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ABSTRACT 

Recently the use of robot manipulators has been increasing in many applications such as 

medical applications, automobile, construction, manufacturing, military, space, etc. However, 

current rigid manipulators have high inertia and use actuators with large energy consumption. 

Moreover, rigid manipulators are slow and have low payload-to arm-mass ratios because link 

deformation is not allowed. The main advantages of flexible manipulators over rigid 

manipulators are light in weight, higher speed of operation, larger workspace, smaller 

actuator, lower energy consumption and lower cost. 

However, there is no adequate closed-form solutions exist for flexible manipulators. This is 

mainly because flexible dynamics are modeled with partial differential equations, which give 

rise to infinite dimensional dynamical systems that are, in general, not possible to represent 

exactly or efficiently on a computer which makes modeling a challenging task. In addition, if 

flexibility nature wasn‟t considered, there will be calculation errors in the calculated torque 

requirement for the motors and in the calculated position of the end-effecter. As for the 

control task, it is considered as a complex task since flexible manipulators are non-minimum 

phase system, under-actuated system and Multi-Input/Multi-Output (MIMO) nonlinear 

system. 

This thesis focuses on the development of dynamic formulation model and three control       

techniques aiming to achieve accurate position control and improving dynamic stability for 

Two-Link Flexible Manipulators (TLFMs). LQR controller is designed based on the 

linearized model of the TLFM; however, it is applied on both linearized and nonlinear 

models. In addition to LQR, Backstepping and Sliding mode controllers are designed as 

nonlinear control approaches and applied on both the nonlinear model of the TLFM and the 

physical system. 

The three developed control techniques are tested through simulation based on the developed 

dynamic formulation model using MATLAB/SIMULINK. Stability and performance analysis 

were conducted and tuned to obtain the best results. Then, the performance and stability 

results obtained through simulation are compared. Finally, the developed control techniques 

were implemented and analyzed on the 2-DOF Serial Flexible Link Robot experimental 

system from Quanser and the results are illustrated and compared with that obtained through 

simulation. 
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1 Chapter 1  

 

Introduction 

1.1 Overview 

In recent years, the use of industrial robots and service robots in different applications from 

simple to dangerous tasks in hazardous areas has increased, such as medical applications, 

automobile, construction, manufacturing, military, space, etc. Robotic manipulators are used 

to perform accurate tasks such as assembly/disassembly, sorting, packaging, palletizing, 

depalletizing, welding, etc. In addition, they are used to perform dangerous tasks in 

hazardous areas such as space and underwater, and in the presence of radiation [1], [2]. 

Most of the existing robotic manipulators are designed and built to maximize stiffness in an 

attempt to minimize the vibration of the end-effector and to achieve good position accuracy. 

This high stiffness is achieved by using heavy material and a bulky design. Hence, the 

existing heavy rigid manipulators are shown to be inefficient in terms of power consumption 

or speed with respect to the operating payload. Also, for a high speed of the task the 

operation of high precision robots is severely limited by their dynamic deflection, which 

persists for a period of time after a move is completed this is due to the vibration occurs in 

the manipulators‟ links, Figure 1.1 shows an example rigid link manipulator. Accordingly, 

the time needed for the vibration to vanish called settling time. The settling time required for 

this residual vibration delays subsequent operations, thus conflicting with the demand of 

increased productivity, this delay depends on the size of the robot and the speed of its motion. 

These conflicting requirements between high speed and high accuracy have rendered the 

robotic assembly task a challenging research problem. Also, many industrial manipulators 

face the problem of arm vibrations during high speed motion [3]-[5]. 

 In order to improve industrial productivity, it is required to reduce the weight of the arms 

and/or to increase their speed of operation. For these purposes it is very desirable to build 

flexible robotic manipulators. Compared to the conventional heavy and bulky robots, flexible 

link manipulators have the potential advantage of lower cost, larger work volume, higher 

operational speed, greater payload-to-manipulator-weight ratio, smaller actuators, lower 

energy consumption, better maneuverability, better transportability and safer operation due to 

reduced inertia. But the greatest disadvantage of these manipulators is the vibration problem 

due to low stiffness, Figures 1.2 and 1.3 show an example for flexible link manipulators. Due 

to the importance and usefulness of this field, researchers worldwide are nowadays engaged 

in the investigation of dynamics and control of flexible manipulator [3], [6]-[8].  

.  
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Figure  1.1. An example for rigid link manipulator [9] 

 

 

Figure  1.2. An example for single link flexible manipulators [10] 

 

 

Figure  1.3. An example for two-link flexible manipulators [11] 
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The properties and capabilities provided by flexible manipulators stand for a clear challenge 

in opening new applications for robots. Situations, where the workspace is constrained, or 

when it is required to perform operations such as assembly in space, prevents the use of 

classical, rigid-link, industrial robot configurations. For these applications structural mass and 

stiffness must be reduced, to allow entering very confined workspaces and/or to permit cost-

effective launching, and to enlarge manipulator reach out and dexterity. This could be of 

interest not only in space applications, but also in the industrial sector [12]. 

Some known examples are the application of fast, flexible manipulators in the food industry 

(robotic packing and palletizing) and in assembly tasks. Flexibility is also becoming an 

important issue for other fields such as machine tools and civil engineering machinery, for 

example, tunnel boring machines, excavators, and so on, where requirements for extending 

tools life, increasing accuracy and speeding up overall. Other potential areas of application 

are manipulation in nuclear and other hazardous environments, car/vehicle painting, 

manufacturing of electronic hardware and food industry [13]. 

Research on flexible link manipulators has a range from a single-link manipulator rotating 

about a fixed axis to three-dimensional multi-link arms. However, experimental work, in 

general, is almost exclusively limited to single-link manipulators. This is because of the 

complexity of multi-link manipulator systems, resulting from more degrees of freedom and 

the increased interactions between gross and deformed motions. It is important for control 

purposes to recognize the flexible nature of the manipulator system and to build a suitable 

mathematical framework for modeling it. The use of dynamic models for flexible link 

manipulators is threefold: forward dynamics, inverse dynamics and controller design. 

Flexible manipulators are distributed parameter systems that can be represented as rigid body 

with flexible movements [12], [13]. There are two physical limitations associated with such 

systems: 

a. The control torque can only be applied at the joints, and 

b. Only a finite number of sensors of bounded bandwidth (maximum frequency it 

can operate) can be used and at restricted locations along the links of the flexible 

manipulators. 

 

The control of flexible manipulators to maintain accurate positioning is extremely 

challenging. Due to the flexible nature of the system, the dynamics are highly non-linear and 

complex. Problems arise due to lack of sensing as there should be finite numbers of sensors 

available with its infinite degree of freedom, vibration due to system flexibility, imprecise 

positional accuracy and the difficulty in obtaining accurate model for the system. Therefore, 

flexible manipulators have not been favored in production industries, due to un-attained end-

point positional accuracy requirements in response to input commands. In this respect, a 

control mechanism that accounts for both the rigid body and flexural motions of the system is 

required.  
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Moreover, the complexity of this problem increases when a flexible manipulator carries a 

payload. Practically, robot manipulators are required to perform a single or sequence of tasks 

along a pre-planned trajectory. The complexity of the problem increases dramatically for 

multi-link flexible manipulators such as two-link flexible manipulator [9], [13], [14]. 

The behavior of single flexible link manipulators leads to limited performance for the 

manipulator. Thus, the performance of the multi-link flexible manipulators becomes reliable 

through the utilization of efficient controllers. These manipulators can be a promising 

substitute for the multilink rigid manipulators. Nonetheless, the controller design for 

multilink flexible manipulators is a challenging task due to their non-linear dynamic 

formulation.  This non-linear dynamics is perhaps among the main reasons that few studies 

on the controller design of multi-link flexible manipulators have been reported compared to 

those for single flexible link manipulators with a linear dynamic model [12], [15]. 

Two link Flexible Manipulators (TLFMs) are more suitable in industry, aerospace, nuclear 

plant, military, defense, agriculture, home care, etc., in comparison with single link and 

multi-link FMs. Thus, it is interesting and important to present the extensive and exclusive 

review on different aspects of dynamical complexities, modeling, control problems and 

control techniques reported on TLFMs [13]. 

1.2 Thesis Structure 

This thesis is organized into four main parts. Literature review on both modeling and control 

of flexible manipulators is discussed in Chapter 2. Chapter 3 shows the research 

methodology.  Dynamic modeling of the system is explored in Chapter 4. Control techniques 

are considered in Chapter 3. Chapter 6 presents results and discussion. Finally, Chapter 7 

shows the conclusion and future work. 
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2 Chapter 2  

 

Literature Review 
 

2.1 Modeling 

There are two kinds of errors introduced when the flexibility effect is not considered during 

the formulation of mathematical model. The first kind of error is introduced in the torque 

requirement for the motors and the second kind results in the positioning inaccuracy of the 

end-effector. The positioning of the end-effectors for precision jobs should involve very 

small amplitudes of vibration, ideally no vibration at all. Therefore, to achieve greater 

accuracy one has to start with very accurate mathematical models for the system [3], [16]. 

The original dynamics of flexible link manipulators, being described by partial differential 

equations and thus possessing an infinite dimension(Flexible manipulators are distributed 

parameter systems, hence infinite degrees of freedom are required to characterize the 

dynamic behavior of the system) is not available to be used directly in both system analysis 

and control design. Most commonly the dynamic equations are truncated to some finite 

dimensional models with either the assumed modes method (AMM) or the finite element 

method (FEM) [3], [17].  

In modeling flexible link manipulators, the most widely used methods to develop 

manipulators dynamics are based on energy principles and Lagrange‟s equations. Energy 

principle-based models of flexible manipulators are spatially continuous of infinite order. To 

generate spatially discrete models the assumed-mode method (AMM), the Finite-Element 

Method (FEM) or Lumped Parameter Model (LPM) are generally used [13], [18]. 

The AMM and the FEM methods use either the Lagrangian formulation or the Newton–Euler 

recursive formulation.  According to [12], modeling can be classified as follow: 

a. Lagrange‟s equation and AMM,  

b. Lagrange‟s equation and FEM,  

c. Euler–Newton equation and AMM, and 

d. Euler–Newton equation and FEM, 

The Lagrangian Mechanics and the assumed mode method have been used to drive a 

proposed dynamic model of a single link flexible manipulator having a revolute joint. The 

link has been considered as an Euler–Bernoulli beam subjected to large angular displacement 

[17]. 

LPM models the system as a lump of masses and massless spring. This method is the 

simplest among the three modeling methods, but generally it does not give accurate result. It 

includes two approaches that define the characteristic of constrained mass and spring. First, 

an experimental approach that uses Holzer method and an experimental approach that uses a 

train of experiments to define the parameters of a flexible link, as a second approach [13] 
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A common way to describe a flexible link is by means of the Euler–Bernoulli equation. This 

model is valid under the assumptions that: (i) the link is slender with uniform geometric and 

inertial characteristics, (ii) the link is flexible in the lateral directions and stiff with respect to 

axial forces and to torsion and bending forces due to gravity, and (iii) nonlinear deformation 

and friction can be neglected. The Euler–Bernoulli beam with linear kinematics is a linear 

infinite-dimensional model which takes into account only perpendicular deformation with 

respect to an unstressed reference configuration [18]. 

 

 

Figure  2.1. Euler-Bernoulli beam [4] 

 

Then, the Euler–Bernoulli equation that is shown in Figure 2.1 for the link is given as 

follows: 

    
        

     
        

   =0  2        ( 2.1) 

 uniform mass/unit length 

y(x,t) is the the deflection  

P(x, t) represent the position of a point on the flexible arm 

EI is flexural rigidity 

mt tip payload 

Ih is the hub moment of inertial 

T is the torque applied to the link  
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In AMM formulation, the elastic deflection of the beam is represented by an infinite number 

of separable frequency modes. Since the low frequency modes are dominant in the system‟s 

dynamics, and controllers/actuators generally act as low-pass filters, the modes are truncated 

to a finite number to obtain a system with a finite dimensionality.  

The main drawback of AMM method is the difficulty in finding modes for links with non-

regular cross sections and multi-link manipulators [13].  

Many authors used the finite element method where the elastic deformations are analyzed by 

assuming a known rigid body motion and later superposing the elastic deformation with the 

rigid body motion. In order to solve a large set of differential equations derived by the finite 

element method, a lot of boundary conditions have to be considered, which are, in most 

situations, uncertain for flexible manipulators. Using the assumed mode method to derive the 

equations of motion of the flexible manipulators, only the first several frequency modes are 

usually retained by truncation and the higher modes are neglected [3], [19]. 

In the Lagrange‟s equation and AMM the deflection of the flexible link manipulator is 

represented as a summation of modes. Each mode is assumed as a product of two functions; 

one dependent on the distance along the length of the manipulator, and the other, a 

generalized coordinate, dependent on time. In principle, the summation amounts to an infinite 

number of modes should be taken into consideration. However, for practical purposes, a 

small number of modes are used. The Lagrange‟s equation and FEM is conceptually similar 

to the above AMM method. Here the generalized coordinates are the displacement and/or 

slope at specific points (nodes) along the flexible link manipulator [12], [16]. 

In FEM method, the behavior of the elasticity of a flexible manipulator is first observed on a 

rigid body motion in which the elastic deformation is then superimposed. The main 

advantage of FEM over the other approximation methods in the modeling of flexible links is 

that the connections in FEM are supposed to be clamped-free with minimum two modes 

shape per link. Another important advantage of FEM, especially over analytical solution 

methods is its easiness of handling with nonlinear conditions. The FEM can also handle ir- 

regularities in the structure and mixed boundary conditions, i.e., it is suitable in handling 

applications involving irregular structures.  Though there are many advantages, including the 

generalized coordinates where each coordinate has its physical meanings, the concept of 

natural frequency is lost. Moreover, analyzing approximate flexibility with FEM gives rise to 

an overestimated stiffness matrix especially in complex problems. However, due to the large 

state space equations involved, the numerical simulation time may be exhausting for FEM 

models [13]. 

The Euler–Newton‟s method is a more direct means of calculating system dynamics. The rate 

of change of linear and angular momentum is derived explicitly in this method, rather than 

via Lagrange‟s equation. Newton‟s second law is used to balance these terms with the applied 

forces. In simulation, the linear and angular momentums of the manipulator are unknown 

while the actuator forces are known [20]. 

 Expressing the former in terms of a set of assumed modes or finite elements leads to a 

dynamic model relating the time dependency of the modes/elements to the external forces.  
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The basic approach in the Euler–Newton and AMM is to divide the manipulator into a 

number of elements and carry out a dynamic balance on each element. For a large number of 

elements this is a very tedious process. On the other hand, it is far easier to include non-linear 

effects without complicating the basic model [12]. 

2.1.1 Single Link 

Although the AMM has been widely used, there are several ways to choose link boundary 

conditions (such as geometric contrarians and maximum motor torques) and number of 

selected modes. Many researchers studied single-link flexible manipulators using Lagrange‟s 

equation and the AMM. However, fewer researches used a Newton–Euler formulation to 

model a single-link flexible manipulator. Though many researchers studied flexible link 

manipulators with revolute joints, only few works are reported on prismatic joints [3], [16]. 

Similar to AMM, FEM was applied to study single-link flexible manipulators using 

Lagrange‟s equation and the FEM [21].  

2.1.2 Two Links 

Modeling of two link flexible systems started without taking bending-torsion of the flexible 

link into account, and then it was taken into consideration for system with two rotary joints. 

Afterwards, AMM was used widely with the Lagrange‟s equation after showing that the 

conventional Lagrange‟s equation for rigid manipulators is not accurate in modeling the 

system [3], [22].  

FEM was used for two links systems and for multi-link systems using both Lagrange‟s and 

Newton-Euler equations. A decoupling method was proposed studying both links 

independently without transferring vibration from the first link to the second link. Most of 

this work was made for planer two flexible link manipulators [3], [21] 

2.2 Control 

According to [2], [13], the available literature addresses a wide range of topics, related to the 

control of flexible link manipulators and this involves: 

a. Tip Position Control,  

b. Tip Tracking Control, 

c. Contact Force Control, and  

d. Observer Design  

Control techniques was first applied to control the end-effector of a single flexible 

manipulator by measuring the tip position and using that measurement as a basis for applying 

torque to joint at the base of the beam. However, they only considered a linearized model and 

also the arm can sweep only in the XY plane, so that it is not affected by the gravity [3], [18]. 

Vibration control techniques for flexible link manipulators are generally classified into two 

categories: passive and active control. Passive control utilizes the absorption property of 

matter and thus is realized by a fixed change in the physical parameters of the structure, for 

example, adding a layer of viscoelastic material on the flexible link in order to increase the 

damping properties of the flexible manipulator . Active control of flexible link manipulators 

can in general be divided into two categories; open-loop and closed-loop control.   
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Open-loop control involves altering the shape of actuator commands by considering the 

physical and vibration properties of the flexible link manipulators. The approach may account 

for changes in the system after the control input is developed. Closed-loop control differs 

from open-loop control in that it uses measurements of the system state and change the 

actuator input accordingly to reduce the system response oscillation [12], [23]. 

Open-loop control methods involve the development of suitable forcing functions in order 

to reduce the vibration at resonance modes. The methods developed include shape command 

methods, the computed torque technique and bang-bang control [12], [23]. 

a. Shaped command methods attempt to develop forcing functions that minimize 

vibrations and the effect of parameters that affect the resonance modes. Common 

problems of concern encountered in these methods include long move (response) 

time, instability owing to un-reduced modes and controller robustness in the case of a 

large change of the manipulator dynamics.  

 

b. Computed torque approach, depending on the detailed model of the system and 

desired output trajectory, the joint torque input is calculated using a model inversion 

process. The technique suffers from several problems, owing to, for instance, model 

inaccuracy, uncertainty over implement ability of the desired trajectory, sensitivity to 

system parameter variations and response time penalties for a causal input.  

 

c. Bang-bang control involves the utilization of single and multiple switched bang-

bang control functions. Bang-bang control functions require accurate selection of 

witching time, depending on the representative dynamic model of the system. A 

minor modeling error could cause switching error and thus result in a substantial 

increase in the residual vibrations. 

 

As per [3], [13], [17], the Closed-loop control methods include  

a. PID Control, 

b. Feedback Linearization  

c. Observer Based Control 

d. Adaptive Control,  

e. Fuzzy Logic Control 

f. Neural Network Based Control,  

g. Backstepping Control, 

h. Sliding Mode Control,  

i. LQR/LQG Based Control 

j. H_inf control. 
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2.2.1 Single Link 

In [24] an augmented Sliding Mode Control (SMC) technique was investigated for slewing 

flexible manipulators shown in Figures 2.2 & 2.3.  

 

 

Figure  2.2.  Flexible single link with harmonic drive geometry [24] 

 

 

Figure  2.3.  Flexible single link with harmonic drive test setup [24] 

 

A conventional sliding surface uses a first order system including a combination of error and 

error rate terms. The augmented sliding surface includes an enhanced term that helps to reject 

flexible degrees-of-freedom; the novel aspect of this method is that the flexible body 

generalized accelerations are neglected in the control law development. The controller was 

still shown to be stable in the presence of flexible body generalized accelerations, unmodeled 

dynamics, disturbances and model uncertainties. The algorithms are theoretically developed 

and experimentally tested on a revolute single flexible link robot. Results are shown in 

Figures 2.4 & 2.5 showing that augmented SMC has less oscillation and better settling time 
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Figure  2.4.  Simulation results [24] 

 

 

Figure  2.5. Experimental results [24] 

 

In [25], two robust non-linear controllers have been developed in this study to control the 

rigid and flexible motions of a single-link robotic manipulator. The controllers consist of a 

conventional sliding mode controller (CSMC) and a fuzzy sliding mode controller (FSMC). 

The parameters of FSMC are determined by fuzzy inference systems, and it has been 

designed herein based on two Lyapunov functions. Results are shown in Figure 2.6. 
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Figure  2.6. Simulation Results of Angular Displacement for FSMC and CSMC [25] 

 

In [26] describes an adaptive neuro-fuzzy control system for controlling a flexible 

manipulator with variable payload.  The system schematic is shown in Figure 2.7. 

 

 

Figure  2.7. Schematic representation of the flexible manipulator system [26] 

 

The controller proposed by [26]constitutes a fuzzy logic controller (FLC) in the feedback 

configuration and two dynamic recurrent neural networks in the forward path. A dynamic 

recurrent identification network (RIN) is used to identify the output of the manipulator 

system, and a dynamic recurrent learning network (RLN) is employed to learn the weighting 

factor of the fuzzy logic. It is envisaged that the integration of fuzzy logic and neural network 

based-controller will encompass the merits of both technologies, and thus provide a robust 

controller for the flexible manipulator system. Results are shown in Figure 2.8. 
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Figure  2.8. Step response, (a) response of the system (b) identification output of the system [26] 

 

In [10] proposed a control strategy with friction compensation using neural networks to 

control single link flexible manipulator using a conventional nonlinear harmonic drive 

actuator. Experimental system layout is shown in Figure 2.9. 

 

 

Figure  2.9.  Experimental system layout [10] 

 

The proposal consists of the utilization of a control law in parallel to a nonlinear friction 

compensation mechanism based on NNs. Results are shown in Figure 2.10. 
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Figure  2.10 Closed- and open-loop experimental results [10] 

 

In [4] a modified PID control (MPID) is proposed which depends only on vibration feedback 

to improve the response of the flexible arm by measuring the joint angle, joint velocity and 

the tip deflection. Experimental setup is shown in Figure 2.11. 

 

 

Figure  2.11.  Experimental setup [4] 
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The arm moves horizontally by a DC motor on its base while a tip payload is attached to the 

other end. A simulation for the system with both PD controller and the proposed MPID 

controller is performed. 

 The robustness of the proposed controller is examined by changing the loading condition at 

the tip of the flexible arm. The MPID control which is a modification of the classical PID 

controller by replacing the classical integral term with a vibration feedback term to include 

the effect flexible modes of the beam in the generated control signal. Results are shown in 

Figures 2.12 & 2.13. 

 

 

Figure  2.12  Tip deflection for step response of angle 15[4] 

 

 

Figure  2.13  Joint angle for step response of angle 15 [4] 



16 

 

In [27] A two-stage generalized proportional integral GPI-controller design scheme is 

proposed in connection with an online closed-loop continuous-time estimator of the natural 

frequency of a flexible robot. This methodology only requires the measurement of the angular 

position of the motor and the coupling torque. The experimental setup is shown in Figure 

2.14. 

 

 

Figure  2.14.  Flexible manipulator experimental setup [27] 

 

The proposed controller is for the control of an uncertain flexible robotic arm with unknown 

mass at the tip, including a Coulomb friction term in the motor dynamics. A fast 

nonasymptotic algebraic identification method developed in continuous time is used to 

identify the unknown system parameter and update the designed certainty equivalence GPI 

controller. Results are shown in Figure 2.15 & 2.16. 

 

 

Figure  2.15. Online estimation of ω [27] 
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Figure  2.16. Trajectory tracking [27] 

 

In [28] presented design and development of a robust control based on linear quadratic 

regulator (LQR) for a flexible link manipulator, the system structure is shown in Figure 2.17. 

 

 

 

Figure  2.17.  Flexible link structure [28] 

 

System performances were evaluated in terms of input tracking capability of hub angular 

position response, end-point displacement, end-point residual and joint velocity of the single 

link.  

For the controller of the system, LQR was developed to solve flexible link robustness by 

handling the vibration and perform input tracking capability of angular position of the link. 

Results are shown in Figure 2.18. 
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Figure  2.18. Hub position for step input [28] 

 

In [29] an adaptive fuzzy output feedback approach is proposed for a single-link robotic 

manipulator coupled to a brushed direct current (DC) motor with a non-rigid joint. The 

controller is designed to compensate for the nonlinear dynamics associated with the 

mechanical subsystem and the electrical subsystems while only requiring the measurements 

of link position. Using fuzzy logic systems to approximate the unknown nonlinearities, an 

adaptive fuzzy filter observer is designed to estimate the immeasurable states. The result of 

the output trajectory is shown in Figure 2.19. 

 

 

Figure  2.19. Trajectories of y (solid line) and yr (dash-dotted) [29] 
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In [8] developed adaptive position control with low-pass and band-stop filtered input pre-

shaping vibration controllers have and realized in a closed loop joint based configuration for 

a single-link flexible manipulator which is shown in Figure 2.20. 

 

 

Figure  2.20.  Single-Link flexible system [8] 

 

The filter based vibration controllers have been developed on the basis of the resonance 

modes of the system which represents the dominant vibration modes of the system. The filter 

is used to filter out the input energy at the dominant vibration modes of the system so that the 

manipulator is not excited at those frequencies. Two alternative approaches can be adopted to 

filter out the input energy at natural frequencies of the system. The first method is to pass the 

input torque through a low-pass filter.  

This will attenuate energy input at all frequencies above the filter cut-off frequency. The 

second method to remove input energy at system natural frequencies is to use (narrow-band) 

band-stop filters with center frequencies. Results are shown in Figure 2.21. 
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Figure  2.21. The hub-angle (without payload): (a) without filter (b) Low pass filter (c) Band-pass 

filter [8] 
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In [17] the Lagrange mechanics and the assumed mode method have been used to derive a 

proposed dynamic model of a single link flexible manipulator having a revolute joint. Photo 

and schematic of the experimental setup is shown in Figure 2.22. 

 

 

Figure  2.22. Photo and schematic diagram of the experimental setup of the flexible system [17] 

 

The proposed model has been used to investigate the effect of two main design parameters, 

the payload, and the open loop control torque profile. The results of the investigation show 

that as long as the rest-to-rest rotational maneuver is considered, the payload has a dominant 

effect on the elastic deflection of the manipulator. Simulation and experimental results are 

shown in Figure 2.23. 
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Figure  2.23 Simulated (a) and experimental (b) results for SDRE controller [17] 
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2.2.2 Two Links 

In [30] proposed a nonlinear control law and adaptive control law has been presented for the 

motion control of flexible manipulators. The system experimental setup is shown in Figure 

2.24. 

 

 

Figure  2.24. Two-Link flexible manipulator [30] 

 

Asymptotical stability of the closed-loop system has been guaranteed by using the well-

known Lyapunov theory. Experiments for a two-link flexible arm have realistically 

demonstrated the effectiveness of the proposed schemes.  

In addition, some highly oscillatory behavior of the vibration modes can be observed when 

the motor rotates, which is due to the difficulty of obtaining perfect state measurements 

and/or the existence of high frequency external noise from the air-injection device, this 

device injects air towards the link to represent external noise source. Results are shown in 

Figure 2.25.  

However,[31] showed that the applied technique[30] can produce unexpected stability results.  
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Figure  2.25.   (a) Trajectory response of joint 1. (b) Trajectory response of joint 2- (c) Tracking error 
of joint 1. (d) Tracking error of joint 2[30] 

 

In [5] adaptive energy-based robust control was presented for both closed loop stability and 

automatic tuning of the gains of additional control terms to the conventional PD controller for 

multi-link flexible manipulator shown in Figure 2.26. 

 

 

Figure  2.26. Geometry of multi-link flexible manipulator [5] 

 

The control objective is to rotate each link of the robot to the desired angular position and 

simultaneously suppress the residual vibration. Simulation was carried out on two-link 

Flexible manipulator. Results are shown in Figure 2.27. 
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Figure  2.27. Results for adaptive-energy based robust control (ABRC) and for energy based robust 

control (EBRC) with three different gains [5] 

 

In [32] a two-link flexible manipulator was controlled by three methods and the results are 

compared. The system layout is shown in Figure 2.28. 

 

 

Figure  2.28.  Planar two-link flexible arm [32] 

 

The three applied methods are PD control, PD control augmented by a nonlinear correction 

term feedback, where the correction term is a function of the deflection of each link, and an 

adaptive fuzzy controller with the nonlinear correction term feedback. Results are shown in 

Figures 2.29, 2.30 and 2.31. 
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Figure  2.29. Deflection of the shoulder link and the elbow link for the pure PD [32] 

 

Figure  2.30. Deflection of the shoulder link and the elbow link for the PD plus nonlinear deflection 

feedback controller [32] 

 

Figure  2.31. Deflection of the shoulder link and the elbow link for the hybrid control method [32] 

 

In [6] a sliding mode controller is proposed for a two-link flexible manipulator to address its 

non-minimum phase characteristics using the output redefinition method. The manipulator is 

decomposed into two parts by input-output linearization, namely, an input-output subsystem 

and the zero dynamics of the overall system respectively.  A sliding mode control strategy is 

designed to make the input-output subsystem converge to their equilibrium points in finite 

time. Results are shown in Figures 2.32 and 2.33. 
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Figure  2.32. Tip position of first arm [6] 

 

Figure  2.33. Tip position of second arm [6] 

 

In [33] a robust control method of a two-link flexible manipulator with neural networks based 

quasi-static distortion compensation is proposed and experimentally investigated. The 

experimental setup is shown in Figure 2.34. 

 

 

Figure  2.34.  Experimental setup two-link flexible manipulator [33] 
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The dynamics equation of the flexible manipulator is divided into a slow subsystem and a fast  

subsystem based on the assumed mode method and singular perturbation theory. A 

decomposition based robust controller is proposed with respect to the slow subsystem, and 

H1 control is applied to the fast subsystem. The overall closed-loop control is determined by 

the composite algorithm that combines the two control laws. Furthermore, a neural network 

compensation scheme is also integrated into the control system to compensate for quasi-static 

deflection. Tracking error in X and Y direction are shown in Figures 2.35 and 2.36. 

 

 

Figure  2.35. Tracking error in X direction [33] 

 

 

Figure  2.36. Tracking error in Y direction [33] 

 

In [7] proposed combined control strategy based on neural network (NN) and the concept of 

sliding mode control (SMC) systematically. The experimental two-link flexible system is 

shown in Figure 2.37. 
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Figure  2.37.  Experimental two-link flexible manipulator [7] 

 

The chattering phenomenon in conventional SMC is eliminated by incorporated a saturation 

function in the proposed controller, and the computation burden caused by model dynamics is 

reduced by applying a two-layer NN with an analytical approximated upper bound, which is 

used to implement a certain functional estimate. In addition, the Lyapunov analysis can 

guarantee the signals of closed-loop system bounded (will not go to infinity) and the online 

NN adaptive laws can make the system states converge to the sliding surface. Tip tracking 

errors for first and second link are shown in Figures 2.38 and 2.39. 

 

 

Figure  2.38 Tip Tracking error of the first link [7] 

 

 

Figure  2.39. Tip tracking error of the second link [7] 
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In [34] a neuro-sliding-mode control (NSMC) strategy was developed to handle the complex 

nonlinear dynamics and model uncertainties of flexible-link manipulators.  

 

 

 

Figure  2.40.  Two-link flexible manipulator structure [34] 

 

The designed composite controller was based on a singularly perturbed model of flexible-link 

manipulators when the rigid motion and flexible motion are decoupled. The NSMC is 

employed to control the slow subsystem (rigid motion) to track a desired trajectory with a 

traditional sliding mode controller to stabilize the fast subsystem (flexible motion) which 

represents the link vibrations. Results for the error in control for joints 1 and 2 are shown in 

Figure 2.41 and 2.42. 

 

 

Figure  2.41.  Error of joint angle 1 for both Sliding Mode Control (SMC) and Neuro-Sliding Mode 

control (NSMC) [34] 
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Figure  2.42.  Error of joint angle 2 for both Sliding Mode control (SMC) and Neuro-Sliding Mode 
control (NSMC) [34] 

 

In [35] assessed the dynamic model and proposed control for two-flexible system shown in 

Figure 2.43. 

 

 

Figure  2.43  Structure of two-link flexible manipulator [35] 

 

The proposed controller is radial basis function neural network (RBFNN) controller for 

solving flexible link vibration, achieve high-precision position tracking, and payload effect 

robustness are shown in Figures 2.44 & 2.45. 
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Figure  2.44.  Angular position of the system without load [35] 

 

 

 

Figure  2.45.  Angular position of the system with incorporating payload 0.1 kg [35] 
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In [36] a hybrid control scheme consisting of a fuzzy nonsingular terminal sliding mode 

(NTSM) controller and a genetic algorithm, was proposed for the tip-position control of an 

uncertain two-link flexible manipulator. By the designed fuzzy NTSM controller, the input-

output subsystem is guaranteed of fast convergence, strong robustness and perfect capability 

of eliminating chattering as shown in Figure 2.46. 

 

 

Figure  2.46. Tip position control for first link (y1) and second link (y2) [36] 

 

In [22] presented the dynamic modeling and active vibration control of planar multilink 

manipulators having flexible links. An LQG controller with a KBF has been proposed for 

two-link flexible manipulator. The Multi-link flexible manipulator layout is shown in Figure 

2.47. 

 

 

Figure  2.47.  Multilink flexible manipulator [22] 
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Optimal control theory has been employed to develop a vibration suppression strategy based 

on the use of collocated sensor/actuator pairs, which can represent ideal piezoelectric pairs 

and LQG controller with a KBF has been proposed. Results are shown in Figure 2.48. 

 

 

Figure  2.48.  End-effector displacement for two link flexible manipulator, thin-line is open loop and 

bold line is closed loop [22] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 

 

3 Chapter 3  

 

Research Methodology 
 

3.1 Research Challenges 

Flexible manipulators have been an active field of research for some time now. However, 

despite nearly two decades of research, adequate closed-form solutions do not exist. This is 

mainly because flexible dynamics are modeled with partial differential equations, which give 

rise to infinite dimensional dynamical systems that are, in general, not possible to represent 

exactly or efficiently on a computer. In addition, in practice, the sensors are always installed 

at the boundaries of flexible links so that the spatially distributed positions and velocities are 

not measurable via these sensors [2]. 

The major need for the flexible manipulators arises for improving the industrial productivity 

and for space application by achieving the following [3], [6]: 

a. Reduce the weight of the arms, 

b. Increase their speed of operation,  

c. Advantage of lower cost, 

d. larger work volume, 

e. Greater payload-to-manipulator-weight ratio, 

f. Smaller actuators needed, 

g. Lower energy consumption,  

h. better maneuverability and better transportability, and 

i. Safer operation due to reduced inertia 

 

Some of the limitations of associated with flexible manipulator [13]:  

a. Control complexity mainly due to:  

i. Non Minimum Phase system, and 

ii. Underactuation Problem 

b. Uncertainties due to Truncation of flexible modes, and  

c. MIMO and Nonlinear System. 

Testing on a physical system is crucial since flexible robotics is normally referred to single 

link systems. Two link systems are still in the experimental stage, and research remains to be 

done with experimental systems in order to gain a better understanding of the dynamics and 

control issues facing multiple link flexible robots [3], [13]. 

3.2 Objectives 

This thesis focused on the development of applying nonlinear control techniques for position 

control of a flexible manipulator system that hasn‟t been widely used in the literature. 

Controllers developed through simulations using MATLAB/SIMULINK, and once stability 

and good performance had been achieved, the controllers were transferred onto an 

experimental system. 
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The objectives of this thesis are: 

a. Investigate the available model of two links flexible manipulators and develop their 

mathematical models, 

b. Investigate and compare different control techniques such as LQR, Backstepping and 

Sliding Mode control 

c. Apply control technique on simulation environment. 

d. Hardware testing using the available 2DOF Flexible Manipulator System, and 

e. Analyze and compare results for simulation and experimental results  

3.3 Methodology 

This thesis focuses on the development of dynamic formulation model and three control       

techniques aiming to achieve accurate position control and improving dynamic stability for 

Two-Link Flexible Manipulators (TLFMs). LQR controller is designed based on the 

linearized model of the TLFM; however, it is applied on both linearized and nonlinear 

models. In addition to LQR, Backstepping and Sliding mode controllers are designed as 

nonlinear control approaches and applied on both the nonlinear model of the TLFM and the 

physical system.  

The three developed control techniques are tested through simulation based on the developed 

dynamic formulation model using MATLAB/SIMULINK. Stability and performance analysis 

were conducted and tuned to obtain the best results. Then, the performance and stability 

results obtained through simulation are compared. Finally, the developed control techniques 

were implemented and analyzed on the 2-DOF Serial Flexible Link Robot experimental 

system from Quanser and the results are illustrated and compared with that obtained through 

simulation.  Figure 3.1 shows the research methodology followed in this thesis. 
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Figure  3.1. Research methodology 
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4 Chapter 4  

 

Modeling of Two-Link Flexible Manipulators 
 

4.1 Introduction 

As mentioned in Chapter 2, the main two methods for modeling the Two-Link Flexible 

Manipulators (TLFMs) are the Assumed Mode Methods (AMM) and the Finite Element 

method (FEM). AMM method has been used in the research over the FEM due to [3]: 

a. Less computational load for simulation and control, and 

b. Vibration Modes are clearer in AMM in contrary to FEM. 

Considering the above, this thesis adopted AMM approach for modeling TLFM.  

4.2 AMM Method 

AMM is a method where the infinite dimensional model of a system is truncated to finite 

dimensional model series in terms of combination of mode eigenfunctions which are also 

called as mode shapes and time dependent generalized coordinate. The following equation 

describes the deflection of a flexible link using AMM approach and illustration is shown in 

Figure 4.1: 

 

         ∑               
 
          (4.1) 

 

where: 

   1……M, where M is the number of flexible links          

k: 1 ……N, Where N is number of AMM modes used to describe i
th
 flexible link 

   Time 

    Is the x-axis position for i
th

 flexible link (       );        length of i
th
 link      

          Deflection of i
th

 link at xi 

         Is the k
th

 mode shape function of link i; When k = 0, for i
th
 link, it is called as the 

zero
th
 mode, which gives the characteristic similar to rigid manipulator without any flexible 

deflections.         is calculated from the boundary condition described by equations 4.2 to 

4.5 

        Time dependent generalized coordinate that is associated with each assumed 

frequency mode and referred as flexible coordinates 
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Figure  4.1. Flexible links manipulator system 

 

There are various ways of choosing the boundary conditions for this method. Selection of 

suitable boundary conditions of the AMM is important for FMs to fit into a proper 

application. Usually, it is selected based on the set nearest to the natural modes of the system. 

According to the general beam vibration, there are four applicable theories for boundary 

conditions: Pinned-pinned, Clamped-pinned, Clamped-free and Clamped-clamped. For 

instance, clamped-pinned boundary condition gives simpler coefficient of joint torques while 

Pinned-pinned simplifies calculation of the tip position [19], [37], [38]. 

The four boundary conditions are described as: 

a. Pinned-pinned 

                         (4.2) 

   
           

          
 

   and    are mathematical parameters and don‟t represent real angles. 

    for  all of the four boundary condition, it is the solution of the following equation 

[37]: 

                       
    

  

                                            

 
    

 

  
                                           

      
 

  
   

                         

All the parameters of     for all modes are illustrated in section 4.3. 
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b. Clamped-pinned 

                                                        ( 4.3) 

    
                     

                    
 

 

c. Clamped-free 

                                                     ( 4.4) 

    
                     

                    
 

 

d. Clamped-clamped 

                                                      ( 4.5) 

    
                     

                    
 

 

As per [19], [37]-[39] Clamped-pinned boundary condition is the best condition suites the 

modeling for multi-link flexible manipulators in general and TLFMs in specific. 

4.3 Mathematical Modeling of TLFM 

This section focuses on the development of a combined Euler-Lagrange and AMM algorithm 

characterizing the dynamic behavior of the two-link flexible manipulator system as per [19], 

[37]. The following assumptions are made for the development of a dynamic model of the 

flexible manipulator [13], [19],[37]:  

a. Each link is assumed to be long and slender. Therefore, transverse shear and the 

rotary inertia effects are negligible, 

b. The motion of each link is assumed to be in the horizontal plane, 

c. Links are considered to have constant cross-sectional area and uniform material 

properties, i.e. with constant mass density and Young‟s modulus, etc, 

d. Each link has a very small deflection, 

e. Motion of the links can have deformations in the horizontal direction only, 

f. The kinetic energy of the rotor is mainly due to its rotation only, and the rotor inertia 

is symmetric about its axis of rotation, and 

g. The backlash in the reduction gear and coulomb friction effects are neglected. 

The following coordinate frames are then established for Two-Link Flexible Manipulator 

shown in Figure 4.2:  

a. Inertial frame (X0, Y0) 

b. The rigid body moving frame associated to link1 (X1 ,Y1) and link 2 (X2 ,Y2), 

c. The flexible body moving frame associated to link1 ( ̂1,  ̂1) and link2 ( ̂2,  ̂2), 

d. The rigid motion is described by the joint angles 𝜃  , and 

e.  i(xi) stand for the transversal deflection of link i at xi, 0 ≤ xi ≤ li , li being the i
th
 link 

length.  
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Figure  4.2. Two-link flexible manipulator system with frames 

 

The joint (rigid) rotation matrix Ai and the rotation matrix Ei of the (flexible) link at the end-

point are, respectively 

Ai  is the rigid joint rotation matrix: 

   [
     𝜃       𝜃  

    𝜃      𝜃  
]          ( 4.6) 

Ei is the rotation matrix of the flexible link at the end point of the link  

   [
            ̌   

          ̌    
] 

Since the deflection of the link is very small   ̌ , hence           ̌        ̌  

   [
   ̌  

 ̌   
]         ( 4.7)  

where   ̌  
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Let   
  be the position of a point along the deflected link i with respect to frame (Xi,Yi) and pi 

is the absolute position of the same point in frame (X0,Y0). In addition, Let     
  be the 

position of the origin of frame (Xi,Yi) with respect to frame (Xi+1,Yi+1) and ri is the absolute 

position of the frame i.  

           
  

               
          (4.8) 

Where W is the global transformation matrix from (X0,Y0) to (Xi,Yi), which follows the 

following equation 

              

The following identities as used in the dynamic modeling 

  
      

          

where 

  [
   
  

] 

The dynamic equation of motion for two links flexible manipulator is derived using 

Lagrangian approach by computing the kinetic energy T and potential energy U of the 

system, the lagrangian equation is formed which is given by, L = T-U.  

The total kinetic energy of the system is given by the sum of the following components [37]: 

  ∑    
 
    ∑       

 
           ( 4.9) 

where: 

T: Total kinetic energy 

     is the kinetic energy at hub i of mass mhi and momnent of inertia Jhi 

     is the kinetic energy of link i  

    is the kinetic energy of payoad of mass mp and momnent of inertia Jp located at the end of 

second link. 

   is the linear density of link i 

and  

    
 

 
     ̇ 

   ̇  
 

 
     ̇ 

 
         ( 4.10) 

    
 

 
∫  

 
        ̇ 

        ̇ 
       

  

 
       ( 4.11) 

   
 

 
    ̇    

  ̇    
 

 
    ̇   ̇̌   

 
       ( 4.12) 
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The potential energy (without considering gravity i.e. horizontal plane motion) is given by 

[37]: 

  ∑     
 ∑

 

 
∫         

          

   
      

  
 

 
                      ( 4.10) 

where    : is the elastic energy stored in link I and EIi  its flexural rigidity 

Finit-dimensional approximation of link deflection is investigated next using AMM method. 

Links are modeled as Euler-Bernoulli beams of uniform linear density   , and constant 

flexural rigidity EIi with deformation          satisfying the following partial differential 

equation, 

   
          

   
    

 

          

   
    i=1, 2      ( 4.11) 

As mentioned in section 4.2, AMM method,          can be expressed as a linear 

combination of the product of boundary condition         and time-dependent generalized 

coordinates        as per equation 4.1: 

         ∑               

 

   

 

The solution of equation 4.1 is in form of [37]: 

 
  
           (   

  )      ( 
  
    

  
    ( 

  
  )      ( 

  
  ))                  

 ( 4.12) 

where mi is the mass of link i and     is given by: 

 
  

 
               

     

  
                

               
     

  
                

         ( 4.13) 

and     is constant value that represent the solution of the following equation: 

                        
     

  
                                               

     
 

  
                                               

       
 

  
                              

                                                             ( 4.14) 

where: 

    is the mass at the tip end of link i and     is the inertia at the tip end of link i 
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and 

m2: mass of the second link 

mh2: mass of the motor hub for second link 

mp: mass of the payload 

Jo2: inertia of second link around joint-2 axis 

Jh2: inertia of motor hub of link around joint-2 axis 

Jp: inertia of the payload 

  : density of link i 

Once     is available the natural frequency of the kth frequency mode of link i can be 

calculated from  

       
 √

     

  
           ( 4.15) 

The dynamic model of two-link flexible manipulator is obtained using the Language-Euler 

equations: 

 

  

  

   ̇
 

  

   
      i=1,2,….6      ( 4.16) 

where {fi} are the generalized forces performing work on {qi} 

As a result of this procedure and by solving equations 4.14 to 4.16, the equations of motion 

for a planar 2-link flexible arm can be written in the familiar closed form 

      ̈       ̇                      ( 4.17) 

where    𝜃 𝜃                  
  and  

u is the 2-vector of joint (actuator) torques.  

              

B is the positive- definite symmetric inertia matrix,  

  

[
 
 
 
 
 
                  

                  

                  

                  

                  

                  ]
 
 
 
 
 

 

H is the vector of coriolis and centrifugal forces,  

                
  

K is the stiffness matrix,  
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[
 
 
 
 
 
      
      
          
          
          
          ]

 
 
 
 
 

 

Where elements of the stiffness matrix appear associated with the flexible coordinates        

and it represents the mass multiplied by the natural frequency of the mode. 

All coefficients used in the B and H Matrices are shown in Appendix A 

4.4 Physical Parameters and Model Coefficients 

Table 4.1 below show the physical parameters used for model to calculate all model 

coefficients. The below data are of 2-DOF Serial Flexible Link Robot from Quanser company 

[11]. Further details about the hardware system are shown in Appendix B. 

 

Table  4.1: Physical parameters 

Parameter Unit Symbol (i for 

link number) 

Link 1 Link2 

Mass Density Kg/m    2829 2487 

Length m    0.202 0.2018 

Width m     0.076 0.038 

Thickness m     0.00127 0.00089 

Link Mass Kg    0.46 0.157 

Second Hub Mass Kg     -------------- 1.01 

Payload Mass Kg    -------------- 0.23 

Link Inertia Kg.m
2
     0.0109 0.0075 

Hub Inertia Kg.m
2
     0.0073 0.0065 

Payload Inertia Kg.m
2
    -------------- 0.0087 

Flexural Rigidity N.m
2
       1868 433 

 

Using the mathematical formulation in Appendix A and Table 4.1, the elements of B and H 

matrices are calculated as follow: 

                                   

                                         

                                      

                                        

                            

                             

    0 

    34.64 
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    104.56 

           

    0 

    0 

                         

                          

                            

                          

    0 

    0 

    0 

                          

                           

                           

    0 

    0 

    0 

    0 

    -33.95 

    264.34 

    0 

    0 

    0 

    0 

    0 

    -49.56 
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      𝜃  

      𝜃  

   [(    �̇�       ̇       ̇        ̇       ̇  )�̇� 

 (    �̇�       ̇        ̇        ̇         ̇  )�̇� 

 (     ̇        ̇  ) ̇          ̇         ̇    ̇  ]  

 [(    �̇�  �̇�       ̇         ̇  )  

 (    �̇�      �̇�       ̇         ̇  )           ̇  

         ̇  ]�̇�    

   (     �̇�       ̇        ̇  )�̇�   

 {[(     �̇�       ̇        ̇  )   (    �̇�        ̇        ̇  )  

         ̇            ̇  ]�̇� 

 [(     ̇        ̇  )          ̇        ̇     ] ̇  

 [     ̇            ̇
        ̇     ] ̇  }   

   [(     �̇�      �̇�        ̇         ̇         ̇  )�̇� 

 (      �̇�       ̇         ̇         ̇         ̇  )�̇� 

 (       ̇
         ̇  ) ̇   (      ̇         ̇  ) ̇  ]  

 [(     �̇�       �̇�       ̇         ̇  )  

 (     �̇�        ̇         ̇  )           �̇� ]�̇�    

   [(      �̇�       𝜃̇
        ̇         ̇         ̇  )�̇� 

 (     �̇�        ̇         ̇         ̇         ̇  )�̇� 

 (      ̇         ̇  ) ̇   (      ̇        ̇  ) ̇  ]  

 [(    �̇�       �̇�       ̇        ̇  )  

 (     �̇�       ̇         ̇  )           �̇� ]�̇�    

   (     �̇�        ̇        ̇  )�̇�    [      �̇�  (      ̇         ̇  )  ]�̇�    

   (     �̇�       ̇         ̇  )�̇�   

 [       �̇�  (      ̇         ̇  )  ]�̇�    
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5 Chapter 5  

 

Control Techniques for Two-Link Flexible Manipulators 
 

This chapter focuses on the development of three nonlinear control techniques that include 

LQR, backstepping and sliding mode. The aim of these control techniques is to improve 

position control of TLFMs in terms of dynamic performance and steady state error. These 

control techniques are used with both linearized and nonlinear models of the system as 

relevant to the control technique. 

5.1 LQR Controller  

5.1.1 LQR technique [40],[13], [41] 

LQR technique is a linear optimal control technique that aims to achieve good system 

performance while minimizing the amount of actuation used in achieving the desired 

performance.  

A measure of the quality of a controller is formulated in terms of a performance index (J). 

This index is used to design the controller and depends on the control signal and the state 

vector. In this way the „optimal‟ control signal is found resulting in the minimum value of the 

index J. The job of the designer is not to determine control parameters directly, but to define 

the appropriate measure for the performance index and to minimize it. 

The performance index is defined by the following equation: 

  ∫       
 

 
 ∫       

 

 
         ( 5.1) 

where: 

J: Performance Index or cost function 

z: is the state vector 

u: is the control (input) vector 

The matrices R and Q are “weight matrices” that determine the relative importance of the 

error. 

 

For a linear state space system with z state vector can represented as: 

 ̇        

                  ( 5.2) 

The LQR control input is u = -Kz with its general illustration shown in Figure 5.1. 
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Figure  5.1: General LQR controller with z state vector 

 

where K is the controller gain vector and it is calculated using the following equation 

                   ( 5.3) 

P is the solution of Riccati equation 

01   QPBPBRPAPA TT

       ( 5.4)
 

By selecting proper positive elements of weight matrices R & Q, the P matrix can be 

calculated from equation 5.4. The selection of R & Q matrices are done through trial and 

error tuning through simulation starting with identify matrix for both till reaching the desired 

performance. 

5.1.2 LQR controller design  

In order to design the LQR controller, the linear state representation need to be found from 

the dynamic equation of TLFM represented in Chapter 4. The linear state space is generated 

from the linearization of the nonlinear state space representation of the dynamic equation of 

TLFM. 

Equation (4.20) represents the dynamic equation for the TLFM system under study; 

      ̈       ̇       

Which can be re-written in the following form to simplify model implementation using 

MATLAB/Simulink: 

  ̈                ̇              ( 5.5) 

  ̈                     ̇           

The general state space representation of nonlinear systems is, 

 ̇             

                          ( 5.6) 

where 

                         are nonlinear functions of state vector z 
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and  

  [
𝜃 

𝜃 
]  [

  

  
] 

The state vector of the TLFM shown below 

  [
 
 ̇]                                          

  

Where z is the state vector and the state variables are 

   𝜃  

   𝜃  

       

       

       

       

   �̇�  

   �̇�  

    ̇   

     ̇   

     ̇   

     ̇   

 

Finding the   ̇ vector 

 ̇  [
 ̇

 ̈
]  [

 ̇

              ̇       
]        ( 5.7) 

 

In order to formulate the state space representation of the TLFM in equation 5.7 in the form 

of general state space representation of a nonlinear system shown in equation 5.6, the 

following matrices F & G are introduced, 

               ̇                          ( 5.8) 

         

[
 
 
 
 
 
                  

                  

                  

                  

                  

                  ]
 
 
 
 
 

       ( 5.9) 
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The elements of the matrices F & G depend on the actual system under representation and the 

general state space representation in equation 5.6 

Using equations 5.8 and equation 5.9 to formulate the detail presentation equation 5.7 in the 

form of equation 5.6 

    

 ̇  [
 ̇
 ̈
]  [

 ̇
    

]  

[
 
 
 
 
 
 
 
 
 
 
 
  

  
  

   
   

   

  

  

  

  

  

  ]
 
 
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 

      
      
      
      
      
      

                  

                  

                  

                  

                  

                  ]
 
 
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
  

  

 
 
 
 ]

 
 
 
 
 

 

where 

     

[
 
 
 
 
 
 
 
 
 
 
 
  

  
  

   
   

   

  

  

  

  

  

  ]
 
 
 
 
 
 
 
 
 
 
 

         

[
 
 
 
 
 
 
 
 
 
 
 

      
      
      
      
      
      

                  

                  

                  

                  

                  

                  ]
 
 
 
 
 
 
 
 
 
 
 

 

( 5.10) 

     [
  

  
]             

 

The mathematical formulation for F and G matrices are show in Appendix C. 

Next step is to linearize of the nonlinear model in equation 5.10 to put the system on the form 

of linear state space representation as shown below: 

 ̇        
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where 

A, B, C and D is state space matrices for the linearized model that can be found from [42] 

  
     

  
|
    

  

  
     

  
|
    

    

  
     

  
|
    

               ( 5.11)     

  
     

  
|
    

  

where ze is the equilibrium point for the system defined as   

                              

 

From equation 5.11 and substitute with the parameters from Table 4.1 calculate 

A 

[
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  [
            
            

]    
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  [
      
      

] 

The selection of R & Q matrices are done through trial and error tuning through simulation 

starting with identify matrix for both till reaching the desired performance. The final content 

for R&Q matrices are listed below 

  

[
 
 
 
 
 
 
 
 
 
 
 
              
              
              
              
             
             
             
               
               
             
             
            ]

 
 
 
 
 
 
 
 
 
 
 

 

R 

[
 
 
 
 
 
        
        
        
        
        
        ]

 
 
 
 
 

 

5.2 Backstepping Controller  

5.2.1 Backstepping technique [42],[13], [41],[43] 

Backstepping is a recursive procedure that interlaces the choice of a Lyapunov function with 

the design of feedback control. It breaks a design problem for the full system into a sequence 

of design problems for lower-order (even scalar) systems. By exploiting the extra flexibility 

that exists with lower order and scalar systems, backstepping can often solve stabilization, 

tracking, and robust control problems under conditions less restrictive than those encountered 

in other methods. 

Because of this recursive structure, the designer can start the design process at the known-

stable system and "back out" new controllers that progressively stabilize each outer 

subsystem. The process terminates when the final external control is reached. Hence, this 

process is known as Backstepping. 

Backstepping is applied to systems of lower triangular form, where each state is a function of 

itself and a function of the next state as shown below 

  ̇           

  ̇              

. 

. 

. 

. 
  ̇                            ( 5.12) 
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where  

  is the state vector and u is the input for the system. 

Figure 5.2 below shows a general illustrative diagram for backstepping technique. 

 

 

Figure  5.2. Illustrates diagram the backstepping technique 

 

 

The first step in backstepping design is to start with the first subsystem 

  ̇           

  ̇                      ( 5.13) 

Defining the error e1 and e2 as 

   𝜃      

                     ( 5.14) 

where    is the first virtual input appeared in the representation shown in equation 5.14. 

Differentiating both variables e1 and e2 in equation 5.14, 

 ̇  �̇�      

  ̇    ̇   ̇             ( 5.15) 

Then, define the first positive definite Lyapunov function V1 as, 

   
 

 
  
             ( 5.16) 

Finding the derivative of Lyapunov function  ̇  from equation 5.16 

 ̇     ̇           ( 5.17) 

   is virtual input that makes  ̇  negative definite. 
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Afterwards we define the second positive definite Lyapunov function V2 is defined as, 

      
 

 
  
           ( 5.18) 

and then define,  

               ( 5.19) 

where    is the second virtual input. 

Finding the derivative of Lyapunov function  ̇  from equation 5.18 

 ̇   ̇     ̇           ( 5.20) 

   is virtual that makes  ̇   negative definite  

The second step is to back out to the second subsystem 

  ̇           

  ̇              

  ̇                         ( 5.21) 

The second subsystems in equation 5.21 can be redefined with new state variable as below 

 ̇           

  ̇                      ( 5.22) 

where 

   [
  

  
] 

Apply the same steps that were applied to the first subsystem from equation 5.13 to the 

redefined subsystem in equation 5.22. The steps include defining the error states with as third 

and fourth virtual inputs as in equation 5.14. Then, define Lyapunov functions to find the 

virtual inputs accordingly. Repeating the aforementioned steps till reaching last subsystem 

with state    where u is going to appear with the last subsystem and is going calculated based 

on last Lyapunov function. The total number of virtual inputs (         ) needed throughout 

the subsystems for system of order n is (n-1). 

 

5.2.2 Backstepping controller design for TLFM 

Starting from the system dynamic equation (4.20) 

      ̈       ̇       

Rewrite equation 4.20 as follow 

[
      

      
] [�̈�

 ̈
]  [

  

  
]  [

      

      
] [

𝜃

 
]  [

 

 
]       ( 5.23) 

where  
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  [
  

  
] 

𝜃  [
𝜃 

𝜃 
] 

  [

   

   

   

   

] 

               

               

              

              

        

        

 

Breaking equation 5.23 into two equations as below  

   �̈�      ̈        𝜃                 ( 5.24) 

   �̈�      ̈        𝜃                 ( 5.25) 

Rewriting equation 5.25 as below 

 ̈      
      �̈�        𝜃               ( 5.26) 

Substituting equation 5.26 into equation 5.24 

   �̈�          
      �̈�        𝜃               𝜃         

   �̈�        
     �̈�        

           
     𝜃        

             𝜃         

Rearranging,  

           
      �̈�         𝜃             

      

       
     𝜃        

                  ( 5.27) 

In order to formulate the state space representation of the TLFM in equation 5.27 on the form 

of general representation of lower triangle systems, matrices M & N are defined 

            
               ( 5.28) 

        𝜃             
           

     𝜃        
           ( 5.29) 

Substituting with equations 5.28 and 5.29 in equation 5.27 we got 

 �̈�                 ( 5.30) 
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Equation 5.30 can be used as a base to apply backstepping control technique for it. Rewriting 

equation 5.30 as follow: 

�̈�                       ( 5.31) 

Defining the states for equation 5.31 as, 

   𝜃 

   �̇�           ( 5.32) 

State representation is then presented as below: 

  ̇     

  ̇                      ( 5.33) 

Now equation 5.33 is on a similar form of equation 5.12, for purpose of position control we 

define 𝜃  as desired position for both links. 

Applying design steps illustrated in section 5.2.1, we define error variable as e1 and e2 

   𝜃               ( 5.34) 

                   ( 5.35) 

where   is virtual input defined for the representation in equation 5.35. 

Differentiating both variables e1 and e2 

 ̇  �̇�               ( 5.36) 

  ̇   ̇   ̇             ( 5.37) 

Reference to equation 5.16, the first positive definite Lyapunov function V1 is 

   
 

 
  
             ( 5.38) 

Finding the derivative of Lyapunov function  ̇  from equation 5.38 

 ̇     ̇           ( 5.39) 

Substituting for  ̇  from equation 5.36 into equation 5.39 

 ̇     �̇�              ( 5.40) 

Substituting for    from equation 5.35 

 ̇     �̇�        

 ̇     �̇�        

 ̇    �̇�                    ( 5.41) 

Selecting the virtual input   that makes  ̇ a negative definite function by trying cancel all the 

positive terms, 
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  �̇�                 ( 5.42) 

Substituting with equation 5.42 in equation 5.41 

 ̇    �̇�          �̇�        

 ̇           
             ( 5.43) 

 ̇  is a negative definite      for all values    

Reference to equation 5.18 a positive definite Lyapunov function V2 is 

      
 

 
  
   

   
 

 
  
  

 

 
  
           ( 5.44) 

Finding the derivative of Lyapunov function  ̇  from equation 5.44 

 ̇   ̇ +   ̇  

Substituting for  ̇  from equation 5.43 and for  ̇  from equation 5.37 

 ̇           
      ̇    ̇         ( 5.45) 

Substituting for   ̇ from equation 5.33 into equation 5.45 

 ̇           
      ̇               

 ̇           
   

 
 ̇     

       
           ( 5.46) 

Selecting the virtual input   that makes  ̇ a negative definite function 

           ̇                  ( 5.47)  

Substituting with   from equation 5.47 in equation 5.46 

 ̇           
   

 
 ̇     

            ̇                
       

 ̇           
   

 
 ̇     

       ̇                
       

 ̇           
     ̇     

       ̇           
     

    

 ̇       
      

          ( 5.48) 

 ̇  is negative definite for all values    and    

Differentiating virtual input   in equation 5.42 with  

 ̇  �̈�     ̇             ( 5.49) 

Substituting in   equation 5.47 with  ̇ from equation 5.49 

          �̈�     ̇                   ( 5.50) 

Selection of    &    matrices is tuned during the simulation of the system to get the suitable 

performance for the system.  
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The selection of matrices c1 and c2 matrices are done through trial and error tuning through 

simulation starting with identify matrix for both till reaching the desired performance. The 

final content for matrices c1 and c2 matrices are listed below 

   [
    
   

]   

   [
    
   

] 

As for stability investigation, backstepping controller gives a stable system since it designed 

based on Lyapunov function and its derivative, this in case that there is not possible condition 

in Lyapunov function derivative to be negative definite. 

 

5.3 Sliding Mode Controller  

5.3.1 Sliding mode technique [44],[13], [41], [45] 

Sliding controller design provides a systematic approach to the problem of maintaining 

stability and consistent performance in the face of modeling imprecisions. Furthermore, by 

allowing the trade-offs between modeling and performance to be quantified in a simple 

fashion, it can illuminate the whole design process. Sliding control has been successfully 

applied to robot manipulators, underwater vehicles, automotive transmissions and engines, 

high-performance electric motors, and power systems.  

Consider a single-input dynamic system:                               

                           ( 5.51) 

where, 

n: the system order 

     is the nth derivative of state x 

u is the scalar control input,  

x is the scalar output of interest (such as position) 

X is the state vector.                 ̇  ̈             

f(X) and b(X) are nonlinear functions of the states.  

 

The desired states vector is formulated in the following form 

                     ̇   ̈        
    

 

 



60 

 

 

The tracking error x~ is expressed as, 

 

           ( 5.52) 

 

 

Defining a time-varying sliding mode surface s(x,t) = 0 in the state-space R
(n)

 by the 

following scalar equation,  

        
 

  
        ̃        (5.53) 

where    is a strictly positive constant related to the transient time.  

 

The simplified, lst-order problem of keeping the scalar s at zero can now be achieved by 

choosing the control law u such that outside the sliding surface of s(x,t) = 0 that satisfy the 

following sliding condition: 

 

 

 

  
                 ( 5.54) 

where      is a strictly positive constant.  

Figure 5.3 shows graphical presentation for sliding surface and effect of   and   parameters. 

 

Figure  5.3: Sliding surface and parameters effect [44] 

 

The control law of single input is defined as  

   ̂     
     

  ̂                    ( 5.55) 

The control law stated equation 5.55 has two parts,  
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Continuous part 

 ̂     
     

  ̂  

 and discontinuous part 

 ̂              

where  ̂ and  ̂ are the estimated values for b and f  respectively due to uncertainties. 

where sgn function is shown in Figure 5.4. 

 

 

Figure 55.4. Sgn function 

 

The k gain affects both both      and its value is found by tuning the response of the control 

behavior according to equation 5.55. The gain k needs be large enough to drive the     back to 

zero again that associated with   as illustrated in Figure 5.3. Also, “k” can‟t be extremely 

large because this will cause a very high switching control activity that is associated with   as 

shown in Figure 5.4. The gain “k” is multiplied by the function “-sgn(s)” to become “-

k*sign(s)”.  

Since the implementation of the associated control switching is imperfect (for instance, in 

practice switching is not instantaneous, and the value of s is not known with infinite 

precision), this leads to chattering as illustrated in the Figure 5.5. 

 

s
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Figure  5.5. Chattering Effect 

Chattering is undesirable in practice, since it involves high control activity and further may 

excite high frequency dynamics neglected in the course of modeling (such as unmodeled 

structural modes, neglected time-delays, and so on).  

The discontinuous control law u is suitably smoothed by replacing the previous discontinues 

function “-k*sgn(s)” by       to achieve an optimal trade-off between control 

bandwidth and tracking precision where   is the bandwidth of the saturation function. 

 

Figure  5.6. Using saturation function "sat" 

 

)"/(*" ssatk
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The sat function is as shown in Figure 5.7. 

 

 

Figure  5.7. The Sat function 

 

 

Hence the control law in equation (5-40) is modified as follow: 

    ̂     
     

  ̂                    (5.56) 

 

Consider the multi-input dynamic system:                               

  
           ∑         

 
               ( 5.57) 

i = 1, …m  and  j = 1,…m        

where, 

n: the system order 

m: number of inputs 

  
  is the nth derivative of state xi 

uj is the jth scalar control input,  

xi is the ith scalar output of interest  

fi(X) and bi(X) are nonlinear functions of the states.  

Similar to the control law associated with single input case, the vector of control law u can be 

represented in the following form: 

   ̂     
     

  ̂   ̂                ( 5.58) 

where  

u is vector of ui 

 ̂ is matrix with bij  
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 ̂ is vector with  fi  

 ̂ sgn(S) is vector of ki sgn(si) 

 

In addition to avoid the chattering effect, control law is defined as 

   ̂     
     

  ̂   ̂                ( 5.59) 

where 

 ̂           is vector of                

5.3.2 Sliding mode controller design 

Starting from equation 5.21,  

�̈�               

Define state vectors   and        

   [
𝜃 

�̇� 
] 

   [
𝜃 

�̇� 
] 

Then define the desired states as below 

    [
𝜃  

�̇�  
] 

    [
𝜃  

�̇�  
] 

The error vectors can be calculated as  

  ̃         

  ̃         

Defining both sliding surfaces 

         ̇̃      ̃ 

         ̇̃      ̃ 

By applying control law in equation 5.58, we got 

  [
 ̂      ̂   ̂             

 ̂      ̂   ̂              
]       ( 5.60) 

k1 and k2 gains are tuned and selected as 300 and 260 respectively through trial and error and 

monitoring the system performance to get the suitable response. 

To reduce the chattering, sat function is applied as per equation 5.59 
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  [
 ̂      ̂   ̂               

 ̂      ̂   ̂                
]       ( 5.61) 

where  ̂ and  ̂ are estimates of M and N  matrices that were defined in equations 5.28 and 

5.29 respectively. The estimation  ̂ and  ̂ is taken as the original M and N with 2% positive 

change of their value. 

As for stability investigation, once satisfying the sliding condition that makes the sliding 

surface as invariant set, which means the system will tracking surface but it won‟t diverge out 

of it. 

 

 

 

 

6 Chapter 6 

 

Results and Discussion 
 

This chapter presents the simulation and experimental testing using all of the developed 

control techniques and illustrated their results. 

The simulation testing is implemented using MATLAB/Simulink and it is based on the 

nonlinear AMM model of TLFM derived in Chapter 4 and the linearized model of the system 

derived in Chapter 5 while applying the physical parameters showed in table 4-1. The 

experimental testing uses the 2-DOF Serial Flexible Link Robot from Quanser along with the 

nonlinear model. The dynamic performance is time domain describing the simulation and 

experimental results of all developed control technique are compared. 

As illustrated in Chapter 5, the aim of the developed controllers is to achieve position control 

for both links of the TLFM. The input signal used as a desired position control is a square 

wave of 0.1 Hz and amplitude of +25 and +10 degrees for link1and link2 respectively, input 

representation is shown in Figure 6.1.  

 

 

(a) Input representation for link 1 

 

Square input 0.1 Hz 

and amplitude =+1 
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(b) Input representation for link 2 

Figure  6.1. (a) Input representation for link 1, (b) Input representation for link 2 

6.1 Simulation Testing and Results 

6.1.1 Open loop model  

Figure 6.2 shows the implementation TLFM dynamic model in equation 4.20  

      ̈       ̇       

 

Figure  6.2. TLFM open loop nonlinear model implementation on Simulink 

 

Figure 6.3 below shows the internal structure of TLFM dynamics block 

 

 

Figure  6.3. TLFM dynamics block subsystem in TLFM nonlinear model on Simulink 

Square input 0.1 Hz 

and amplitude =+1 
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Time (s) 

 

As mentioned the inputs for both links are square waves, selecting the following values for 

each input, 

Theta 1 input:    Amplitude: +25    Frequency: 0.1 Hz 

Theta 2 input:   Amplitude: +10     Frequency: 0.1 Hz 

Frequencies for input signal used in the literature vary from 0.1-1 Hz. 

Figures 6.4 and 6.5 show the open loop responses of Theta1 and Theta2 respectively 

associated with model of the system implementation using MATLAB/Simulink shown in 

Figure 6.2.  

For both links, the link positions (Theta1 and Theta2) moved far away from the desired value 

when the input of each link is in the negative half of the square wave. While during the 

positive half of the desired input, the link positions moved towards the negative desired value 

of the input. 

 

 

Figure  6.4. Link1open loop response of nonlinear model for square input 0.1Hz, Input signal in purple 
and Theta1 output in yellow 

 

 

Theta1  

(rad) 

 

Theta2  

(rad) 

 



68 

 

Time (s) 

Theta1  

(rad) 

 

Figure  6.5. Link2 open loop response of nonlinear model for square input 0.1Hz, Input signal in 

purple and Theta2 output in yellow 

 

Figure 6.6 shows the MATLAB/Simulink implementation of linearized model in equation in 

5.11 on Simulink 

 

 

Figure  6.6. TLFM open loop linearized model 

 

Apply the same desired inputs used with the nonlinear model to the linearized model shown 

in Figure 6.6. 

Figures 6.7 and 6.8 show the responses of Theta1 and Theta2 respectively for the mentioned 

desired input signals of the linear model implemented in Figure 6.6. The responses are very 

similar to the nonlinear models results. 
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Time (s) 

Time (s) 

 

Figure  6.7. Link1open loop response of nonlinear model for square input 0.1Hz, Input signal in purple 

and Theta1 output in yellow 

 

Figure  6.8. Link2 open loop response of nonlinear model for square input 0.1Hz, Input signal in 

purple and Theta2 output in yellow 

 

6.1.2 LQR controller  

The general representation of LQR control input is u = -Kx and its block diagram 

representation shown in Figure 6.9. 

 

Theta2 (rad) 
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Figure 6.9. General LQR controller with x state vector 

 

Hence it is necessary to have the state vector in order to find the control input u = -Kx. 

However, the State-Space block in Simulink shown in Figure 6.10 can only generate the 

output from the block without generating the state vector. 

 

 

Figure  6.10. State-space block of Simulink 

 

Therefore, a new state space block was designed and implemented as shown in Figure 6.11 to 

help to generate the state vector beside the output. Figure 6.12 shows the integration of the 

new state space block with the TLFM linearized model.  

 

 

Figure  6.11. State space block implementation with state vector generated from the block 
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Figure  6.12. TLFM Open loop linearized model with state space block implemented 

 

 

The LQR controller designed in section 5.1.2 has been implemented as shown in Figure 6.13. 

 

 

Figure  6.13. LQR controller implementation for linearized model 

 

For the design laws mentioned in Chapter 5,  

where  

                    

and P is the solution of the following equation 

01   QPBPBRPAPA TT

 

For the linearized TLFM system under study           and       , for the tuning process 

depended on changing the values of Q and R matrices and monitor the dynamic performance 

parameter to get the best response. Below are the best concluded values for both matrices  
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[
 
 
 
 
 
        
        
        
        
        
        ]

 
 
 
 
 

 

Using A, B, C, D, R and Q matrices the LQR gain was found using MATLAB LQR function. 

For stability check, the eigen values for A matrix was found all negative which implies the 

linearized system is stable a shown below: 

                                      
                                       
                                       

 

Figures 6.14 and 6.15 show the responses for Theta1 and Theta2 respectively for the input 

reference signals for the LQR controller on the linearized model.  
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Time (s) 

Time (s) 

Theta2  

(rad) 

 

 

Figure  6.14. Link1 LQR controller response of simulated linearized model for square input 0.1Hz, 
Input signal in purple and Theta1 output in yellow 

 

Figure  6.15. Link2 LQR controller response of simulated linearized model for square input 0.1Hz, 

Input signal in purple and Theta2 output in yellow 

Theta1  

(rad) 
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The control signal of link1 and link2 are shown in Figures 6.16 and 6.17 respectively. 

 

 

Figure  6.16. Control signal of Link1 for LQR controller for linearized model 

 

 

Figure  6.17. Control signal of link2 for LQR controller for linearized model 

 

Parameters describing the response of the system using LQR controller with linearized model 

are be shown in Table 6.1 below 

 

Table  6.1. Response parameters of LQR controller linearized model simulation 
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 Rise Time (s) Settling Time (s) Overshoot % St St Error% 

Link 1 0.7 0.8 0.45 0 

Link 2 0.8 0.8 0 0 
 

The designed LQR controller for the linearized model was applied to the nonlinear model 

shown in Figure 6.18 to compare the effect of the linearization and its response on the 

nonlinear model. 

 

Figure  6.18. Applying LQR controller to the nonlinear model 

 

Figures 6.19 and 6.20 show the responses of Theta1 and Theta2 respectively for the desired 

input signals illustrating LQR controller performance with the nonlinear model.  

 Theta1  

(rad) 
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Time (s) 

Time (s) 

  

Figure  6.19. Link1 LQR controller response of simulated nonlinear model for square input 0.1Hz, 

Input signal in purple and Theta1 output in yellow 

 

Figure  6.20. Link2 LQR controller response of simulated nonlinear model for square input 0.1Hz, 

Input signal in purple and Theta2 output in yellow 

 

The control signal of link1 and link2 are shown in Figures 6.21 and 6.22 respectively 

Theta2  

(rad) 
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Figure  6.21. Control signal for Link1LQR controller applied to nonlinear model 

 

 

 

Figure  6.22: Control signal for Link2LQR controller applied to nonlinear model 

 

Parameters describing the response of the system using LQR controller with the nonlinear 

model are shown in Table 6.2 below 
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Table  6.2. Response parameters of LQR controller nonlinear model simulation 

 Rise Time (s) Settling Time (s) Overshoot % St St Error% 

Link 1 0.6 1.5 13.3% 22% 

Link 2 0.5 1 12% 18% 
 

It is clear that from the results of applying the LQR controller to the linearized model, that 

has a good dynamic response with zero steady state error and overshoot. However, when the 

LQR controller was applied to the nonlinear model, a steady state error appears in the 

position for both links. In addition an overshoot appeared in links‟ response as well. This is 

due to the fact that the LQR is a linear controller that was designed to work with linearized 

model and it can‟t handle the nonlinear dynamics in the nonlinear model which was not taken 

into consideration when designing the LQR controller. 

 

 

 

 

6.1.3 Backstepping controller  

The Backstepping controller designed in section 5.2 has been implemented as per equation 

5.50 

          �̈�     ̇              

where all parameters are known except c1 and c2 that are subjected to tuning. 

Figure 6.23 shows the implementation of backstepping controller for the nonlinear model 

 

 

Figure  6.23. Backstepping controller implementation for nonlinear model 

 

For the tuning process depended on changing the values of c1 and c2 matrices and monitor the 

dynamic performance parameter to get the best response. Below are the suitable selected 

values for both matrices c1 and c2  
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Theta2  

(rad) 

Time (s) 

   [
    
   

]        [
    
   

] 

Figures 6.24 and 6.25 show the responses for Theta1 and Theta2 respectively for the desired 

input signals for the Backstepping controller with the nonlinear model.  

  

Figure  6.24. Link1 backstepping controller response of simulated nonlinear model for square input 

0.1Hz, Input signal in purple and Theta1 output in yellow 

 

Theta1  

(rad) 
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Time (s) 
 

Figure  6.25. Link2 backstepping controller response of simulated nonlinear model for square input 
0.1Hz, Input signal in purple and Theta2 output in yellow 

 

Figures 6.26 and 6.27 show the control signals for link1 and link2 respectively  

 

 

Figure  6.26. Control signal for link1 with backstepping control 
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Figure  6.27. Control signal for link1 with backstepping control 

 

 

 

Parameters describing the response of the system using Backstepping controller are be shown 

in Table 6.3 below 

 

Table  6.3: Response parameters of backstepping controller nonlinear model Simulation 

 Rise Time(s) Settling Time(s) Overshoot% St St Error% 

Link 1 0.6 0.9 0 0 

Link 2 0.6 0.7 0 0 
 

As it can be seen from Figures 6.20 and 6.21, the backstepping controller tuning was easier 

than the LQR controller and it gave better performance with nonlinear model over the LQR 

with linear model and this is due to that the back stepping technique is a combination of 

control signals that each of them was accurately deigned for subsystem. 

6.1.4 Sliding mode controller  

The sliding mode controller designed in section 5.3 is implemented as per equation 5.61 

  [
 ̂      ̂   ̂             

 ̂      ̂   ̂              
] 

Figure 6.28shows the implementation of sliding mode controller for the nonlinear model 
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Theta2 

(rad) 

Time (s) 

Theta1  

(rad) 

 

Figure  6.28. Sliding mode controller implementation for nonlinear model 

 

k1 and k2 were tuned by monitoring the dynamic response of system and select the best tuning 

values which were concluded as k1 = 300 and k2 = 260. 

Figures 6.29 and 6.30 show the responses for Theta1 and Theta2 respectively for the input 

reference signals for the backstepping controller on the nonlinear model.  

 

 

  

Figure  6.29. Link1 sliding mode controller response of simulated nonlinear model with chattering for 

square input 0.1Hz, Input signal in purple and Theta1 output in yellow 
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Time (s) 
 

Figure  6.30. Link2 sliding mode controller response of simulated nonlinear model with chattering for 

square input 0.1Hz, Input signal in purple and Theta2 output in yellow 

 

 

 

Figures 6.31 and 6.32 shows the control signals for SMC controllers with chattering case 

 

Figure  6.31. Control signal for Link1 with SMC controller chattering case 
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Theta1  

(rad) 

 

 

Figure  6.32. Control signal for Link2 with SMC controller chattering case 

  

 

 

Parameters describing the response of the system using sliding mode controller with 

nonlinear model with chattering can be shown in Table 6.4 below 

 

Table  6.4. Response parameters of sliding mode controller nonlinear model with chattering simulation 

 Rise Time(s) Settling Time(s) Overshoot% St St Error % 

Link 1 0.5 -- 0 2.8 

Link 2 0.5 -- 0 3.3 

 

As it can be seen from Figures 6.23 and 6.24, sliding Mode controller issue was the 

chattering problem which is generated due to the discontinuous part in the control law 

however it could reached a less rise time using sliding mode controller than the backstepping 

controller.  

Applying control equation (5.42) to reduce the chattering 

  [
 ̂      ̂   ̂               

 ̂      ̂   ̂                
] 

Figures 6.33 and 6.34 show the responses for Theta1 and Theta2 respectively for the input 

reference signals for the backstepping controller with the nonlinear model.  
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Time (s) 

Theta2 

(rad) 

Time (s) 
  

Figure  6.33. Link1 sliding mode controller response of simulated nonlinear model without chattering 

for square input 0.1Hz, Input signal in purple and Theta1 output in yellow 

 

 

 

Figure  6.34. Link2 sliding mode controller response of simulated nonlinear model without chattering 
for square input 0.1Hz, Input signal in purple and Theta2 output in yellow 
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Figures 6.35 and 6.36 show the control signal for the link1 and link2 of SMC controller 

without chattering 

 

 

Figure  6.35. Control signal for Link1 with SMC controller without chattering case 

 

Figure  6.36. Control signal for Link2 with SMC controller without chattering case 

 

Parameters describing the response of the system using sliding mode controller with 

nonlinear model without chattering can be shown in Table 6.5  
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Table  6.5. Response parameters of sliding mode controller nonlinear model without chattering 

simulation 

 Rise Time (s) Settling Time (s) Overshoot% St St Error% 

Link 1 0.5 0.7 0 0 

Link 2 0.5 0.7 0 0 
 

As it can be seen from Figures 6.25 and 6.26, sliding Mode controller issue was the 

chattering problem was solved and the performance was improved. 

6.2 Experimental Testing and Results 

The used hardware throughout this thesis is 2-DOF Serial Flexible Link Robot from Quanser 

Company that is shown in Figure 6.37. This robot system consists of two DC motors driving 

a two-bar serial linkage via harmonic gearboxes. The primary link (link1) is rigidly clamped 

to the first drive (a.k.a. elbow) and carries at its end the second harmonic drive (a.k.a. 

shoulder) to which second flexible link (link2) is attached. Both motors are instrumented with 

quadrature optical encoders [11].  

 

 

Figure  6.37. The 2DOF Serial Link Robot [11] 

 

The implementation of each of the developed controllers depends on the states and the 

dynamics of the model. In relation to the hardware, it is possible only to measure two states 

represents the position of both links. Therefore, in order to be able to test the developed 

controllers on experimental system there is a need to find the remaining states (states related 
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to AMM modes). Hence, the dynamic model in both linearized and nonlinear was used as 

relevant to generate the missing states and integrate them with the physical model as shown 

in Figure 6.38. 

 

 

Figure  6.38. Controller implementation to hardware system 

The real time control of hardware system is done using Hardware In the Loop (HIL) 

technique that is supported by physical system 2-DOF Serial Flexible Link Robot from 

Quanser. In the HIL technique, the controller is implemented using Simulink where it 

receives the links‟ position (Theta1 and Theta2) feedback from the physical system through 

data acquisition input card and send the control action (torques for both motors) to the 

physical system through data acquisition input card. Figure 6.39 shows HIL implementation 

on 2-DOF Serial Flexible Link Robot from Quanser.   
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Figure  6.39: HIL Implementation on TLFM from Quanser 

 

6.2.1 LQR controller  

Figure 6.40 shows the implementation of LQR controller on hardware system. 

 

Figure  6.40. LQR implementation on hardware system 
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Time (s) 

Theta1 

 (rad) 

 

Figures 6.41 and 6.42 show the responses for Theta1 and Theta2 respectively for the input 

reference signals for the LQR controller on hardware system.  

 

 

Figure  6.41. Link1 LQR controller response of hardware system for square input 0.1Hz, Input signal 

in purple and Theta1 output in yellow 
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Time (s)  

Figure  6.42. Link2 LQR controller response of hardware system for square input 0.1Hz, Input signal 

in purple and Theta2 output in yellow 

 

Parameters describing the response of the system using for LQR controller on the hardware 

system is shown in Table 6.6 below 

 

Table  6.6. Response parameters of LQR controller for hardware system 

 Rise Time (s) Settling Time (s) Overshoot (%) St St Error (%) 

Link 1 1.6 1.6 0 24 

Link 2 1.3 1.3 0 27 

 

It is noted that from applying the LQR controller to hardware system and compared to 

applying the LQR controller to nonlinear model that, the rise time has increased and the 

overshoot has increased. In addition there is no overshoot when LQR was applied to the 

hardware system and the settling time has decreased. The difference between applying the  

LQR controller to the nonlinear model and to the hardware system is due to the modeling 

assumptions mentioned in 4.3 and due to number of AMM modes, was represented as two 

modes in implemented model. 

 

 

 

Theta2  

(rad) 
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6.2.2 Backstepping controller  

Figure 6.43 shows the implementation of backstepping controller on hardware system. 

 

 

Figure  6.43. Backstepping controller implementation on hardware system 

 

Figures 6.44 and 6.45 show the responses for Theta1 and Theta2 respectively for the input 

reference signals for the backstepping controller on hardware system.  

 

 

Figure  6.44: Link1 backstepping controller response of hardware system for square input 0.1Hz, Input 
signal in purple and Theta1 output in yellow 

Theta1 

 (rad) 
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Time (s) 
 

Figure  6.45. Link2 backstepping controller response of hardware system for square input 0.1Hz, Input 
signal in purple and Theta2 output in yellow 

 

Parameters describing the response of the system using backstepping controller on the 

hardware system is shown in Table 6.7 below 

 

Table  6.7. Response parameters of backstepping controller for hardware system 

 Rise Time (s) Settling Time (s) Overshoot % St St Error 

Link 1 1.2 1.2 0 0.95 % 

Link 2 1 1.1 0 1.12 % 
 

It is noted that from applying the backstepping controller to hardware system and compared 

to applying the backstepping controller to nonlinear model that, the rise time and the settling 

time have increased slightly while the overshoot remained zero and there is a slight steady 

state error around 1%. The difference between applying the backstepping controller to the 

nonlinear model and to the hardware system is due to the modeling assumptions mentioned in 

4.3 and due to number of AMM modes, which are two in implemented model. 

 

 

 

Theta2  

(rad) 
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6.2.3 Sliding mode controller  

Figure 6.46 shows the implementation of SMC controller on hardware system. 

 

 

Figure  6.46. SMC controller implementation on hardware system 

 

Figures 6.47 and 6.48 show the responses for Theta1 and Theta2 respectively for the input 

reference signals for the SMC controller with chattering on hardware system.  

 

 

Figure  6.47. Link1 SMC controller response of hardware system with chattering for square input 

0.1Hz, Input signal in purple and Theta1 output in yellow 
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Theta2  

(rad) 

 

 

Figure  6.48. Link2 SMC controller response of hardware system with chattering for square input 

0.1Hz, Input signal in purple and Theta2 output in yellow 

 

Parameters describing the response of the system using SMC controller on the hardware 

system with chattering are shown in Table 6.8 below 

 

Table  6.8. Response parameters of SMC controller with chattering for hardware system 

 Rise Time (s) Settling Time (s) Overshoot % St St Error% 

Link 1 0.7 -- 2.3 1.8 

Link 2 0.7 -- 3.1 0 

 

Figures 6.49 and 6.50 show the responses for Theta1 and Theta2 respectively for the input 

reference signals for the SMC controller without chattering on hardware system.  
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Figure  6.49. Link1 SMC controller response of hardware system w/o chattering for square input 

0.1Hz, Input signal in purple and Theta1 output in yellow 

 

 

Figure  6.50. Link2 SMC controller response of hardware system w/o chattering for square input 
0.1Hz, Input signal in purple and Theta2 output in yellow 
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Parameters describing the response of the system using SMC controller on the hardware 

system without chattering are shown in Table 6.9 below 

 

Table  6.9. Response parameters of SMC controller w/o chattering for hardware system 

 Rise Time (s) Settling Time (s) Overshoot % St St Error% 

Link 1 1.1 1.1 0 2 

Link 2 0.9 1.2 0.5 0.1 

 

It is noted that from applying the SMC controller to hardware system and compared to 

applying the SMC controller to nonlinear model that, the rise time and the settling time  and 

overshoot have increased slightly and there is a steady state error around 2% for link 1 and 

0.1% for link 2. The difference between applying the SMC controller to the nonlinear model 

and to the hardware system is due to the modeling assumptions mentioned in 4.3 and due to 

number of AMM modes, which are two in implemented model. 

6.3 Results Summery Table 

The summery of all parameters describing the response of the system using all developed 

controllers and their implementation on simulation and experimental testing is shown in 

Table 6.10. 
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Table  6.10. Summery table for dynamic performance parameters 

No. Control 

Technique 

Response Parameter Results 

Link 1 Link 2 

1 LQR Controller 

for Linearized 

Model 

Overshoot % 0.45 0 

Settling Time 0.8 0.8 

Rise Time 0.7 0.8 

St St Error% 0 0 

2 LQR Controller 

for Nonlinear 

Model 

Overshoot % 22 18 

Settling Time 1.5 1 

Rise Time 0.6 0.5 

St St Error% 22 18 

3 LQR Controller 

for Hardware 

Overshoot % 0 0 

Settling Time 1.6 1.3 

Rise Time 1.6 1.3 

St St Error % 24 27 

4 LQR Controller 

of Quanser 

Results[11] 

Overshoot % 6 16.5 

Settling Time 1.8 2.3 

Rise Time 1 0.8 

St St Error% 0.5 15.3 

5 Backstepping 

Controller for 

Nonlinear Model 

Overshoot % 0 0 

Settling Time 0.9 0.7 

Rise Time 0.6 0.6 

St St Error% 0 0 

6 Backstepping 

Controller for 

Hardware 

Overshoot % 0 0 

Settling Time 1.2 1 

Rise Time 1.2 1.1 

St St Error% 0.95  1.12  

7 Sliding Mode 

Controller with 

chattering for 

Nonlinear Model 

Overshoot % 0 0 

Settling Time -- -- 

Rise Time 0.5 0.5 

St St Error% 2.8 3.3 

7 Sliding Mode 

Controller w/o 

chattering for 

Nonlinear Model 

Overshoot % 0 0 

Settling Time 0.7 0.7 

Rise Time 0.5 0.5 

St St Error% 0 0 

8 Sliding Mode 

Controller with 

chattering for 

Hardware 

Overshoot % 2.3 3.1 

Settling Time -- -- 

Rise Time 0.7 0.5 

St St Error% 1.8 0 

9 Sliding Mode 

Controller w/o 

chattering for 

Hardware 

Overshoot % 0 0.5 

Settling Time 1.1 0.9 

Rise Time 1.1 1.2 

St St Error% 2 0.1 
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7 Chapter 7 

 

Conclusion and Future Work 
 

7.1 Conclusion 

This thesis presented a nonlinear dynamic model of a TLFM and the AMM with Lagrangian 

method was selected for modeling the system. In addition, the development of three control 

techniques: LQR, Backstepping and Sliding Mode were introduced. For the LQR, the 

dynamic model was linearized been formulated using the form of linear state space system. 

For the backstepping technique, the controller was designed based on Lyapunov function 

which assures the stability of the system. Finally, sliding mode controller was designed but 

with the chattering problem exists due to the discontinuity part in the control law. The 

chattering problem was resolved by changing the function of the discontinuity part to 

represent a boundary not a line which smoothed the control action accordingly. 

The implementation and testing of the developed control techniques were performed through 

simulation and by using an experimental 2-DOF Serial Flexible Link Robot from Quanser 

Company. The results were summarized, discussed and compared against dynamic the 

performance of position control and the steady state error of both links under similar control 

inputs.  

From the results and the comparison between the developed control techniques, the following 

were concluded: 

a. The LQR controller gave a better performance with the linearized model of the 

system than when it was used with the nonlinear model of the system in both 

simulation and experimental testing. This is due to the fact that the LQR controller 

was designed in association with the linearized model of the system and hence it was 

not able to handle the nonlinear dynamics of the TLFMs, since the model in highly 

nonlinear. 

b. Backstepping controller presented better performance than and sliding mode 

controller in terms of dynamic performance and steady stated error.  

c. Sliding Mode controller is associated with chattering problem which is generated due 

to the discontinuity part in the control law. However, it could reach the target with 

less rise time than that obtained using backstepping control techniques. The saturation 

function was used to improve the performance and reduce chattering. 

d. There slight differences between the results obtained through simulation and 

experimental testing. Such differences were due to modeling assumptions mentioned 

in 4.3 and due to number of AMM modes used to represent each link. In this thesis 

only two AMM modes were used.  
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7.2 Future Work 

The recommendation for future work can be divided into two parts, the first part is to 

improve modeling and the second part is to improve control and performance.  

As for the modeling part: 

a. Need to try different boundary conditions for the AMM modeling and compare the 

results accordingly, 

b. Increase the number of modes, since this thesis used two modes for each link, to 

investigate the effect on computational load, model accuracy and control 

performance. A proper balance should be reached between the number of AMM 

modes, the computational load and the required performance and 

c. Use FEM and AMM modeling for the same system. Then, evaluate the performance.  

As for the control part: 

a. Using computational intelligence techniques such fuzzy logic, neural networks and/or 

genetic algorithms to optimize the parameters that relies on conventional manual 

tuning. This will save the tuning time for all controllers‟ type and contribute to 

improve the performance, and 

b. Apply computational intelligence techniques to replace the developed control 

techniques for the purpose to control the dynamic of the two-link flexible manipulator 

system and control its position with aim to check and compare its performance and 

compare it with other control techniques. 
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Appendix A  

 

Model Coefficients for TLFM Model [37] 
 

Appendix A introduces the mathematical formulation of the parameters in B and H Matrices 

used for modeling of the TLFM stated in Chapter 4. 
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Appendix B  

 

2-DOF Serial Flexible Link Robot from Quanser [11] 
 

Appendix B includes technical details of the 2-DOF Serial Flexible Link Robot from Quanser 

used for experimental testing in this thesis. 

The 2-Degree-Of-Freedom (DOF) Serial Flexible Link (2DSFL) Robot is depicted in below 

Figure. This robot system consists of two DC motors driving via harmonic gearboxes (zero 

backlash) a two-bar serial linkage. Both links are flexible and instrumented with strain 

gauges. The primary link is rigidly clamped to the first drive (a.k.a. elbow) and carries at its 

end the second harmonic drive (a.k.a. shoulder) to which another flexible link is attached. 

Both motors are instrumented with quadrature optical encoders.  

A nomenclature of the Two-Degree-Of-Freedom Serial Flexible Link mechanical assembly is 

shown below: 
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The -DOF Serial Flexible Link Robot system consists of the following hardware: 

1. Two DoF Serial Flexible link (2DSFL) 

 
 

2. AMPAQ-series Power Amplifier: Two-Channel Linear Current Amplifier.  

The 2DSFL robot is powered by a two-channel linear current Amplifier Package 

(AMPAQ) from the Quanser AMPAQ-series 

 
3. Data Acquisition Card: Quanser's Q4 HIL board.  

The power amplifier and planar robot systems are designed to be fully compatible 

with the Q4 Hardware-In-the-Loop (HIL) board 
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4. ±15 VDC External Power Supply 

It can provide the system with a maximum output power of 42 W at ±15 VDC. It 

currently supplies power to the four joint position limit switches and the four strain 

gauge sensors. 

 
 

5. Cables 
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The Connection between the aforementioned components is as shown below 
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Appendix C 

 

F and G Matrices Formulation  
 

Appendix C introduces the mathematical formulation of the parameters in G and F matrices, 

in MATLAB form, used for LQR controller design section 5.1.2. 
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