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ABSTRACT 
 
 
 
 

This thesis focuses on Finite Element (FE) modeling and robust control of a 

two-link flexible manipulator based on a high resolution FE model and the system 

vibration modes. A new FE model is derived using Euler-Bernoulli beam elements, 

and the model is validated using commercial software Abaqus CAE. The frequency 

and time domain analysis reveal that the response of the FE model substantially 

varies with changing the number of elements, unless a high number of elements (100 

elements in this work) is used. The gap between the complexity of the high order FE 

model capable of predicting dynamics of the multibody system, and suitability of the 

model for controller design is bridged by designing control schemes based on the 

reduced order models obtained using modal truncation/H∞ techniques. Two reduced 

order multi-input multi-output modal control algorithms composed of a robust 

feedback controller along with a feed-forward compensator are designed. The first 

controller, Inversion-based Two Mode Controller (ITMC), is designed using a 

mixed-sensitivity H∞ synthesis and a modal inversion-based compensator. The 

second controller, Shaping Two-Mode Controller (STMC), is designed with H∞ loop-

shaping using the modal characteristics of the system. Stability robustness against 

unmodelled dynamics due to the model reduction is shown using the small gain 

theorem. Performance of the feedback controllers are compared with Linear 

Quadratic Gaussian designs and are shown to have better tracking characteristics. 

Effectiveness of the control schemes is shown by simulation of rest-to-rest maneuver 

of the manipulator to a set of desired points in the joint space. The ITMC is shown to 

have more precise tracking performance, while STMC has higher control over 

vibration of the tip, at the expense of more tracking errors.  
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ABSTRAK 
 
 
 

 
Tesis ini memfokuskan kepada pemodelan unsur terhingga (FE) dan kawalan 

tegap untuk pengolah fleksibel dua lengan berdasarkan model FE dengan resolusi 

tinggi dan mod getaran sistem. Model FE baru dihasilkan menggunakan unsur rasuk 

Euler-Bernoulli dan model ini disahkan menggunakan perisian komersial Abaqus 

CAE. Analisa domain frekuensi dan masa menunjukkan sambutan model FE sangat 

bergantung kepada bilangan unsur, melainkan bilangan unsur yang sangat tinggi 

digunakan (100 unsur dalam penyelidikan ini). Jurang di antara kerumitan model FE 

tertib tinggi yang diperlukan untuk meramal tingkah laku dinamik sistem berbilang  

jasad dan kesesuaian model untuk rekabentuk pengawal dihubungkan melalui 

rekabentuk sistem kawalan berasaskan model tertib kurang menggunakan kaedah 

pemangkasan mod/H∞. Dua algoritma pengawal berbilang-masukan berbilang-

keluaran tertib kurang telah direkabentuk terdiri daripada pengawal suapbalik tegap 

dan pemampas suap-hadapan. Pengawal pertama, ITMC, telah direkabentuk  

menggunakan kaedah kepekaan-bercampur H∞ dan pemampas mod songsangan. 

Manakala pengawal kedua, STMC direkabentuk dengan pembentuk-gelung H∞.  

menggunakan ciri-ciri mod sistem. Ketegapan sistem terhadap ciri-ciri dinamik yang 

tidak dimodelkan disebabkan oleh peringkasan model ditunjukkan menggunakan 

teorem gandaan kecil. Prestasi pengawal ini dibandingkan dengan rekabentuk 

Gaussian Kuasadua Lelurus dan telah menunjukkan hasil penjejakan yang lebih baik. 

Keberkesanan sistem-sistem pengawal ditunjukkan melalui simulasi pergerakan 

pengolah ke beberapa lokasi yang dikehendaki. ITMC telah menunjukkan prestasi 

penjejakan yang lebih tepat manakala STMC mempunyai prestasi kawalan getaran 

yang lebih baik dengan ralat penjejakan besar.  
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CHAPTER 1 

 
 

 
 

INTRODUCTION 

 
 
 
 

1.1 Background and Motivation 
 
 
Flexible manipulators are commonly known as a class of robotic arms that 

are designed with long and slender links in order to reduce their weight. As a more 

technical definition, ‘flexible manipulator’ commonly addresses a manipulator that 

its first structural natural frequencies are exited severely in its operating speeds. This 

can happen due to either high acceleration motions, or low stiffness of the structure 

of the robot. Examples include space manipulators (Sabatini et al., 2012), such as 

the shuttle remote manipulator Canadarm (Skaar and Ruoff, 1994), and high-speed 

industrial manipulators. The structural flexibility is caused by elastic deflections of 

the links and/or joints. When the elastic deflections of the links of a manipulator are 

considered, the robot is known as a Flexible Link Manipulator (FLM). In the theory 

of elasticity, a flexible link is an infinite dimensional continuous system. For 

controller design and simulation, generally, a finite-dimensional (spatially discrete) 

model of such systems is required.  

 
 
A widely used method for discretization of the governing equations of the 

FLMs is the Assumed Mode Method (AMM). In AMM (Book et al., 1975; Yu and 

Elbestawi, 1995), vibrational behavior of each link is assumed to be similar to the 

first vibration mode(s) of the link as a separate beam under some assumed Boundary 

Conditions (BC). The problem with the AMM, in particular in the case of multi-link 

manipulators, is that the vibration modes of a beam are very sensitive to the changes 
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in the BCs (See for example Ata et al. (2012)). Therefore, describing the BCs of a 

moving link by classic BCs such as clamped, free, or carrying a mass/inertia can be 

a source of error. An alternative method that can provide a finite dimension model 

of a flexible multibody system is the method of Finite Elements (FE). The FE 

analysis has been used for open-loop or closed-loop simulation of the FLMs by 

many researchers. Tokhi et al. (2001) presented FE modelling of a single link 

flexible manipulator (SLFM).  

 
 
Beside the modelling complexities, concurrent vibration and motion control 

of FLMs has been an interesting and active area in vibration control (Shaheed and 

Tokhi, 2013; Kumar, 2013; Yin et al. 2013). Various uncertainties and complexities 

of the system have been targeted in various studies. One of the most considered 

uncertainties in a flexible manipulator is the payload variation as such manipulators 

are normally expected to handle different payloads in remote fields (Sąsiadek, 

2013).   

 
 
In this work, an FE model is developed using the Euler-Bernoulli beam 

element and lumped mass model with arbitrary number of elements. The governing 

equations of motion are derived using the energy equations. Then an analysis of the 

FE model with different number of elements is presented to find out the necessary, 

sufficient, or optimum required mesh resolution (number of elements). It will be 

shown that independency of the model to the number of elements will be achieved 

only when the number of elements is chosen sufficiently high (here around 50 

elements for each link). The high-order FE model is then verified using numerical 

measurements and commercial FE software. In order to prepare the model for a 

model based control algorithm, the FE model is approximated to a low-order system 

by employing modal decomposition and model reduction. In this manner, the 

resultant dynamic equations preserve the precision of a finely meshed FE model in 

low frequencies of interest or bandwidth of the system, while the order of the system 

is not too big for control algorithms. Based on the reduced model, a Multi-Input 

Multi-Output (MIMO) feedback control is designed that is shown to be robust 

against the uncertainty of truncated high frequency modes. Finally, a multi-stage 

rest-to-rest control algorithm based on the feedback controller and a feed-forward 
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controller is simulated on the high-order system which drives the manipulator to 

desired postures through a smooth trajectory.  

 
 
 
 

1.2 Problem Statement 

 
 
The demand for reliable lightweight and high-speed manipulators, for space 

or industrial applications, has attracted many researchers to develop dynamic models 

and control methods for manipulators with elastic behavior. A planar Two-Link 

Flexible Manipulator (TLFM) is the most fundamental and, practically, common 

case of multi-link flexible-link manipulators. Flexible-link manipulators are 

continuous (infinite dimensional) systems, which need to be approximated as finite 

dimensional models. The everlasting demand for reducing the weight or increasing 

the speed of manipulators is associated with increasing the flexibility of the links of 

the robots. To fulfill this demand, continuous research is necessary in order to 

develop more accurate models (e.g. with more modes), and to design more advanced 

control algorithms, for TLFMs.  

 
 
Due to natural complexities of flexible multibody systems, the dynamics and 

control of a TLFM is yet an open problem. The modeling methods developed up to 

now, generally sacrifice a degree of accuracy to get a low-order model that is 

manageable for controller design. In particular, in the FE models a low number of 

elements have been used for discretization of flexible links. If each link is modeled 

with one element, the FE and AMM will be essentially equivalent; except for the 

shape function that is ‘presumed’ for describing bending of the links. When multiple 

elements are used, the shape function approximation rules only inside the elements 

and the bending curve (i.e. the system vibration modes) can be measured based on 

position of the nodes. However, with multiple elements FE results in high-order 

models. The literature on FLMs show that AMM has been more of interest, because 

the assumed modes selected based on the BCs will be better approximations than the 

shape functions used in a single element.  
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To keep the advantages of a high-resolution FE model in model-based 

control design, a compromise between the order and resolution of the model is 

necessary. By using a model order reduction, the flexible links can be modeled with 

high number of elements. Then, to fully use the advantages of such elaborate 

modelling technique, employing advanced MIMO robust control techniques, as well 

as classic methods of maneuver control of manipulators is indispensable. 

 
 
 
 

1.3 Objectives of the Research 
 
 
This research aims at developing a high-order FE model of TLFMs and 

designing model-based control for maneuvering the system. The main objectives are 

as follows: 

 
 
 To develop a multi-element FE model of a TLFM, free of the 

assumptions of component modes analysis and the floating frame of 

references. Validation of the model is performed with the commercial FE 

software Abaqus CAE. 

 

 To measure the system vibration modes of the TLFM, and implement 

modal decomposition in order to reduce order of the model. 

 
 To design a MIMO feedback controller for rest-to-rest maneuvers of the 

manipulator in free joint space. The controller needs to be robust to 

unmodelled dynamics resulted from the model order reduction. 

 
 
 
 

1.4 Scope of the Research 
 
 
The scope of this research comprises a theoretical study of reduced-order 

modeling and control of a TLFM, as well as simulation studies using MATLAB, as 

the main platform. Abaqus CAE is used for validation of the eigenproblem. In this 
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work, some idealizations are adopted to focus on effects of flexibility of the links 

(flexibility of the joints is not considered in this research). Modeling of a two-link 

manipulator with small elastic deflections using Euler-Bernoulli beam element is 

considered. The motion and vibration of the manipulator are in the horizontal plane. 

The joints are actuated by external torque and are without gear box, friction, and 

joint flexibility. Damping is considered by adding modal damping terms.  

 
 
The controller is designed based on the reduced-order model, and closed-

loop simulation is performed using the high-order model as the plant. The feedback 

controller is designed using some MIMO H∞ minimizing methods. To ensure 

robustness, firstly, the normalized coprime stability margin is considered in the 

controller design stage, and secondly, the small-gain theorem is checked for the 

specific uncertainty that is the unmodelled dynamics or the truncated modes in the 

model order reduction.  

 
 
The overall control system is to drive the system to a typical set of point and 

stabilize the manipulator at the destination. The bandwidth is considered to be 0 to 

50 Hz (vibrations of higher frequencies are ignorable). Performance of the controller 

will be compared with a Linear Quadratic Gaussian (LQG) design. In each stage of 

the rest-to-rest motion, the angular motion of the joints are supposed to be small (say 

less than 1 rad). For large motions, the controller can be equipped with adaptation 

algorithms, which is out of the scope of this research. 

 
 
 
 

1.5 Research Methodology  

 
 

 In this section, an overview of the research methodology is presented. To 

introduce the readers who may not be familiar with the subjects, an overall road map 

is given. Figure 1.1 illustrates the flowchart of the project methodology. The 

research was started with reviewing the literature to figure out the research direction. 

Then, dynamic equations of the system are derived using analytical and numerical 
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methods, and are simulated using MATLAB. The dynamic modelling starts with 

physical modelling and discretization of the links using arbitrary number of beam 

elements (FE discretization). The Lagrange’s equations are used, then, to derive the 

dynamic equations. For convergence analysis, the time and frequency responses of 

the FE model are measured for the FE model with different mesh sizes. In parallel to 

the measurements, a model of the TLFM is made in Abaqus CAE. The measured 

model is compared and validated to the results of the Abaqus CAE. The verified 

model is named high-order FE model as any order reduction (including decreasing 

number of elements) has not been applied.  

 
 
 In the next step, the mode shapes of the system are measured and a model 

order reduction procedure based on the measured modes is employed. The reduced 

models prepared with different orders are verified with the original FE model. The 

model based control designs, then, will be based on the reduced order systems. 

 
 
 The control design starts with feedback control design and synthesis. The 

control design and simulation is performed in MATLAB. After verification of the 

robustness of the feedback loop, the control system is augmented with feed-forward 

compensators. Finally, the controllers are evaluated in rest-to-rest maneuvers to 

arbitrary points. The evaluation will be in terms of parameterization of trajectory 

error and vibration of the tip (end-effector). 
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1.6 Thesis Contribution 

 
 
A brief outline of the main contributions of this research is given in this 

section as follows: 

 

1) An accurate FE model with a high resolution mesh of beam elements was 

developed for the TLFM. The number of required elements for discretization of the 

model was discussed based on convergence of frequency and time domain responses 

so that the FE model can predict the first modes monotonously when the number of 

elements is increased (considering system matrices of order lower than 200 to avoid 

measurement complexity of large scale matrices (Cullum, 2002))  

 

2) The vibration modes of the system were measured. The modes were used for 

modal decomposition of the model, and measuring reduced-order model that 

perfectly matches with the high-order FE model in terms of the input-output 

characteristics. 

 

3) Based on the modal decomposition, two modal control algorithms (named 

ITMC and STMC, in this work) were developed for multi-stage rest-to-rest 

maneuver of the manipulator. A method was proposed for reshaping the loop 

transfer matrix (loop-shaping control) for concurrent motion and vibration control of 

the flexible manipulator. Robustness of the feedback controlled system against 

unmodelled dynamics was shown using the small gain theorem. Performance of the 

controllers was evaluated by comparing time responses of the controlled system 

with the simulation results of some LQG control designs. The ITMC is suggested for 

the tasks requiring more precise tracking performance, and STMC for higher control 

on vibration at the expense of more tracking error.  
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