameters, small online computation, high-precision, suitability for fast motion con-

trol and so on. All these characteristics are required for many control problems

with periodic exogenous signals. With the improvement of technical level of mod-

ern industry, the requirement for the design of repetitive control system is high-

er than ever. For example, in many servo systems, the requirements are not only

high steady state accuracy, but also good transient characteristics. That mean-

s the design of repetitive control system should optimize the steady state perfor-

mance and transient characteristics [3]. For the plants with uncertainties, such as

SPWM inverter requires the design method satisfying the robust stability [4, 5,

6]. Some plants require the variable to learn in an iteration-independent manner

like the robot motion control [7]. That has high demands on the adjusting function
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of parameters. In addition, the repetitive control system with independently regulate

and control manner should be established.

As the development of the application of the repetitive control method, the for-

mation of new problem in the practical control system leads to further developed

and improved of the repetitive control system theory and design methods. Therefore,

study on design method of repetitive controllers and deeply reveal the nature of the

repetitive control systems have an important theoretical and practical significance.

1.2 Repetitive control principle

Repetitive control is a control scheme applied to plants that must track a periodic

trajectory or reject a periodic disturbance with the explicit use of the periodic feature

of the trajectory or disturbance.

It was first introduced by Inoue et al. and applied to the control of a power supply

for a proton synchrotron [1] and a contouring servo system [2] . Since then, repetitive

control has been applied to many problems, including:

• power supply systems ([1, 8]),

• robotic manipulators ([9, 10]),

• computer disk drives ([11, 12]),

• CD tracking ([13, 94]),

• motor control ([15, 16]),

• thickness control in sheet metal rolling ([17]),

• peristaltic pump ([18]),

• cold rolling process control ([19]),

• navicular machining ([20]),
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• vibration attenuation ([21, 22]) and

• distributed solar collector ([23, 24, 25]).

The Internal Model Principle (IMP) proposed by Francis and Wonham [26] plays

an important role in repetitive control system. The IMP states that if a reference or

disturbance signal can be regarded as the output of an autonomous system, including

this system in a stable feedback loop guarantees asymptotically perfect tracking or

rejecting performance. Figure 1.1 shows the more frequently used generator of pe-

riodic signals with a period-time L[s]. In this figure, a finite length input u(t) from

e
àsL

+
+

u (t) r ( t)

Figure 1.1: Generator of periodic signals with period-time L[s]

t = 0 to t = L yields an output r(t) that is a periodic, i.e.,

r(t) =

 u(t), 0 ≤ t ≤ L

r(t− L), L ≤ t
. (1.1)

An IMP-based repetitive controller incorporates this generator in a control loop as

shown in Figure 1.2. In this control system, we want the control output y(t) to track

+

+
-

+ y(t)

eàsL

v(t)
G(s)

CR(s)e(t)r(t)

Figure 1.2: Conventional repetitive control system

a desired periodic reference input r(t) with zero-steady state error. The transfer
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function of the repetitive controller CR(s)(dotted line) is described as

CR(s) =
1

1− e−sL
, (1.2)

where L is a constant equal to the period-time of the reference input, r(t). This

period time is known or accurately measured. Since

CR(jωk) =
1

1− e−jωkL
= ∞, ωk =

2kπ

L
, k = 0, 1, 2, · · · , (1.3)

the gain of the repetitive controller is infinite at the angular frequencies of the funda-

mental and harmonic waves of a signal with period-time L[s]. Note that the tracking

error of the repetitive control system in Figure 1.2 is given by

E(s) = SR(s)R(s), (1.4)

and

SR(s) =
1

1 + CR(s)G(s)
=

1

CR(s)

1
1

CR(s)
+G(s)

, (1.5)

where SR(s) is the sensitivity function of the system. Clearly, including the internal

model as a repetitive controller results in an infinite loop gain and hence, a zero

closed-loop sensitivity at the angular frequencies of the fundamental and harmonic

waves. Consequently, the periodic signal with a period-time L[s] can be perfectly

tracked or rejected by this closed-loop system called as periodic performance. Hence,

when a control system contains repetitive controller CR(s), it tracks the periodic

reference input with high control accuracy.

However, it is impossible to design stabilizing repetitive controller for strictly

proper plant, because the repetitive control system is a neutral type of time-delay

system. To design a repetitive control system that follows any periodic reference

input without steady state error, the plant must be biproper.

1.3 Modified repetitive controller

The nonexistence of a repetitive controller for a strictly proper plant has been detailed

by Hara et al. in [27]. According to the servo theory, it is well-known that output
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regulation is possible only when plant zeros do not cancel the poles of the reference

signal generator. Applying this principle to the present situation, although it is

nonclassical, we see that this principle is not satisfied for a strictly proper plant G(s),

for G(s) has infinity as its zero, whereas the generator of the periodic signal has a

pole of arbitrarily high frequency. To put it differently, if G(s) is strictly proper, then

it integrates the input at least once, and hence the output will be smoothed out to

some extent, thereby making it impossible to track a signal with an infinity sharp

edge, i.e., a signal contain arbitrarily high-frequency modes.

+

+
-

+ y(t)

q(s)eàsL

v(t)
G(s)

CRM(s)e(t)r(t)

Figure 1.3: Conventional modified repetitive control system

However, the actually control plant is strictly proper and has any relative degree.

This is unfortunate, but not entirely irreconcilable since this is caused by the appar-

ently unrealistic demand of tracking any periodic signal, which contains arbitrarily

high-frequency modes. It is therefore natural to expect that the stability condition

can be relaxed by reducing the loop-gain of the repetitive compensator in a higher

frequency range. This leads to the idea of a modified repetitive control system [27,

28] shown in Figure 1.3. In this control system, the delay element e−sL is replaced

by q(s)e−sL for a suitable proper stable rational q(s), namely low-pass filter with

following frequency characteristics:

i) q(jω) ≃ 1 for |ω| ≤ ωc,

ii) |q(jω)| ≤ ρ < 1 for |ω| > ωc,

where ωc is a suitable cutoff frequency. Generally, this low-pass filter may be realized
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by a simple first-order system

q(s) =
1

1 + τs
, τ > 0 (1.6)

or

q(s) =
1 + τ2 s

1 + τ1 s
, τ1 > τ2 > 0. (1.7)

Then, the transfer function of the modified repetitive controller is

CRM(s) =
1

1− q(s)e−sL
(1.8)

and the corresponding sensitivity function of the modified repetitive control system

becomes

SRM(s) =
1

CRM(s)

1
1

CRM(s)
+G(s)

. (1.9)

The utilization of the low-pass filter, q(s), changes the tracking characteristics. For

example, consider the widely used low-pass filter q(s) = 1/(τ s + 1). Bode plots of

repetitive controller CR(s) and modified repetitive controller CRM(s) for L = 2π s

in Figure 1.4 show that, when τ = 0.001s, the gains of CRM(s) at the angular fre-

quencies of the fundamental and second harmonic drop from infinity to 56.57[dB] and

67.85[dB], respectively. Therefore, a steady-state tracking error arises when CRM(s)

is employed in a modified repetitive-control system. Furthermore, if the cutoff angu-

lar frequency, ωc = 1/τ , of low-pass filter is made 100 times smaller, i.e., τ = 0.1s,

then the gains just mentioned decrease dramatically to 45.97[dB] and 34.44[dB]. This

greatly increases the steady state tracking error. From above discussion, it is clear

that, by introducing the low-pass filter, the robustness stability of repetitive control

systems was guaranteed, but at cost of degrading performances at high frequencies.

Therefore, in order to obtain good tracking precision or disturbance attenuation

performance, the cutoff angular frequency of the low-pass filter must be as high as

possible. However, the investigation of the stability of modified repetitive control

system reveals that the restriction of frequency band to be tracked is imposed only
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Figure 1.4: Bode plots of repetitive controller CR(s) (a) and modified repetitive

controller CRM(s) (b)

for non-minimal phase plants [29]. This results in the tradeoff problem among steady

state accuracy, robustness and transient response of the control system.

1.4 Review on modified repetitive control system

design

The design problems of modified repetitive control systems are mainly to choose and

optimize the dynamic compensator and the low-pass filter. The selection of parame-

ters involves robustness stability, tracking performance, attenuation performance and

tradeoff problem. Since introduction of repetitive control to the control community,

a great deal of research effort has been devoted to the design methods for modified
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repetitive control system. What’s more, various structures and algorithms have been

proposed in existing literature. In this section, a detailed review of the main work on

the design methods for modified repetitive control system is specified.

1.4.1 Frequency domain analysis-based design method

The frequency domain analysis and synthesis method is a main approach for modified

repetitive control system design. In [1, 30], some general design guidelines were devel-

oped. Srinivasan et al. [31] analyzed the single-input/single-output continuous time

repetitive control system using the regeneration spectrum. It has been proved that

shaping the regeneration spectrum is an effective way to alter the relative stability

and transient response of system. A modified repetitive control scheme by shap-

ing both regeneration spectrum and the sensitivity function was proposed in [32].

To achieve a specified level of nominal performance, Srinivasan et al. [33] used the

Nevanlinna-Pick interpolation method to modify repetitive controller by optimizing

a measure of stability robustness (a weighting function on the complementary sensi-

tivity function). To offer an ease of multi-objective design, Guvenc [34] described a

graphical repetitive controller design procedure, which is based on mapping frequency

domain performance specifications of sensitivity function magnitude and regeneration

spectrum to the controller parameter space. Moon et al. [35] designed of a repetitive

controller by a graphical technique based on the frequency domain analysis of a linear

interval system.

Another frequency domain analysis method is to make the magnitude of system

sensitivity function in the middle of two adjacent harmonics as an optimization ob-

jective to design modified repetitive control system [36]. In order to improve the

tracking or attenuation performance at the high frequencies for reference input or

disturbance, Kim and Tsao modified the structure of low-pass filter to make the sen-

sitivity approximately squared by comparing with original modified repetitive control

system. This method improves the tracking or attenuation performance of system at
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harmonics.

From Figure 1.4, we can find that the introduction of the low-pass filter q(s), while

improving the system stability, also introduce phase lag which shifts the frequency at

which the gain of the repetitive controller reaches the maximum value. To compensate

the phase lag induced by q(s), Sugimoto et al. [37] proposed to modify the dead time

term so that the maximum gain is exactly situated at the fundamental frequency

of the periodic signal. Extending this work, Chen and Lin [38] introduced a lead

compensator to widen the bandwidth of low-pass filter and improve system gain at

high frequencies. The optimal modified repetitive controller is obtained by solving

two optimization problems.

1.4.2 Linear matrix inequality-based design method

Linear matrix inequality (LMI), regarded as an effective tool to deal with system

and control problem, has been applied to design and analysis for modified repetitive

control systems. One of the first papers to consider the design of the repetitive

controller as a convex optimization problem was [39]. In that paper, LMI-conditions

are derived to design the low-pass filter associated with the repetitive structure. It

is important to point out that in this work the authors only presented conditions to

verify whether a priory fixed cutoff frequency of the low-pass filter results in a feasible

solution and not focus in the design of the stabilizing controller. Latter, this work was

extended and analyzed in [13, 40, 41, 42, 43] and references therein. A simultaneous

optimization of the low-pass filter and state-feedback controller was design by She

et al. [43] based on LMIs. They proposed an iterative algorithm to obtain the best

combination of low-pass filter and state-feedback controller.

For linear systems with time-varying state-delay [44] or input delay [41], the ro-

bustness stability criterion is derived in the form of LMI and the design problem

of modified repetitive controller is transformed to an LMI-constrained optimization

problem. However, the control parameter obtained by solving LMI feasible prob-
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lem has some conservation that restricts the control performance. To reduce the

conservatism, free weighting matrices and descriptor model transformation are usu-

ally introduced to derive robustness stability conditions. In [45], considering single-

input/single-output systems for the presence of control saturation, a modified state-

space repetitive control structure is designed and conditions in a ”quasi” LMI form

are proposed. Flores et al. [46] generalized the results in [45] to consider multiple-

input/multiple-output systems.

1.4.3 H∞ robust design method

In fact, the H∞ control approach has been also widely used in many modified repet-

itive control system design [47, 48]. It is mainly used to for solving robustness and

optimization problems, and provides a kind of design method of state-feedback con-

troller. For instance, Wang et al. [49] proposed a three-step design method for

state-feedback controller. Wang and Tsao [50, 51] basing on H∞ control approach,

designed a robust stabilizing modified repetitive controller for time-varying periodic

signals. Li and Tsao [52] viewed the time-delay element in the internal model as

an uncertainty and employed the H∞ control approach to obtain the robust stabil-

ity condition and robustness performance. Using the same method, She et al. [53]

proposed simultaneous optimization design method by introducing the state-feedback

gains. The design problem of modified repetitive controller is converted into convex

optimization problem in the form of LMI. Designed a iterative algorithm to calculate

the cutoff frequency and state-feedback gains.

To some extent, H∞ control method can improve the robust performance of repet-

itive control system, but the design of state-feedback controller is still independent of

repetitive controller. This may result in some conservatism and affects the trade-off

problem between robustness stability and robust performance.
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1.4.4 Two-degree-of-freedom structure design method

To relieve the burden of the system stability on one controller, a two-degree-of-freedom

structure in Figure 1.5 can also be considered, where C(s) is a modified repetitive

controller. It contains a feed forward compensator and feedback compensator. Some

synthesis procedure for this class of repetitive control system, such as the state-space

approach, coprime factorization approach, H∞ optimal design approach and sliding

mode variable structure control approach can be found in [2, 4, 28, 29, 54, 55, 56,

57], where the main task is to design the stabilizing controllers.

+r(s) u(s)

+
+

y(s)
C(s)

d1(s)

d2(s)z(s)

G(s)
+

Figure 1.5: Two-degree-of-freedom modified repetitive control system

Peery et al. [54] proposed a two-degree-of-freedom H∞ optimal respective con-

trol structure with fixed low-pass filter for Single-Input/Single-Output system. Chen

et al. [56, 57] established a two-degree-of freedom modified repetitive controller for

the rejection for disturbance and guaranteed the robustness of the system with ac-

tuator saturation uncertainties. Dong et al. [55] studied the design method of two-

degree-of-freedom modified repetitive controller based on the factorization approach.

Yamada et al. [58] designed a modified repetitive control system with feed-forward

controller and feedback controller. Sakanushi et al. [59] proposed a design method for

two-degree-of-freedom simple repetitive control systems for multiple-input/multiple-

output plants. The design method based on two-degree-of-freedom eliminates the

influence of the unstable poles to improve stability and robustness. However, there is

no systematical approach for selecting the parameters of controllers. The state-space-

based synthesis procedure relying on some indirect specifications of performance, for
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example, in the form of noise covariance and weighting matrices, involves currently

much trial and error.

1.4.5 Two-dimensional-based design method

A close examination of repetitive control shows that it actually involves two indepen-

dent types of actions:

• continuous control within each repetition period and

• discrete learning between periods.

From the standpoint of system design, it is difficult to stabilize a repetitive-control

system, and all design methods are developed to focus mainly on stability. That is,

they do not accurately describe what actually happens, or they do not thoroughly

investigate the essence of the control and learning actions with only considering the

overall results in the time domain. As a result, researchers impose not only very strict

requirements on the plant, but also a limit on how much control performance can be

improved [60, 13, 61].

From the repetitive compensator CR(s) shown in Figure 1.2, the control output

v(t) can be represented in time domain as

v(t) =

e(t) 0 ≤ t < L

v(t− L) + e(t) t ≥ L

(1.10)

where L is a delay element, i.e., the period of reference input r(t), e(t) = r(t)− y(t)

is track error of the closed-loop system.

Setting the state-space description of plant isẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t).

(1.11)
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where x(t) ∈ Rn is the state of plant, u(t) ∈ Rm is control input, and y(t) ∈ Rp

is control output. Without losing generality, set the system matrices (A,B,C,D)

are controllable and observable. For convenient, set the m = p = 1, i.e., Single-

Input/Single-Output system.

The design problem of repetitive control system is design a controller containing

v(t) such that the closed-loop system is stable and the tracking error is convergent to

0 for any reference input with given period L. As a matter of fact, the stable vector

x(t) and control input u(t) when closed-loop system is stable for any given reference

input r(t). However, the difference of state vector ∆x(t) and the difference of control

input ∆u(t) between two adjacent periods are convergent to 0. From this aspect,

consider the variation of these differences. Setting variable ξ(t)(ξ ∈ {x, y, u, e}) is

equal to 0 as t < 0 and

∆ξ(t) = ξ(t)− ξ(t− L) (1.12)

then

∆ẋ(t) = A∆x(t) + B∆u(t) (1.13)

e(t) = e(t− L)− C∆x(t)−D∆u(t) (1.14)

Equation (1.13) and (1.14) demonstrate the control and learn process of the repetitive

control process. We divide the infinite interval [0,+∞) into an infinite number of finite

intervals, [kL, (k + 1)L)(k = 0, 1, · · · ). Then, for any t ∈ [0,+∞), there exists an

interval [kL, (k + 1)L) such that

t = kL+ τ, τ ∈ [0, L)

This allows us to write the variable ξ(t) in the time domain as

ξ(t) = ξ(kL+ τ) := ξ(k, τ),

and

∆ξ(t) := △ξ(k, τ) = ξ(k, τ)− ξ(k − 1, τ)
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Then, the equations (1.13) and (1.14) are converted into

∆ẋ(k, τ) = A∆x(k, τ) +B∆u(k, τ) (1.15)

e(k, τ)− e(k − 1, τ) = −C∆x(k, τ)−D∆u(k, τ) (1.16)

Equations (1.15) and (1.16) are represented by vector as

 ∆ẋ(k, τ)

e(k, τ))

 =

 A 0

−C 1

 ∆x(k, τ)

e(k − 1, τ)

+

 B

−D

∆u(k, τ) (1.17)

If we can design a two-dimensional controller such that ∆u(k, τ) make the con-

tinuous/discrete two-dimensional system (1.17) is asymptotically stable, the corre-

sponding repetitive control system (1.11) is asymptotically stable and convergent to

zero. From these, the design problem of repetitive control system (1.11) is equivalent

to stabilization problem of the continuous/discrete two-dimensional system (1.17).

Wu et al. [62] presented a design method of modified repetitive control system for

a class of linear system based on two-dimensional continuous/discrete hybrid model.

The design problem for the modified repetitive controller is converted in a state-

feedback design problem for a continuous-discrete two-dimensional system. And then

the design problem is solved by combing two-dimensional Lyapunov theory with LMIs

approach. Later, wu et la. [63] proposed a guaranteed cost design method of modified

repetitive control system based on two-dimensional hybrid model. Then Zhang et

al. [64] designed a modified repetitive control system by using state feedback hybrid

model based on two-dimensional hybrid model. This result can be extended to handle

a plant with a time-varying uncertainty. Zhou et al. [65] presented a robust modified

repetitive control system based on both LMI and two-dimensional hybrid model. It

can adjust the control and learning actions individually by adjusting the parameters

contained in the LMI.



16 CHAPTER 1. INTRODUCTION

1.4.6 Parameterization design method

Parameterization is a very common method used for dealing with the design problem

of control system. This method is based on factorization theory. For parameterization-

based design of modified repetitive controlled, Yamada et al have done a lot of work.

1. Minimum phase

A parameterization of all modified repetitive controllers for the strictly proper

plants is given by Yamada and Okuyama [66] . Yamada et al. [67] proposed

a design method for robust stabilizing modified repetitive controllers without

solving the µ synthesis problem. This method is effective for minimum phase

plants.

2. Non-minimum phase

Based on [67], Yamada et al. [68, 69] clarified the parameterization of all sta-

bilizing mollified repetitive controllers for non-minimum phase systems. And

then, Yamada et al. [70] gave a design method for robust stabilizing modified

repetitive controllers for non-minimum phase plants such that the frequency

range in which the output follows the periodic reference input is not restrict-

ed. In [71], the parameterization of all robust stabilizing modified repetitive

controllers is given by extending the result in[70].

3. Robust stabilization

Yamada et al. [72] proposed a parameterization of all robust stabilizing simple

repetitive controllers such that the controller work as a robust stabilizing modi-

fied repetitive controller. Chen [73] solved the robust stabilizing problem for the

modified repetitive control system with multiple-input/multiple-output plants.

Extending this work, the robust stabilizing modified repetitive controller for

multiple-input/multiple-output plants is proposed with specified input-output

frequency characteristic [74].
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4. Time-delay

The design method of all stabilizing modified repetitive controllers for time-

delay systems with the specified input-output frequency characteristics has been

studied by Satoh et al.[75]. Referencing to [68, 69], the parameterization of all

robust stabilizing controllers for time-delay plants is obtained [76]. This design

method includes a free parameter which is designed to achieve desirable control

characteristics.

5. Multiple-input/multiple-output plants

For the multiple-input/multiple-output plants, Yamada et al. [77] have design

the modified repetitive controllers based on the references. Chen et al. [78] ob-

tained the stabilizing modified repetitive controller by using the free parameter

in the parameterization.

6. Two-degree-of-freedom structure for single-input/single-output plants

Yamada et al. [79] proposed the parameterization of all stabilizing two-degree-

of-freedom modified repetitive controllers those can specify the input-output

characteristic and the feedback characteristic separately. The design of control

system with multi-period structure for single-input/single-output plants has

been solved in [80].

7. Two-degree-of-freedom structure for multiple-input/multiple-output plants

Based on existing literature, the problem of obtaining the parameterization of

all stabilizing two-degree-of-freedom modified repetitive controller for multiple-

input/multiple-output plants has been solved [81]. In this paper, the input-

output characteristic and the feedback characteristic are specified separately. In

order to specify the input-output characteristic and the disturbance attenuation

characteristic, Chen et al. [82] proposed a design method for two-degree-of-

freedom multi-period repetitive controllers for multiple-input/multiple-output

systems. The input-output characteristic can be specified independent from the
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disturbance attenuation characteristic.

All above design methods of modified repetitive controllers are based on the coprime

factorization. When control plant has an uncertainty or time-delay, the H∞ control

approach will be introduced to simplify the design problem.

1.4.7 Existing problems

The repetitive control technique has been widely applied in many areas since it was

proposed. That fully displays its extensive engineering application value, and it has

been proven to be an effective control strategy for the control problem of external pe-

riodic excitation signal. With the deeply research on the repetitive control theory and

widely practicing in diverse areas, the above achievements promote the development

of repetitive control, whereas, there are some issues existing:

• In the case of designing the multiple-input/multiple-output modified repeti-

tive control system, the relationship between inputs and outputs should be

coordinated to guarantee good control performance. Particularly, for multiple-

input/multiple-output plants with uncertainties, the robust stability conditions

and the simple design method are indispensable.

• In practical, it is inevitably to deal with the position-dependent (time-varying)

or uncertain periodic signals. For example, to track the time-varying periodic

signals, generally transform the linear control plant in the time domain into a

nonlinear control plant in the spatial domain, or combine the adaptive control

approach. This makes the design problem more complicated. For the periodic

signal with uncertain period-time, the perfect performance only can be guaran-

teed by using the high-order repetitive controller for a small variation. There

is no effective method for this situation.
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1.5 Organization of the thesis

Most designs of modified repetitive control systems are based on the use of a design

model. The relationship between models and the reality they represent is subtle and

complex. A mathematical model provides a map from inputs to outputs. The quality

of a model depends on how closely its responses match those of the true plant. There

is no single fixed model that can respond exactly like the true plant. Hence, we need,

at the very least, a set of maps. The term uncertainty refers to the differences or errors

between models and reality, and whatever mechanism is used to express these errors

will be called a representation of uncertainty. To be practical, consider the problem

of bounding the magnitude of the effect of some uncertainty on the nominal plant.

In the simplest case, this power spectrum is assumed to be independent of the input.

This is equivalent to assuming that the uncertainty is generated by an additive noise

signal with a bounded power spectrum; the uncertainty is represented as additive

noise. Of course, no physical system is linear with additive noise, but some aspects of

physical behavior are approximated quite well using this model. With uncertainties,

the design problem of modified repetitive control should consider the robustness of

control system. By this reason, this thesis is organized as follows:

In Chapter 2, we propose a design method of robust stabilizing modified repeti-

tive controllers for multiple-input/multiple-output plants. The basic idea of robust

stabilizing modified repetitive controller is very simple. If the modified repetitive

control system is robustly stable for the multiple-input/multiple-output plant with

uncertainty, then the modified repetitive controller must satisfy the robustness sta-

bility condition. The parameterization of all robust stabilizing modified repetitive

controllers for multiple-input/multiple-output plant with uncertainty is obtained by

employing H∞ control theory based on the Riccati equation. The robust stabiliz-

ing controller contains free parameters that are designed to achieve desirable control

characteristic. When the free parameters of the parameterization of all robust stabi-
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lizing controllers is adequately chosen, then the controller works as robust stabilizing

modified repetitive controller. In this chapter, the bandwidth of low-pass filter has

been analyzed. In order to simplify the design process and avoid the wrong results

obtained by graphical method, the robust stability conditions are converted to LMIs-

constraint conditions by employing the delay-dependent bounded real lemma. The

effectiveness of this proposed method is illustrated by a numerical example.

In Chapter 3, we address the problem of designing an optimal robust stabilizing

modified repetitive controller for a strictly proper plant with time-varying uncertain-

ties. This repetitive control system is used to reject position-dependent (time-varying)

periodic disturbances. A modified repetitive controller with time-varying delay struc-

ture, inserted by a low-pass filter and an adjustable parameter, is developed for this

class of system. Two linear matrix inequalities (LMIs)-based robust stability con-

ditions of the closed-loop system with time-varying state delay are derived for fixed

parameters. One is a delay-dependent robust stability condition that is derived based

on the free-weight matrix. The other robust stability condition is obtained based

on the H∞ control problem by introducing a linear unitary operator. To obtain the

desired controller, the design problems are converted to two LMI-constrained opti-

mization problems by reformulating the LMIs given in the robust stability conditions.

The validity of the proposed method is verified through a numerical example.

Chapter 4 summarizes the result of the present study by the conclusion and states

the future work of the modified repetitive control system.
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Notation

R the set of real numbers.

R+ R ∪ {∞}.

R(s) the set of real rational functions with s.

RH∞ the set of stable proper real rational functions.

H∞ the set of stable causal functions.

D⊥ orthogonal complement of D, i.e.,
[
D D⊥

]
or

 D

D⊥

 is unitary.

AT transpose of A.

A† pseudo inverse of A.

ρ({·}) spectral radius of {·}.

σ̄({·}) largest singular value of {·}.

∥{·}∥∞ H∞ norm of {·}. A B

C D

 represents the state space description C(sI − A)−1B +D.

Rn the n-dimensional Euclidean space.

Rn×n the set of all n× n real matrices.

I the identity matrix.

L2[0, tf ] the set of function f(t) satisfies
∫ tf
0

f(t)f(t)dt < ∞.

∗ the symmetric terms in a symmetric matrix as

A B

∗ C

 =

 A B

BT C

.
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Chapter 2

Robust Stabilizing Problem for

Multiple-Input/Multiple-Output

Plants

2.1 Introduction

In this chapter, we examine a design method for robust stabilizing modified repetitive

controllers using the parameterization of all robust stabilizing modified repetitive

controllers for multiple-input/multiple-output plants. A repetitive control system

is a type of servomechanism for periodic reference inputs. That is, the repetitive

control system follows the periodic reference input without steady state error, even if

a periodic disturbance or uncertainty exists in the plant [8, 83, 84, 85, 86, 28, 89, 87,

88, 9, 90, 91, 92]. It is difficult to design stabilizing controllers for the strictly proper

plant, because a repetitive control system that follows any periodic reference input

without steady state error is a neutral type of time-delay control system [90]. To

design a repetitive control system that follows any periodic reference input without

steady state error, the plant must be biproper [84, 85, 86, 28, 89, 87, 88, 9, 90].

Ikeda and Takano [91] pointed out that it is physically difficult for the output to
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follow any periodic reference input without steady state error. In addition, they

showed that the repetitive control system is L2 stable for periodic signals that do

not include infinite frequency signals if the relative degree of the controller is one.

In practice, the plant is strictly proper and has two or more relative degree. Many

design methods for repetitive control systems for strictly proper plants those have

any relative degree have been given [84, 85, 86, 28, 89, 87, 88, 9, 90]. These studies

are divided into two types. One uses a low-pass filter [84, 85, 86, 28, 89, 87, 88,

9] and the other uses an attenuator [90]. The latter is difficult to design because

it uses a state variable time-delay in the repetitive controller [90]. The former has

a simple structure and is easily designed. Therefore, the former type of repetitive

control system is called the modified repetitive control system [84, 85, 86, 28, 89, 87,

88, 9].

When modified repetitive control design methods are applied to real systems, the

influence of uncertainties in the plant must be considered. In some cases, uncertain-

ties in the plant make the modified repetitive control system unstable, even though

the controller was designed to stabilize the nominal plant. The stability problem

with uncertainty is known as the robust stability problem [93]. The robust stability

problem of modified repetitive control systems was considered by Hara et al. [87].

The robust stability condition for modified repetitive control systems was reduced

to the µ synthesis problem [87], but the µ synthesis problem cannot be solved ana-

lytically. That is, in order to solve the µ synthesis problem, we must solve an H∞

problem iteratively using the D−K iteration method. Furthermore, the convergence

of iterative methods to solve the µ synthesis problem is not guaranteed. Yamada et

al. tackled this problem and proposed a design method for robust repetitive control

systems without solving the µ synthesis problem [67]. In this way, several design

methods of robust stabilizing modified repetitive controllers have been considered.

On the other hand, there exists an important control problem to find all stabiliz-

ing controllers named the parameterization problem [96, 97, 95, 98, 99]. Yamada and
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Satoh clarified the parameterization of all robust stabilizing modified repetitive con-

trollers [100]. However, the method by Yamada and Satoh [100] cannot be applied

to multiple-input/multiple-output systems. Because, the method by Yamada and

Satoh [100] uses the characteristic of single-input/single-output system. Many real

plants include multiple-input and multiple-output. In addition, the parameterization

is useful to design stabilizing controllers [96, 97, 98, 99]. Therefore, the problem of

obtaining the parameterization of all robust stabilizing modified repetitive controllers

for multiple-input/multiple-output plants is important. Chen et al. examined this

problem and clarified the parameterization of all robust stabilizing modified repetitive

controllers for multiple-input/multiple-output plants [73]. However, in [73], complete

proof of the theorem for the parameterization of all robust stabilizing modified repet-

itive controllers for multiple-input/multiple-output plants was omitted on account of

limiting space. In addition, using the obtained parameterization of all robust stabiliz-

ing modified repetitive controllers for multiple-input/multiple-output plants, control

characteristics are not examined. Furthermore, a design method for robust stabiliz-

ing modified repetitive control system for multiple-input/multiple-output plants are

not described. Therefore, we cannot find whether or not the parameterization of all

robust stabilizing modified repetitive controllers for multiple-input/multiple-output

plants in [73] is valid.

In this chapter, we give a complete proof of the theorem for the parameterization

of all robust stabilizing modified repetitive controllers for multiple-input/multiple-

output plants omitted in [73] and show effectiveness of the parameterization of all

robust stabilizing modified repetitive controllers for multiple-input/multiple-output

plants. First, we give a complete proof of the theorem for the parameterization of all

robust stabilizing modified repetitive controllers for multiple-input/multiple-output

plants omitted in [73]. Next, we clarify control characteristics using the parameteri-

zation in [73]. The generalized design method for free parameters has been proposed.

Furthermore, the bandwidth limitation of cutoff frequency of low-pass filter which is
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used to specify disturbance attenuation characteristic is obtained by analyzing the

robust stability condition. In order to simplify the design process and avoid the wrong

results obtained by graphical method, the robust stability conditions are converted

into LMIs-constraint conditions by employing the delay-dependent bounded real lem-

ma. In addition, a design procedure using the parameterization is presented. Finally

a numerical example is illustrated to show the effectiveness of the proposed method.

2.2 Problem Formulation

Consider the modified repetitive control system in Figure 2.1 y = G(s)u+ d

u = C(s)(r − y)
, (2.1)

where G(s) ∈ Rp×p(s) is the multiple-input/multiple-output plant, G(s) is assumed

-
++

+

+

C (s )

C1(s)

eàsTC2(s)

q(s)

Gm(s)
É(s)

G (s )

u +

d

+

yr +
+

+

Figure 2.1: Modified repetitive control system with uncertainty

to be coprime. C(s) ∈ Rp×p(s) is the modified repetitive controller defined later,

u ∈ Rp is the control input, y ∈ Rp is the output and r ∈ Rp is the periodic reference

input with period T > 0 satisfying

r(t+ T ) = r(t) (∀t ≥ 0). (2.2)

The nominal plant of G(s) is denoted by Gm(s) ∈ Rp×p(s). Both G(s) and Gm(s) are

assumed to have no zero or pole on the imaginary axis. In addition, it is assumed
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that the number of poles of G(s) in the closed right half plane is equal to that of

Gm(s). The relation between the plant G(s) and the nominal plant Gm(s) is written

as

G(s) = (I +∆(s))Gm(s), (2.3)

where ∆(s) is an uncertainty. The set of ∆(s) is all rational functions satisfying

σ̄ {∆(jω)} < |WT (jω)| (∀ω ∈ R+), (2.4)

where WT (s) is a stable rational function.

The robust stability condition for the plant G(s) with uncertainty ∆(s) satisfying

(2.4) is given by

∥T (s)WT (s)∥∞ < 1, (2.5)

where T (s) is the complementary sensitivity function given by

T (s) = (I +Gm(s)C(s))−1 Gm(s)C(s). (2.6)

According to [84, 85, 86, 28, 89, 87, 88, 9], in order for the output y(s) to follow

the periodic reference input r(s) with period T in (2.1) with small steady state error,

the controller C(s) must have the following structure

C(s) = C1(s) + C2(s)e
−sT

(
I − q(s)e−sT

)−1

, (2.7)

where q(s) ∈ Rp×p(s) is a low-pass filter satisfying q(0) = I and rank q(s) = p,

C1(s) ∈ Rp×p(s) and C2(s) ∈ Rp×p(s) satisfying rank C2(s) = p. In the following,

e−sT (I − q(s)e−sT )−1 defines the internal model for the periodic signal with period T .

According to [84, 85, 86, 28, 89, 87, 88, 9], if the low-pass filter q(s) satisfy

σ̄ {I − q(jωi)} ≃ 0 (i = 0, 1, . . . , ~) , (2.8)

where ωi are the frequency components of the periodic reference input r(s) written

by

ωi =
2π

T
i (i = 0, 1, . . . , ~) , (2.9)
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and ω~ is the maximum frequency component, then the output y(s) in (2.1) follows

the periodic reference input r(s) with small steady state error. The controller written

by (2.7) is called the modified repetitive controller [84, 85, 86, 28, 89, 87, 88, 9].

The problem considered in this paper is to obtain the parameterization of all

robust stabilizing modified repetitive controllers C(s) in (2.7) satisfying (2.5) for

multiple-input/multiple-output plant in (2.3) with any uncertainty ∆(s) satisfying

(2.4).

2.3 The parameterization of all robust stabilizing

modified repetitive controllers for MIMO plants

In this section, we give the parameterization of all robust stabilizing modified repet-

itive controllers for multiple-input/multiple-output plants.

In order to obtain the parameterization of all robust stabilizing modified repetitive

controllers, we must see that controllers C(s) hold (2.5). The problem of obtaining

the controller C(s), which is not necessarily a modified repetitive controller, satisfying

(2.5) is equivalent to the following H∞ control problem. In order to obtain the

controller C(s) satisfying (2.5), we consider the control system shown in Figure 2.2.

P (s) is selected such that the transfer function from w to z in Figure 2.2 is equal to

T (s)WT (s). The state space description of P (s) is, in general,
ẋ(t) = Ax(t) +B1w(t) +B2u(t)

z(t) = C1x(t) +D12u(t)

y(t) = C2x(t) +D21w(t)

, (2.10)

where A ∈ Rn×n, B1 ∈ Rn×m, B2 ∈ Rn×p, C1 ∈ Rm×n, C2 ∈ Rm×n, D12 ∈ Rm×p,

D21 ∈ Rm×m, x(t) ∈ Rn, w(t) ∈ Rm, z(t) ∈ Rm, u(t) ∈ Rp and y(t) ∈ Rm. P (s) is

called as the generalized plant. P (s) is assumed to satisfy the following assumptions

[93]:
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w z

u yP(s)

C(s)

Figure 2.2: Block diagram of H∞ control problem

1. (C2, A) is detectable, (A,B2) is stabilizable.

2. D12 has full column rank, and D21 has full row rank.

3. rank

 A− jωI B2

C1 D12

 = n+ p (∀ω ∈ R+) and

4. rank

 A− jωI B1

C2 D21

 = n+m (∀ω ∈ R+).

Under these assumptions, according to [93], following lemma holds true.

Lemma 2.1. If controllers satisfying (2.5) exist, both

X
(
A−B2D

†
12C1

)
+
(
A−B2D

†
12C1

)T

X

+X
{
B1B

T
1 −B2

(
DT

12D12

)−1
BT

2

}
X +

(
D⊥

12C1

)T
D⊥

12C1 = 0 (2.11)

and

Y
(
A−B1D

†
21C2

)T

+
(
A−B1D

†
21C2

)
Y

+Y
{
CT

1 C1 − CT
2

(
D21D

T
21

)−1
C2

}
Y +B1D

⊥
21

(
B1D

⊥
21

)T
= 0 (2.12)

have solutions X ≥ 0 and Y ≥ 0 such that

ρ (XY ) < 1 (2.13)
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and both

A−B2D
†
12C1 +

{
B1B

T
1 −B2

(
DT

12D12

)−1
BT

2

}
X (2.14)

and

A−B1D
†
21C2 + Y

{
CT

1 C1 − CT
2

(
D21D

T
21

)−1
C2

}
(2.15)

have no eigenvalue in the closed right half plane. Using X and Y , the parameterization

of all controllers satisfying (2.5) is given by

C(s) = C11(s) + C12(s)Q(s)(I − C22(s)Q(s))−1C21(s), (2.16)

where

 C11(s) C12(s)

C21(s) C22(s)

 =


Ac Bc1 Bc2

Cc1 Dc11 Dc12

Cc2 Dc21 Dc22

 , (2.17)

Ac = A+B1B
T
1 X −B2

(
D†

12C1 + E−1
12 B

T
2 X

)
− (I − Y X)−1

(
B1D

†
21 + Y CT

2 E
−1
21

) (
C2 +D21B

T
1 X

)
,

Bc1 = (I − Y X)−1
(
B1D

†
21 + Y CT

2 E
−1
21

)
,

Bc2 = (I − Y X)−1 (B2 + Y CT
1 D12

)
E

−1/2
12 ,

Cc1 = −D†
12C1 − E−1

12 B
T
2 X,

Cc2 = −E
−1/2
21

(
C2 +D21B

T
1 X

)
,

Dc11 = 0, Dc12 = E
−1/2
12 , Dc21 = E

−1/2
21 , Dc22 = 0,

E12 = DT
12D12, E21 = D21D

T
21
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and Q(s) ∈ H∞ is any function satisfying ∥Q(s)∥∞ < 1. C(s) in (2.16) is written

using Linear Fractional Transformation(LFT). Using homogeneous transformation,

(2.16) is rewritten by

C(s) =
(
Z11(s)Q(s) + Z12(s)

)(
Z21(s)Q(s) + Z22(s)

)−1

=
(
Q(s)Z̃21(s) + Z̃22(s)

)−1 (
Q(s)Z̃11(s) + Z̃12(s)

)
, (2.18)

where Zij(s)(i = 1, 2; j = 1, 2) and Z̃ij(s)(i = 1, 2; j = 1, 2) are defined by Z11(s) Z12(s)

Z21(s) Z22(s)

 =

 C12(s)− C11(s)C
−1
21 (s)C22(s) C11(s)C

−1
21 (s)

−C−1
21 (s)C22(s) C−1

21 (s)

 (2.19)

and  Z̃11(s) Z̃12(s)

Z̃21(s) Z̃22(s)

 =

 C21(s)− C22(s)C
−1
12 (s)C11(s) C−1

12 (s)C11(s)

−C22(s)C
−1
12 (s) C−1

12 (s)

 (2.20)

and satisfying  Z̃22(s) Z̃12(s)

Z̃21(s) Z̃11(s)

 Z11(s) −Z12(s)

−Z21(s) Z22(s)

 = I

=

 Z11(s) −Z12(s)

−Z21(s) Z22(s)

 Z̃22(s) Z̃12(s)

Z̃21(s) Z̃11(s)

 . (2.21)

Using Lemma 2.1, the parameterization of all robust stabilizing modified repetitive

controllers for multiple-input/multiple-output plants is given by following theorem.

Theorem 2.1. If modified repetitive controllers satisfying (2.5) exist, both (2.11) and

(2.12) have solutions X ≥ 0 and Y ≥ 0 such that (2.13) and both (2.14) and (2.15)

have no eigenvalue in the closed right half plane. Using X and Y , the parameterization

of all robust stabilizing modified repetitive controllers satisfying (2.5) is given by

C(s) =
(
Z11(s)Q(s) + Z12(s)

)(
Z21(s)Q(s) + Z22(s)

)−1

=
(
Q(s)Z̃21(s) + Z̃22(s)

)−1 (
Q(s)Z̃11(s) + Z̃12(s)

)
, (2.22)
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where Zij(s)(i = 1, 2; j = 1, 2) and Z̃ij(s)(i = 1, 2; j = 1, 2) are defined by (2.19)

and (2.20) and satisfying (2.21), Cij(s)(i = 1, 2; j = 1, 2) are given by (2.17) and

Q(s) ∈ Hp×p
∞ is any function satisfying ∥Q(s)∥∞ < 1 and written by

Q(s) =
(
Qn1(s) +Qn2(s)e

−sT
) (

Qd1(s) +Qd2(s)e
−sT

)−1
, (2.23)

Qn1(s) ∈ RHp×p
∞ , Qd1(s) ∈ RHp×p

∞ , Qn1(s) ∈ RHp×p
∞ and Qd2(s) ∈ RHp×p

∞ are any

functions satisfying

σ̄ {Z22(0) (Qd1(0) +Qd2(0)) + Z21(0) (Qn1(0) +Qn2(0))} = 0 (2.24)

and

rank
(
Qn2(s)−Qn1(s)Q

−1
d1 (s)Qd2(s)

)
= p. (2.25)

Proof. First, the necessity is shown. That is, if the robust stabilizing modified repet-

itive controller C(s) written by (2.7) stabilizes the control system in (2.1), then C(s)

and Q(s) are written by (2.22) and (2.23), respectively. From Lemma 2.1, the pa-

rameterization of all robust stabilizing controllers C(s) is written by (2.22), where

∥Q(s)∥∞ < 1. In order to prove the necessity, we will show that if C(s) written by

(2.7) stabilizes the control system in (2.1), then Q(s) in (2.22) is written by (2.23).

Substituting C(s) in (2.7) for (2.22), we have

Qn1(s) = N1n(s)N2d(s), (2.26)

Qn2(s) = N2n(s), (2.27)

Qd1(s) = D1n(s)D2d(s)N1d(s)N2d(s) (2.28)

and

Qd2(s) = D2n(s)N1d(s)N2d(s). (2.29)
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Here, N1n(s) ∈ RHp×p
∞ , N1d(s) ∈ RHp×p

∞ , N2n(s) ∈ RHp×p
∞ , N2d(s) ∈ RHp×p

∞ ,

D1n(s) ∈ RHp×p
∞ , D1d(s) ∈ RHp×p

∞ , D1n(s) ∈ RHp×p
∞ , D1d(s) ∈ RHp×p

∞ are coprime

factors satisfying

− Z̃11(s) + Z̃21(s)C1(s) = D1n(s)D
−1
1d (s), (2.30)

(
Z̃21(s)C2(s) + Z̃11(s)q(s)− Z̃21(s)C1(s)q(s)

)
D1d(s) = D2n(s)D

−1
2d (s), (2.31)

(
Z̃12(s)− Z̃22(s)C1(s)

)
D1d(s)D2d(s) = N1n(s)N

−1
1d (s) (2.32)

and (
−Z̃22(s)C2(s)− Z̃12(s)q(s) + Z̃22(s)C1(s)q(s)

)
D1d(s)D2d(s)N1d(s) = N2n(s)N

−1
2d (s). (2.33)

From (2.26)∼(2.29), all of Qn1(s), Qn2(s), Qd1(s) and Qd2(s) are included in RH∞.

Thus, we have shown that if C(s) written by (2.7) stabilize the control system in (2.1)

robustly, Q(s) in (2.22) is written by (2.23). Since q(0) = I, from (2.26)∼(2.29) and

(2.21), (2.24) holds true. In addition, from the assumption of rank C2(s) = p and

from (2.31) and (2.33),

rank D2n(s) = p (2.34)

and

rank N2n(s) = p (2.35)

hold true. From (2.34), (2.35), (2.27) and (2.29), (2.25) is satisfied. We have thus

proved the necessity.

Next, the sufficiency is shown. That is, it is shown that if C(s) and Q(s) ∈ H∞

are settled by (2.22) and (2.23), respectively, then the controller C(s) is written by
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the form in (2.7), q(0) = I and rank C2(s) = p hold true. Substituting (2.23) into

(2.22), we have (2.7), where, C1(s), C2(s) and q(s) are denoted by

C1(s) = (Z11(s)Qn1(s) + Z12(s)Qd1(s)) (Z21(s)Qn1(s) + Z22(s)Qd1(s))
−1 , (2.36)

C2(s) =
(
Qn1(s)Q

−1
d1 (s)Z̃21(s) + Z̃22(s)

)−1 (
Qn2(s)−Qn1(s)Q

−1
d1 (s)Qd2(s)

)
(Z21(s)Qn1(s) + Z22(s)Qd1(s))

−1 (2.37)

and

q(s) = − (Z21(s)Qn2(s) + Z22(s)Qd2(s)) (Z21(s)Qn1(s) + Z22(s)Qd1(s))
−1 . (2.38)

We find that if C(s) and Q(s) are settled by (2.22) and (2.23), respectively, then the

controller C(s) is written by the form in (2.7). Substituting (2.24) into (2.38), we

have q(0) = I. In addition, from (2.25) and (2.37),

rank C2(s) = p (2.39)

holds true.

We have thus proved Theorem 2.1

2.4 Control characteristics

In this section, we explain control characteristics of the control system in (2.1) us-

ing the parameterization of all robust stabilizing modified repetitive controllers for

multiple-input/multiple-output plants. In addition, roles of Qn1(s), Qn2(s), Qd1(s)

and Qd2(s) in (2.23) are clarified.

From Theorem 2.1, Q(s) in (2.23) must be included in H∞. Since Qn1(s) ∈ RH∞

and Qn2(s) ∈ RH∞ in (2.23), if
(
Qd1(s) +Qd2(s)e

−sT
)−1 ∈ H∞, then Q(s) satisfies

Q(s) ∈ H∞. That is, the role of Qd1(s) and Qd2(s) is to assure Q(s) ∈ H∞, and the

role of Qn1(s) and Qn2(s) is to guarantee ∥Q(s)∥∞ < 1.
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Next, the input-output characteristic of the control system in (2.1) is shown. The

transfer function S(s) from the periodic reference input r(s) to the error e(s) =

r(s)− y(s) of the control system in (2.1) is written by

S(s) = Sn(s)S
−1
d (s), (2.40)

where

Sn(s) = C−1
21 (s)

{
I + (−C22(s)Qn2(s) +Qd2(s)) (−C22(s)Qn1(s) +Qd1(s))

−1 e−sT
}

(−C22(s)Qn1(s) +Qd1(s)) (2.41)

and

Sd(s) = Z21(s)Qn1(s) + Z22(s)Qd1(s) + (Z21(s)Qn2(s) + Z22(s)Qd2(s)) e
−sT

+G(s)
{
Z11(s)Qn1(s) + Z12(s)Qd1(s) + (Z11(s)Qn2(s) + Z12(s)Qd2(s)) e

−sT
}
.

(2.42)

From (2.19), (2.20) and (2.38), the low-pass filter can be represented as

q(s) = −C−1
21 (s) (−C22(s)Qn2(s) +Qd2(s)) (−C22(s)Qn1(s) +Qd1(s))

−1C21(s),

(2.43)

and the function Sn(s) is written by

Sn(s) =
{
I − q(s)e−sT

}
C−1

21 (s) (−C22(s)Qn1(s) +Qd1(s)) (2.44)

According to the (2.44) and (2.43), if Qn1(s), Qd1(s), Qn2(s) and Qd2(s) are selected

satisfying (2.8), then

σ̄
{
Sn(jωi)

}
≤ σ̄

{
I−q(jωi)

}
σ̄
{
C−1

21 (jωi)
}
σ̄
{
(−C22(jωi)Qn1(jωi) +Qd1(jωi))

}
≃ 0,

(2.45)

the output y(s) follows the periodic reference input r(s) with frequency components

ωi =
2π

T
i (i = 0, 1, . . . , ~) (2.46)
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with a small steady state error.

Next, the disturbance attenuation characteristic of the control system in (2.1)

is shown. The transfer function from the disturbance d(s) to the output y(s) of the

control system in (2.1) is written by (2.40). From (2.40), for ωi(i = 0, 1, . . . , ~) in (2.8)

of the frequency component of the disturbance d(s) that is same as that of the periodic

reference input r(s), if (2.45) holds, then the disturbance d(s) is attenuated effectively.

This implies that the disturbance with same frequency component ωi(i = 0, 1, . . . , ~)

of the periodic reference input r(s) is attenuated effectively. That is, the role of Qn2(s)

and Qd2(s) is to specify the disturbance attenuation characteristic for the disturbance

with same frequency component ωi(i = 0, 1, . . . , ~) of the periodic reference input

r(s). When the frequency components of disturbance d(s), ω̄k(k = 0, 1, · · · , h), are

not equal to ωi(i = 0, 1, · · · , ~), even if

σ̄ {I − q(jω̄k)} ≃ 0, (2.47)

the disturbance d(s) cannot be attenuated, because

e−jω̄kT ̸= 1 (2.48)

and

σ̄
{
I − q(jω̄k)e

−jω̄kT
}

/≃ 0. (2.49)

In order to attenuate the frequency components ω̄k(k = 0, 1, · · · , h) of the disturbance

d(s), we need to satisfy

σ̄ {−C22(jω̄k)Qn1(jω̄k) +Qd1(jω̄k)} ≃ 0. (2.50)

This implies that the disturbance d(s) with frequency components ω̄k ̸= ωi(i =

0, 1, . . . , ~, k = 0, 1, · · · , h) is attenuated effectively. That is, the role of Qn1(s) and

Qd1(s) is to specify disturbance attenuation characteristics for disturbance of frequen-

cy ωd ̸= ωi(i = 0, 1, . . . , ~).

From above discussion, the role of Qn2(s) and Qd2(s) is to specify the input-output

characteristic for the periodic reference input r(s) and to specify for the disturbance
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d(s) of which the frequency component is equivalent to that of the periodic reference

input r(s). The role of Qn1(s) and Qd1(s) is to specify for the disturbance d(s) of

which the frequency component is different from that of the periodic reference input

r(s).

2.5 Design parameters

Generally, the design of the free parameters are using Nyquist stability criterion by

manual examination, which is very difficult and inefficient. To settle this problem, it

is essential to establish an efficiently and easily method for the parameters. In this

section, an efficient design method will be presented for the free parameters based on

the control characteristics and H∞ control approach.

2.5.1 Design parameters for control performance

The objective of this chapter is to develop an efficient design method so that the

closed-loop system in Figure 2.1 is robust stable and has high control precision for

reference input and/or disturbance. Hence, the free parametersQn1(s), Qd1(s), Qn2(s)

and Qd2(s) should be designed after the control characteristics.

First, in order to track the reference input with small steady-state error for fre-

quency components ωi(0, 1, · · · , ~), Qn1(s),Qd1(s), Qn2(s) and Qd2(s) should be set-

tled to satisfy (2.43). That is equal to

σ̄
{
I + (−C22(jωi)Qn2(jωi) +Qd2(jωi)) (−C22(jωi)Qn1(jωi) +Qd1(jωi))

−1} ≃ 0

(2.51)

for all frequency components ωi(0, 1, · · · , ~). Since C22(s) is strictly proper, there

exists C̃(s) to satisfy

I − C22(0)C̃(0) = I (2.52)
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and

σ̄
[
I − (I − C22(jωi)C̃(jωi))q̂(jωi)

]
≃ 0, (2.53)

where

q̂(s) = diag

{
1

(1 + sτr1)
, · · · , 1

(1 + sτrp)

}
, (2.54)

Qn2(s) = C̃(s)Qd2(s) ∈ RH∞ (2.55)

and

Qd2(s) = −q̂(s) {−C22(s)Qn1(s) +Qd1(s)} . (2.56)

Then, the low-pass filter q(s) can be written as

q(s) = C−1
21

(
I − C22(s)C̃(s)

)
q̂(s)C21(s). (2.57)

Obviously, C̃(s) = 0 satisfies (2.52), (2.53) and (2.55), and q(s) = q̂(s).

On the other hand, to attenuate the frequency components ω̄k(0, 1, · · · , h) effec-

tively, Qn1(s) is settled by

Qn1(s) = C−1
22o(s)Qd1(s)q̄d(s), (2.58)

where C22o(s) ∈ RH∞ is an outer function of C22(s) satisfying

C22(s) = C22i(s)C22o(s), (2.59)

C22i(s) ∈ RH∞ is an inner function satisfying C22i(0) = I and σ̄ {C22i(jω)} = 1(∀ω ∈

R+), q̄d(s) is a low-pass filter satisfying q̄d(0) = I, as

q̄d(s) = diag

{
1

(1 + sτd1)
αd1

, · · · , 1

(1 + sτdp)
αdp

}
(2.60)

is valid, αdi(i = 1, . . . , p) are arbitrary positive integers to make C−1
22o(s)q̄d(s) proper

and τdk ∈ R(k = 1, . . . , p) are any positive real numbers satisfying

σ̄ {I − C22i(jω̄k)q̄d(jω̄k)} ≃ 0 (2.61)

for ω̄k(0, 1, · · · , h).
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2.5.2 Design parameters for robust stability conditions

From Theorem 2.1, the free parameters Qn1(s), Qd1(s), Qn2(s) and Qd2(s) are re-

quired to satisfy the robust stability conditions Q(s) ∈ H∞ and ∥Q(s)∥∞ < 1. For

convenience, choose the C̃(s) = 0 and Qd1(s) ∈ RH∞ and substitute (2.58), (2.56)

and (2.55) into (2.23) leading to

Q(s) = C−1
22o(s)q̄d(s)

{
I − q̂(s)q̄(s)e−sT

}−1

, (2.62)

where

q̄(s) = I − C22i(s)q̄d(s). (2.63)

Note that

∥q̄(s)∥∞ < 1, (2.64)

since C22i(s)q̄d(s) works as low-pass filter. According to H∞ control approach, the

conditions Q(s) ∈ H∞ and ∥Q(s)∥∞ < 1 are the robust stability conditions of closed-

loop system in Figure 2.3, where ∆̂(s) is an uncertainty satisfying ∥∆̂(s)∥∞ = 1.

qê(s)qö(s)eàsT

Cà122o(s)qöd(s)

Éê (s)

+

y1(s)u1(s)

u2(s) y2(s)

Qd(s)

+

Figure 2.3: Closed-loop system for Q(s) ∈ H∞ and ∥Q(s)∥∞ < 1

Since C−1
22o(s)q̄d(s), q̂(s) and q̄(s) are RH∞, if (I + q̂(s)q̄(s)e−sT )−1 ∈ H∞, then

Q(s) ∈ H∞ holds. In fact, the (I + q̂(s)q̄(s)e−sT )−1 ∈ H∞ is equivalent that the

closed-loop system Qd(s) is stable. Due to ∥e−sT∥∞ ≤ 1, according to the small gain
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theorem, the stability condition is

∥q̂(s)q̄(s)∥∞ < 1. (2.65)

Because of ∥q̂(s)∥∞ ≤ 1 and ∥q̄(s)∥∞ < 1, the stability condition for Qd(s) is satisfied.

That means Q(s) ∈ H∞.

From the Figure 2.3, the system can be represented as y(s) = T (s)u(s)

u(s) = Λ(s)y(s)
, (2.66)

where y(s) =
[
yT1 (s) yT2 (s)

]T
, u(s) =

[
uT
1 (s) uT

2 (s)
]T

, the transfer function

T (s) is written by

T (s) =

 C−1
22o(s)q̄d(s) C−1

22o(s)q̄d(s)

q̂(s)q̄(s) q̂(s)q̄(s)

 (2.67)

and the uncertainties Λ(s) is written as

Λ(s) =

 ∆̂ 0

0 e−sT

 . (2.68)

Note that ∥Λ(s)∥∞ ≤ 1, then the robust stability condition ∥Q(s)∥∞ < 1 is equivalent

to the condition ∥∥∥∥∥∥
 C−1

22o(s)q̄d(s) C−1
22o(s)q̄d(s)

q̂(s)q̄(s) q̂(s)q̄(s)

∥∥∥∥∥∥
∞

< 1, (2.69)

and further it as ∥∥∥∥∥∥
 C−1

22o(s)q̄d(s) 0

0 q̂(s)q̄(s)

∥∥∥∥∥∥
∞

<
1

2
. (2.70)

This condition shows that, for given C22o(s), we should chose suitable low-pass filters

q̂(s) and qd(s) to satisfy robust stability conditions.

According to the design method for C22i(s) and C22o(s) in [102], C22o(s) must be

strictly proper. We found that there exist the bandwidth restrictions for q̄d(s) and
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q̂(s) in (2.70). Without loss of generality, to explain this problem clearly and simply,

we set C22o(s) as

C22o(s) =
β

1 + α s
, α > 0. (2.71)

Since C−1
22o(s)q̄d(s) is proper, we will analysis it in two cases for

q̄d(s) =
1

1 + τd s
(2.72)

and

q̄d(s) =
1

(1 + τd s)2
, (2.73)

respectively.

Case 1 The low-pass filter q̄d(s) is selected in (2.72), the infinity norm of C−1
22o(s)q̄d(s)

is

∥C−1
22o(s)q̄d(s)∥∞ = max

ω∈R

∣∣∣∣ 1 + j α ω

β (1 + j τd ω)

∣∣∣∣ = max
ω∈R

{
1

|β|

√
1 + α2 ω2

1 + τ 2d ω
2

}
. (2.74)

Then, according to (2.70), when we choose α < τd, the inequality

1

|β|
<

1

2
(2.75)

must be satisfied, or when we choose α > τd, the inequality

α

τd
<

|β|
2

(2.76)

must be satisfied. These two conditions means that the restriction of the cutoff

frequency ωdc for low-pass filter q̄d(s) is that

ωdc =
1

τd
< max

{
1

α
,
|β|
2α

}
. (2.77)

Case 2 The low-pass filter q̄d(s) is selected in (2.73), the infinity norm of C−1
22o(s)q̄d(s)

is

∥C−1
22o(s)q̄d(s)∥∞ = max

ω∈R

∣∣∣∣ 1 + j α ω

β (1 + j τd ω)2

∣∣∣∣ = max
ω∈R

{
1

|β|

√
1 + α2 ω2

1 + τ 2d ω
2

}
. (2.78)
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Then, according to (2.70), when we choose

√
2

2
α < τd, the inequality

1

|β|
<

1

2
(2.79)

must be satisfied, or when we choose

√
2

2
α > τd and the condition (2.79) holds,

the inequality

√
2α

2

√
β2 −

√
β4 − 4 β2

β2
< τd <

√
2α

2

√
β2 +

√
β4 − 4 β2

β2
(2.80)

must be stratified. Obviously, there is no low-pass filter q̄d(s) in the form of

(2.60) for

1

|β|
≥ 1

2
(2.81)

in this case. From above discussion, the restriction of the cutoff frequency ωdc

for low-pass filter q̄d(s) is that

ωdc =
1

τd
< max


√
2

α
,

√
2α

2

√
β2 −

√
β4 − 4 β2

β2

−1 . (2.82)

with (2.79) in this case.

The results in these two cases show that we would better to choose the q̄d(s) to

make C−1
22o(s)q̄d(s) biproper. Furthermore, there exists the bandwidth restriction for

the low-pass filter q̄d(s).

On the other hand, the restriction of the cutoff frequency ωc for the low-pass filter

q̂(s) has been detailed in [29]. This subsection demonstrates that when choose the

low-pass filter for the perfect control performance, the robust stability condition may

be not guaranteed. That results in tradeoff problem for modified repetitive control

system design.
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2.5.3 Robust stability condition based on linear matrix in-

equalities (LMIs)

The computation of the infinity norm is complicated and requires a search. Control

engineering interpretation of the infinity norm is the distance in the complex plane

form the origin to the farthest point on the Nyquist plot, and it also appears as the

peak value on the Bode magnitude plot. However, the graphical method can lead to

a wrong answer for a lightly damped system if the frequency gride is not sufficiently

dense [103]. Moreover, the robust stability condition (2.70) has conservativeness. To

compute the infinity norm easily and reduce the conservativeness, the Bounded Real

Lemma (BRL) [104] based on linear matrix inequality is employed.

Assume the sate-space description of C−1
22o(s)q̄d(s) and q̂(s)q̄(s) are

C−1
22o(s)q̄d(s) =

 Ao Bo

Co Do

 (2.83)

and

q̂(s)q̄(s) =

 Ah Bh

Ch 0

 . (2.84)

Then, from Figure 2.3, the the state-space description of Q(s) can be achieved as ẋq(s) = Aqxq(t) + Adxq(t− T )(t) +Bqu1(t)

y1(t) = Cqxq(t) + Cdxq(t− T ) +Dqu1(t)
, (2.85)

where

Aq =

 Ao 0

0 Ah

 , Ad =

 0 BoCh

0 BhCh

 , Bq =

 Bo

Bh

 ,

Cq =
[
Co 0

]
, Cd =

[
0 DoCh

]
and Dq = Do.

To obtain the stability condition for ∥Q(s)∥∞ < 1, the following result is required.
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Consider a nominal system Gn(s) with time-varying delay given by

Gn(s) :


ẋ(t) = Ax(t) + Adx(t− τ(t)) +Bϖϖ(t)

z(t) = Cx(t) + Cdx(t− τ(t)) +Dϖϖ(t)

x(t) = ϕ(t), t ∈ [τ̄ , 0]

, (2.86)

where the initial condition, ϕ(t), is a continuous vector-valued initial function of

t ∈ [τ̄ , 0], τ(t) is a time delay and satisfying

0 ≤ τ(t) ≤ τ̄ , |τ̇(t)| ≤ d < 1, t ≥ 0. (2.87)

The H∞ performance of Gn(s), i.e.,

∥Gn(s)∥∞ < γ, γ > 0 (2.88)

is obtained by solving the following feasible problem.

Lemma 2.2 (BRL [104]). Given scalars τ̄ , γ and d > 0, if there exist matrices Z, S,

M , Q22 and P11 > 0, Q11 and P22 ≥ 0, and any matrices Q12 and P12 with appropriate

dimensions such that the following LMIs hold

Ω1 =



Ω11 Ω12 Ω13 Ω14 CT τ̄ATQ22 dP12 0

∗ Ω22 Ω23 0 CT
d τ̄AT

dQ22 0 dP22

∗ ∗ Ω33 Ω34 0 0 0 0

∗ ∗ ∗ −γ2I DT
ϖ τ̄BT

ϖQ22 0 0

∗ ∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ ∗ −Q22 0 0

∗ ∗ ∗ ∗ ∗ ∗ −dS 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −dZ



< 0, (2.89)

 Q11 Q12

∗ Q2

 ≥ 0 (2.90)

and  P11 P12

∗ P22

 ≥ 0, (2.91)
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where

Ω11 = M −Q22 + τ̄ 2
(
Q11 +Q12A+ ATQT

12

)
+ P12 + P T

12 + P11A+ ATP T
11,

Ω12 = Q22 + τ̄ 2Q12Ad + P11Ad − P12,

Ω13 = ATP12 + P T
22 −QT

12,

Ω14 = P11Bϖ + τ̄ 2Q12Bϖ,

Ω22 = dS − (1− d)M −Q22,

Ω23 = AT
dP12 − P22 +QT

12,

Ω33 = dZ −Q11

and

Ω34 = P T
12Bϖ,

then system (2.86) is asymptotically stable.

Applying this Lemma to the system (2.85) with d = 0 and τ̄ = T , the robust

stability conditions Q(s) ∈ H∞ and ∥Q(s)∥∞ < 1 are given in form of LMIs.

Theorem 2.2. Given scalars T and γ = 1, if there exist matrices M , Q22 and

P11 > 0, Q11 and P22 ≥ 0, and any matrices Q12 and P12 with appropriate dimensions

such that (2.90), (2.91) and the following LMI hold

Ξ11 Ξ12 Ξ13 Ξ14 CT TAT
q Q22

∗ Ξ22 Ξ23 0 CT
d TAT

dQ22

∗ ∗ −Q11 P T
12Bq 0 0

∗ ∗ ∗ −γ2I DT
q TBT

q Q22

∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ −Q22


< 0, (2.92)

where

Ξ11 = M −Q22 + T 2
(
Q11 +Q12Aq + AT

dQ
T
12

)
+ P12 + P T

12 + P11Aq + AT
q P

T
11,
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Ξ12 = Q22 + T 2Q12Ad + P11Ad − P12,

Ξ13 = AT
q P12 + P T

22 −QT
12,

Ξ14 = P11Bq + T 2Q12Bq,

Ξ22 = −M −Q22

and

Ξ23 = AT
dP12 − P22 +QT

12,

then system (2.85) is asymptotically stable.

Finally, according to above discussions, a design procedure of robust stabilizing

modified repetitive controller C(s) satisfying Theorem 2.1 is summarized as follows:

Procedure

1. Obtain C11(s), C12(s), C21(s) and C22(s) by solving the robust stability problem

using the Riccati equation based H∞ control.

2. Settle the free parameters Qn1(s), Qd1(s), Qn2(s) and Qd2(s) as shown in Sub-

section 2.5.1.

3. According to Subsection 2.5.2, choose appropriate parameters τri, τdi and αdi(i =

1, · · · , p) for the low-pass filters q̂(s) and q̄d(s) to satisfy (2.51), (2.61) and The-

orem 2.2.

2.6 Numerical example

In this section, numerical examples are made to illustrate the validity of the pro-

posed approach. Consider the problem to obtain the parameterization of all robust

stabilizing modified repetitive controllers for the set of plants G(s) written by (2.3),
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where

Gm(s) =


s+ 3

(s− 2)(s+ 9)

2

(s− 2)(s+ 9)

s+ 3

(s− 2)(s+ 9)

s+ 4

(s− 2)(s+ 9)

 (2.93)

and

WT (s) =
s+ 400

550
. (2.94)

The period T of the periodic reference input r is given by T = 10[sec].

Solving the robust stability problem using Riccati equation based H∞ control

as Theorem 2.1, the parameterization of all robust stabilizing controllers C(s) is

obtained. In addition, we find that C22(s) is of minimum phase as

C22(s) =


−434

s+ 408

347

s+ 408
347

s+ 408

434

s+ 408

 . (2.95)

Since C22(s) is of minimum phase, we set Qn1(s), Qn2(s), Qd1(s) and Qd2(s) in

(2.23) as

Qd1(s) = I ∈ RH∞, (2.96)

Qn1(s) = C−1
22 (s)q̄d(s) ∈ RH∞, (2.97)

Qn2(s) = 0 ∈ RH∞, (2.98)

and

Qd2(s) = −q̂(s) (I − q̄d(s)) ∈ RH∞, (2.99)

where q̄(s) and q̂(s) are written by

q̄d(s) =


1

0.002 s+ 1
0

0
1

0.002 s+ 1

 (2.100)
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and

q̂(s) =


1

0.002 s+ 1
0

0
1

0.002 s+ 1

 . (2.101)

Using Qd1(s) in (2.96) and Qd2(s) in (2.99), Theorem 2.2 has feasible solutions and

the H∞ performance index γ is 0.904, i.e., ∥Q(s)∥∞ < 0.904. To verify this result,

0 0.5 1 1.5 2 2.5 3 3.5 4
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1

1.5
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Im

Re

Figure 2.4: The nyquist plot of det(Qd1(s) +Qd2(s)e
−sT )

the Nyquist plot of det(Qd1(s) + Qd2(s)e
−sT ) and the largest singular value plot of

Q(s) are shown in Figure 2.4 and Figure 2.5, respectively. Since the Nyquist plot of

det(Qd1(s) + Qd2(s)e
−sT ) does not encircle the origin, we find that Q(s) in (2.23) is

included in H∞. Figure 2.5 illustrates σ̄{Q(jω)} ≃ 0.9 < 1(∀ω ∈ R), i.e., ∥Q(s)∥∞ ≃

0.9 < 1.

According to analysis result in Subsection 2.5.2, there exists the bandwidth lim-

itation for low-pass filter q̄d(s). To verify this result, we draw the Nyquist plot of

det(Qd1(s)+Qd2(s)e
−sT ) and the largest singular value plot of Q(s) when τd 1,2 = 0.001

in Figure 2.6 and Figure 2.7. There is no feasible solution for LMIs-constraint con-
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Figure 2.5: Largest singular value plot of Q(s)

ditions in Theorem 2.2 and the H∞ performance index γ is 1.825, which means

∥Q(s)∥∞ < 1.825. And Figure 2.6 shows that Q(s) ∈ H∞. This verifies that the

design method make Q(s) belong to H∞ for arbitrary low-pass filters q̂(s) and q̄d(s).

However, Fiure 2.7 shows that σ̄{Q(jω)} ≃ 1.8 > 1(∀ω ∈ R), i.e., ∥Q(s)∥∞ > 1. This

result demonstrates that there exists some restriction on the bandwidth. Therefore,

when choose the low-pass filters to obtain high control precision, the robust stability

must be guaranteed.

Using above-mentioned parameters, we have a robust stabilizing modified repeti-

tive controller. When ∆(s) is given by

∆(s) =


s− 100

s+ 500

−100

s+ 500
−200

s+ 500

s− 100

s+ 500

 , (2.102)

in order to confirm that ∆(s) satisfies (2.4), the largest singular value plot of ∆(s)

and the gain plot of WT (s) are shown in Figure 2.8. Here, the solid line shows the

gain plot of WT (s) and the dashed line shows that of ∆(s). Figure 2.8 shows that the
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Figure 2.6: The nyquist plot of det(Qd1(s) +Qd2(s)e
−sT ) when τd 1,2 = 0.001
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Figure 2.7: Largest singular value plot of Q(s) when τd 1,2 = 0.001

uncertainty ∆(s) in (2.102) satisfies (2.4).

When the designed robust stabilizing modified repetitive controller C(s) is used,
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Figure 2.8: Largest singular value plot of ∆(s) and gain plot of WT (s)

the response of the error e(t) = r(t)− y(t) in (2.1) written by

e(t) =

 e1(t)

e2(t)

 =

 r1(t)− y1(t)

r2(t)− y2(t)

 (2.103)

for the periodic reference input r

r(t) =

 r1(t)

r2(t)

 =

 sin
(
2π
T t

)
2 sin

(
2π
T t

)
 (2.104)

is shown in Figure 2.9. Here, the broken line shows the response of the periodic

reference input r1(t), the dotted line shows that of the periodic reference input r2(t),

the solid line shows that of the error e1(t), and the dotted and broken line shows that

of the error e2(t). Figure 2.9 shows that the output y(t) follows the periodic reference

input r(t) with small steady state error.

Next, using the designed the robust stabilizing modified repetitive controller C(s),

the disturbance attenuation characteristic is shown. The response of the output y(t)
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Figure 2.9: Response of the error e(t) for the reference input r(t)

written by

y(t) =

 y1(t)

y2(t)

 (2.105)

for the disturbance d̄(t) of which the frequency component is equivalent to that of

the periodic reference input r(t)

d̄(t) =

 d̄1(t)

d̄2(t)

 =

 sin
(
2π
T t

)
2 sin

(
2π
T t

)
 (2.106)

is shown in Figure 2.10. Here, the broken line shows the response of the disturbance

d̄1(t), the dotted line shows that of the disturbance d̄2(t), the solid line shows that of

the output y1(t) and the dotted and broken line shows that of the output y2(t). Figure

2.10 shows that the disturbance d̄(t) is attenuated effectively. Finally, the response of

the output y(t) for the disturbance d̃(t) of which the frequency component is different
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Figure 2.10: Response of the output y(t) for the disturbance d̄(t)

from that of the periodic reference input r(t)

d̃(t) =

 d̃1(t)

d̃2(t)

 =

 sin
(
π
T t

)
2 sin

(
π
T t

)
 (2.107)

is shown in Figure 2.11. Here, the broken line shows the response of the disturbance

d̃1(t), the dotted line shows that of the disturbance d̃2(t), the solid line shows that

of the output y1(t) and the dotted and broken line shows that of the output y2(t).

Figure 2.11 shows that the disturbance d̃(t) is attenuated effectively.

A robust stabilizing modified repetitive controllers can be easily designed in the

way shown here. The design method proposed in this chapter simplifies the design

process which does not need to draw the Nyquist plot and the largest singular value

plot of free parameter Q(s) simultaneously. The simulation result show that this

modified repetitive control system can be used to track or attenuate the signals with

different period time.
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Figure 2.11: Response of the output y for the disturbance d̃(t)

2.7 Conclusions

In this chapter, we gave a complete proof of the theorem for the parameterization

of all robust stabilizing modified repetitive controllers for multiple-input/multiple-

output plants omitted in [73] and showed effectiveness of the parameterization of all

robust stabilizing modified repetitive controllers for multiple-input/multiple-output

plants. We clarified control characteristics using the parameterization in [73]. The

design of free parameters guarantees the perfect tracking performance and/or good

disturbance attenuation characteristics for different period-time. Viewing the time-

delay element as an uncertainty and applying H∞ control approach, there exists the

bandwidth limitation of low-pass filter for specify the disturbance characteristic for

both minimum phase and non-minimum phase control plant. In order to simplify the

design process and avoid the wrong results obtained by graphical method, the robust

stability conditions are converted into LMIs-constraint conditions by employing the
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delay-dependent bounded real lemma. This work can be extended to solve the tradeoff

problem. In addition, a design procedure using the parameterization was presented.

Finally a numerical example was illustrated to show the effectiveness of the proposed

method. Using the result in this paper, we can easily design a robust stabilizing

modified repetitive controller.
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Chapter 3

Robust Stabilizing Problem for

Time-varying periodic Signals

3.1 Introduction

In practical applications, many control systems must deal with periodic reference

and/or disturbance signals, for example industrial robots, computer disk drives, CD

player tracking control, machine tool motion control, and vibration attenuation of en-

gineering structures. One control system that can deal with periodic reference and/or

disturbance signals is a repetitive control system, as proposed by Hara et al. [28]. A

disadvantage of typical repetitive controllers is that they are based on the constant

period of the external signal. This means that in practical applications, either the

period must be constant (±0.1%) or an accurate measurement of the periodicity is

necessary.

However, in practice, rotary motion systems have found applications in various

industry products. For most applications, the systems are required to operate at

variable speeds while following repetitive trajectories and/or rejecting disturbances,

such as the brushless DC electric motor in a typical laser printer described by Chen et

al. [101]. In general, the periods of reference signals and/or disturbances are mostly
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Figure 3.1: Flat cam grinding system
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Figure 3.2: Rotation speed of servomotor

time varying in such systems. For instance, consider the flat cam grinding system

in Figure 3.1, which requires the control system to track a time-varying periodic

reference signal. This system uses noncircular grinding and the cam is machined by

utilizing a profile copier controlled by a linear servomotor. In the traditional grinding

system, the cam rotates at a constant speed, which means the cam is machined at a

varying tangent velocity. This leads to different metal-removal rates and the cam may

not meet the requirements. Therefore, to achieve the required machining conditions,

the cam is controlled by a servomotor that is required to rotate at a varying speed

ω(t), as shown in Figure 3.2, and this means that the reference input signal, the

distance d(θ) between the circle centers of the grinder and flat cam, is a time-varying

periodic signal, i.e., a position-dependent periodic signal. Hence, it is necessary to

design a controller for the linear servomotor to track the position-dependent reference
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input signal d(θ). Because it is periodic with respect to angular position, but not

necessarily with respect to time, the conventional repetitive control technique is not

directly applicable in this case. A very common design method for this class of system

is to transform a linear system from the time domain into a spatial domain.

Recently, several studies have considered the problem of rejecting and/or tracking

spatially periodic disturbances and/or reference inputs for rotary motion systems

using a spatial-based repetitive controller [105, 106, 107, 108, 109, 110]. Nakano et

al. [105] eliminated the angular position-dependent disturbances in constant-speed

rotation control systems by transforming all signals defined in the time domain to the

spatial domain, and obtained a stabilizing controller using coprime factorization. To

track spatially periodic reference inputs, Mahawan and Luo [106] proposed a repetitive

controller design method using operator-theoretic approaches. Sun [107] addressed

the tracking or rejecting problem for position-dependent signals by converting the

continuous-time system into a discrete spatial system. A more advanced design based

on linearization using H∞ robust control was proposed by Chen and Allebach [108].

Chen and Chiu [109] proved that the reformulated nonlinear plant model could be

cast into a quasilinear parameter-varying system that can be used to address spatially

periodic disturbances. In particular, a method of designing a spatial-based repetitive

control system for rotary motion systems subject to position-dependent disturbances

based on adaptive feedback linearization was presented by Chen and Yang [110].

With the domain transformation, the linear system in the time domain is cast into

a nonlinear system in the spatial domain. Before designing the repetitive controller,

it is necessary to linearize the nonlinear control system, which makes the design of the

repetitive controller more complicated and difficult. In particular, for the control of

plants with uncertainties or time-varying state delay, there exists a trade-off problem

between robust stability and control performance in the design of repetitive control

systems, and spatial-based design methods do not provide a satisfactory solution to

this trade-off. Hence, there is a clear need to develop an efficient design method for
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repetitive control systems that track or reject the position-dependent signals.

In this chapter, the position-dependent signal will be converted into a time-varying

periodic signal. Inspired by the structure of the repetitive controller[28] and the struc-

ture of the optimal repetitive controller[38], we propose a new modified repetitive

controller for position-dependent signals. Compared with the conventional modified

repetitive controller, the constant time-delay element is replaced by a time-varying

operator in our new controller. Moreover, an adjustable parameter is introduced in

the new structure to adjust the convergence rate of the closed-loop system and im-

prove the control precision. This controller is plugged into the closed-loop system for

a strictly proper plant with uncertainties to reject position-dependent disturbances.

The control performance of this repetitive control system then depends heavily on

the cutoff frequency of the low-pass filter and the adjustable parameter that represent

the trade-off between system robust stability and rejection performance. To achieve

the optimal performance and guarantee robust stability, the design problem consid-

ered in this paper is converted into a robustly stabilizing problem based on linear

matrix inequalities (LMIs). Two LMI-based robust stability conditions of the closed-

loop system with time-varying state delay are derived for fixed parameters. One is

a delay-dependent robust stability condition that is derived based on the free-weight

matrix. The other robust stability condition is based on the H∞ control approach

and introduces a linear unitary operator. The optimal values of the cutoff frequency

of the low-pass filter and the adjustable parameter can be obtained by solving the op-

timization problems with LMI-constrained conditions. Finally, a numerical example

is provided to demonstrate the effectiveness of the proposed design method.

3.2 Problem statement and preliminaries

In this section, we will transform the position-dependent signal into a time-varying

periodic signal and establish a new structure of modified repetitive controller.



3.2. PROBLEM STATEMENT AND PRELIMINARIES 61

First, we convert the position-dependent reference into a time-varying periodic

signal, in contrast with the conventional processing method, which transforms a lin-

ear system in the time domain into a nonlinear system in the spatial domain. The

position-dependent disturbance d(t) is given by

d(t) := d̃(θ) = d̃(θ − Tθ), (3.1)

where d̃(θ) is the position-dependent disturbance, Tθ is the period, and the rotational

angle θ(t) is defined as:  θ(t) := f(t) =
∫ t

0
ω(s)ds

ω(t) = dθ
dt

> 0 ∀ t > 0
, (3.2)

where ω(t) is the rotational speed and guarantees that θ(t) is strictly monotonic such

that t = f−1(θ) exists. Thus, for a large enough t, there exist a tθ > 0 such that

f(tθ) = f(t)− Tθ. We define a time-varying function τ(t) as

τ(t) :=

t0 0 < t < t0

t− f−1(f(t)− Tθ) = t− tθ t ≥ t0

, (3.3)

where t0 = f−1(Tθ) satisfies Tθ = f(t0) − f(0). Then by Lagrange’s mean value

theorem, there exists at least one point ξ ∈ (tθ, t) such that

Tθ = f(t)− f(tθ) = f ′(ξ)τ(t) = ω(ξ)τ(t). (3.4)

Then

τ(t) =
Tθ

ω(ξ)
≤ Tθ

ωmin

. (3.5)

From the inverse function theorem, the derivative of function τ(t) is

τ̇(t) =


0 0 < t < t0

1− ω(t)
ω(tθ)

≤ 1− ωmin
ωmax

t ≥ t0

. (3.6)

From the equations (3.5) and (3.6), there exist positive scalars τ̄ and µ such that

τ(t) satisfies

0 < τ(t) ≤ τ̄ , τ̇(t) ≤ µ, 0 ≤ µ < 1. (3.7)
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Then, the position-dependent disturbance signal can be transformed into a time-

varying periodic signal as

d(t) =

d̃(θ(t)) 0 < t < t0

d(t− τ(t)) t ≥ t0

, (3.8)

where τ(t) is the period defined in (3.3) and satisfying (3.7).

Q(s)Dü

à

aI

Figure 3.3: The new repetitive control system

Given the time-varying period and inspired by the structure of repetitive controllers[28]

and optimal repetitive controllers[38], we establish a new repetitive controller, shown

in Figure 3.3, for time-varying periodic signals. Compared with the conventional

repetitive controller, the constant time-delay element is replaced by the time-varying

operator Dτ defined as

Dτ (v(t)) := v(t− τ(t)), (3.9)

where τ(t) is the period of the disturbance d(t) in (3.8).

It is well known that the performance of a repetitive control system depends

strongly on the cutoff frequency of the included low-pass filter, which represents

the trade-off between system stability and control precision. However, it is hard to

determine the optimal bandwidth in practice because of the plant uncertainty and

system stability. To overcome this problem, we modify the system gain by introducing

an adjustable parameter a into the repetitive controller. From the structure of the

repetitive controller in Figure 3.3, the gain of CRM(s) is always proportional to the

adjustable parameter a; thus, the performance of the repetitive control system is
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strongly dependent on both the cutoff frequency ωc and the adjustable parameter a.

Hence, it is clear that the cutoff frequency ωc and the adjustable parameter a should

be as high as possible to obtain good rejection.

We consider the design problem of the modified repetitive control system shown

in Figure 3.4 that rejects signals that are periodic in the spatial domain while the

rotational speed varies in real-time. The strictly proper plant with uncertainties is
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Figure 3.4: The repetitive control system with uncertainties

described as  ẋp(t) = Ap(t)xp(t) +Bp(t)u(t) +Dwd(t)

y(t) = Cpxp(t)
, (3.10)

where xp(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rm are the state, input, and output signals,

respectively, Ap(t) ∈ Rn×n, Bp(t) ∈ Rn×m, Cp ∈ Rm×n, and Dw ∈ Rn×m. d(t) ∈ Rm is

an input disturbance that is periodic in the spatial domain and belongs to L2[0, tf ].

Assume that the uncertainties of the plant are given by
[
Ap(t) Bp(t)

]
=

[
Ap +∆Ap(t) Bp +∆Bp(t)

]
[
∆Ap(t) ∆Bp(t)

]
= ΦpΓ(t)

[
ΨA ΨB

] , (3.11)

where Ap ∈ Rn×n, Bp ∈ Rn×m, Φp, ΨA, and ΨB are known constant matrices, and

Γ(t) ∈ Rn×n is an unknown real and possibly time-varying matrix with Lebesgue-

measurable entries satisfying

ΓT (t)Γ(t) ≤ I, ∀t ≥ 0. (3.12)

Q(s), given by

Q(s) =
ωc

s+ ωc

I ∈ Rm×m, (3.13)
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is the low-pass filter of the repetitive controller CRM(s), where ωc is the cutoff fre-

quency of the low-pass filter Q(s), and a is an adjustable parameter.

The problem that should be addressed first is to design a feedback controller of

the form

u(t) = Fpxp(t) + e(t) (3.14)

such that the closed-loop system, without the modified repetitive controller, is stabi-

lized. Applying the control law (3.14) to (3.10) with r(t) ≡ 0 yields the closed-loop

system ẋ(t) = {Ap(t)−Bp(t)Cp +Bp(t)Fp}xp(t) +Dwd(t)

y(t) = Cpxp(t)

. (3.15)

The following lemma presents a rate-dependent state-feedback controller to stabilize

(3.15) robustly with a prescribed H∞ norm-bound specification.

Lemma 3.1. [111] For a prescribed scalar γ > 0, the closed-loop system (3.15) is

robustly stable and satisfies ∥y(t)∥2 < γ∥d(t)∥2, if there exist a matrix P T = P > 0,

a scalar λ > 0, and an arbitrary matrix W with appropriate dimensions satisfying

Λ1 Dw PCT
p Λ2 λΦ

∗ −I 0 0 0

∗ ∗ −γ2I 0 0

∗ ∗ ∗ −λI 0

∗ ∗ ∗ ∗ −λI


< 0, (3.16)

Λ1 := (Ap −BpCp)P +BpW +W TBT
p + P (Ap −BpCp)

T , (3.17)

and

Λ2 := PΨT
A − PCT

p Ψ
T
B +W TΨT

B. (3.18)

Then the H∞ state-feedback controller is given by Fp = WP−1.

The scalar γ can be regarded as a disturbance performance index. The problem

of robust stabilization, to find a state-feedback controller such that the closed-loop
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system is stable with disturbance attenuation γ, can easily be obtained by solving

the above feasible problem for the given γ.

We next present an efficient method to find the optimal values of the cutoff fre-

quency ωc and the adjustable parameter a.

3.3 Robust stability conditions

In this section, we describe a design method to find the optimal values of the cutoff

frequency of the low-pass filter and the adjustable parameter.

As shown in Figure 3.4, the state-space description of the repetitive controller isẋr(t) = −ωcxr(t) + ωcxr(t− τ(t)) + ωce(t)

yr(t) = ae(t) + axr(t− τ(t))

. (3.19)

By using the augmented state vector x := [xT
p , x

T
r ]

T , we combine (3.19) and (3.10)

with r(t) ≡ 0, d(t) ≡ 0 and

u(t) = Fpxp + yr(t) (3.20)

to yield the closed-loop system

ẋ(t) = (A+∆A(t))x(t) + (A1 +∆A1(t))x(t− τ(t)), (3.21)

where

A =

Ap +BpFp − aBpCp 0

−ωcCp −ωcI

 , A1 =

0 aBp

0 ωcI

 ,

∆A(t) = ΦΓ(t)E1, ∆A1(t) = ΦΓ(t)E2, Φ =
[
ΦT

p 0
]T

,

E1 =
[
ΨA +ΨBFp − aΨBCp 0

]
, and E2 =

[
0 aΨB

]
.

To establish the design method, the following lemmas are required.

Lemma 3.2 (Schur complement [112]). For a real matrix Σ = ΣT , the following

assertions are equivalent:
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1. Σ :=

Σ11 Σ12

∗ Σ22

 > 0.

2. Σ11 > 0, and Σ22 − ΣT
12Σ

−1
11 Σ12 > 0.

3. Σ22 > 0, and Σ11 − Σ12Σ
−1
22 Σ

T
12 > 0.

Lemma 3.3 (BRL [113]). For the systemẋ(t) = Ax(t) +Bw(t)

z(t) = Cx(t) +Dw(t)

, (3.22)

the following assertions are equivalent:

1. A is stable; and the H∞ norm of the transfer function, Gzw(s), from w(t) to

z(t) satisfying ∥Gzw∥∞ < 1.

2. There exists a symmetric matrix P > 0 such that
PA+ ATP PB CT

∗ −I DT

∗ ∗ −I

 < 0 (3.23)

holds.

Lemma 3.4. [114] Given the matrices Q = QT , H, E, and R = RT > 0 of appro-

priate dimensions,

Q+HFE + ETF THT < 0

for all F satisfying F TF ≤ R, if and only if there exists some λ > 0 such that

Q+ λHHT + λ−1ETRE < 0.

Lemma 3.5. [115] Consider a nominal system with time-varying delay given by ẋ(t) = Ax(t) + A1x(t− τ(t)), t > 0

x(t) = ϕ(t), t ∈ [τ̄ , 0]
, (3.24)
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where the initial condition, ϕ(t), is a continuous vector-valued initial function of t ∈

[τ̄ , 0]. Then, for given scalars τ̄ and µ, the system (3.24) is globally asymptotically

stable for any time delay satisfying (3.7), if there exist symmetric positive definite

matrices P , Q, and Z, symmetric matrices X11 and X22, and arbitrary matrices X12,

Y , and T with appropriate dimensions such that the following LMIs are true.X11 X12

∗ X22

 ≥ 0, (3.25)


X11 X12 Y

∗ X22 T

∗ ∗ Z

 ≥ 0 (3.26)

and

Σ :=


Σ11 Σ12 τ̄ATZ

∗ Σ22 τ̄AT
1Z

∗ ∗ −τ̄Z

 < 0, (3.27)

where

Σ11 = PA+ ATP + Y T + Y +Q+ τ̄X11,

Σ12 = PA1 − Y + T T + τ̄X12,

and

Σ22 = −T T − T − (1− µ)Q+ τ̄X22.

Now, applying these lemmas to system (3.21) yields the following theorem.

Theorem 3.1. For given scalars τ̄ and µ satisfying (3.7), the system (3.21) is robustly

stable if there exist symmetric positive definite matrices P , Q, and Z, symmetric

matrices X11 and X22, a positive scalar λ, and arbitrary matrices X12, Y , and T with
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appropriate dimensions such that (3.25) ∼ (3.26) and the following LMI are true.

Σ11 Σ12 τ̄ATZ PΦ λET
1

∗ Σ22 τ̄AT
1Z 0 λET

2

∗ ∗ −τ̄Z τ̄ZΦ 0

∗ ∗ ∗ −λI 0

∗ ∗ ∗ ∗ −λI


< 0, (3.28)

where Σ11, Σ12, and Σ22 are defined in (3.27).

Proof. The proof follows from Lemma 3.5. Let us reconsider the matrix inequality

Σ < 0 defined in (3.27). We shall replace A and A1 with A(t) = A + ΦΓ(t)E1 and

A1(t) = A1 + ΦΓ(t)E2, respectively, in (3.27) and rewrite the resulting inequality in

the form of nominal and uncertain parts as

Σ + Σu + ΣT
u < 0, (3.29)

where Σ is defined in (3.27) and

Σu :=


P∆A(t) P∆A1(t) 0

0 0 0

Z∆A(t) τ̄Z∆A1(t) 0

 . (3.30)

We can decompose Σu and express it as

Σu = HΓ(t)E, (3.31)

where H =
[
ΦTP 0 ΦTZ

]T
and E =

[
E1 E2 0

]
. For λ > 0, applying Lemma

3.4 to (3.29) results in

Σ + λ−1HHT + λETE = Σ+ λ−1HHT + λ−1(λET )(λE) < 0. (3.32)

By employing the Schur complement Lemma 3.2, the LMI given in (3.27) is obtained.

Thus, system (3.21) with admissible uncertainties (3.11) satisfying (3.12) is robustly

asymptotically stable.

We have thus proved this theorem.
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Because the system matrices A and A1 contain the design parameters ωc and a,

Theorem 3.1 cannot be used directly to obtain the optimal values of the cutoff fre-

quency and adjustable parameter. However, as we now show, (3.28) can be converted

into LMIs that can be used to calculate the optimal cutoff frequency for given a.

For convenience, we represent ωc as the sum of ω̂c and δωc that is:

ωc = ω̂c + δωc, (3.33)

where ω̂c is a roughly estimated value and δωc is an unknown value to be found. The

matrices A and A1 can then be represented in the following form:

A = Ā+ Â× δωc (3.34)

and

A1 = Ā1 + Â1 × δωc, (3.35)

where

Ā =

Ap +BpFp − aBpCp 0

−ω̂cCp −ω̂cI

 ,

Â =

 0 0

−Cp −I

 ,

Ā1 =

0 aBp

0 ω̂cI

 ,

and

Â1 =

0 0

0 I

 .

Denote

Q := Q̄− Q̂× δωc > 0 (3.36)
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and

λ := λ̄− λ̂× δωc > 0, (3.37)

where Q̄T = Q̄, Q̂T = Q̂, and λ̄, λ̂ ∈ R. Then, the LMI (3.28) can be described by

Ξ + Ξ̂× δωc < 0. (3.38)

Ξ and Ξ̂ are represented as

Ξ :=



Ξ11 Ξ12 τ̄ ĀTZ PΦ λ̄ET
1

∗ Ξ22 τ̄ ĀT
1Z 0 λ̄ET

2

∗ ∗ −τ̄Z τ̄ZΦ 0

∗ ∗ ∗ −λ̄I 0

∗ ∗ ∗ ∗ −λ̄I


(3.39)

and

Ξ̂ :=



Ξ̂11 PÂ1 τ̄ ÂTZ 0 −λ̂ET
1

∗ (1− µ)Q̂ τ̄ ÂT
1Z 0 −λ̂ET

2

∗ ∗ 0 0 0

∗ ∗ ∗ λ̂I 0

∗ ∗ ∗ ∗ λ̂I


, (3.40)

where

Ξ11 = PĀ+ ĀTP + Y T + Y + Q̄+ τ̄X11,

Ξ12 = PĀ1 − Y + T T + τ̄X12,

Ξ22 = −T T − T − (1− µ)Q̄+ τ̄X22,

and

Ξ̂11 = PÂ+ ÂTP − Q̂.

By introducing a new variable σ := 1/δωc, then (3.36) ∼ (3.38) can be rewritten as

Ξ̂ < −σΞ, Q̂ < σQ̄, λ̂ < σλ̄. (3.41)

This gives the following result.
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Theorem 3.2. For given a, and scalars τ̄ and µ satisfying (3.7), if there exist the

symmetric positive definite matrices P and Z, symmetric matrices, Q̄, Q̂, X11, and

X22, scalars λ̄ and λ̂, and arbitrary matrices X12, Y , and T with appropriate dimen-

sions such that (3.25) ∼ (3.26) and (3.41) are true, then the cutoff frequency given

by (3.33) guarantees the robust stability of the repetitive control system (3.21).

Proof. From Theorem 3.1 and Equations (3.33) ∼ (3.41), this theorem can be ob-

tained directly. This completes the proof.

Thus, for the given rough estimate ω̂c, we can obtain the optimal cutoff frequency

ωc by solving the following LMI-constrained optimization problem

min σ > 0 subject to (3.25), (3.26) and (3.41). (3.42)

On the other hand, Mahawan and Luo [106] proved that there exists a unitary

operator T such that the control system shown in Figure 3.4 is equivalent to the

control system shown in Figure 3.5 with r(t) ≡ 0 and d(t) ≡ 0. The unitary operator

à
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Figure 3.5: Equivalent diagram of Figure 3.4

T satisfies ∥∥T−1DT
∥∥
∞ ≤ 1, (3.43)

where the delay operator D : L2(0, θf ) → L2(0, θf ) is defined as

Dζ(θ) := ζ(θ − Tθ) (3.44)



72
CHAPTER 3. ROBUST STABILIZING PROBLEM FOR TIME-VARYING

PERIODIC SIGNALS

and Tθ is the spatial period of the disturbances.

The transfer function Tysus(s) from us to ys is given by

Tysus(s) = Q(s) (I + aG(s))−1 . (3.45)

Then, from the small-gain theorem, the closed-loop system with the modified repeti-

tive controller is asymptotically stable if

∥Tysus∥∞ = ∥Q(s)(I + aG(s))−1∥∞ < 1. (3.46)

Hence, for the given Q(s) and Fp, we can regulate the parameter a to the optimal

value by using the H∞ control method.

From Figure 3.5, the state space description of Tysus , in general, is given byẋ(t) = (As +∆As(t))x(t) + (Bs +∆Bs(t))us(t)

ys(t) = Csx(t)

, (3.47)

where x(t) is defined in (3.21) and

As =

Ap +BpFp − aBpCp 0

−ωcCp −ωcI

, Bs =

aBp

ωcI

, Cs =
[
I 0

]
, ∆As(t) = ΦsΓ(t)Es,

∆Bs(t) = ΦsΓ(t)aΨB, Φs =
[
ΦT

p 0
]T

and Es =
[
ΨA +ΨBFp − aΨBCp 0

]
.

Applying Lemmas 3.2 ∼ 3.4 to the above system yields the following result.

Theorem 3.3. For the system (3.47), if a symmetric matrix P > 0 and a positive

scalar λ exist such that the LMI

PAs + AT
s P PBs CT PΦs λET

s

∗ −I 0 0 aλΨT
B

∗ ∗ −I 0 0

∗ ∗ ∗ −λI 0

∗ ∗ ∗ ∗ −λI


< 0 (3.48)

holds, then the closed-loop system in (3.47) is robustly stable.
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Proof. According to Lemma 3.3, a necessary and sufficient condition that guarantees

both that the closed-loop system in Figure 3.5 is robustly stable and also that (3.46)

holds is that there exists a symmetric matrix P > 0 such that the following linear

matrix inequality is feasible.

Πn +Πu +ΠT
u < 0, (3.49)

where

Πn :=


PAs + AT

s P PBs CT

∗ −I 0

∗ ∗ −I

 (3.50)

and

Πu :=


PΦs

0

0

Γ(t)
[
Es aΨB 0

]
. (3.51)

For a positive scalar, λ > 0, employing Lemma 3.4, we obtain

Πu +ΠT
u ≤ λ−1


PΦs

0

0

[
PΦs 0 0

]
+ λ−1


λET

s

aλΨT
B

0

[
λEs aλΨB 0

]
. (3.52)

Substituting (3.52) into (3.49) appropriately and applying the Schur complement

Lemma 3.2, the LMI given in (3.48) is obtained.

We have thus proved this theorem.

Hence, the problem of regulating the parameter a satisfying (3.46) is converted

into the problem of regulating the parameter a satisfying the LMI condition (3.48).

We now find the largest parameter amax to guarantee the system stability using the

result of Theorem 3.3.

Without loss of generality, represent amax as the sum of a0 and δ̄a

amax = a0 + δ̄a, (3.53)
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where a0 is given in the theorem 3.2 and δ̄a is an unknown value to be decided. Then,

As, Bs and Es are affinities dependent on the free parameter δ̄a and are represented

as the following form:

As = Ās + Âs × δ̄a, (3.54)

Bs = B̄s + B̂s × δ̄a (3.55)

and

Es = Ēs + Ês × δ̄a, (3.56)

where

Ās =

Ap +BpFp − a0BpCp 0

−ωcCp −ωcI

 ,

Âs =

−BpCp 0

0 0

 ,

B̄s =

a0Bp

ωcI

 ,

B̂s =

Bp

0

 ,

Ēs =
[
ΨA +ΨBFp − a0ΨBCp 0

]
and

Ês =
[
−ΨBCp 0

]
.

In the following theorem, a modified stability condition is proposed, which is

represented as an LMI.
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Theorem 3.4. For given ωc and Fp, the adjustable parameter given by (3.53) guaran-

tees the robust stability of the repetitive control system (3.47), if there is a symmetric

positive definite matrix P , and positive scalars λ and ρ := δ̄a−1such that

Θ̂ < −ρΘ (3.57)

holds with the shorthand

Θ :=



PĀs + ĀT
s P PB̄s CT PΦs λĒT

s

∗ −I 0 0 a0λΨ
T
B

∗ ∗ −I 0 0

∗ ∗ ∗ −λI 0

∗ ∗ ∗ ∗ −λI


(3.58)

and

Θ̂ :=



PÂs + ÂT
s P PB̂s 0 0 λÊT

s

∗ 0 0 0 λΨT
B

∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0


. (3.59)

Proof. Replacing a, As, Bs and Es by (3.54) ∼ (3.56) in (3.48), we have:

Θ + Θ̂× δ̄a < 0. (3.60)

By introducing the new variable ρ := δ̄a−1 and applying it to (3.60), the LMI condition

(3.57) can be obtained.

We have thus proved this theorem.

We observe that for a given optimal cutoff frequency and a, the maximum δ̄a can

be obtained by solving the optimization problem

min ρ > 0 subject to (3.57). (3.61)

The constraints in the optimization problems (3.42) and (3.61) have the standard

forms of generalized eigenvalue minimization problems (GEVP) with semipositive
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conditions. Hence, they can be solved numerically using the bisection algorithm in

YALMIP [116] or the GEVP solver in the LMI-toolbox [117].

3.4 Design procedure

In this section, we present a design procedure for a robust stabilizing modified repet-

itive controller with optimal performance for position-dependent disturbances.

Procedure

Step 1: Select a solution precision, ϵ, for the optimization problems and positive real

scalars, γ, a, and ω̂c that are small enough.

Step 2: Solve the feasible problem (3.16) to obtain the state-feedback controller Fp with

given γ for position-dependent disturbances without a repetitive controller.

Step 3: Check the feasibility of Theorem 3.1.

Step 4: If feasible, go to the next step. Otherwise, select new values for a and ω̂c, and

return to step 2.

Step 5: Solve the optimization problem (3.42) using a, ω̂c, and Fp. If a solution exists,

then set ωc = ω̂c + 1/σ and go to the next step. Otherwise, set ωc = ω̂c and go

to the next step.

Step 6: Solve the optimization problem (3.61) using a, Fp and ωc. If a solution exists,

set amax = a+ 1/ρ and stop. Otherwise, set amax = a and stop.

The design procedure proposed in this section is applicable for both single-input/single-

output(SISO) linear systems and multiple-input/multiple-output(MIMO) linear sys-

tems by simply modifying the dimensions of some matrices.
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3.5 Numerical example

In this section, a numerical example is shown to illustrate the effectiveness of the

proposed design method.

Consider the SISO system (3.10) with

Ap =

−8 −10

1 0

 , Bp =

3
1

 Cp =
[
1 1

]
, Dw =

0.4
0.3

 ,

Φp =

0 0

1 0.1

 , ΨA =

1 0

0 0.1

 , ΨB =

0.1
0


and

Γ(t) =

sin (0.1πt) 0

0 cos (0.1πt)

 .

We set γ = 0.1. Then, the state-feedback controller Fp obtained by solving the

feasible problem (3.16) is

Fp =
[
−1.308 −21.621

]
. (3.62)

Choose ϵ = 10−3, a = 1, ω̂c = 30[rad/s] and suppose that the disturbance signal, as

shown in Figure 3.6, is given by

d(t) = sin

(
2π

5
θ

)
+ sin

(
4π

5
θ

)
(3.63)

and
dθ

dt
= ω(t) = 10 + 5 cos(t). (3.64)

Then the position-dependent disturbance is converted into a time-varying periodic

signal with period τ(t), shown in Figure 3.7 and its derivative is shown in Figure 3.8.

From Figs. 3.7 and 3.8, the time-varying period satisfies (3.7) and we set

τ̄ = 1, µ = 0.4. (3.65)
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Figure 3.6: Disturbance signal used in simulations

According to the design procedures in Section 3.3 and using the above parameters, the

minimum σ is obtained by solving the optimization problem (3.42) as σ = 7.755×10−4.
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Figure 3.7: Time-varying period, τ(t)
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Figure 3.8: Derivative of τ(t), τ̇(t)
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Therefore, the maximum cutoff frequency ωc of the low-pass filter Q(s) is

ωc = ω̂c +
1

σ
= 1319.490 [rad/s]. (3.66)

After obtaining the optimal cutoff frequency ωc, we solve the optimization problem

(3.61) to obtain the largest adjustable parameter amax as

amax = 1 +
1

ρ
= 12.628 (3.67)

with the minimum ρ = 0.086.
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Figure 3.9: Response of the output y(t) for the disturbance d(t) with our repetitive

controller
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Figure 3.10: Response of the output y(t) for the disturbance d(t) without our repet-

itive controller

The simulation results in Figure 3.9 show that the system enters the steady state

in the second period and that the output is 0.68% of the disturbance when consider-

ing the amplitude of the disturbance and the output after the application of the new
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repetitive controller. For comparison, we also simulated this control system without

the repetitive controller. The simulation results in Figure 3.10 show that, without the

repetitive controller, the disturbance is attenuated to about 4.00%. Clearly, better

disturbance attenuation is obtained with the proposed repetitive control system than

without the repetitive controller. This design procedure demonstrates that the control

performance can be improved by optimizing the parameters of the new modified repet-

itive controller from a general disturbance attenuation control system and that robust

stability can also be guaranteed. In contrast, the design methods proposed in [105,

110] achieve robust stability without considering the control precision and are required

to deal with a nonlinear system in the spatial domain. Thus, an optimal modified

repetitive controller can easily be designed as shown here for position-dependent dis-

turbances.

3.6 Conclusions

In this chapter, position-dependent disturbances are converted into time-varying peri-

odic signals and a new modified repetitive controller structure is presented. To obtain

good disturbance attenuation, we proposed a design method for the optimal modified

repetitive control system based on LMIs, which can be applied to rotary motion sys-

tems. We also gave a complete proof of the theorems for the design method that were

omitted previously [118]. By reformulating the LMI-constrained robust stability con-

ditions, an optimal modified repetitive control system can be obtained by solving the

resulting optimization problems. A numerical example was presented to demonstrate

the effectiveness of the proposed design method. The results in this paper extend the

application of the repetitive control technique to systems with time-varying uncer-

tainties, and can also be potentially applied to the systems with time-varying state

delay and input delay [41].
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Chapter 4

Conclusions and Future Work

Repetitive control is one of high-precision servo control methods developed from

1980s. Due to its simple structure and high-precision, this control technique cap-

tured more attention and has been widely applied in servo control system for period-

ic signal with high-precision requirement. Based on analysis the design method and

application of modified repetitive control system, this thesis furthers the research on

the robust stabilizing problems for multiple-input/multiple-output plants and time-

varying periodic signals. In this chapter, we summarize the key developments in this

thesis and point out areas for future research.

4.1 Conclusions

Chapter 2, provides a design method of a robust stabilizing modified repetitive con-

troller for multiple-inupt/multiple-out plants using parameterization. The parame-

terization of all robust stabilizing modified repetitive controllers and the robustness

stability condition are achieved by employing the H∞ control approach and Rcaati

equation. We can regulate the free parameters to guarantee the robustness stability,

tracking and attenuation performance for the control system. In order to simplify the

design process and avoid the wrong results obtained by graphical method, the robust
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stability conditions are converted into LMIs-constraint conditions by employing the

delay-dependent bounded real lemma. This method has some merits such as

• the modified repetitive controller makes the control system stable for any multiple-

input/multiple-output plant with uncertainty,

• this method relaxes the requirements for the actual control system because the

parameterization is to find a set of this class of controllers.

Chapter 3, provides a design method of a modified repetitive controller for re-

jecting time-varying periodic disturbance. In this chapter, a new modified repetitive

controller structure is presented. To obtain good disturbance attenuation, we pro-

posed a design method for the optimal modified repetitive control system based on

LMIs, which can be applied to rotary motion systems. Two linear matrix inequalities

(LMIs)-based robust stability conditions of the closed-loop system with time-varying

state delay are derived for fixed parameters. One is a delay-dependent robust stability

condition that is derived based on the free-weight matrix. The other robust stability

condition is obtained based on the H∞ control problem by introducing a linear uni-

tary operator. By reformulating the LMI-constrained robust stability conditions, an

optimal modified repetitive control system can be obtained by solving the resulting

optimization problems. The advantages of this design method are described as:

1. it can void solving the nonlinear system or introducing the adaptive control

approach,

2. we can obtain an optimal control performance by using this design method,

3. comparing with other design methods, the design and computation of this con-

trol system are much easier.

4.2 Future Work

The following areas are recommended for future research:
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1. Generally, in control system design, the requirements like tracking performance,

attenuation performance and cost should be guaranteed. Some time the periodic

reference input and/or disturbance are arbitrary without restriction on the fre-

quency component. The design method which has relaxed robustness stability

condition and optimal performance will attract more attentions from engineers.

Chapter 2 illustrates that the low-pass filter specified the disturbance attenua-

tion characteristics has bandwidth limitation. To obtain the largest frequency of

the low-pass filter guaranteeing control precision is an important issue. Hence,

it is necessary to further the research on this problem to relax the restrictions.

2. According to the analysis in Chapter 2, there exist two low-pass filters. Both

these two low-pass filters have bandwidth restrictions which influence the control

performance. In practice, to meet certain requirement, it is necessary to obtain

the optimal performance. Therefore, optimization design method is one of the

future works.

3. For the time-varying periodic signals, the research approach are based on non-

linear system and adaptive control method. Even though the optimal perfor-

mance can be obtain by employing the proposed method in Chapter 3, there

are some conservatism exist and the robustness stability conditions are strictly.

And an important issue in the control is not solved for this class of problems,

the parameterization problem.

4. Generally, most repetitive controller designs in literature suffer from two major

drawbacks. One is the requirement of exact knowledge of the period-time of ref-

erence or disturbance signals [119]. This means that in practical applications,

either the period-time is required to be a constant, or an accurate measurement

of the periodicity is indispensable, which may be jeopardized in practice by clock

error drift, jitter, measurement noise and so on. The other is due to the Bode

Sensitivity Integral [120]: the perfect reduction at the harmonic frequencies is
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counteracted by amplification of noise at intermediate frequencies. To address

these problems, so-called high-order repetitive control has been established [80,

30, 121, 122, 123, 124, 125, 126]. When the high-order modified repetitive con-

trol structure is assigned to a closed-loop system to track or reject external

signals with uncertain period-time, it is often desirable to design compensators

that not only stabilize the closed-loop system but also guarantee a perfect con-

trol performance for some variations in the period-time.
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[25] J. D. Álvarez, R. Costa-Castelló, M. Berenguel and L. J. Yebra, A repetitive

control scheme for distributed solar collector field, International Journal of

Control, vol. 83, no. 5, pp. 970–982, 2010.

[26] B. A. Francis and W. M. Wonham. The internal model principle for linear

multivariable regulators. Applied Mathematics and Optimization, vol. 2, no. 2,

pp. 170–194, 1975.

[27] S. Hara, T. Omata and M. Nakano, Synthesis of repetitive control systems

and its application, In Proceedings of 24th IEEE Conference on Decision and

Control, vol. 24, pp. 1387–1392, 1985.

[28] S. Hara, Y. Yamamoto, T. Omata and M. Nakano, Repetitive control system:

a new type servo system for periodic exogenous signals, IEEE Transactions on

Automatic Control , vol. 33, no. 7, pp. 659–668, 1988.

[29] S. Hara and Y. Yamamoto, Stability of repetitive control systems, In Proceed-

ings of 24th IEEE Conference on Decision and Control, vol. 24, pp. 326–327,

1985.



BIBLIOGRAPHY 91

[30] T. Inoue, Practical repetitive control system design, In Proceedings of the 29th

IEEE Conference on Decision and Control , vol. 3, pp. 1673–1678, 1990.

[31] K. Srinivasan and F. R. Shaw, Analysis and design of repetitive control systems

using the regeneration spectrum, Journal of Dynamic Systems, Measurement,

and Control, vol. 113, no. 2, pp. 216–222, 1991.

[32] M. C. Tsai and W. S. Yao, Design of a plug-in type repetitive controller for

periodic inputs, IEEE Transactions on Control Systems Technology, vol. 10,

no. 4, pp. 547–555, 2002.

[33] K. Srinivasan, H. Ozbay and L. S. Jung, A design procedure for repetitive

controller for periodic inputs, In Proceedings of the ASME Dynamic Systems

and Control Division, DSC, vol. 57, no. 1, pp. 581–587, 1995.

[34] L. Guvenc, Repetitive controller design in parameter space, Journal of Dynamic

Dystems, Measurement, and Control, vol. 125, no. 1, pp. 134–138, 2003.

[35] J. H. Moon, M. N. Lee and M. J. Chung, Repetitive control for the track-

following servo system of an optical disk drive, IEEE Transactions on Control

Systems Technology, vol. 6, no. 5, pp. 663–670, 1998.

[36] B. S. Kim and T. C. Tsao, A performance enhancement scheme for robust

repetitive control system, Journal of Dynamic Systems, Measurement, and

Control, vol. 126, no. 1, pp. 224–229, 2004.

[37] H. Sugimoto, A. Horiuchi, Kawasaki, K. and Wu, J, A new repetitive control

and its characteristics, In Proceedings of SICE 2003 Annual Conference, vol. 2,

pp. 2261-2266, 2003

[38] W. Chen and Y. Lin, Repetitive controller design for optimal performance,

Asian Journal of Control, vol. 13, no. 6, pp. 1051–1055, 2011.



92 BIBLIOGRAPHY

[39] T. Y. Doh and M. J. Chung. Repetitive control design for linear systems with

time-varying uncertainties. IEE Proceedings on Control Theory & Applications,

vol. 150, no. 4, pp. 427–432, 2003.

[40] J. V. Flores, L. F. A. Pereira, J. M. G. D. S. JR, G. Bonan and D. F. Countinho,

Lmi-based design of robust repetitive controllers for ups systems In Proceedings

of 18th Congresso Brasileiro de Automatica, Bonito-MS, vol. 12, pp. 4104–4109,

2010.

[41] W. Chen, S. Chang and W. Zhang, Linear matrix inequality-based repetitive

controller design for linear systems with time-varying input delay. Control The-

ory & Applications, IET, vol. 4, no. 6, pp. 1071–1078, 2010.

[42] G. R. Sangeetha and J. Jacob, Repetitive controller for periodic disturbance

rejection in motor-gear transmission system. In Proceedings of the IEEE Confer-

ence and Exhibition on Control, Communications and Automation, INDICON

2008, Vol. 2, pp. 559–564, 2008.

[43] J. H. She, M. Wu, Y. H. Lan and Y. He. Simultaneous optimisation of the low-

pass filter and state-feedback controller in a robust repetitive-control system,

Control Theory & Applications, IET, vol. 4, no. 8, pp. 1366–1376, 2010.

[44] Q. Quan, D. Yang, K. Y. Cai and J. Jiang, Repetitive control by output error

for a class of uncertain time-delay systems, Control Theory & Applications,

IET, vol. 3, no. 9, pp. 1283–1292, 2009.

[45] J. V. Flores, J. M. Gomes da Silva, Jr., L. F. A. Pereira and D. Sbarbaro, Robust

repetitive control with saturating actuators: A LMI approach, In Proceedings

of American Control Conference, (ACC’10), Baltimore, MD, pp. 4259–4264,

2010.



BIBLIOGRAPHY 93

[46] J. V. Flores, J. M. G. da Silva, L. F. A. Pereira and D. G. Sbarbaro, Repetitive

Control Design for MIMO Systems With Saturating Actuators, IEEE Transac-

tions on Automatic Control , vol. 57, no. 1, pp. 192–198, 2012.

[47] G. Weiss and M. H fele, Repetitive control of mimo systems using H∞ design.

Automatica, vol. 35, no. 7, pp. 1185–1199, 1999.

[48] G. Weiss, Q.C. Zhong, T.C. Green and J. Liang. H∞ repetitive control of dc-ac

converters in microgrids, IEEE Transactions on Power Electronics , vol. 19,

no. 1, pp. 219–230, 2004.

[49] Y. Wang, D. Wang and X. Wang, A three-step design method for performance

improvement of robust repetitive control, In Proceedings of the 2005 American

Control Conference , vol. 2, pp. 1220–1225, 2005.

[50] Wang, J. and T. C. Tsao, Repetitive control of linear time varying systems

with application to electronic cam motion control, In Proceedings of the 2004

of American Control Conference, vol. 4, pp. 3794–3799, 2004.

[51] Wang, J. and T. C. Tsao, Laser beam raster scan under variable process speed-

an application of time varying model reference repetitive control system, In

Proceedings 2005 IEEE/ASME International Conference on Advanced Intelli-

gent Mechatronics, pp. 1233–1238, 2005.

[52] J. Li and T. C. Tsao, Robust performance repetitive control systems, Journal

of Dynamic Systems, Measurement, and Control, vol. 123, no. 3, pp. 330–337,

2001.

[53] J. H. She, M. Wu, Y. H. Lan and Y. He, Simultaneous optimization of low-pass

filter and controller in robust repetitive control systems, In Proceedings of 4th

IEEE International Conference on Mechatronics, ICM2007, pp. 1–6, 2007.



94 BIBLIOGRAPHY
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