66 research outputs found

    Coordination and Privacy Preservation in Multi-Agent Systems

    Get PDF
    This dissertation considers two key problems in multi-agent systems: coordination (including both synchronization and desynchronization) and privacy preservation. For coordination in multi-agent systems, we focus on synchronization/desynchronization of distributed pulse-coupled oscillator (PCO) networks and their applications in collective motion coordination. Pulse-coupled oscillators were originally proposed to model synchronization in biological systems such as flashing fireflies and firing neurons. In recent years, with proven scalability, simplicity, accuracy, and robustness, the PCO based synchronization strategy has become a powerful clock synchronization primitive for wireless sensor networks. Driven by these increased applications in biological networks and wireless sensor networks, synchronization of pulse-coupled oscillators has gained increased popularity. However, most existing results address the local synchronization of PCOs with initial phases constrained in a half cycle, and results on global synchronization from any initial condition are very sparse. In our work, we address global PCO synchronization from an arbitrary phase distribution under chain or directed tree graphs. More importantly, different from existing global synchronization studies on decentralized PCO networks, our work allows heterogeneous coupling functions and perturbations on PCOs\u27 natural frequencies, and our results hold under any coupling strength between zero and one, which is crucial because a large coupling strength has been shown to be detrimental to the robustness of PCO synchronization to disturbances. Compared with synchronization, desynchronization of PCOs is less explored. Desynchronization spreads the phase variables of all PCOs uniformly apart (with equal difference between neighboring phases). It has also been found in many biological phenomena, such as neuron spiking and fish signaling. Recently, phase desynchronization has been employed to achieve round-robin scheduling, which is crucial in applications as diverse as media access control of communication networks, realization of analog-to-digital converters, and scheduling of traffic flows in intersections. In our work, we systematically characterize pulse-coupled oscillators based decentralized phase desynchronization and propose an interaction function that is more general than existing results. Numerical simulations show that the proposed pulse based interaction function also has better robustness to pulse losses, time delays, and frequency errors than existing results. Collective motion coordination is fundamental in systems as diverse as mobile sensor networks, swarm robotics, autonomous vehicles, and animal groups. Inspired by the close relationship between phase synchronization/desynchronization of PCOs and the heading dynamics of connected vehicles/robots, we propose a pulse-based integrated communication and control approach for collective motion coordination. Our approach only employs simple and identical pulses, which significantly reduces processing latency and communication delay compared with conventional packet based communications. Not only can heading control be achieved in the proposed approach to coordinate the headings (orientations) of motions in a network, but also spacing control for circular motion is achievable to design the spacing between neighboring nodes (e.g., vehicles or robots). The second part of this dissertation is privacy preservation in multi-agent systems. More specifically, we focus on privacy-preserving average consensus as it is key for multi-agent systems, with applications ranging from time synchronization, information fusion, load balancing, to decentralized control. Existing average consensus algorithms require individual nodes (agents) to exchange explicit state values with their neighbors, which leads to the undesirable disclosure of sensitive information in the state. In our work, we propose a novel average consensus algorithm for time-varying directed graphs which can protect the privacy of participating nodes\u27 initial states. Leveraging algorithm-level obfuscation, the algorithm does not need the assistance of any trusted third party or data aggregator. By leveraging the inherent robustness of consensus dynamics against random variations in interaction, our proposed algorithm can guarantee privacy of participating nodes without compromising the accuracy of consensus. The algorithm is distinctly different from differential-privacy based average consensus approaches which enable privacy through compromising accuracy in obtained consensus value. The approach is able to protect the privacy of participating nodes even in the presence of multiple honest-but-curious nodes which can collude with each other

    N-Body Oscillator Interactions of Higher-Order Coupling Functions

    Full text link
    We introduce a method to identify phase equations that include NN-body interactions for general coupled oscillators valid far beyond the weak coupling approximation. This strategy is an extension of the theory from [Park and Wilson, SIADS 20.3 (2021)] and yields coupling functions for N2N\geq2 oscillators for arbitrary types of coupling (e.g., diffusive, gap-junction, chemical synaptic). These coupling functions enable the study of oscillator networks in terms of phase-locked states, whose stability can be determined using straightforward linear stability arguments. We demonstrate the utility of our approach with two examples. First, we use N=3N=3 diffusively coupled complex Ginzburg-Landau (CGL) model and show that the loss of stability in its splay state occurs through a Hopf bifurcation \yp{as a function of non-weak diffusive coupling. Our reduction also captures asymptotic limit-cycle dynamics in the phase differences}. Second, we use N=3N=3 realistic conductance-based thalamic neuron models and show that our method correctly predicts a loss in stability of a splay state for non-weak synaptic coupling. In both examples, our theory accurately captures model behaviors that weak and recent non-weak coupling theories can not.Comment: 29 pages, 6 figure

    Complex partial synchronization patterns in networks of delay-coupled neurons

    Get PDF
    We study the spatio-temporal dynamics of a multiplex network of delay-coupled FitzHugh–Nagumo oscillators with non-local and fractal connectivities. Apart from chimera states, a new regime of coexistence of slow and fast oscillations is found. An analytical explanation for the emergence of such coexisting partial synchronization patterns is given. Furthermore, we propose a control scheme for the number of fast and slow neurons in each layer.DFG, 163436311, SFB 910: Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzept

    Between phase and amplitude oscillators

    Get PDF
    This work has been financially supported by the EU project COSMOS (642563). We wish to acknowledge Ernest Mont-brio for early suggestions and enlightening discussions.Peer reviewedPreprintPostprin

    Effects of Repulsive Coupling in Ensembles of Excitable Elements

    Get PDF
    Die vorliegende Arbeit behandelt die kollektive Dynamik identischer Klasse-I-anregbarer Elemente. Diese können im Rahmen der nichtlinearen Dynamik als Systeme nahe einer Sattel-Knoten-Bifurkation auf einem invarianten Kreis beschrieben werden. Der Fokus der Arbeit liegt auf dem Studium aktiver Rotatoren als Prototypen solcher Elemente. In Teil eins der Arbeit besprechen wir das klassische Modell abstoßend gekoppelter aktiver Rotatoren von Shinomoto und Kuramoto und generalisieren es indem wir höhere Fourier-Moden in der internen Dynamik der Rotatoren berücksichtigen. Wir besprechen außerdem die mathematischen Methoden die wir zur Untersuchung des Aktive-Rotatoren-Modells verwenden. In Teil zwei untersuchen wir Existenz und Stabilität periodischer Zwei-Cluster-Lösungen für generalisierte aktive Rotatoren und beweisen anschließend die Existenz eines Kontinuums periodischer Lösungen für eine Klasse Watanabe-Strogatz-integrabler Systeme zu denen insbesondere das klassische Aktive-Rotatoren-Modell gehört und zeigen dass (i) das Kontinuum eine normal-anziehende invariante Mannigfaltigkeit bildet und (ii) eine der auftretenden periodischen Lösungen Splay-State-Dynamik besitzt. Danach entwickeln wir mit Hilfe der Averaging-Methode eine Störungstheorie für solche Systeme. Mit dieser können wir Rückschlüsse auf die asymptotische Dynamik des generalisierten Aktive-Rotatoren-Modells ziehen. Als Hauptergebnis stellen wir fest dass sowohl periodische Zwei-Cluster-Lösungen als auch Splay States robuste Lösungen für das Aktive-Rotatoren-Modell darstellen. Wir untersuchen außerdem einen "Stabilitätstransfer" zwischen diesen Lösungen durch sogenannte Broken-Symmetry States. In Teil drei untersuchen wir Ensembles gekoppelter Morris-Lecar-Neuronen und stellen fest, dass deren asymptotische Dynamik der der aktiven Rotatoren vergleichbar ist was nahelegt dass die Ergebnisse aus Teil zwei ein qualitatives Bild für solch kompliziertere und realistischere Neuronenmodelle liefern.We study the collective dynamics of class I excitable elements, which can be described within the theory of nonlinear dynamics as systems close to a saddle-node bifurcation on an invariant circle. The focus of the thesis lies on the study of active rotators as a prototype for such elements. In part one of the thesis, we motivate the classic model of repulsively coupled active rotators by Shinomoto and Kuramoto and generalize it by considering higher-order Fourier modes in the on-site dynamics of the rotators. We also discuss the mathematical methods which our work relies on, in particular the concept of Watanabe-Strogatz (WS) integrability which allows to describe systems of identical angular variables in terms of Möbius transformations. In part two, we investigate the existence and stability of periodic two-cluster states for generalized active rotators and prove the existence of a continuum of periodic orbits for a class of WS-integrable systems which includes, in particular, the classic active rotator model. We show that (i) this continuum constitutes a normally attracting invariant manifold and that (ii) one of the solutions yields splay state dynamics. We then develop a perturbation theory for such systems, based on the averaging method. By this approach, we can deduce the asymptotic dynamics of the generalized active rotator model. As a main result, we find that periodic two-cluster states and splay states are robust periodic solutions for systems of identical active rotators. We also investigate a 'transfer of stability' between these solutions by means of so-called broken-symmetry states. In part three, we study ensembles of higher-dimensional class I excitable elements in the form of Morris-Lecar neurons and find the asymptotic dynamics of such systems to be similar to those of active rotators, which suggests that our results from part two yield a suitable qualitative description for more complicated and realistic neural models

    Designing the Dynamics of Coupled Oscillators

    Get PDF
    By designing coupling to control populations of oscillators, we can control their synchonisation behaviour. Oscillators (e.g. neurons) can be coupled on different levels. The most basic level is through links between pairs of oscillators. However, using graphs with only pairwise links is not necessarily a satisfactory approximation of reality as nonpairwise interactions can be found in many dynamical systems including social networks and the human brain. Even though the effects of these nonpairwise interactions have been observed, described and modeled in a wide range of oscillatory systems, controlling nonpairwise interactions in arbitrary populations of oscillators has remained a relatively unexplored area. In this thesis we generalise synchronisation engineering to control nonpairwise interactions in arbitrary systems. We designed a nonlinear time-delayed coupling that can be used to match the phase reduction of a system of oscillators to a target phase model. The contribution of this thesis is allowing for nonpairwise interactions in the target phase model. We used an optimisation proceidure to find coupling parameters to match a nonpairwise target phase model that has the collective behaviour we aim to introduce to the system We found that we need one additional filter to find the parameter sets that match the bifurcation of both in-phase and splay configuration in to the nonpairwise target phase model
    corecore