8 research outputs found

    LINEAR MATRIX INEQUALITY BASED PROPORTIONAL INTEGRAL DERIVATIVE CONTROL FOR HIGH ORDER PLANT

    Get PDF
    This study presents the application of Linear Matrix Inequalities (LMI) approach in designing a proportional integral derivative (PID) controller for a high order plant. This work also proposes practical steps in designing the robust controller. To cast this control design problem into the LMI framework, the transfer functions of the system with various payloads are obtained by carrying out nonlinear system identification. Subsequently, the dynamic model is represented into convex formulation which leads to the formulation of system requirement into LMIs representation that can accommodate the convex model. A set of robust PID gains is then obtained by solving the LMIs with desired specifications. For performance assessment, a PID controller is also designed using Ziegler Nichols (ZN) technique for all loading conditions. System responses namely hub angular position and deflection of both links of the flexible manipulator are evaluated in time and frequency domains. The performance of the LMI-PID controller is verified by comparing with the results using the ZN-PID controller in terms of time response specifications of hub angular position and level of deflection in time and frequency domains

    Modelling and control of a two-link flexible manipulator using finite element modal analysis

    Get PDF
    This thesis focuses on Finite Element (FE) modeling and robust control of a two-link flexible manipulator based on a high resolution FE model and the system vibration modes. A new FE model is derived using Euler-Bernoulli beam elements, and the model is validated using commercial software Abaqus CAE. The frequency and time domain analysis reveal that the response of the FE model substantially varies with changing the number of elements, unless a high number of elements (100 elements in this work) is used. The gap between the complexity of the high order FE model capable of predicting dynamics of the multibody system, and suitability of the model for controller design is bridged by designing control schemes based on the reduced order models obtained using modal truncation/H8 techniques. Two reduced order multi-input multi-output modal control algorithms composed of a robust feedback controller along with a feed-forward compensator are designed. The first controller, Inversion-based Two Mode Controller (ITMC), is designed using a mixed-sensitivity H8 synthesis and a modal inversion-based compensator. The second controller, Shaping Two-Mode Controller (STMC), is designed with H8 loopshaping using the modal characteristics of the system. Stability robustness against unmodelled dynamics due to the model reduction is shown using the small gain theorem. Performance of the feedback controllers are compared with Linear Quadratic Gaussian designs and are shown to have better tracking characteristics. Effectiveness of the control schemes is shown by simulation of rest-to-rest maneuver of the manipulator to a set of desired points in the joint space. The ITMC is shown to have more precise tracking performance, while STMC has higher control over vibration of the tip, at the expense of more tracking errors

    Nonlinear control for Two-Link flexible manipulator

    Get PDF
    Recently the use of robot manipulators has been increasing in many applications such as medical applications, automobile, construction, manufacturing, military, space, etc. However, current rigid manipulators have high inertia and use actuators with large energy consumption. Moreover, rigid manipulators are slow and have low payload-to arm-mass ratios because link deformation is not allowed. The main advantages of flexible manipulators over rigid manipulators are light in weight, higher speed of operation, larger workspace, smaller actuator, lower energy consumption and lower cost. However, there is no adequate closed-form solutions exist for flexible manipulators. This is mainly because flexible dynamics are modeled with partial differential equations, which give rise to infinite dimensional dynamical systems that are, in general, not possible to represent exactly or efficiently on a computer which makes modeling a challenging task. In addition, if flexibility nature wasn\u27t considered, there will be calculation errors in the calculated torque requirement for the motors and in the calculated position of the end-effecter. As for the control task, it is considered as a complex task since flexible manipulators are non-minimum phase system, under-actuated system and Multi-Input/Multi-Output (MIMO) nonlinear system. This thesis focuses on the development of dynamic formulation model and three control techniques aiming to achieve accurate position control and improving dynamic stability for Two-Link Flexible Manipulators (TLFMs). LQR controller is designed based on the linearized model of the TLFM; however, it is applied on both linearized and nonlinear models. In addition to LQR, Backstepping and Sliding mode controllers are designed as nonlinear control approaches and applied on both the nonlinear model of the TLFM and the physical system. The three developed control techniques are tested through simulation based on the developed dynamic formulation model using MATLAB/SIMULINK. Stability and performance analysis were conducted and tuned to obtain the best results. Then, the performance and stability results obtained through simulation are compared. Finally, the developed control techniques were implemented and analyzed on the 2-DOF Serial Flexible Link Robot experimental system from Quanser and the results are illustrated and compared with that obtained through simulation

    НапрСдни Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΈ ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° ΠΌΠ°Π½ΠΈΠΏΡƒΠ»Π°Ρ‚ΠΎΡ€ΠΈΠΌΠ° Ρƒ систСмима Π·Π° Ρ‚Ρ€Π΅Π½Π°ΠΆΡƒ ΠΏΠΈΠ»ΠΎΡ‚Π° саврСмСних Π±ΠΎΡ€Π±Π΅Π½ΠΈΡ… Π°Π²ΠΈΠΎΠ½Π°

    Get PDF
    Π£ овој Π΄ΠΎΠΊΡ‚ΠΎΡ€ΡΠΊΠΎΡ˜ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ прСдстављСна су ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° Π½Π° Ρ‚Π΅ΠΌΡƒ Ρ€Π°Π·Π²ΠΎΡ˜Π° Π½Π°ΠΏΡ€Π΅Π΄Π½ΠΈΡ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚Π°ΠΌΠ° ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° Π·Π° Π΄Π²Π° систСма Π·Π° Ρ‚Ρ€Π΅Π½Π°ΠΆΡƒ ΠΏΠΈΠ»ΠΎΡ‚Π° саврСмСних Π±ΠΎΡ€Π±Π΅Π½ΠΈΡ… Π°Π²ΠΈΠΎΠ½Π°-Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³Π΅ Π·Π° Ρ‚Ρ€Π΅Π½Π°ΠΆΡƒ ΠΏΠΈΠ»ΠΎΡ‚Π° (Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³Π΅) ΠΈ ΡƒΡ€Π΅Ρ’Π°Ρ˜Π° Π·Π° просторну Π΄Π΅Π·ΠΎΡ€ΠΈΡ˜Π΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Ρƒ ΠΏΠΈΠ»ΠΎΡ‚Π° (Π£ΠŸΠ”ΠŸ-Π°). Ови ΡƒΡ€Π΅Ρ’Π°Ρ˜ΠΈ су ΠΌΠΎΠ΄Π΅Π»ΠΎΠ²Π°Π½ΠΈ ΠΊΠ°ΠΎ троосни (Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³Π°) ΠΈ чСтвороосни (Π£ΠŸΠ”ΠŸ) роботски ΠΌΠ°Π½ΠΈΠΏΡƒΠ»Π°Ρ‚ΠΎΡ€ΠΈ (ΠΌΠ°Π½ΠΈΠΏΡƒΠ»Π°Ρ‚ΠΎΡ€ΠΈ) са Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€ΠΈΡ‡Π½ΠΈΠΌ Π·Π³Π»ΠΎΠ±ΠΎΠ²ΠΈΠΌΠ°. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Ρ™Π΅Π½Π° ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° ΠΈΠΌΠ°Ρ˜Ρƒ Π·Π° Ρ†ΠΈΡ™ ΠΏΡ€ΠΎΡˆΠΈΡ€ΠΈΠ²Π°ΡšΠ΅ ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠ±Ρ™ΠΈΠ²Π°ΡšΠ΅ Π½Π°ΡƒΡ‡Π½ΠΈΡ… сазнања ΠΈ достигнућа Ρƒ области модСловања ΠΈ ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π°Π½ΠΈΡ… ΠΌΠ°Π½ΠΈΠΏΡƒΠ»Π°Ρ‚ΠΎΡ€Π° Ρƒ систСмима Π·Π° Ρ‚Ρ€Π΅Π½Π°ΠΆΡƒ ΠΏΠΈΠ»ΠΎΡ‚Π° саврСмСних Π±ΠΎΡ€Π±Π΅Π½ΠΈΡ… Π°Π²ΠΈΠΎΠ½Π°, Π° која сС ΠΌΠΎΠ³Ρƒ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΠΈ ΠΈ Π½Π° ΡΠ΅Ρ€ΠΈΡ˜ΡΠΊΠ΅ роботскС ΠΌΠ°Π½ΠΈΠΏΡƒΠ»Π°Ρ‚ΠΎΡ€Π΅ Ρƒ ΠΎΠΏΡˆΡ‚Π΅ΠΌ смислу. Π£ ΠΎΠΊΠ²ΠΈΡ€Ρƒ ΠΎΠ²Π΅ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ су Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½ΠΈ Π½ΠΎΠ²ΠΈ ΠΈ ΡƒΠ½Π°ΠΏΡ€Π΅Ρ’Π΅Π½ΠΈ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρƒ Π΄ΠΎΠΌΠ΅Π½Ρƒ ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Ρ€ΠΎΠ±ΠΎΡ‚Π°, Ρ€Π°Π·Π²ΠΎΡ˜Π° ΠΏΠ»Π°Π½Π΅Ρ€Π° Ρ‚Ρ€Π°Ρ˜Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡ˜Π΅, Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΠ³ ΠΈΠ·Π±ΠΎΡ€Π° Π°ΠΊΡ‚ΡƒΠ°Ρ‚ΠΎΡ€Π°, ΠΈ ΠΎΠ΄Π°Π±ΠΈΡ€Π° ΠΏΡ€Π°Π²ΠΈΠ»Π½Π΅ ΡΡ‚Ρ€Π°Ρ‚Π΅Π³ΠΈΡ˜Π΅ ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° ΠΊΡ€Π΅Ρ‚Π°ΡšΠ΅ΠΌ прСдстављСних ΠΌΠ°Π½ΠΈΠΏΡƒΠ»Π°Ρ‚ΠΎΡ€Π°. ΠŸΡ€ΠΈΠΊΠ°Π·Π°Π½ јС ΠΊΠΎΠΌΠΏΠ»Π΅Ρ‚Π°Π½ поступак Ρ€Π°Π·Π²ΠΎΡ˜Π° систСма ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° Π·Π° Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³Ρƒ Π·Π° Ρ‚Ρ€Π΅Π½Π°ΠΆΡƒ ΠΏΠΈΠ»ΠΎΡ‚Π° саврСмСних Π±ΠΎΡ€Π±Π΅Π½ΠΈΡ… Π°Π²ΠΈΠΎΠ½Π°, троосног ΠΌΠ°Π½ΠΈΠΏΡƒΠ»Π°Ρ‚ΠΎΡ€Π° који ΠΎΡΡ‚Π²Π°Ρ€ΡƒΡ˜Π΅ ΠΈΠ·ΡƒΠ·Π΅Ρ‚Π½ΠΎ ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ Π·Π°Ρ…Ρ‚Π΅Π²Π½Π΅ Ρ‚Ρ€Π°Ρ˜Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡ˜Π΅, Π° који сС Π±Π°Π·ΠΈΡ€Π° Π½Π° ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π°ΠΌΠ° дСфинисаног ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΎΠ³ ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°, ΠΊΠ°ΠΎ ΠΈ Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠ° рСалистичних ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΡ… Π΄Π΅Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΈΡ… ΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ°. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° Π·Π° Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³Ρƒ су ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½Π΅ ΠΈ Π½Π° чСтвороосни ΡƒΡ€Π΅Ρ’Π°Ρ˜ Π·Π° просторну Π΄Π΅Π·ΠΎΡ€ΠΈΡ˜Π΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Ρƒ ΠΏΠΈΠ»ΠΎΡ‚Π°. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Ρ™Π΅Π½Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ модСловања, Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΈ Ρƒ ΠΎΠΊΠ²ΠΈΡ€Ρƒ ΠΏΠ»Π°Π½Π΅Ρ€Π° Ρ‚Ρ€Π°Ρ˜Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡ˜Π΅, ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈΠ·Π±ΠΎΡ€Π° ΡƒΠΏΡ€Π°Π²Ρ™Π°Ρ‡ΠΊΠΎΠ³ систСма, ΠΌΠ΅Ρ‚ΠΎΠ΄Π° рСалистичнС ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π΅ пСрформанси систСма ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ°, ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈΠ·Π±ΠΎΡ€Π° Π°ΠΊΡ‚ΡƒΠ°Ρ‚ΠΎΡ€Π° су ΠΏΡ€ΠΈΠΌΠ΅ΡšΠΈΠ²Π΅ ΠΈ Π½Π° ΠΎΠΏΡˆΡ‚ΠΈ ΡΠ»ΡƒΡ‡Π°Ρ˜ роботског ΠΌΠ°Π½ΠΈΠΏΡƒΠ»Π°Ρ‚ΠΎΡ€Π° са вишС стСпСни слободС

    Advanced control algorithms for the manipulators within modern combat aircraft pilot training systems

    Get PDF
    Π£ овој Π΄ΠΎΠΊΡ‚ΠΎΡ€ΡΠΊΠΎΡ˜ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ прСдстављСна су ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° Π½Π° Ρ‚Π΅ΠΌΡƒ Ρ€Π°Π·Π²ΠΎΡ˜Π° Π½Π°ΠΏΡ€Π΅Π΄Π½ΠΈΡ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚Π°ΠΌΠ° ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° Π·Π° Π΄Π²Π° систСма Π·Π° Ρ‚Ρ€Π΅Π½Π°ΠΆΡƒ ΠΏΠΈΠ»ΠΎΡ‚Π° саврСмСних Π±ΠΎΡ€Π±Π΅Π½ΠΈΡ… Π°Π²ΠΈΠΎΠ½Π°-Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³Π΅ Π·Π° Ρ‚Ρ€Π΅Π½Π°ΠΆΡƒ ΠΏΠΈΠ»ΠΎΡ‚Π° (Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³Π΅) ΠΈ ΡƒΡ€Π΅Ρ’Π°Ρ˜Π° Π·Π° просторну Π΄Π΅Π·ΠΎΡ€ΠΈΡ˜Π΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Ρƒ ΠΏΠΈΠ»ΠΎΡ‚Π° (Π£ΠŸΠ”ΠŸ-a). Ови ΡƒΡ€Π΅Ρ’Π°Ρ˜ΠΈ су ΠΌΠΎΠ΄Π΅Π»ΠΎΠ²Π°Π½ΠΈ ΠΊΠ°ΠΎ троосни (Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³Π°) ΠΈ чСтвороосни (Π£ΠŸΠ”ΠŸ) роботски ΠΌΠ°Π½ΠΈΠΏΡƒΠ»Π°Ρ‚ΠΎΡ€ΠΈ (ΠΌΠ°Π½ΠΈΠΏΡƒΠ»Π°Ρ‚ΠΎΡ€ΠΈ) са Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€ΠΈΡ‡Π½ΠΈΠΌ Π·Π³Π»ΠΎΠ±ΠΎΠ²ΠΈΠΌΠ°. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Ρ™Π΅Π½Π° ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° ΠΈΠΌΠ°Ρ˜Ρƒ Π·Π° Ρ†ΠΈΡ™ ΠΏΡ€ΠΎΡˆΠΈΡ€ΠΈΠ²Π°ΡšΠ΅ ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠ±Ρ™ΠΈΠ²Π°ΡšΠ΅ Π½Π°ΡƒΡ‡Π½ΠΈΡ… сазнања ΠΈ достигнућа Ρƒ области модСловања ΠΈ ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π°Π½ΠΈΡ… ΠΌΠ°Π½ΠΈΠΏΡƒΠ»Π°Ρ‚ΠΎΡ€Π° Ρƒ систСмима Π·Π° Ρ‚Ρ€Π΅Π½Π°ΠΆΡƒ ΠΏΠΈΠ»ΠΎΡ‚Π° саврСмСних Π±ΠΎΡ€Π±Π΅Π½ΠΈΡ… Π°Π²ΠΈΠΎΠ½Π°, Π° која сС ΠΌΠΎΠ³Ρƒ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΠΈ ΠΈ Π½Π° ΡΠ΅Ρ€ΠΈΡ˜ΡΠΊΠ΅ роботскС ΠΌΠ°Π½ΠΈΠΏΡƒΠ»Π°Ρ‚ΠΎΡ€Π΅ Ρƒ ΠΎΠΏΡˆΡ‚Π΅ΠΌ смислу. Π£ ΠΎΠΊΠ²ΠΈΡ€Ρƒ ΠΎΠ²Π΅ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ су Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½ΠΈ Π½ΠΎΠ²ΠΈ ΠΈ ΡƒΠ½Π°ΠΏΡ€Π΅Ρ’Π΅Π½ΠΈ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρƒ Π΄ΠΎΠΌΠ΅Π½Ρƒ ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Ρ€ΠΎΠ±ΠΎΡ‚Π°, Ρ€Π°Π·Π²ΠΎΡ˜Π° ΠΏΠ»Π°Π½Π΅Ρ€Π° Ρ‚Ρ€Π°Ρ˜Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡ˜Π΅, Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΠ³ ΠΈΠ·Π±ΠΎΡ€Π° Π°ΠΊΡ‚ΡƒΠ°Ρ‚ΠΎΡ€Π°, ΠΈ ΠΎΠ΄Π°Π±ΠΈΡ€Π° ΠΏΡ€Π°Π²ΠΈΠ»Π½Π΅ ΡΡ‚Ρ€Π°Ρ‚Π΅Π³ΠΈΡ˜Π΅ ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° ΠΊΡ€Π΅Ρ‚Π°ΡšΠ΅ΠΌ прСдстављСних ΠΌΠ°Π½ΠΈΠΏΡƒΠ»Π°Ρ‚ΠΎΡ€Π°. ΠŸΡ€ΠΈΠΊΠ°Π·Π°Π½ јС ΠΊΠΎΠΌΠΏΠ»Π΅Ρ‚Π°Π½ поступак Ρ€Π°Π·Π²ΠΎΡ˜Π° систСма ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° Π·Π° Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³Ρƒ Π·Π° Ρ‚Ρ€Π΅Π½Π°ΠΆΡƒ ΠΏΠΈΠ»ΠΎΡ‚Π° саврСмСних Π±ΠΎΡ€Π±Π΅Π½ΠΈΡ… Π°Π²ΠΈΠΎΠ½Π°, троосног ΠΌΠ°Π½ΠΈΠΏΡƒΠ»Π°Ρ‚ΠΎΡ€Π° који ΠΎΡΡ‚Π²Π°Ρ€ΡƒΡ˜Π΅ ΠΈΠ·ΡƒΠ·Π΅Ρ‚Π½ΠΎ ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ Π·Π°Ρ…Ρ‚Π΅Π²Π½Π΅ Ρ‚Ρ€Π°Ρ˜Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡ˜Π΅, Π° који сС Π±Π°Π·ΠΈΡ€Π° Π½Π° ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π°ΠΌΠ° дСфинисаног ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΎΠ³ ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°, ΠΊΠ°ΠΎ ΠΈ Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠ° рСалистичних ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΡ… Π΄Π΅Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΈΡ… ΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ°. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° Π·Π° Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³Ρƒ су ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½Π΅ ΠΈ Π½Π° чСтвороосни ΡƒΡ€Π΅Ρ’Π°Ρ˜ Π·Π° просторну Π΄Π΅Π·ΠΎΡ€ΠΈΡ˜Π΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Ρƒ ΠΏΠΈΠ»ΠΎΡ‚Π°. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Ρ™Π΅Π½Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ модСловања, Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΈ Ρƒ ΠΎΠΊΠ²ΠΈΡ€Ρƒ ΠΏΠ»Π°Π½Π΅Ρ€Π° Ρ‚Ρ€Π°Ρ˜Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡ˜Π΅, ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈΠ·Π±ΠΎΡ€Π° ΡƒΠΏΡ€Π°Π²Ρ™Π°Ρ‡ΠΊΠΎΠ³ систСма, ΠΌΠ΅Ρ‚ΠΎΠ΄Π° рСалистичнС ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π΅ пСрформанси систСма ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ°, ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈΠ·Π±ΠΎΡ€Π° Π°ΠΊΡ‚ΡƒΠ°Ρ‚ΠΎΡ€Π° су ΠΏΡ€ΠΈΠΌΠ΅ΡšΠΈΠ²Π΅ ΠΈ Π½Π° ΠΎΠΏΡˆΡ‚ΠΈ ΡΠ»ΡƒΡ‡Π°Ρ˜ роботског ΠΌΠ°Π½ΠΈΠΏΡƒΠ»Π°Ρ‚ΠΎΡ€Π° са вишС стСпСни слободС.In this doctoral dissertation, a research considering development of the advanced control algorithms for two modern combat aircraft pilot training systems-Centrifuge Motion Simulator (centrifuge) and Spatial Disorientation Trainer (SDT) is presented. These devices are modeled and controlled as 3DoF (centrifuge) and 4DoF (SDT) robot manipulators with rotational axes. The presented research aims to broaden and deepen scientific knowledge and achievements in the field of modeling and control of the considered modern combat aircraft pilot training systems, that can also be applied to Π° general serial robot manipulator. A new and an improved existing methods and models have been derived in the field of robot kinematics, trajectory planning, an adequate drive selection and control strategy choice. A complete development process of a control system for the centrifuge, which is a manipulator that performs a highly challenging motion, based on simulations of the defined kinematic and dynamic models, as well as on realistic simulations of the proposed decentralized and centralized control methods, is presented. The control methods proposed for the centrifuge are also applied to the 4DoF SDT. The modeling methods, the trajectory planning algorithms, the control system design and simulation methods, and the drive selection strategies, presented here for the considered manipulators within modern combat aircraft pilot training systems, are also applicable within the general robot manipulator’s domain

    Adaptive Control

    Get PDF
    Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development.The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems
    corecore